分数乘法知识
分数乘法知识点总结例题
分数乘法知识点总结例题一、分数乘法的基本概念1. 乘数:分数乘法中的两个数称为乘数,分别称为被乘数和乘数。
2. 乘积:两个乘数相乘得到的结果称为乘积。
二、分数乘法的计算方法分数乘法的计算方法可以分为以下几个步骤:1. 先将乘数化成最简分数。
2. 将两个乘数的分子和分母分别相乘,得到新的分子和分母。
3. 最后将得到的分子和分母约分得到最简分数。
三、分数乘法的例题例题1:计算$\frac{2}{3} \times \frac{4}{5}$解析:步骤1:将乘数化成最简分数。
$\frac{2}{3}$已经是最简分数,无需化简。
$\frac{4}{5}$已经是最简分数,无需化简。
步骤2:将两个乘数的分子和分母相乘。
分子相乘:$2 \times 4=8$分母相乘:$3 \times 5=15$步骤3:将分子和分母约分得到最简分数。
结果:$\frac{8}{15}$所以,$\frac{2}{3} \times \frac{4}{5} = \frac{8}{15}$。
例题2:计算$\frac{7}{8} \times \frac{3}{10}$解析:步骤1:将乘数化成最简分数。
$\frac{7}{8}$已经是最简分数,无需化简。
$\frac{3}{10}$已经是最简分数,无需化简。
步骤2:将两个乘数的分子和分母相乘。
分子相乘:$7 \times 3=21$分母相乘:$8 \times 10=80$步骤3:将分子和分母约分得到最简分数。
结果:$\frac{21}{80}$所以,$\frac{7}{8} \times \frac{3}{10} = \frac{21}{80}$。
例题3:计算$\frac{5}{6} \times \frac{2}{3}$解析:步骤1:将乘数化成最简分数。
$\frac{5}{6}$已经是最简分数,无需化简。
$\frac{2}{3}$已经是最简分数,无需化简。
步骤2:将两个乘数的分子和分母相乘。
第一单元《分数乘法》知识点
第一单元《分数乘法》知识点1、 分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
比如:72×3 ,表示求3个72相加是多少,或者求72的3倍是多少。
2、 一个数乘分数的意义:就是求这个数的几分之几是多少。
比如:3×72 ,表示求3的72是多少。
3、 分数乘法包括:① 分数和整数相乘:整数和分子相乘的积作分子,分母不变,能约分的要先约分。
(注意:整数和分子不能约分) 比如:103×5 ,分母10和整数5约分。
② 分数和分数相乘:用分子相乘的积作分子,用分母相乘的积作分母,能约分的要先约分。
(注意:分子只能和分母约分,分子与分子,分母与分母之间不能约分) 比如:152×85 ,分子2和分母8约分,分子5和分母15约分。
③ 分数和小数相乘:可以把小数化成分数;也可以把分数化成小数;或者直接用小数和分母进行约分。
比如:85×1.6 ,可以把1.6化成1016;也可以把85化成0.625;或者直接将分母8和小数1.6约分。
4、 分数乘法的运算顺序和整数乘法相同,先算乘除,后算加减,有括号先算括号里面的。
比如:85-83×65,先算乘法,再算减法,不能先用85减去83。
5、 整数乘法的交换律、结合律和分配律,对于分数乘法也适用。
交换律:a × b = b × a结合律:(a × b )× c = a ×(b × c )分配律:a ×(b + c )= a × b + a × c 比如:154×94+154×95,运用乘法分配律,将两边乘法中相同的分数154提到括号外面,再乘括号中的(94+95)。
6、 分数乘法应用题分为:① 连续求一个数的几分之几是多少。
②求比一个数多(或少)几分之几的数是多少。
知识点总结分数乘法
六年级上册数学第一单元分数乘法知识点总结(一)分数乘法的意义。
1 、分数乘整数(第二个因数为整数时):分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和得简易运算。
2 2 2比如:3 ×3,表示: 3 个3 相加是多少,还表示 3 的 3 倍是多少。
2 、一个数(小数、分数、整数)乘分数(第二因数为真分数时):一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
5 5比如: 6×12 ,表示:6 的12 是多少。
2 7 2 77 ×8 ,表示:7 的8 是多少。
3、一个数(小数、分数、整数)乘分数(第二因数为大于1 的分数时):一个数乘分数的意义与整数乘法的意义也不相同,是表示这个数的几倍是多少。
5 2 5 2比如:12×13 ,表示:12 的 13 倍是多少。
(二)、分数乘法的计算法例:1、分数乘整数的运算法例是:分子与整数相乘,分母不变。
注:(1)为了计算简易能约分的可先约分再计算。
(分母和整数约分)(2)约分是用整数和下边的分母约掉最大公因数。
(计算结果一定是最简分数)2、分数乘分数的运算法例是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)假如分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
( 2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个能够约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母一定不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基天性质:分子、分母同时乘或许除以一个相同的数( 0 除外),分数的大小不变。
(三)积与因数的关系:一个数(0 除外)乘大于 1 的数,积大于这个数。
a×b=c, 当 b >1 时, c>a.一个数(0 除外)乘小于 1 的数,积小于这个数。
知识点总结:分数乘法
分数乘法知识点总结(一)分数乘法的意义。
1、分数乘整数(第二个因数为整数时):分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算。
例如:23 ×3,表示:3个 23 相加是多少,还表示 23的3倍是多少。
2、一个数(小数、分数、整数)乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512 ,表示:6的512 是多少。
27 ×78 ,表示:27 的78是多少。
例如:512 ×123 ,表示:512 的123倍是多少。
(二)、分数乘法的计算法则:1、分数乘整数的运算法则是:用分子乘整数的积作分子,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(分母和整数约分)(2)约分是用整数和下面的分母约掉最大公因数。
(计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
3.小数乘分数的计算方法(1)把小数化成分数计算;(2)如果分数能化成有限小数,也可以将分数化为小数计算;(3)小数跟分母能约分的,先约分再计算比较简便(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a ×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。
a ×b=c,当b <1时,c<a (b ≠0). 一个数(0除外)乘等于1的数,积等于这个数。
六年级数学上册第一单元《分数乘法》5大考点归纳
考点一分数乘整数1.分数乘整数的意义就是求几个相同分数相加的简便运算。
2.分数乘整数的计算方法:用分数的分子和整数相乘的积作分子,分母不变,计算结果要化成最简分数。
如果整数和分数有公因数,可以先约分,再计算。
3.整数乘分数就是求整数的几分之几是多少。
4.计算时,要注意约分的过程,结果要化为最简分数。
考点二分数乘分数1.分数乘分数的意义就是求这个分数的几分之几是多少。
2.分数成份属的计算方法:分子相乘的积作分子,分母相乘的积作分母,最后结果要化成最简分数。
3.分数乘分数可以先约分,再计算,这样可以使计算简便。
4.分数乘分数不用写成分子与分子相乘、分母与分母相乘的形式后再约分,可以直接将分母(分子)与另一个分数的分子(分母)进行约分。
5.分数乘整数不用写成分子和整数相乘的形式后再约分,可以直接用整数和分母进行约分。
考点三分数乘小数1.小数乘分数的计算方法。
(1)把小数转化成分数,按分数乘分数的方法进行计算;(2)把分数转化成小数,按小数乘小数的方法进行计算。
2.在计算小数乘分数时,如果小数能和分数的分母约分,可以先约分再计算,这样可以使计算简便。
考点四乘法运算定律推广到分数1.分数混合运算的运算顺序:有括号的,先算括号里面的,再算括号外面的;没有括号的,先算乘除法,再算加减法;同级运算,按从左往右的顺序计算。
2.整数乘法的交换律、结合律和分配了对于分数乘法同样适用。
运用乘法运算定律,可以使计算简便些。
3.运用乘法运算定律可以使分数乘法的计算简便。
(1)几个分数连乘时,可以运用乘法运算律或结合律碱性简算。
(2)几个分数的和与整数相乘时,如果所乘整数时这几个人分数分母的公倍数,可以运用乘法分配律进行简算。
考点五分数乘法解决问题1.连续求一个数的几分之几是多少的解题方法:用这个数(单位“1”的量)连续乘对应的分率。
解答的关键是找准每个分率对应的单位“1”。
2.已知一个数量比另一个数量多(或少)几分之几,求这个数量的解题方法。
分数乘法知识点
分数乘法(一)知识点:1、理解分数乘整数的意义:数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子。
能约分的要约成最简分数。
如:a ×m n =mn a 3、计算时,应该先约分再计算。
要简便一些补充知识点1、两个数相乘,其中一个乘数不变,另一个剩数扩大到原来的几倍(或缩小到原来的几分之几),积也相应地扩大到原来的几倍(或缩小到原来的几分之几)。
知识点: 1、分数乘整数的意义:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
如:12×5表示求5个12的和是多少,或者表示12的5倍是多少。
2、一个数乘分数的意义:就是求这个数的几分之几是多少。
如:4×13表示求4的13是多少。
3×13表示3的13是多少。
3、理解打折的含义。
例如:九折,是指现价是原价的十分之九。
现价=原价×109补充知识点1、在解决实际问题时,要找准把谁看作一个整体。
找准单位“1”并弄清所求问题与单位“1”的关系是解决问题的关键。
2、打折问题的公式:现价=原价×折扣原价=现价÷折扣折扣=现价÷原价2、打几折就是指现价是原价的百分之几,例如八五折,是指现价是原价的百分之八十五。
现价=原价×100853、买一赠一打几折:出一份的钱拿两个货品,即 1除以2等于零点五五折买三赠一打几折:出三份的钱拿四个货品,即 3除以4等于零点七五七五折分数乘法(三)知识点:1、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分,再计算。
(计算结果要求是最简分数。
)如:mb na m n ba⨯⨯=⨯2、分数乘分数的意义:求一个分数的几分之几是多少。
3、比较分数相乘的积与每一个乘数的大小:真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数。
4、比较分数相乘的积与每一个乘数的大小。
分数乘除知识点
分数乘除知识点分数是数学中的一种数形式,由两个整数表示,一个整数表示分子,一个整数表示分母。
分子表示的是分数中的份数,分母表示的是每份的份数。
分数在我们的生活中经常用到,如计算比例、折扣、概率等。
掌握分数的乘除法是十分重要的。
一、分数乘法分数乘法是指将两个分数相乘,得到一个新的分数。
分数乘法的计算规则如下:1. 将两个分数的分子相乘,得到新分数的分子;2. 将两个分数的分母相乘,得到新分数的分母;3. 简化新分数,如果有约数可以约分。
举例说明:将1/2和2/3相乘。
1/2 × 2/3 = (1 × 2)/(2 × 3) = 2/6简化得到最简分数:2/6 = 1/3所以,1/2 × 2/3 = 1/3二、分数除法分数除法是指将一个分数除以另一个分数,得到一个新的分数。
分数除法的计算规则如下:1. 将除数的分子和被除数的分母相乘,得到新分数的分子;2. 将除数的分母和被除数的分子相乘,得到新分数的分母;3. 简化新分数,如果有约数可以约分。
举例说明:将2/3除以1/4。
2/3 ÷ 1/4 = (2 × 4)/(3 × 1) = 8/3简化得到最简分数:8/3 = 2 2/3所以,2/3 ÷ 1/4 = 2 2/3三、对分数乘除法的综合应用在实际问题中,我们常常需要综合运用乘法和除法来解决分数计算的问题。
举例说明:例1:小明买了3个香蕉,每只香蕉的长短都是1/2米,求这3个香蕉的总长度。
解:香蕉的总长度 = 3 × 1/2 = 3/2 米简化得到最简分数:3/2 = 1 1/2所以,这3个香蕉的总长度为1 1/2米。
例2:小华买了2袋糖,每袋糖的重量是3/4千克,求这2袋糖的总重量。
解:糖的总重量 = 2 × 3/4 = 6/4 千克简化得到最简分数:6/4 = 1 1/2所以,这2袋糖的总重量为1 1/2千克。
分数乘法知识点总结6
分数乘法知识点总结6一、分数的乘法1. 分数的乘法定义分数的乘法就是将两个分数相乘,得到一个新的分数。
2. 分数乘法的计算方法分数乘法的计算方法是:将两个分数相乘,然后约分得到最简分数。
3. 分数乘法公式假设有两个分数a/b和c/d,它们的乘积可以表示为:(a/b) × (c/d) = (a × c) / (b × d)4. 分数的乘法性质分数的乘法具有以下性质:- 乘法交换律:a/b × c/d = c/d × a/b- 乘法结合律:(a/b) × (c/d) × (e/f) = a/b × (c/d) × (e/f) = a/b × c/d × e/f二、分数乘法的应用1. 分数乘法在生活中的应用分数乘法在日常生活中有着广泛的应用,比如在厨房中用到的食谱中的配料计算、购物时的商品折扣计算等都需要用到分数乘法。
2. 分数乘法在数学中的应用在数学中,分数乘法在各种数学题目中都有着重要的应用,比如分数的运算、分数的比较、分数与整数的混合运算等。
三、分数乘法的简化1. 分数乘法的简化方法分数乘法的简化方法是将乘积约分为最简分数,即将分子和分母的公约数约去。
2. 分数乘法的约分原则分数乘法的约分原则是先将乘积求得的分数化简为最简分数,即分子和分母不能再被约分为整数的分数。
3. 分数乘法简化的例题比如计算3/4 × 2/5,将3和5相乘得15,4和2相乘得8,然后将15/8约分为最简分数,最终得到的结果是15/8。
四、分数乘法的注意事项1. 分数乘法中的分子与分母在分数乘法中,要特别注意乘数和被乘数的分子与分母,确保按照正确的顺序进行计算。
2. 分数乘法中的分数形式在分数乘法中,要根据实际情况化成最简分数,或者根据具体题目要求用分数或整数表示结果。
3. 分数乘法中的乘积计算在分数乘法中,要将分数和整数相乘时,可以将整数写成分母为1的分数,然后进行相乘。
分数乘法知识点
分数乘法知识点(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:¾×7表示: 求7个¾的和是多少?或表示:¾的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)例如:¾×½表示: 求¾的½是多少?9 ×½表示: 求9的½是多少?A ×½表示: 求a的½是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a (b≠0).一个数(0除外)乘等于1的数,积等于这个数。
六年级上册分数乘法知识点
六年级上册分数乘法知识点一、分数乘法的意义。
1. 分数乘整数。
- 意义:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
- 例如:(2)/(3)×3表示3个(2)/(3)相加的和是多少,即(2)/(3)+(2)/(3)+(2)/(3)。
2. 一个数乘分数。
- 意义:表示求这个数的几分之几是多少。
- 例如:3×(2)/(5)表示3的(2)/(5)是多少;(2)/(3)×(4)/(5)表示(2)/(3)的(4)/(5)是多少。
二、分数乘法的计算法则。
1. 分数乘整数。
- 计算方法:用分数的分子和整数相乘的积作分子,分母不变。
能约分的可以先约分,再计算。
- 例如:(2)/(3)×3=(2×3)/(3)=2;(3)/(4)×8,先约分,8和4约分,8变为2,4变为1,则(3)/(4)×8=(3×2)/(1)=6。
2. 分数乘分数。
- 计算方法:用分子相乘的积作分子,分母相乘的积作分母。
能约分的先约分再计算。
- 例如:(2)/(3)×(4)/(5)=(2×4)/(3×5)=(8)/(15);(3)/(5)×(5)/(9),先约分,3和9约分,3变为1,9变为3,5和5约分都变为1,则(3)/(5)×(5)/(9)=(1×1)/(1×3)=(1)/(3)。
三、分数乘法的简便运算。
1. 乘法交换律。
- 公式:a× b = b× a- 在分数乘法中的应用:(2)/(3)×(3)/(4)=(3)/(4)×(2)/(3)。
2. 乘法结合律。
- 公式:(a× b)× c=a×(b× c)- 例如:((2)/(3)×(3)/(5))×(5)/(7)=(2)/(3)×((3)/(5)×(5)/(7)),先计算(3)/(5)×(5)/(7)=(3)/(7),再计算(2)/(3)×(3)/(7)=(2)/(7)。
六年级数学分数乘法知识点
六年级数学分数乘法知识点六年级数学分数乘法学问点1(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是其次个因数必需是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是其次个因数必需是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。
能约分的可以先约分,再计算。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉公因数。
(整数千万不能与分母相乘,计算结果必需是最简分数)。
2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。
(分子乘分子,分母乘分母)(1)假如分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必需不再含有公因数,这样计算后的结果才是最简洁分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b<1时,c 一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要留意因数为0时的特别状况。
(四)分数混合运算1、分数混合运算的运算依次与整数混合运算的运算依次相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
分数乘法知识点归类总结
分数乘法知识点归类总结一、分数乘法(一)、分数乘法的意义:1、分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
例如:598⨯表示求5个98的和是多少?2、分数乘分数是求一个数的几分之几是多少。
例如:4398⨯表示求98的43是多少?(二) 、分数乘法的运算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了简便计算,能约分的要先约分,再计算。
注:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
练习一、分数与整数相乘:=⨯4125 =⨯13626 =⨯51511练习二、分数和分数相乘:(注意:能约分的先约分,再计算)=⨯4352 =⨯8776 =⨯15895(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
练习三、比较大小。
465⨯Ο65 329⨯Ο932⨯ 2183⨯Ο83(四)、分数混合运算的运算顺序和整数的运算顺序相同。
练习四、分数乘、加、减混合。
=⎪⎭⎫ ⎝⎛⨯72-6350167 =⨯⨯14161554=+⨯14365 =⨯+15412532(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a 乘法结合律:( a×b )×c = a × ( b × c )乘法分配律:( a + b )×c = a × c + b ×c 练习五、分数乘、加、减简便运算。
=⨯⨯52671513 =⨯⎪⎭⎫⎝⎛+24121185 =⨯⨯141817149 =⨯⎪⎭⎫⎝⎛3694-65 =⨯989799 =⨯⨯15257-152512二、分数乘法的解决问题 (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、画线段图:(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。
(完整版)分数乘法知识点归纳
分数乘法知识点归纳(一 )分数乘法的意义:(二 ) 知识点1:分数与整数相乘:分数乘整数的意义与整数乘法的意义同样,就是求几个同样加数的和的简略运算。
知识点 2. 整数乘分数的意义:整数乘分数的意义求一个数的几分之几是多少。
知识点 3. :分数乘分数的意义分数乘分数的意义就是求一个分数的几分之几是多少。
(二)、分数乘法的计算方法:知识点 1.分数乘分数的计算方法:分子相乘的积做分子,分母相乘的积做分母,能约分的能够先约分。
(计算结果要求是最简分数。
)知识点 3.分数乘整数的计算方法:用分数的分子和整数相乘的积作分子,分母不变。
计算时,应该先约分再计算。
计算结果要约成最简分数。
因为整数能够看作分母是 1 的分数,所以分数乘分数的计算法规也适用于分数和整数相乘。
知识点 4.含带分数的分数计算方法带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
知识点 5. 分数乘小数的计算方法分数乘小数,可把小数化成分数,一致成分数乘分数,依照分数乘分数的计算方法计算。
分数乘小数,也可把分数化成小数,一致成小数乘小数乘小数,依照小数乘小数的计算方法计算。
注意:当分数不能够化成有限小数时,则最好一致成分数乘分数(三)、乘法中乘数与积的大小关系的规律:一个数( 0 除外)乘小于 1(真分数)( 0 除外)的数,积小于这个数。
一个数( 0 除外)乘 1,积等于这个数。
一个数( 0 除外)乘大于 1(带分数)的数,积大于这个数。
(四 )、分数混杂运算的运算序次与整数的运算序次同样:知识点 1:整数加法的交换律结合律,对分数乘法同样适用。
加法交换律: a+b=b+a加法结合律:(a+b)+c=a+(b+c)加法的交换律、结合律经常混杂运用:三个或三个以上的数相加能够任意的交换加数的地址,能够任意的把其中两个加数结合在一起。
知识点 2 整数乘法的交换律、交换律和分配律,对分数乘法同样适用。
乘法交换律: a×b=b×a乘法结合律:( a×b)× c=a×( b×c)乘法分配律:( a+b)× c=ac+bc乘法交换律和结合律经常混杂运用:三个或三个以上的数相乘能够任意的交换因数的地址,也能够任意的把其中两个因数结合在一起另附:倒数:知识点 1. 倒数的意义:(1)乘积是 1 的两个数互为倒数。
分数乘法的总结知识点
分数乘法的总结知识点一、分数的乘法规则1. 分数乘分数分数相乘时,只需将分子与分子相乘,分母与分母相乘,得到的结果即为乘积的分数。
例如:2/3 * 3/4 = (2*3) / (3*4) = 6/122. 分数乘整数分数乘整数时,只需将整数与分子相乘,分母不变。
例如:2/3 * 4 = (2*4) / 3 = 8/33. 分数的乘积可以化为最简分数的形式分数的乘积可以通过化简得到最简分数形式,即分子与分母的最大公约数为1。
例如:4/8 * 3/6 = (4*3) / (8*6) = 12/48 = 1/44. 分数的乘法交换律分数的乘法满足交换律,即a/b * c/d = c/d * a/b5. 分数的乘法结合律分数的乘法满足结合律,即(a/b) *(c/d) * (e/f) = a/b * (c/d) * (e/f)二、分数乘法的应用1. 分数的相乘可以应用在日常生活中,如计算食谱中的材料用量、商场中的价格折扣等。
2. 在学习中,分数的乘法也会涉及到大量的习题,例如完成分数相乘的计算、化简分数等。
三、习题解析1. 计算下列各题。
① 2/3 * 3/4 = ?(2*3) / (3*4) = 6/12 = 1/2所以2/3 * 3/4 = 1/2② 5/6 * 2 = ?(5*2) / 6 = 10/6 = 5/3所以5/6 * 2 = 5/3③ 7/8 * 4/7 * 2/3 = ?(7*4*2) / (8*7*3) = 56/168 = 1/3所以7/8 * 4/7 * 2/3 = 1/32. 化简下列各题。
① 4/8 * 3/6分子分母同除以最大公约数4,得到1/2所以4/8 * 3/6 = 1/2② 6/10 * 2/5分子分母同除以最大公约数2,得到3/5所以6/10 * 2/5 = 3/5四、总结分数乘法是数学中的一个基本运算,它与实数乘法一样都遵守交换律和结合律。
在分数乘法的运算中,我们只需将分子与分子相乘,分母与分母相乘,得到的结果即为乘积的分数。
分数乘法知识要点
分数乘法知识要点一、分数乘法的意义1、分数乘整数与整数乘法的意义相同.都是求几个相同加数的和的简便运算.2、分数乘分数是求一个数的几分之几是多少。
二、分数乘法的计算法则1、分数与整数相乘:分子与整数相乘的积做分子,分母不变.(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
4、分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。
三、规律:(乘法中比较大小时)1、一个数(0除外)乘大于1的数,积大于这个数.2、一个数(0除外)乘小于1的数(0除外),积小于这个数.3、一个数(0除外)乘1,积等于这个数.四、分数混合运算的运算顺序和整数的运算顺序相同。
先乘除,后加减,同级运算从左到右运算,如果有括号要先算括号五、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用.乘法交换律:a × b = b × a乘法结合律:( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c三、经验之谈:在进行分数乘法计算时,拿到题时不要急着动手,我们先观察一下,尽量把能约分的先约分,如果不确定的题先打打草稿,这样子做题准确度和效率都会得到提高.另外提醒一点,解答数学题,希望同学们养成打草稿的习惯,在初中数学中,太多比较复杂的计算题凭在脑子转来转去是转不出答案的.分数除法知识要点1、分数除法的意义乘法:因数×因数= 积;除法:积÷一个因数= 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算.2、分数除法的计算法则除以一个不为0的数,等于乘这个数的倒数.注:0不能做除数.3、规律(分数除法比较大小时)(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
分数的乘法运算规则知识点总结
分数的乘法运算规则知识点总结分数是数学中的一种特殊形式,它由一个整数分子和一个非零整数分母组成。
在分数的乘法运算中,我们需要掌握一些关键的规则和技巧。
本文将对分数的乘法运算规则进行总结与阐述。
1. 分数乘法的定义:分数乘法是指两个分数相乘的运算。
设有两个分数a/b和c/d,它们的乘积可以表示为:(a/b) × (c/d) = (a × c) / (b × d)2. 约分与通分:在进行分数乘法运算时,通常需要对分数进行约分或通分。
约分是指化简分数,使分子和分母没有公因数。
通分是指将两个分数的分母改为相同的数。
3. 分数乘法的步骤:(1) 对于两个分数a/b和c/d,先进行约分或通分,将它们的分母化为相同的数。
(2) 将两个分数的分子相乘,得到新的分子。
(3) 将两个分数的分母相乘,得到新的分母。
(4) 化简分数(如有需要)。
4. 整数与分数的乘法:当整数与分数相乘时,可以将整数视为分母为1的分数进行运算。
具体步骤如下:(1) 首先将整数写成分数的形式,即整数/1。
(2) 将整数的分子与分数的分子相乘,得到新的分子。
(3) 整数的分母与分数的分母相乘,得到新的分母。
(4) 化简分数(如有需要)。
5. 分数的乘方运算:分数的乘方运算是指一个分数自乘若干次的运算。
设有一个分数a/b,它的乘方可以表示为:(a/b)^n = (a^n) / (b^n)其中n为非零整数,a为任意整数。
6. 特殊的分数乘法规则:(1) 任何数与0相乘等于0,即a × 0 = 0,其中a为任意数。
(2) 任何数与1相乘等于这个数本身,即a × 1 = a,其中a为任意数。
7. 分数乘法运算的例子:(1/2) × (3/4) = (1 × 3) / (2 × 4) = 3/82 × (3/4) = (2/1) × (3/4) = (2 × 3) / (1 × 4) = 6/4 = 3/2(1/3)^2 = (1^2) / (3^2) = 1/9分数的乘法运算规则是数学中基础而重要的内容,掌握了这些规则和技巧,可以帮助我们正确、便捷地进行分数的乘法运算。
六年级数学上册知识点分数乘法
六年级数学上册知识点分数乘法第二单元分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: times;5表示求5个的和是多少?2、分数乘分数是求一个数的几分之几是多少。
例如: times;表示求的是多少?(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a times; b = b times; a乘法结合律: ( a times; b )times;c = a times; ( b times; c )乘法分配律: ( a + b )times;c = a c + b c二、分数乘法的解决问题(已知单位1的量(用乘法),求单位1的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。
2、找单位1:在分率句中分率的前面; 或占、是、比的后面3、求一个数的几倍:一个数times;几倍; 求一个数的几分之几是多少:一个数times;。
4、写数量关系式技巧:(1)的相当于 times; 占、是、比相当于 =(2)分率前是的:单位1的量times;分率=分率对应量(3)分率前是多或少的意思:单位1的量times;(1分率)=分率对应量三、倒数1、倒数的意义:乘积是1的两个数互为倒数。
六年级分数乘法主要知识点
1.分数的乘法:分数的乘法是指两个分数相乘的运算。
分数的乘法遵循以下规则:-分数的乘法可转化为分子相乘、分母相乘的形式。
-分数的乘法结果的分子为两个分数的分子相乘,分母为两个分数的分母相乘。
2.分数乘以整数:分数乘以整数的规律是,将整数乘以分数的分子,并保持分母不变。
如:2×1/3=2/33.分数乘以分数:分数乘以分数的规律是将两个分数的分子相乘,分母相乘。
如:2/3×3/4=6/124.分数乘法与整数乘法的关系:分数乘以整数可以看作是分数乘以分母为1的分数,即分子不变,分母乘以整数。
5.分数乘法的交换律:分数乘法满足交换律,即两个分数相乘的结果与其顺序无关。
如:2/3×4/5=4/5×2/36.分数乘法的简化:可以通过约分的方式,将一个分数乘法结果化简为最简形式。
7.分数乘法的扩大:可以通过乘以一个相同的数来扩大分数乘法的结果。
如:2/3×2=4/38.分数乘法的解释与应用:分数乘法可以用于解决实际问题,如计算物品的总价值、求解面积等。
在学习分数乘法时,同学们需要重点掌握分数的乘法规则,理解分子、分母的含义,并能够根据实际情境进行分数乘法的运算。
此外,还应通过练习题、应用题等来巩固和运用所学知识,提升解决问题的能力。
举例说明:例一:计算2/3×4/5解:根据分数乘法的规则,分子相乘得到2×4=8,分母相乘得到3×5=15、因此,2/3×4/5=8/15例二:小明乘地铁,每站花费1/4元,他乘了5站,一共花费多少钱?解:小明乘了5站,每站花费1/4元,因此总共花费1/4×5=5/4元。
化简得到5/4=11/4元,即小明共花费了11/4元。
例三:小红在图书店买了3本书,每本书原价为2/3元,打7折。
她一共花费多少钱?解:每本书的原价为2/3元,打7折相当于原价的7/10,所以每本书的价格为2/3×7/10=14/30元。
分数乘法课外知识
分数乘法课外知识分数乘法是数学中的基础运算之一,它在求解实际问题、解决日常生活中的计算难题时起到了重要作用。
本文将从什么是分数乘法、分数乘法的基本原理和运算规则以及分数乘法在实际问题中的应用等方面进行论述。
一、什么是分数乘法分数乘法是指两个分数相乘的运算,其结果依然是一个分数。
在分数乘法中,我们需要将两个分数进行合理的运算,得到最简形式的结果。
当分数相乘时,我们将分子与分子相乘,分母与分母相乘,然后将所得积的分子与分母写作一个新的分数,即是所求的结果。
例如,对于两个分数的乘法运算:1/2 × 3/4 = 3/8。
在这个例子中,我们将1与3相乘得到3,将2与4相乘得到8,然后将3/8写作最简分数形式,即得到了乘法的结果。
二、分数乘法的基本原理和运算规则1. 乘数为正数时:当乘数为正数时,分数乘法的结果与乘数的绝对值成正比。
即当乘数增大或减小时,结果同样增大或减小。
例如,对于分数乘法 2/3 × 5/6 = 10/18 = 5/9。
这里,2/3 与 5/6 相乘的结果是 10/18,可以简化为 5/9。
从计算结果可以看出,乘数由 2/3 增大为 5/6,结果也由 10/18 增大为 5/9。
2. 乘数为负数时:当乘数为负数时,分数乘法的结果与乘数的绝对值成反比。
即当乘数增大或减小时,结果反向增大或减小。
例如,对于分数乘法 2/3 × (-5/6) = -10/18 = -5/9。
这里,2/3 与 -5/6 相乘的结果是 -10/18,可以简化为 -5/9。
同样地,乘数由 2/3 增大为 -5/6,结果也从 10/18 减小为 -5/9。
3. 乘数为零时:当乘数为零时,任何分数与零相乘的结果都是零。
即乘数为零时,分数乘法的结果始终为零。
例如,对于分数乘法 1/2 × 0 = 0。
这里,1/2 与 0 相乘的结果为 0。
三、分数乘法的实际应用除了在数学运算中的应用外,分数乘法还常常用于解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级上册数学知识点第一单元位置1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。
经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。
(有一个数不确定,不能确定一个点)行号4 3 )行列,(2 10 3 6 2 1 5 4 列号↓↓横排叫行竖排叫列(从左往右看)(从下往上看)(从前往后看)、图形左右平移行数不变;图形上下平移列数不变。
2)的选择无关,基准点不同导致数0,3、两点间的距离与基准点(0 对不同,两点间但距离不变。
分数乘法第二单元11/ 1(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
333倍是或表示:的7求7表示: 7个的和是多少?例如:×555多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)1331×例如:表示: 求的是多少?6556119 ×表示: 求9的是多少?6611 A 是多少?a: ×表示求的66(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
11/ 2(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a (b≠0).一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a .注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
1111的分数可折成()×附:形如?(a??b)aaa?bb (四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a11/ 3乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。
单独一个数不能称为倒数。
(必须说清谁是谁的倒数)2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a×b=1则a、b互为倒数。
3、求倒数的方法:①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母。
11b;分数,它的倒数为;非零整数a的倒数为、任意数5a(a≠0) aaaa。
的倒数是b,也大于它本身。
16、真分数的倒数是假分数,真分数的倒数大于假分数的倒数小于或等于 1。
带分数的倒数小于1 ——用分数乘法解决问题(六)分数乘法应用题是的一个数、求几分之几1多少?(用乘法)b =”ד1a11/ 433=15×列式:25 例如:求25的是多少?553×甲数的等于乙数,已知甲数是25,求乙数是多少?列式:2553=15 5”的量的几分之几是多少,用单1注:已知单位“1”的量,求单位“”的量与分数相乘。
位“1)(几 2、(什么)是(什么)的。
)(几)(几×” ) ()= ( “1)(几3,乙数是25,求甲数是多少?例1: 已知甲数是乙数的533=15×即25 甲数=乙数×553”的量,:(1)“是”“的”字中间的量“乙数”是的单位“1注533”,把乙数平均分成5份,甲数是其中的即是把乙数看作单位“15份。
”号,“的”字= (2)“是”“占”“比”这三个字都相当于“相当于“×”。
(3)单位“1”的量×分率=分率对应的量 25,求甲数是多少?:甲数比乙数多(少)例2,乙数是3533340±)=1×即±乙数×25±25=25×(乙数甲数 =555)10(或”的量:在含有分数(分率)的语句中,分率前面的3、巧找单位“1”对应的量,或者“占”“是”“比”字后面的量是1量就是单位“”。
1单位“11 / 5速度?4、什么是路时间=——速度是单位时间内行驶的路程。
速度=路程÷时间=速度×时间程÷速度路程的时间秒等这样的大小为11分钟1——单位时间指的是1小时单位,每分钟、每小时、每秒钟等。
5、求甲比乙多(少)几分之几?-乙)÷乙多:(甲乙)甲—(差=比后比字后面的量甲)÷乙少:(乙-第三单元分数除法一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
31133=3÷÷3= 3×==1、被除数÷除数被除数×除数的倒数。
例553555=5×32、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)11/ 60 ≠时,c>a (ab<1②除以小于1的数,商大于被除数:a÷b=c 当0)≠bc=a 时,当b=1③除以等于1的数,商等于被除数:a÷b=c 三、分数除法混合运算 1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数除法为二级运算。
减法为一级运算,的积”的简便方法计算。
加、乘、有括号的先算括号里面,减,②混合运算:没有括号的先乘、除后加、再算括号外面。
c ÷c±b ÷c=a注:(a±b)÷四、比:两个数相除也叫两个数的比后项,1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做比号相当于除号,比的前项除以后项的商叫做比值。
54比读作:注:连比如:3:4:53比、比表示的是两个数的关系,可以用分数表示,写成分数的形式,2前项读作几比几。
123=0.6 12∶20读作:12比例:12∶20=20=12÷20=520比值后项比号前项后项注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
11/ 7比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
3、化简比:化简之后结果还是一个比,不是一个数。
(1)、用比的前项和后项同时除以它们的最大公约数。
(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
也可以求出比值再写成比的形式。
(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。
4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
5、比和除法、分数的区别:被除除号除数(不商不变除法是一除 0 法(÷)能为)性质种运算数分数的分数线分数是一(不分分分母基本性(—子 0能为)个数数—)质比表示两比的基(不比号前后项个数的关比项本性质)0能为(∶)系11/ 8附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
五、分数除法和比的应用3,乙是251”的量用乘法。
例:甲是乙的,求甲是多1、已知单位“533=9)15×少?即:甲=乙×(553,甲是15甲是乙的,求乙是多: 2、未知单位“1”的量用除法。
例533=25)(建议列方程答)÷=乙×(15少?即:甲553、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?33=15的×,求甲是多少?(例:甲=乙×几分之几甲是15559)33=15)9÷(例:9是乙的,求乙是多少?乙=甲÷几分之几553)=9÷15 (例:9是15的几分之几?几分之几=甲÷乙5(“是”字相当“÷”号,乙是单位“1”)(2)甲比乙多(少)几分之几?差(“比”字后面的量是单位“1”的量)(例:A 差÷乙=9乙15?962)=少几分之几?(15-9)÷15==15比15155甲–1 (例:15比9少几分之几?B 多几分之几是:15÷9乙1552)–1===-133911/ 9甲(例:9比15少几分之几?1-9÷C 少几分之几是:1–15乙932)==1–=1–1555差几几)(1±例乙±差=乙±乙×乙±乙×=:甲=乙( D 甲=乙几几222)=9(多是“–+”–15×1=15比15少×(,求甲是多少?15555少是“–”)几22)1-÷(,求乙是多少?9 )(例:9=E 乙甲÷(1±比乙少55几3=15)(多是“+”少是“–”)=9 ÷522)1+15÷15比乙多(,求乙是多少?(例:335=9)(多是“+=15 ÷”少是“–”)34、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。