高考数学《向量》专题复习(专题训练)
高考数学专题复习题:平面向量
高考数学专题复习题:平面向量一、单项选择题(共8小题)1.已知向量(1,)x =a ,(1,3)=−b .若向量2+a b 与向量b 垂直,则x 的值为( ) 33||||4AC CB =.若AB BC λ=,则λ34 C.74 3.已知向量a ,b 不共线,设k =+u a b ,2=−v a b ,若//u v ,则实数k 的值为( )A.4.如图所示,等腰梯形ABCD 中,3AB BC CD AD ===,点E 为线段CD 上靠近点C 的三等分点,点F 为线段BC 的中点,则FE =( )A.1151818AB AC −+B.1111189AB AC −+C.114189AB AC −+D.1526AB AC −+第4题图 第5题图 第6题图5.如图,在等边三角形ABC 中,如果3BD DC =,那么向量AB 在向量AD 上的投影向量为( )AD AD AD AD 6.如图,在ABC △中,D 是线段BC 上的一点,且4BC BD =,过点D 的直线分别交直线AB ,AC 于点M ,N ,如果AM AB λ=,(0,0)AN AC μλμ=>>,那么μ值是( )7−7.单位向量a ,b ,c 满足22−+=0a b c ,则cos ,2〈−〉=a b c ( )8.若AB AC ⊥,||AB t =,1||AC =,ABC 平面内一点,2||||AB AC AP AB AC =+,则的最大值为( )A.13B.二、多项选择题(共2小题)9.已知向量,,其中,则下列说法中正确的是( )A.若,则B.若a 与b 的夹角为锐角,则C.若1x =,则a 在b 上的投影向量为bD.若,则10.在ABC △中,90A ∠=︒,3AB =,4AC =,点D 为线段AB 上靠近A 点的三等分点,E 为CD 的中点,则下列结论正确的是( )A.16AE AB AC = AE 与EB 的夹角的余弦值为 C.AE CD ⋅=三、填空题(共5小题)11.图1是某晶体的阴阳离子单层排列的平面示意图,其阴离子排列如图2所示,图2中圆的半径均为1,且相邻的圆都相切,如果A ,B ,C ,D 是其中四个圆的圆心,那么AB CD ⋅=________.12.已知向量(2,5)=a ,(,4)λ=b ,若//a b ,则λ=________.13.平面向量(1,2)=a ,(4,2)=b ,()m m =+∈R c a b ,且c 与a 的夹角等于c 与b 的夹PB PC ⋅5−−+(1,3)=a (2,2)x x =−b x ∈R ⊥a b 6x =6x <||||||+=+a b a b 27x =角,则m =________.14.在ABC △中,2AB =,3AC =,A =3255AD AB AC =+,则AB 与AD 夹角的大小为________.15.如图,在平行四边形ABCD 中,已知M 是BC 中点,DE AM ⊥于E ,2AB AD =,cos DAB ∠=AB =a ,,以,为基底表示EC ,则EC =________.AD =b a b。
高三数学向量专题复习(高考题型汇总及讲解)(1)
向量专题复习向量是高考的一个亮点,因为向量知识,向量观点在数学、物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视。
一、平面向量加、减、实数与向量积 (一)基本知识点提示1、重点要理解向量、零向量、向量的模、单位向量、平行向量、反向量、相等向量、两向量的夹角等概念。
2、了解平面向量基本定理和空间向量基本定理。
3、向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。
4、向量形式的三角形不等式:||a |-|b ||≤|a ±b |≤|a |+|b |(试问:取等号的条件是什么?);向量形式的平行四边形定理:2(|a |2+|b |2)=|a -b |2+|a +b |25、实数与向量的乘法(即数乘的意义)实数λ与向量的积是一个向量,记λ,它的长度与方向规定如下:(1)|λa |=|λ|²|a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λ=,方向是任意的.6、共线向量定理的应用:若≠,则∥⇔存在唯一实数对λ使得=λ⇔x 1y 2-x 2y 1=0(其中=(x 1,y 1),=(x 2,y 2)) (二)典型例题例1、O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足).,0[||||+∞∈++=λλAC AB 则P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心+是在∠BAC 的平分线上,∴选B例2、对于任意非零向量与,求证:|||-|||≤|±|≤||+||证明:(1)两个非零向量与不共线时,+的方向与,的方向都不同,并且||-||<|±|<||+||(3)两个非零向量a 与b 共线时,①a 与b 同向,则a +b 的方向与a 、b 相同且|a +b |=|a |+|b |.②a 与b 异向时,则a +b 的方向与模较大的向量方向相同,设|a |>||,则|+|=||-||.同理可证另一种情况也成立。
高三向量专题复习(含知识点)有答案
状元堂测试试卷,则把向量AB 按向量a =(-1,3的向量叫零向量,记作:0,注意零向量的方向是任意的3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ); 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量)、b 叫做平行向量,记作:a ∥b 提醒:①相等向量一定是共线向量,但共线向量不一定相等;但两条直线平行不包含两条直线重合;(因为有0);AB AC 、共线; :长度相等方向相反的向量叫做相反向量。
)若a b =,则a b =。
(2)两个向量相等的充要条件是它们的起点相同,终点相同。
()若AB DC =,则ABCD 是平行四边形。
(4)若ABCD 是平行四边形,则AB DC =。
(5,a b b c ==,则a c =。
(6)若//,//a b b c ,则//a c 。
其中正确的是日期: 2012- 时间:.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量(),a xi y j x y =+=,称的坐标表示。
如果向量的起点在原点是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1、2λ,使a =1λe 1+2λ(1,1),a b ==(1,1),(1,2)c -=-c =______1322a b -);)下列向量组中,能作为平面内所有向量基底的是12(0,0),(1,2)e e ==- B. 12(1,2),(5,7)e e =-= 12(3,5),(6,10)e e == D. 1213(2,3),(,24e e =-=-(答:B );四.实数与向量的积:实数λ与向量a 的积是一个向量,记作如下:()()1,2a a λλ=当λ>0时,λa 的方向与的方向相反,当λ=0a λ=,注意:五.平面向量的数量积:两个向量的夹角:对于非零向量,b ,作,OA a OB b ==,AOB ∠称为向量a ,b 的夹角,当0时,a ,b 同向,当θ=π2.平面向量的数量积,b ,它们的夹角为,我们把数量||||cos a b θ叫做,记作:a •b ,即a cos a b θ。
高三数学 平面向量多选题复习题附解析
高三数学 平面向量多选题复习题附解析一、平面向量多选题1.已知集合()(){}=,M x y y f x =,若对于()11,x y M ∀∈,()22,x y M ∃∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:(){}21,1M x y y x ==+;(){2,M x y y ==;(){}3,xM x y y e ==;(){}4,sin 1M x y y x ==+.其中是“互垂点集”集合的为( )A .1MB .2MC .3MD .4M 【答案】BD【分析】根据题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥,结合函数图象即可判断.【详解】由题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥.在21y x =+的图象上,当P 点坐标为(0,1)时,不存在对应的点P ',所以1M 不是“互垂点集”集合;对y = 所以在2M 中的任意点()11,P x y ,在2M 中存在另一个P ',使得OP OP '⊥, 所以2M 是“互垂点集”集合;在xy e =的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以3M 不是“互垂点集”集合;对sin 1y x =+的图象,将两坐标轴绕原点进行任意旋转,均与函数图象有交点, 所以所以4M 是“互垂点集”集合,故选:BD .【点睛】本题主要考查命题的真假的判断,以及对新定义的理解与应用,意在考查学生的数学建模能力和数学抽象能力,属于较难题.2.设点A ,B 的坐标分别为()0,1,()1,0,P ,Q 分别是曲线x y e =和ln y x =上的动点,记12,I AQ AB I BP BA =⋅=⋅,则下列命题不正确的是( )A .若12I I =,则()PQ AB R λλ=∈ B .若12I I =,则AP BQ =C .若()PQ AB R λλ=∈,则12I I =D .若AP BQ =,则12I I =【答案】ABD【分析】 作出两个函数的图象,利用图象结合平面向量共线知识和平面向量数量积的几何意义分析可得答案.【详解】根据题意,在直线AB 上取点,P Q '',且满足||||AP BQ ''=,过,P Q ''分别作直线AB 的垂线,交曲线x y e =于1P ,2P ,交曲线ln y x =于12,Q Q ,在曲线xy e =上取点3P ,使13||||AP AP =,如图所示:1||||cos I AQ AB AQ AB QAB =⋅=⋅∠,令||cos ||AQ QAB AQ '∠=,则1||||I AQ AB '=⋅,2||||cos I BP BA BP BA PBA =⋅=⋅∠,令||cos ||BP PBA BP '∠=,则2||||I BP BA '=⋅,若||||AP BQ ''=,则||||AQ BP ''=,若12I I =,则||||AQ BP ''=即可,此时P 可以与1P 重合,Q 与2Q 重合,满足题意,但是()PQ AB R λλ=∈不成立,且||||AP BQ ≠,所以A 、B 不正确;对于选项C ,若PQ AB =λ,此时P 与1P 重合,且Q 与1Q 重合,或P 与2P 重合,且Q 与2Q 重合,所以满足12I I =,所以C 正确;对于D ,当P 与3P 重合时,满足13||||AP AP =,但此时3P 在直线AB 上的投影不在P '处,因而不满足||||AQ BP ''=,即12I I ≠,所以D 不正确.故选:ABD【点睛】关键点点睛:利用图象结合平面向量共线知识和平面向量数量积的几何意义求解是解题关键.3.下列命题中真命题的是( )A .向量a 与向量b 共线,则存在实数λ使a =λb (λ∈R )B .a ,b 为单位向量,其夹角为θ,若|a b -|>1,则3π<θ≤πC .A 、B 、C 、D 是空间不共面的四点,若AB •AC =0,AC •AD =0,AB •AD =0则△BCD 一定是锐角三角形D .向量AB ,AC ,BC 满足AB AC BC =+,则AC 与BC 同向【答案】BC【分析】对于A :利用共线定理判断对于B :利用平面向量的数量积判断对于C :利用数量积的应用判断对于D :利用向量的四则运算进行判断【详解】对于A :由向量共线定理可知,当0b =时,不成立.所以A 错误.对于B :若|a b -|>1,则平方得2221a a b b -⋅+>,即12a b ⋅<,又1||2a b a b cos cos θθ⋅=⋅=<,所以3π<θ≤π,即B 正确. 对于C :()()220BC BD AC AB AD AB AC AD AC AB AB AD AB AB ⋅=-⋅-=⋅-⋅-⋅+=>,0||BC BDcosB BC BD ⋅=⋅>,即B 为锐角,同理A ,C 也为锐角,故△BCD 是锐角三角形,所以C 正确.对于D :若AB AC BC =+,则AB AC BC CB -==,所以0CB =,所以则AC 与BC 共线,但不一定方向相同,所以D 错误.故选:BC.【点睛】(1)多项选择题是2020年高考新题型,需要要对选项一一验证;(2)要判断一个命题错误,只需举一个反例就可以;要证明一个命题正确,需要进行证明.4.下列说法中错误的为( )A .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭B .向量1(2,3)e =-,213,24e ⎛⎫=- ⎪⎝⎭不能作为平面内所有向量的一组基底 C .若//a b ,则a 在b 方向上的投影为||aD .非零向量a 和b 满足||||||a b a b ==-,则a 与a b +的夹角为60°【答案】ACD【分析】由向量的数量积、向量的投影、基本定理与向量的夹角等基本知识,逐个判断即可求解.【详解】对于A ,∵(1,2)a =,(1,1)b =,a 与a b λ+的夹角为锐角,∴()(1,2)(1,2)a a b λλλ⋅+=⋅++142350λλλ=+++=+>,且0λ≠(0λ=时a 与a b λ+的夹角为0), 所以53λ>-且0λ≠,故A 错误; 对于B ,向量12(2,3)4e e =-=,即共线,故不能作为平面内所有向量的一组基底,B 正确;对于C ,若//a b ,则a 在b 方向上的正射影的数量为||a ±,故C 错误;对于D ,因为|||a a b =-∣,两边平方得||2b a b =⋅, 则223()||||2a a b a a b a ⋅+=+⋅=, 222||()||2||3||a b a b a a b b a +=+=+⋅+=,故23||()32cos ,||||3||a a a b a a b a a b a a ⋅+<+>===+⋅∣, 而向量的夹角范围为[]0,180︒︒,得a 与a b λ+的夹角为30°,故D 项错误.故错误的选项为ACD故选:ACD【点睛】本题考查平面向量基本定理及向量的数量积,向量的夹角等知识,对知识广度及准确度要求比较高,中档题.5.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,2QA QB =,记APQ 的面积为S ,则下列说法正确的是( ) A .//PB CQB .2133BP BA BC =+ C .0PA PC ⋅<D .2S =【答案】BCD【分析】 本题先确定B 是AQ 的中点,P 是AC 的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出2APQ S =△,故选项D 正确.【详解】解:因为20PA PC +=,2QA QB =,所以B 是AQ 的中点,P 是AC 的一个三等分点,如图:故选项A 错误,选项C 正确;因为()121333BP BA AP BA BC BA BA BC =+=+-=+,故选项B 正确; 因为112223132APQ ABC AB h S S AB h ⨯⨯==⋅△△,所以,2APQ S =△,故选项D 正确. 故选:BCD【点睛】本题考查平面向量的线性运算、向量的数量积、三角形的面积公式,是基础题.6.设O ,A ,B 是平面内不共线的三点,若()1,2,3n OC OA nOB n =+=,则下列选项正确的是( )A .点1C ,2C ,3C 在同一直线上B .123OC OC OC == C .123OC OB OC OB OC OB ⋅<⋅<⋅D .123OC OA OC OA OC OA ⋅<⋅<⋅【答案】AC【分析】利用共线向量定理和向量的数量积运算,即可得答案;【详解】()12212()C C OC OC OA OB OA OB OB =-=+-+=,()()233232C C OC OC OA OB OA OB OB =-=+-+=,所以1223C C C C =,A 正确. 由向量加法的平行四边形法则可知B 不正确. 21OC OA OC OA OA OB ⋅-⋅=⋅,无法判断与0的大小关系,而()21OC OB OA OB OB OA OB OB ⋅=+⋅=⋅+,()2222OC OB OA OB OB OA OB OB⋅=+⋅=⋅+, 同理233OC OB OA OB OB ⋅=⋅+,所以C 正确,D 不正确.故选:AC .【点睛】本题考查向量共线定理和向量的数量积,考查逻辑推理能力、运算求解能力.7.下列说法中错误的为 ()A .已知()1,2a =,()1,1b =,且a 与a λb +的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭B .向量()12,3e =-,213,24e ⎛⎫=- ⎪⎝⎭不能作为平面内所有向量的一组基底C .若//a b ,则a 在b 方向上的正射影的数量为aD .三个不共线的向量OA ,OB ,OC ,满足AB CA BA CB OA OB AB CA BA CB ⎛⎫⎛⎫ ⎪ ⎪⋅+=⋅+ ⎪ ⎪⎝⎭⎝⎭0CA BC OC CA BC ⎛⎫ ⎪=⋅+= ⎪⎝⎭,则O 是ABC 的内心【答案】AC【分析】对于A ,由向量的交角为锐角的等价条件为数量积大于0,且两向量不共线,计算即可; 对于B ,由124e e =,可知1e ,2e 不能作为平面内所有向量的一组基底; 对于C ,利用向量投影的定义即可判断;对于D ,由0AB CA OA AB CA ⎛⎫ ⎪⋅+= ⎪⎝⎭,点O 在角A 的平分线上,同理,点O 在角B 的平分线上,点O 在角C 的平分线上,进而得出点O 是ABC 的内心.【详解】对于A ,已知()1,2a =,()1,1b =,且a 与a λb +的夹角为锐角,可得()0a a b λ+>⋅,且a 与a λb +不共线,()1,2a λb λλ+=++,即有()1220λλ++⨯+>,且()212λλ⨯+≠+, 解得53λ>-且0λ≠,则实数λ的取值范围是53λ>-且0λ≠, 故A 不正确; 对于B ,向量,,213,24e ⎛⎫=- ⎪⎝⎭, 124e e =,∴向量1e ,2e 不能作为平面内所有向量的一组基底,故B 正确;对于C ,若a b ,则a 在b 上的投影为a ±,故C 错误;对于D ,AB CAAB CA +表示与ABC 中角A 的外角平分线共线的向量,由0AB CA OA AB CA ⎛⎫ ⎪⋅+= ⎪⎝⎭,可知OA 垂直于角A 的外角平分线, 所以,点O 在角A 的平分线上,同理,点O 在角B 的平分线上,点O 在角C 的平分线上,故点O 是ABC 的内心,D 正确.故选:AC.【点睛】本题考查了平面向量的运算和有关概念,具体包括向量数量积的夹角公式、向量共线的坐标表示和向量投影的定义等知识,属于中档题.8.若平面向量,,a b c 两两夹角相等,,a b 为单位向量,2c =,则a b c ++=( ) A .1B .2C .3D .4【答案】AD【分析】由平面向量,,a b c 两两夹角相等可知,夹角为0︒或120︒.分两种情况对三个向量的和的模长进行讨论,算出结果.【详解】平面向量,,a b c 两两夹角相等, ∴两两向量所成的角是0︒或120︒.当夹角为0︒时,,,a b c 同向共线, 则4a b c ++=;当夹角为120︒时,,a b 为单位向量,1a b ∴+= ,且a b +与c 反向共线, 又2c =,1a b c ∴++=.故选:AD.【点睛】本题考查了平面向量共线的性质,平面向量的模的求法,考查了分类讨论的思想,属于中档题.9.已知平行四边形的三个顶点的坐标分别是(3,7),(4,6),(1,2)A B C -.则第四个顶点的坐标为( )A .(0,1)-B .(6,15)C .(2,3)-D .(2,3) 【答案】ABC【分析】设平行四边形的四个顶点分别是(3,7),(4,6),(1,2),(,)A B C D x y -,分类讨论D 点在平行四边形的位置有:AD BC =,AD CB =,AB CD =,将向量用坐标表示,即可求解.【详解】第四个顶点为(,)D x y ,当AD BC =时,(3,7)(3,8)x y --=--,解得0,1x y ==-,此时第四个顶点的坐标为(0,1)-;当AD CB =时,(3,7)(3,8)x y --=,解得6,15x y ==,此时第四个顶点的坐标为(6,15);当AB CD =时,(1,1)(1,2)x y -=-+,解得2,3x y ==-,此时第四个项点的坐标为(2,3)-.∴第四个顶点的坐标为(0,1)-或(6,15)或(2,3)-.故选:ABC .【点睛】本题考查利用向量关系求平行四边形顶点坐标,考查分类讨论思想,属于中档题.10.对于菱形ABCD ,给出下列各式,其中结论正确的为( )A .AB BC =B .AB BC = C .AB CD AD BC -=+D .AD CD CD CB +=-【答案】BCD 【分析】 由向量的加法减法法则及菱形的几何性质即可求解. 【详解】 菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的, 所以B 结论正确,A 结论错误; 因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确;因为AD CD BC CD BD +=+=, ||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.。
高中高考数学专题复习平面向量含试题与详细解答
高中高考数学专题复习平面向量含试题与详细解答1.平面上有一个△ABC 和一点O ,设OA a =,OB b =,OC c =,又OA 、BC 的中点分别为D 、E ,则向量DE 等于( )A.()12a b c ++ B. ()12a b c -++ C. ()12a b c -+ D. ()12a b c +-2.在平行四边形ABCD 中,E 、F 分别是CD 和BC 的中点,若AF AE AC μλ+=,其中R ∈μλ,,则μλ+的值是 A .34 B .1 C . 32 D. 31 3.若四边形ABCD 是正方形,E 是CD 的中点,且AB a =,AD b =,则BE = A.12b a +B.12a b + C.12b a - D.12a b -4.在平面内,已知31==,0=⋅OB OA ,30=∠AOC ,设n m +=,(,R m n ∈),则nm等于A .B .3±C .13±D .3±5.在等腰Rt ABC △中,90A ∠=,(1,2),(,)(0)AB AC m n n ==>,则BC = ( ) A .(-3,-1)B .(-3,1)C .(3,1)-D .(3,1)6.已知,,A B C 三点共线,且(3,6)A -,(5,2)B -,若C 点横坐标为6,则C 点 的纵坐标为( ).A .13-B .9C .9-D .137.设a 、b 、c 是非零向量,则下列说法中正确..是 A .()()a b c c b a ⋅⋅=⋅⋅ B. a b a b -≤+C .若a b a c ⋅=⋅,则b c =D .若//,//a b a c ,则//b c 8.设四边形ABCD 中,有DC =21,且||=|BC |,则这个四边形是 A.平行四边形B.等腰梯形C. 矩形D.菱形9.已知()()0,1,2,3-=-=,向量+λ与2-垂直,则实数λ的值为( ). A.17-B.17C.16- D.1610.若点M 为ABC ∆的重心,则下列各向量中与共线的是( ) A .++ B .++ C .AC AM +3 D .CM BM AM ++11.若|a |=|b |=|a -b|,则b 与a +b 的夹角为 ( )A .30°B .60°C .150°D .120°12. 已知()23,a =,47(,)b =-,则b 在a 上的投影为( )(A)(B)13.R t t ∈+===,),20cos ,20(sin ,)25sin ,25(cos 0000,则||的最小值是 A. 2 B.22C. 1D. 2114.矩阵A 1002⎛⎫=⎪⎝⎭,向量12α⎛⎫= ⎪⎝⎭,则A 10α= ( ) A .1012⎛⎫ ⎪⎝⎭ B .1112⎛⎫ ⎪⎝⎭ C .2060⎛⎫ ⎪⎝⎭ D .1122⎛⎫⎪⎝⎭15.如图,A 、B 分别是射线OM ON ,上的两点,给出下列向量:①OA OB +;②1123OA OB +;③3143OA OB +; ④3145OA OB +;⑤3145OA OB -.这些向量中以O 为起点,终点在阴影区域内的是( )A .①②B .①④C .①③D .⑤16.在△ABC 中,已知D 是AB 边上一点,若=2,=+λ,则λ等于( ) A. B. C. D.17.已知O 为空间内任意一点,P 为ABC ∆所在平面内任意一点,且2OP OA OB mCO =++ 则m 的值为( )A 、 2B 、2-C 、3D 、 3-18.设向量(cos25,sin 25),(sin 20,cos20)a b =︒︒=︒︒,若c a t b =+(t ∈R ),则()2c 的最小值为( )A.2B.1C.22 D.2119.已知20()OA x OB x OC x R ⋅+⋅-=∈,其中,,A B C 三点共线,O 是线外一点,则满足条件的x ( )A .不存在B .有一个C .有两个D .以上情况均有可能 20.平面直向坐标系中,O 为坐标原点,已知两点A (3,1) B (-1,3)若点C 满足OC OA OB αβ=+,其中α β∈R 且α+β=1,则点C 的轨迹方程为 。
高考数学复习典型题型专题讲解与练习54 空间向量及其线性运算
高考数学复习典型题型专题讲解与练习 专题54 空间向量及其线性运算题型一 空间向量共线的判定1.若空间中任意四点O ,A ,B ,P 满足OP mOA nOB =+,其中m +n =1,则( ) A .P ∈AB B .P ∉ABC .点P 可能在直线AB 上D .以上都不对 【答案】A【解析】因为m +n =1,所以m =1-n , 所以(1)OP n OA nOB =-+,即()OP OA n OB OA -=-, 即AP nAB =,所以AP 与AB 共线. 又AP ,AB 有公共起点A ,所以P ,A ,B 三点在同一直线上,即P ∈AB . 故选:A.2.满足下列条件,能说明空间不重合的A 、B 、C 三点共线的是( ) A .AB BC AC +=B .AB BC AC -= C .AB BC =D .AB BC = 【答案】C【解析】对于空间中的任意向量,都有 AB BC AC +=,说法A 错误;若AB BC AC -=,则AC BC AB +=,而AC CB AB +=,据此可知BC CB =,即,B C 两点重合,选项B错误;AB BC=,则A、B、C三点共线,选项C正确;AB BC=,则线段AB的长度与线段BC的长度相等,不一定有A、B、C三点共线,选项D错误;本题选择C选项.3.AB与CD共线是直线AB∥CD的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】根据向量共线的定义,可知若AB与CD共线,则它们所在的直线可能平行,也可能重合;若AB∥CD,则AB与CD共线;根据充分条件和必要条件的概念,可知AB与CD共线是直线AB∥CD的必要不充分条件,故选B4.在空间四边形ABCD中,E、F分别为AB、CD的中点,请判断EF与AD BC+是否共线.【答案】证明见解析.【解析】解:连接AC,取AC的中点G,连接EG、FG,∵E、F分别为AB、CD的中点.∴11,22GF AD EG BC ==.又∵E、F、G三点共面,∴1()2EF GF EG AD BC=+=+,即EF与AD BC+共线.5.如图,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且112A E ED =,F 在对角线A 1C 上,且123A F FC =,求证:E ,F ,B 三点共线.【答案】证明见解析.【解析】设1,,AB a AD b AA c ===, ∵112A E ED =,123A F FC =,∴11123A E A D =,1125A F AC =,而11A D AD b == ∴123A E b =,111222()()()555A F AC AA AB AD AA a b c =-=+-=+-. ∴1122()53EF A F A E a b c =-=--,又1123EB EA A A AB a b c =++=--, ∴25EF EB =,即E ,F ,B 三点共线. 题型二 由空间向量共线求参数值6.已知非零向量324a m n p =--,(1)82b x m n y p =+++,且m 、n 、p 不共面.若//a b ,则x y +=( ).A .13-B .5-C .8D .13 【答案】 B【解析】//a b 且0a ≠,∴b a λ=,即(1)82324x m n y p m n p λλλ+++=--,又m 、n 、p 不共面,∴138224x y λλλ+=⎧⎪=-⎨⎪=-⎩,解得13x =-,8y =,5x y +=-.故选:B .7.在四面体ABCD 中,E,F 分别是棱BC,AD 的中点,设AB =a,AC =b,AD =c,且EF =xa+yb+zc,则x,y,z 的值分别为( ) A .-12,-11,22B .-11,22,-12C .11,22,-12D .12,-11,22【答案】A【解析】根据题意,画出图形如下图所示:由图可知1122EF EC CD DFBC CD AD =++=+- ()1122111222AC AB AD AC AD AB AC AD =-+--=-+111222a b c =--+ 所以111,,222x y z =-=-= 所以选A8.设1e ,2e 是两个不共线的空间向量,若122AB e ke =-,1233CB e e =+,12CD ke e =+,且,,A B D 三点共线,则实数k 的值为_______.【答案】4或-1【解析】因为,,A B D 三点共线,所以存在实数λ使得12 2AB BD AB e ke λ==-,()1232BD CD CB k e e =-=--,()232k k λλ⎧=-⎨-=-⎩所以2340k k --=,解得1k =-或4. 题型三 空间向量共面的判定9.A ,B ,C 不共线,对空间内任意一点O ,若311488OP OA OB OC =++,则P ,A ,B ,C 四点( )A .不共面B .共面C .不一定共面D .无法判断是否共面 【答案】B【解析】因为311488OP OA OB OC =++, 所以()()()6OP OA OB OP OC OP -=-+-,86OP OA OB OC =++, 6AP PB PC=+,即1166AP PB PC =+, 故P ,A ,B ,C 四点共面, 故选:B10.已知空间任一点O 和不共线的三点A 、B 、C ,下列能得到P 、A 、B 、C 四点共面的是( )A .OP OA OB OC =++B .111333OP OA OB OC =++ C .1122OP OA OB OC =-++D .以上都不对 【答案】B【解析】设OP xOA yOB zOC =++且1x y z ++=,则()1OP xOA yOB x y OC =++--,()()OP OC x OA OC y OB OC ∴-=-+-,则CP xCA yCB =+,所以,CP 、CA 、CB 为共面向量,则P 、A 、B 、C 四点共面. 对于A 选项,OP OA OB OC =++,11131++=≠,P 、A 、B 、C 四点不共面; 对于B 选项,111333OP OA OB OC =++,1111333++=,P 、A 、B 、C 四点共面; 对于C 选项,1122OP OA OB OC =-++,1110122-++=≠,P 、A 、B 、C 四点不共面. 故选:B.11.,,,A B C D 是空间四点,有以下条件: ①11OD OA OB OC 23=++; ②111234OD OA OB OC =++;③111OD OA OB OC 235=++; ④111OD OA OB 236OC =++, 能使,,,A B C D 四点一定共面的条件是______ 【答案】④【解析】对于④111OD OA OB 236OC =++,1111236++=,由空间向量共面定理可知,,,A B C D 四点一定共面,①②③不满足共面定理的条件. 故答案为:④12.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足111333OM OA OB OC =++.(1)判断MA ,MB ,MC 三个向量是否共面; (2)判断点M 是否在平面ABC 内.【答案】(1),,MA MB MC 共面;(2)点M 在平面ABC 内. 【解析】(1)由题意,知:3OM OA OB OC =++,∴()()OA OM OM OB OM OC -=-+-,即MA BM CM MB MC =+=--, 故,,MA MB MC 共面得证.(2)由(1)知:,,MA MB MC 共面且过同一点M . 所以,,,M A B C 四点共面,从而点M 在平面ABC 内.13.如图所示,已知矩形ABCD 和矩形ADEF 所在的平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且BM=13BD ,AN=13AE.求证:向量MN CD DE ,,共面.【答案】证明见解析【解析】因为M 在BD 上,且13BM BD =,所以111333MB DB DA AB ==+. 同理1133AN AD DE =+. 所以MN MB BA AN =++ =1133DA AB ++BA +1133AD DE +=21213333BA DE CD DE +=+.又CD 与DE 不共线,根据向量共面的充要条件可知MN CD DE ,,共面. 题型四 由空间向量共面求参数值14.已知点M 在平面ABC 内,并且对空间任意一点O ,都有1133OM xOA OB OC =++,则x 的值是A .1B .0C .3D .13【答案】D【解析】因为1133OM xOA OB OC =++,且,,,M A B C 四点共面,所以必有11133x ++=,解得13x =,故选D . 15.O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB tOC =++,若P ,A ,B ,C 四点共面,则实数t =______.【答案】18【解析】P ,A ,B ,C 四点共面,且3148OP OA OB OC t =++,31148t ++=,解得18t =. 故答案为: 1816.已知P 为空间中任意一点,A 、B 、C 、D 四点满足任意三点均不共线,但四点共面,且4136PA x P DB PB C →→→=-+,则实数x 的值为_________.【答案】13【解析】414131()363626PA PC PC P PB x DB PB x PB PD P P C B x D →→→→→→→→→→→=-+=-+-=--,又∵P 是空间任意一点,A 、B 、C 、D 四点满足任三点均不共线,但四点共面, ∴31126x --=,解得 x =13,故答案为:13题型五 空间共线向量定理的推论及应用17.(多选)若空间中任意四点O ,A ,B ,P 满足OP =m OA +n OB ,其中m+n=1,则结论正确的有( )A .P ∈直线AB B .P ∉直线ABC .O ,A ,B ,P 四点共面D .P ,A ,B 三点共线 【答案】ACD【解析】解:因为1m n +=,所以1m n =-,所以OP =()1OA B n n O -⋅+⋅, 即OP OA -=n (OB OA -), 即AP =n AB ,所以AP AB 与共线.又AP AB ,有公共起点A ,所以P ,A ,B 三点在同一直线上,即P ∈直线AB. 因为OP =m OA +n OB ,故O ,A ,B ,P 四点共面. 故答案为:ACD18.已知M ,N 分别是四面体OABC 的校OA ,BC 的中点,点P 在线段MN 上,且2MP PN =,设向量OA a =,OB b =,OC c =,则OP =______(用{},,a b c 表示)【答案】111633OP a b c =++【解析】OP ON NP =+,1()2ON OB OC =+,13NP NM =,NM OM ON =-,12OM OA =.∴OP ON NP =+13ON NM =+1()3ON OM ON =+-2133ON OM =+2111()3232OB OC OA =⨯++⨯111633OA OB OC =++111633a b c =++. 故答案为:111633OP a b c =++19.已知P 和不共线三点A,B,C,四点共面且对于空间任意一点O ,都有OP =2OA OB OC λ++,则λ=________.【答案】-2【解析】由四点共面的充分必要条件可得:211λ++=,解得:2λ=-.故答案为2-.20.已知324,(1)82a m n p b x m n yp =--=+++,0a ≠,若//a b ,求实数,x y 的值.【答案】13,8x y =-=【解析】∵//a b ∴()324182m n p x m n yp λ⎡⎤--=+++⎣⎦,∴()13,82,24x y λλλ+==-=-,∴13,8x y =-=.题型六 空间共面向量定理的推论及应用21.已知O 为空间任意一点,若311488OP OA OB OC =++,则,,,A B C P 四点( )A .一定不共面B .一定共面C .不一定共面D .无法判断【答案】B【解析】由空间向量共面定理的推论若aOA bOB cOC OP =++,满足1a b c ++=,则,,,A B C P 四点共面,311488OP OA OB OC =++,而3111488++=,故,,,A B C P 四点共面.故选:B.22.如图,正四面体ABCD 的棱长为1,BCD △的中心为O ,过点O 的平面a 与棱AB ,AC ,AD ,BD ,CD 所在的直线分别交于P ,Q ,R ,S ,T ,则111AP AQ AR ++=()A .52B .3C .133D .4 【答案】B 【解析】因为O 为BCD △的中心,所以()13AO AB AC AD =++,设AP x =,AQ y =,AR z =,所以111333AO AP AQ AR x y z=++.因为O ,P ,Q ,R 四点共面,所以1111333x y z ++=,即1113x y z++=,1113AP AQ AR ++=. 故选:B.23.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M ,A ,B ,C 共面的是( )A .OM OA OB OC =++B .2OM OA OB OC =--C .1123OM OA OB OC =++D .111333OM OA OB OC =++【答案】D【解析】设OM xOA yOB zOC =++,若点M 与点,,A B C 共面,则1x y z ++=, 只有选项D 满足.故选:D.24.空间A B C D 、、、四点共面,但任意三点不共线,若P 为该平面外一点且5133PA PB xPC PD =--,则实数x 的值为( ) A .13B .13-C .23D .23-【答案】A【解析】因为空间A B C D 、、、四点共面,但任意三点不共线,对于该平面外一点P 都有5133PA PB xPC PD =--,所以51133x --=,解得13x =. 故选A。
数学高考复习空间向量及其运算专题训练(含答案)
数学2021届高考复习空间向量及其运算专题训练(含答案)空间中具有大小和方向的量叫做空间向量,下面是空间向量及其运算专题训练,请考生及时练习。
一、选择题1.以下四个命题中正确的是().A.空间的任何一个向量都可用其他三个向量表示B.若{a,b,c}为空间向量的一组基底,则{a+b,b+c,c+a}构成空间向量的另一组基底C.ABC为直角三角形的充要条件是=0D.任何三个不共线的向量都可构成空间向量的一组基底解析若a+b、b+c、c+a为共面向量,则a+b=(b+c)+(c+a),(1)a=(1)b+(+)c,,不可能同时为1,设1,则a=b+c,则a、b、c为共面向量,此与{a,b,c}为空间向量基底矛盾.答案 B2.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(ca)(2b)=2,则x= ().A.4B.2C.4D.2解析 a=(1,1,x),b=(1,2,1),c=(1,1,1),ca=(0,0,1x),2b=(2,4,2).(ca)(2b)=2(1x)=2,x=2.答案 D3.若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是().A.{a,a+b,ab}B.{b,a+b,ab}C.{c,a+b,ab}D.{a+b,ab,a+2b}解析若c、a+b、ab共面,则c=(a+b)+m(ab)=(+m)a+(m)b,则a、b、c为共面向量,此与{a,b,c}为空间向量的一组基底矛盾,故c,a+b,ab可构成空间向量的一组基底.答案 C4.如图所示,已知空间四边形OABC,OB=OC,且AOB=AOC=,则cos〈,〉的值为().A.0B.C. D.解析设=a,=b,=c,由已知条件〈a,b〉=〈a,c〉=,且|b|=|c|,=a(cb)=acab=|a||c||a||b|=0,cos〈,〉=0.答案 A5.如图所示,在长方体ABCDA1B1C1D1中,M为A1C1与B1D1的交点.若=a,=b,=c,则下列向量中与相等的向量是().A.a+b+cB.a+b+cC.ab+cD.ab+c解析 =+=+()=c+(ba)=a+b+c.答案 A.如图,在大小为45的二面角AEFD中,四边形ABFE,CDEF都是边长为1的正方形,则B,D两点间的距离是()A.B.C.1D.解析 =++,||2=||2+||2+||2+2+2+2=1+1+1=3,故||=.答案 D 二、填空题R,向量,且,则解析 .答案8. 在空间四边形ABCD中,++=________.解析如图,设=a,=b,=c,++=a(cb)+b(ac)+c(ba)=0.答案 0.已知ABCDA1B1C1D1为正方体,(++)2=32;()=0;向量与向量的夹角是60正方体ABCDA1B1C1D1的体积为||.其中正确命题的序号是________.解析由,,,得(++)2=3()2,故正确;中=,由于AB1A1C,故正确;中A1B与AD1两异面直线所成角为60,但与的夹角为120,故不正确;中||=0.故也不正确.答案10.如图,空间四边形OABC中,OA=8,AB=6,AC=4,BC=5,OAC=45,OAB=60,则OA与BC所成角的余弦值等于________. 解析设=a,=b,=c.OA与BC所成的角为,=a(cb)=acab=a(a+)a(a+)=a2+aa2a=2416.cos ===.答案三、解答题.已知A、B、C三点不共线,对平面ABC外的任一点O,若点M满足=(++).(1)判断、、三个向量是否共面;(2)判断点M是否在平面ABC内.解 (1)由已知++=3 ,即=+=,,,共面.(2)由(1)知,,,共面且基线过同一点M,四点M,A,B,C共面,从而点M在平面ABC内..把边长为a的正方形ABCD沿对角线AC折起成直二面角,点E、F分别是AD、BC的中点,点O是原正方形的中心,求:(1)EF的长;(2)折起后EOF的大小.如图,以O点为原点建立空间直角坐标系Oxyz,则A(0,a,0),B(a,0,0),C0,a,0),D0,0,a),E0,a,a),F(a,a,0).(1)||2=2+2+2=a2,|EF|=a.(2)=,=,=0a++a0=,||=,||=,cos〈,〉==,EOF=120..如图,已知M、N分别为四面体ABCD的面BCD与面ACD的重心,且G为AM上一点,且GMGA=13.求证:B、G、N三点共线.证明设=a,=b,=c,则=a+(a+b+c)=a+b+c,=a+b+c=.∥,即B、G、N三点共线..如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB、AD、CD的中点,计算:(1)(2)(3)EG的长;(4)异面直线AG与CE所成角的余弦值.解设=a,=b,=c.则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60,(1)==ca,=a,=bc,=(a)=a2ac=,(2)=(ca)(bc)=(bcabc2+ac)=;(3)=++=a+ba+cb=a+b+c,||2=a2+b2+c2ab+bcca=,则||=.(4)=b+c,=+=b+a,cos〈,〉==,由于异面直线所成角的范围是(0,90],所以异面直线AG与CE所成角的余弦值为.空间向量及其运算专题训练及答案的全部内容就是这些,查字典数学网预祝考生可以取得优异的成绩。
河北师范大学附属中学高考数学平面向量及其应用专题复习(专题训练) 百度文库
一、多选题1.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且02C <<π,4b =,则以下说法正确的是( )A .3C π=B .若72c =,则1cos 7B =C .若sin 2cos sin A B C =,则ABC 是等边三角形D .若ABC 的面积是4 2.在△ABC 中,a ,b ,c 是角A ,B ,C 的对边,已知A =3π,a =7,则以下判断正确的是( )A .△ABC 的外接圆面积是493π; B .b cos C +c cos B =7;C .b +c 可能等于16;D .作A 关于BC 的对称点A ′,则|AA ′|的最大值是3.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B >D .sin sin sin +=+a b cA B C4.已知ABC ∆是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( )A .1AB CE ⋅=- B .0OE OC +=C .3OA OB OC ++=D .ED 在BC 方向上的投影为765.ABC 中,2AB =,30ACB ∠=︒,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4.B .若4AC =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC =D .若满足条件的ABC 有两个,则24AC <<6.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,不解三角形,确定下列判断错误的是( )A .B =60°,c =4,b =5,有两解 B .B =60°,c =4,b =3.9,有一解C .B =60°,c =4,b =3,有一解D .B =60°,c =4,b =2,无解7.在RtABC 中,BD 为斜边AC 上的高,下列结论中正确的是( )A .2AB AB AC B .2BC CB AC C .2ACAB BDD .2BDBA BDBC BD8.ABC 中,4a =,5b =,面积53S =c =( ) A 21B 61C 41D .259.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且()()()::9:10:11a b a c b c +++=,则下列结论正确的是( )A .sin :sin :sin 4:5:6ABC = B .ABC ∆是钝角三角形C .ABC ∆的最大内角是最小内角的2倍D .若6c =,则ABC ∆外接圆半径为87710.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列结论中正确的是( )A .若a b >,则sin sin AB >B .若sin 2sin 2A B =,则ABC 是等腰三角形 C .若cos cos a B b A c -=,则ABC 是直角三角形D .若2220a b c +->,则ABC 是锐角三角形 11.设a 为非零向量,下列有关向量||aa 的描述正确的是( ) A .||1||a a =B .//||a a aC .||a a a =D .||||a a a a ⋅=12.已知实数m ,n 和向量a ,b ,下列说法中正确的是( ) A .()m a b ma mb -=- B .()m n a ma na -=-C .若ma mb =,则a b =D .若()0ma na a =≠,则m n =13.设,a b 是两个非零向量,则下列描述正确的有( ) A .若||||||a b a b +=-,则存在实数λ使得a b λ= B .若a b ⊥,则||||a b a b +=-C .若||||||a b a b +=+,则a 在b 方向上的投影为||bD .若存在实数λ使得a b λ=,则||||||a b a b +=-14.如图,46⨯的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个B .满足10OA OB -=B 共有3个C .存在格点B ,C ,使得OA OB OC =+D .满足1OA OB ⋅=的格点B 共有4个15.如果12,e e 是平面α内两个不共线的向量,那么下列说法中正确的是( ) A .12(,),e e λμλμ+∈R 可以表示平面α内的所有向量B .对于平面α内任一向量a ,使12,a e e λμ=+的实数对(,)λμ有无穷多个C .若向量1112e e λμ+与2122e e λμ+共线,则有且只有一个实数λ,使得()11122122e e e e λμλλμ+=+D .若存在实数,λμ使得120e e λμ+=,则0λμ==二、平面向量及其应用选择题16.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .7217.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为ABC ∆的面积,满足cos cos b A a B =,且角B 是角A 和角C 的等差中项,则ABC ∆的形状为( ) A .不确定 B .直角三角形 C .钝角三角形D .等边三角形18.已知非零向量AB ,AC 满足0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭,且1||||2AB AC AB AC =,则ABC ∆的形状是( ) A .三边均不相等的三角形 B .直角三角形 C .等腰(非等边)三角形D .等边三角形19.a ,b 为单位向量,且27a b +=,则向量a ,b 夹角为( )A .30B .45︒C .60︒D .90︒20.已知点O 是ABC 内部一点,并且满足2350OA OB OC ++=,OAC 的面积为1S ,ABC 的面积为2S ,则12S S = A .310 B .38C .25D .42121.在△ABC 中,AB =a ,BC =b ,且a b ⋅>0,则△ABC 是( ) A .锐角三角形B .直角三角形C .等腰直角三角形D .钝角三角形22.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +23.在ABC ∆中||||AB AC AB AC +=-,3,4,AB AC ==则BC 在CA 方向上的投影为( ). A .4B .3C .-4D .524.已知向量OA 与OB 的夹角为θ,2OA =,1OB =,=OP tOA ,()1OQ t OB =-,PQ 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( )A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭ 25.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若1c =,45B =︒,3cos 5A =,则b 等于( ) A .35 B .107C .57D .1426.题目文件丢失!27.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10m 到位置D ,测得45BDC ∠=︒,则塔AB 的高是(单位:m )( )A .2B .106C .103D .1028.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()()(23)a b c a c b ac +++-=+,则cos sin A C +的取值范围为A .33)2B .3(3) C .3(3]2D .3(3)229.已知向量(22cos 3m x =,()1,sin2n x =,设函数()f x m n =⋅,则下列关于函数()y f x =的性质的描述正确的是( )A .关于直线12x π=对称B .关于点5,012π⎛⎫⎪⎝⎭对称 C .周期为2πD .()y f x =在,03π⎛⎫-⎪⎝⎭上是增函数 30.在ABC ∆中,下列命题正确的个数是( )①AB AC BC -=;②0AB BC CA ++=;③点O 为ABC ∆的内心,且()()20OB OC OB OC OA -⋅+-=,则ABC ∆为等腰三角形;④0AC AB ⋅>,则ABC ∆为锐角三角形.A .1B .2C .3D .431.已知ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( ) A .()8bc b c +> B .()162ab a b +>C .612abc ≤≤D .1224abc ≤≤32.在ABC 中,AB AC BA BC CA CB →→→→→→⋅=⋅=⋅,则ABC 的形状为( ). A .钝角三角形 B .等边三角形 C .直角三角形D .不确定33.ABC 中,a ,b ,c 分别为A ∠,B ,C ∠的对边,如果a ,b ,c 成等差数列,30B ∠=︒,ABC 的面积为32,那么b 等于( )A.12B.1C.22+ D.234.在ABC ∆中,内角,,A B C 的对边分别是,.a b c ,若cos 2aB c=,则ABC ∆一定是( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形35.ABC 中,5AB AC ==,6BC =,则此三角形的外接圆半径是( ) A .4B .72C .258D .259【参考答案】***试卷处理标记,请不要删除一、多选题 1.AC 【分析】对于,利用正弦定理可将条件转化得到,即可求出; 对于,利用正弦定理可求得,进而可得;对于,利用正弦定理条件可转化为,结合原题干条件可得,进而求得; 对于,根据三角形面积公式求得,利 解析:AC 【分析】对于A2sin sin A C A =,即可求出C ; 对于B ,利用正弦定理可求得sin B ,进而可得cos B ;对于C ,利用正弦定理条件可转化为2cos a c B =,结合原题干条件可得B ,进而求得A B C ==;对于D ,根据三角形面积公式求得a ,利用余弦定理求得c ,进而由正弦定理求得R . 【详解】2sin c A =2sin sin A C A =, 因为sin 0A ≠,故sin C =, 因为(0,)2C π∈,则3C π=,故A 正确;若72c =,则由正弦定理可知sin sin c b C B =,则4sin sin 72b B Cc == 因为(0,)B π∈,则1cos 7B =±,故B 错误;若sin 2cos sin A B C =,根据正弦定理可得2cos a c B =,2sin c A =,即sin a A =sin 2cos A c B =,所以sin A B =,因为23A B C ππ+=-=,则23A B π=-,故2sin()3B B π-=,1sin 2B B B +=,即1sin 2B B =,解得tan B =3B π=,则3A π=,即3A B C π===,所以ABC 是等边三角形,故C 正确; 若ABC的面积是1sin 2ab C =2a =,由余弦定理可得22212cos 416224122c a b ab C =+-=+-⨯⨯⨯=,即c = 设三角形的外接圆半径是R ,由正弦定理可得24sin c R C ===,则该三角形外接圆半径为2,故D 错误, 故选:AC . 【点睛】本题考查正余弦定理的应用及同角三角函数的基本关系和两角和与差的三角公式,转化思想,计算能力,属于中档题.2.ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设的外接圆半径为,根据正弦定理,可得,所以的外接圆面积是,故A 正确;对于B ,根据正弦定解析:ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设ABC 的外接圆半径为R ,根据正弦定理2sin a R A =,可得3R =,所以ABC 的外接圆面积是2493S R ππ==,故A 正确; 对于B ,根据正弦定理,利用边化角的方法,结合A B C π++=,可将原式化为2sin cos 2sin cos 2sin()2sin R B C R C B R B C R A a +=+==,故B 正确.对于C ,22(sin sin )2[sin sin()]3b c R B C R B B π+=+=+-114(cos )14sin()23B B B π=+=+14b c ∴+≤,故C 错误.对于D ,设A 到直线BC 的距离为d ,根据面积公式可得11sin 22ad bc A =,即sin bc Ad a=,再根据①中的结论,可得d =D 正确. 故选:ABD. 【点睛】 本题是考查三角恒等变换与解三角形结合的综合题,解题时应熟练掌握运用三角函数的性质、诱导公式以及正余弦定理、面积公式等.3.ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角解析:ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在ABC ,由正弦定理得2sin sin sin a b cR A B C===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;对于B ,若sin 2sin 2A B =,则A B =或2A B π+=,所以a 和b 不一定相等,故B 错误;对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以A B >,故C 正确;对于D ,由正弦定理得2sin sin sin a b cR A B C===,则2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++,故D 正确.故选:ACD. 【点睛】本题考查正弦定理的应用,属于基础题.4.BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】由题E 为AB 中点,则,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示: 所以,,解析:BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】由题E 为AB 中点,则CE AB ⊥,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示:所以,123(0,0),(1,0),(1,0),3),(,)33E A B C D -, 设123(0,),3),(1,),(,33O y y BO y DO y ∈==--,BO ∥DO , 所以3133y y -=-,解得:3y =, 即O 是CE 中点,0OE OC +=,所以选项B 正确;32OA OB OC OE OC OE ++=+==,所以选项C 正确; 因为CE AB ⊥,0AB CE ⋅=,所以选项A 错误;123(,)33ED =,(1,3)BC =,ED 在BC 方向上的投影为127326BC BCED +⋅==,所以选项D 正确.故选:BCD 【点睛】此题考查平面向量基本运算,可以选取一组基底表示出所求向量的关系,对于特殊图形可以考虑在适当位置建立直角坐标系,利于计算.5.ABD 【分析】根据正弦定理,可直接判断的对错,然后,,三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】解:由正弦定理得,故正确; 对于,,选项:如图解析:ABD 【分析】根据正弦定理,可直接判断A 的对错,然后B ,C ,D 三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】解:由正弦定理得224sin sin30AB R ACB ===∠︒,故A 正确;对于B ,C ,D 选项:如图:以A 为圆心,2AB =为半径画圆弧,该圆弧与射线CD 的交点个数,即为解得个数. 易知当122x =,或即4AC =时,三角形ABC 为直角三角形,有唯一解; 当2AC AB ==时,三角形ABC 是等腰三角形,也是唯一解;当AD AB AC <<,即122x x <<,24x ∴<<时,满足条件的三角形有两个.故B ,D 正确,C 错误. 故选:ABD .【点睛】本题考查已知两边及一边的对角的前提下,三角形解得个数的判断问题.属于中档题.6.ABC 【分析】根据判断三角形解的个数的结论:若为锐角,当时,三角形有唯一解;当时,三角形有两解;当时,三角形无解:当时,三角形有唯一解.逐个判断即可得解. 【详解】对于,因为为锐角且,所以三角解析:ABC 【分析】根据判断三角形解的个数的结论:若B 为锐角,当c b <时,三角形有唯一解;当sin c B b c <<时,三角形有两解;当sin c B b >时,三角形无解:当sin c B b =时,三角形有唯一解.逐个判断即可得解. 【详解】对于A ,因为B 为锐角且45c b =<=,所以三角形ABC 有唯一解,故A 错误;对于B ,因为B 为锐角且sin 4 3.9c B b c ===<,所以三角形ABC 有两解,故B 错误;对于C ,因为B 为锐角且 sin 43c B b ==>=,所以三角形ABC 无解,故C 错误;对于D ,因为B 为锐角且sin 422c B b =⨯=>=,所以三角形ABC 无解,故D 正确. 故选:ABC. 【点睛】本题考查了判断三角形解的个数的方法,属于基础题.7.AD 【分析】根据向量的数量积关系判断各个选项的正误. 【详解】对于A ,,故A 正确; 对于B ,,故B 错误; 对于C ,,故C 错误; 对于D ,, ,故D 正确. 故选:AD. 【点睛】本题考查三角形解析:AD 【分析】根据向量的数量积关系判断各个选项的正误. 【详解】 对于A ,2cos AB AB AC AB AC A AB ACAB AC,故A 正确;对于B ,2cos cos CB CB AC CB AC C CB AC C CB ACCB AC,故B 错误; 对于C ,2cos cos BD AB BD AB BD ABD AB BD ABD AB BDBDAB,故C 错误; 对于D ,2cos BD BA BDBA BD ABD BA BDBD BA,2cos BD BC BDBC BD CBD BC BDBD BC,故D 正确.故选:AD. 【点睛】本题考查三角形中的向量的数量积问题,属于基础题.8.AB 【分析】在中,根据,,由,解得或,然后分两种情况利用余弦定理求解. 【详解】中,因为,,面积, 所以, 所以,解得或,当时,由余弦定理得:, 解得,当时,由余弦定理得:, 解得 所以或解析:AB 【分析】在ABC 中,根据4a =,5b =,由1sin 2ABCSab C ==60C =或120C =,然后分两种情况利用余弦定理求解.【详解】ABC 中,因为4a =,5b =,面积ABCS=所以1sin 2ABCSab C ==所以sin C =60C =或120C =, 当60C =时,由余弦定理得:2222cos 21c a b ab C =+-=,解得c =当120C =时,由余弦定理得:2222cos 61c a b ab C =+-=,解得c =所以c =c =故选:AB 【点睛】本题主要考查三角形面积公式和余弦定理的应用,还考查了运算求解的能力,属于中档题.9.ACD 【分析】先根据已知条件求得,再根据正余弦定理计算并逐一判断即可. 【详解】 因为所以可设:(其中),解得: 所以,所以A 正确;由上可知:边最大,所以三角形中角最大, 又 ,所以角为解析:ACD 【分析】先根据已知条件求得::4:5:6a b c =,再根据正余弦定理计算并逐一判断即可. 【详解】因为()()()::9:10:11a b a c b c +++=所以可设:91011a b x a c x b c x +=⎧⎪+=⎨⎪+=⎩(其中0x >),解得:4,5,6a x b x c x ===所以sin :sin :sin ::4:5:6A B C a b c ==,所以A 正确; 由上可知:c 边最大,所以三角形中C 角最大,又222222(4)(5)(6)1cos 022458a b c x x x C ab x x +-+-===>⨯⨯ ,所以C 角为锐角,所以B 错误;由上可知:a 边最小,所以三角形中A 角最小,又222222(6)(5)(4)3cos 22654c b a x x x A cb x x +-+-===⨯⨯,所以21cos22cos 18A A =-=,所以cos2A cosC = 由三角形中C 角最大且C 角为锐角,可得:()20,A π∈,0,2C π⎛⎫∈ ⎪⎝⎭所以2A C =,所以C 正确; 由正弦定理得:2sin c R C =,又sin 8C ==所以2R =,解得:7R =,所以D 正确. 故选:ACD. 【点睛】本题考查了正弦定理和与余弦定理,属于基础题.10.AC 【分析】对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到,从而得到是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判解析:AC 【分析】对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到sin cos sin cos A A B B =,从而得到ABC 是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判断C 正确;对D ,首先根据余弦定理得到A 为锐角,但B ,C 无法判断,故D 错误. 【详解】对选项A ,2sin 2sin sin sin a b r A r B A B >⇒>⇒>,故A 正确; 对选项B ,因为sin 2sin 2sin cos sin cos A B A A B B =⇒=所以A B =或2A B π+=,则ABC 是等腰三角形或直角三角形.故B 错误;对选项C ,因为cos cos a B b A c -=,所以()sin cos sin cos sin sin A B B A C A C -==+,sin cos sin cos sin cos cos sin A B B A A B A B -=+,sin cos cos sin B A A B -=,因为sin 0B ≠,所以cos 0A =,2A π=,ABC 是直角三角形,故③正确;对D ,因为2220a b c +->,所以222cos 02a b c A ab+-=>,A 为锐角.但B ,C 无法判断,所以无法判断ABC 是锐角三角形,故D 错误. 故选:AC 【点睛】本题主要考查正弦定理和余弦定理解三角形,同时考查学三角函数恒等变换,属于中档题.11.ABD 【分析】首先理解表示与向量同方向的单位向量,然后分别判断选项. 【详解】表示与向量同方向的单位向量,所以正确,正确,所以AB 正确,当不是单位向量时,不正确, ,所以D 正确. 故选:ABD解析:ABD 【分析】首先理解aa表示与向量a 同方向的单位向量,然后分别判断选项.【详解】a a 表示与向量a 同方向的单位向量,所以1aa =正确,//a a a 正确,所以AB 正确,当a 不是单位向量时,aa a=不正确,cos 0a a aa a a a a a a⋅==⨯=,所以D 正确. 故选:ABD 【点睛】本题重点考查向量a a 的理解,和简单计算,应用,属于基础题型,本题的关键是理解a a表示与向量a 同方向的单位向量.12.ABD 【分析】根据向量数乘运算判断AB 选项的正确性,通过的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性. 【详解】根据向量数乘的运算可知A 和B 正确;C 中,当时,,但与不一定相等,解析:ABD 【分析】根据向量数乘运算判断AB 选项的正确性,通过m 的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性. 【详解】根据向量数乘的运算可知A 和B 正确;C 中,当0m =时,0ma mb ==,但a 与b 不一定相等,故C 不正确;D 中,由ma na =,得()0m n a -=,因为0a ≠,所以m n =,故D 正确. 故选:ABD 【点睛】本小题主要考查向量数乘运算,属于基础题.13.AB 【分析】若,则反向,从而; 若,则,从而可得;若,则同向,在方向上的投影为若存在实数使得,则共线,但是不一定成立. 【详解】对于选项A ,若,则反向,由共线定理可得存在实数使得; 对于选解析:AB 【分析】若||||||a b a b +=-,则,a b 反向,从而a b λ=; 若a b ⊥,则0a b ⋅=,从而可得||||a b a b +=-;若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 【详解】对于选项A ,若||||||a b a b +=-,则,a b 反向,由共线定理可得存在实数λ使得a b λ=;对于选项B ,若a b ⊥,则0a b ⋅=,222222||2,||2a b a a b b a b a a b b +=+⋅+-=-⋅+,可得||||a b a b +=-;对于选项C ,若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a ;对于选项D ,若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 故选:AB. 【点睛】本题主要考查平面向量的性质及运算,明确向量的性质及运算规则是求解的关键,侧重考查逻辑推理的核心素养.14.BCD 【分析】根据向量的定义及运算逐个分析选项,确定结果. 【详解】解:分别以图中的格点为起点和终点的向量中,与是相反向量的共有 18个,故错,以为原点建立平面直角坐标系,, 设,若, 所以解析:BCD 【分析】根据向量的定义及运算逐个分析选项,确定结果. 【详解】解:分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有 18个,故A 错, 以O 为原点建立平面直角坐标系,()1,2A , 设(,)B m n ,若10OA OB -=(33m -,22n -,且m Z ∈,)n Z ∈, 得(0,1)B -,(2,1)-,(2,1)-共三个,故B 正确. 当(1,0)B ,(0,2)C 时,使得OA OB OC =+,故C 正确.若1OA OB ⋅=,则21m n +=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(1,0)B ,(3,1)-,(1,1)-,(3,2)-共4个,故D 正确. 故选:BCD .【点睛】本题考查向量的定义,坐标运算,属于中档题.15.AD 【分析】根据平面向量基本定理可知,A 、D 是正确的,选项B 不正确;对于选项C ,当两个向量均为时,有无数个,故不正确. 【详解】由平面向量基本定理可知,A 、D 是正确的. 对于B,由平面向量基本解析:AD 【分析】根据平面向量基本定理可知,A 、D 是正确的,选项B 不正确;对于选项C ,当两个向量均为0时,λ有无数个,故不正确.【详解】由平面向量基本定理可知,A 、D 是正确的.对于B ,由平面向量基本定理可知,如果一个平面的基底确定, 那么任意一个向量在此基底下的实数对是唯一的,所以不正确; 对于C ,当两向量的系数均为零,即12120λλμμ====时, 这样的λ有无数个,所以不正确. 故选:AD . 【点睛】本题考查平面向量基本定理的辨析,熟记并理解定理内容是关键,解题中要注意特殊值的应用,属于基础题.二、平面向量及其应用选择题16.B 【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB⋅的最小值. 【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||22PC CA PC =-=-≥-52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题. 17.D 【分析】先根据cos cos b A a B =得到,A B 之间的关系,再根据B 是,A C 的等差中项计算出B 的大小,由此再判断ABC 的形状. 【详解】因为cos cos b A a B =,所以sin cos sin cos =B A A B , 所以()sin 0B A -=,所以A B =, 又因为2B A C B π=+=-,所以3B π=,所以3A B π==,所以ABC 是等边三角形.故选:D. 【点睛】本题考查等差中项以及利用正弦定理判断三角形形状,难度一般.(1)已知b 是,a c 的等差中项,则有2b a c =+;(2)利用正弦定理进行边角互化时,注意对于“齐次”的要求. 18.D 【分析】先根据0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭,判断出A ∠的角平分线与BC 垂直,进而推断三角形为等腰三角形进而根据向量的数量积公式求得C ,判断出三角形的形状. 【详解】解:0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭,||AB AB ,||AC AC 分别为单位向量, A ∴∠的角平分线与BC 垂直, AB AC ∴=,1cos ||||2AB AC A AB AC ==,3A π∴∠=,3B C A π∴∠=∠=∠=,∴三角形为等边三角形.故选:D . 【点睛】本题主要考查了平面向量的数量积的运算,三角形形状的判断.考查了学生综合分析能力,属于中档题. 19.C 【分析】首先根据题的条件27a b +=,得到2()7a b +=,根据a ,b 为单位向量,求得12a b ⋅=,进而求得向量夹角. 【详解】 因为27a b +=,所以2()7a b +=,即22447a a b b +⋅+=, 因为221a b ==,所以12a b ⋅=, 所以1cos ,2a b <>=,因为向量a ,b 夹角的范围为[0,180]︒︒, 所以向量a ,b 夹角的范围为60︒, 故选:C. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的平方与向量模的平方是相等的,已知向量数量积求向量夹角,属于简单题目. 20.A 【解析】∵2350OA OB OC ++=,∴()()23OA OC OB OC +=-+. 设AC 中点为M ,BC 中点为N ,则23OM ON =-, ∵MN 为ABC 的中位线,且32OM ON=, ∴36132255410OACOMCCMNABC ABC SSSS S ⎛⎫==⨯=⨯= ⎪⎝⎭,即12310S S =.选A . 21.D 【分析】由数量积的定义判断B 角的大小,得三角形形状. 【详解】由题意cos()0a b a b B π⋅=->,∴cos()0B π->,cos 0B ->,cos 0B <,又B 是三角形内角,∴2B ππ<<.∴ABC 是钝角三角形. 故选:D . 【点睛】本题考查考查三角形形状的判断,解题关键是掌握数量积的定义.向量夹角的概念. 22.D 【分析】根据向量的加法的几何意义即可求得结果. 【详解】在ABC ∆中,M 是BC 的中点, 又,AB a BC b ==, 所以1122AM AB BM AB BC a b =+=+=+, 故选D. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目. 23.C 【分析】先对等式AB AC AB AC +=-两边平方得出AB AC ⊥,并计算出BC CA ⋅,然后利用投影的定义求出BC 在CA 方向上的投影. 【详解】对等式AB AC AB AC +=-两边平方得,222222AB AC AB AC AB AC AB AC ++⋅=+-⋅,整理得,0AB AC ⋅=,则AB AC ⊥,()216BC CA AC AB CA AC CA AB CA AC ∴⋅=-⋅=⋅-⋅=-=-,设向量BC 与CA 的夹角为θ,所以,BC 在CA 方向上的投影为16cos 44BC CA BC CA BC BC BC CACAθ⋅⋅-⋅=⋅===-⋅, 故选C . 【点睛】本题考查平面向量投影的概念,解本题的关键在于将题中有关向量模的等式平方,这也是向量求模的常用解法,考查计算能力与定义的理解,属于中等题. 24.C【解析】 【分析】根据向量的数量积运算和向量的线性表示可得,()()22254cos 24cos 1PQ PQ t t θθ==+-++,根据二次函数的最值可得出012cos 54cos t θθ+=+,再由0105t <<,可求得夹角θ的取值范围.【详解】 因为2cos OA OB θ⋅=,()1PQ OQ OP t OB tOA =-=--,()()22254cos 24cos 1PQ PQ t t θθ==+-++,∵PQ 在t t =0时取得最小值,所以012cos 54cos t θθ+=+,又0105t <<,则12cos 1054cos 5θθ+<<+,得1cos 02θ-<<,∵0θπ≤≤,所以223ππθ<<,故选:C. 【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题. 25.C 【分析】利用同角三角函数基本关系式可得sin A ,进而可得cos (cos cos sin sin )C A B A B =--,再利用正弦定理即可得出. 【详解】 解:3cos 5A =,(0,180)A ∈︒︒.∴4sin 5A =,34cos cos()(cos cos sin sin )(55C A B A B A B =-+=--=--=.sin C ∴= 由正弦定理可得:sin sin b cB C=,∴1sin 5sin 7c B b C ===. 故选:C . 【点睛】本题考查了同角三角函数基本关系式、正弦定理、两角和差的余弦公式,考查了推理能力与计算能力,属于中档题.26.无27.B 【分析】设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x ,从而有BC=3x ,在△BCD 中,CD=10,∠BCD=105°,∠BDC=45°,∠CBD=30°,由正弦定理可求 BC ,从而可求x 即塔高. 【详解】设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x , 从而有x ,x , 在△BCD 中,CD=10,∠BCD=60°+30°+15°=105°,∠BDC=45°,∠CBD=30° 由正弦定理可得,sin sin BC CDBDC CBD=可得,BC=10sin 45sin 30x ==.则;所以塔AB 的高是米; 故选B . 【点睛】本题主要考查了正弦定理在实际问题中的应用,解决本题的关键是要把实际问题转化为数学问题,即正确建立数学模型,结合已知把题目中的数据转化为三角形中的数据,进而选择合适的公式进行求解. 28.A 【分析】先化简已知()()(2a b c a c b ac +++-=+得6B π=,再化简cos sin A C +)3A π+,利用三角函数的图像和性质求其范围.【详解】由()()(2a b c a c b ac +++-=+可得22()(2a c b ac +-=+,即222a cb +-=,所以222cos 22a cb B ac +-==,所以6B π=,56C A π=-,所以5cos sin cos sin()6A C A A π+=+-553cos sin cos cos sin cos )6623A A A A A A πππ=+-=+=+,又02A π<<,506A π<-2π<,所以32A ππ<<,所以25336A πππ<+<,所以3)62A π<+<,故cos sin A C +的取值范围为3)2.故选A .【点睛】(1)本题主要考查余弦定理解三角形,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)利用函数的思想研究数学问题,一定要注意“定义域优先”的原则,所以本题一定要准确计算出A 的范围32A ππ<<,不是02A π<<.29.D【详解】()22cos 2cos 2212sin(2)16f x x x x x x π=+=+=++,当12x π=时,sin(2)sin163x ππ+=≠±,∴f (x )不关于直线12x π=对称;当512x π=时,2sin(2)116x π++= ,∴f (x )关于点5(,1)12π对称; f (x )得周期22T ππ==, 当(,0)3x π∈-时,2(,)626x πππ+∈-,∴f (x )在(,0)3π-上是增函数. 本题选择D 选项. 30.B 【解析】 【分析】利用向量的定义和运算法则逐一考查所给的命题是否正确即可得到正确命题的个数. 【详解】逐一考查所给的命题:①由向量的减法法则可知:AB AC CB -=,题中的说法错误;②由向量加法的三角形法则可得:0AB BC CA ++=,题中的说法正确; ③因为()(2)0OB OC OB OC OA -⋅+-=, 即()0CB AB AC ⋅+=; 又因为AB AC CB -=, 所以()()0AB AC AB AC -⋅+=, 即||||AB AC =,所以△ABC 是等腰三角形.题中的说法正确;④若0AC AB ⋅>,则cos 0AC AB A ⨯⨯>,据此可知A ∠为锐角,无法确定ABC ∆为锐角三角形,题中的说法错误. 综上可得,正确的命题个数为2. 故选:B . 【点睛】本题主要考查平面向量的加法法则、减法法则、平面向量数量积的应用,由平面向量确定三角形形状的方法等知识,意在考查学生的转化能力和计算求解能力. 31.A 【分析】由条件()()1sin 2sin sin 2A A B C C A B +-+=--+化简得出1sin sin sin 8A B C =,设ABC ∆的外接圆半径为R ,根据12S ≤≤求得R 的范围,然后利用不等式的性质判断即可.【详解】ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,即()()1sin 2sin sin 2A A B C A B C +-+++-=,即()()1sin 2sin sin 2A ABC A B C +--++-=⎡⎤⎣⎦, 即()12sin cos 2sin cos 2A A ABC +-=,即()()12sin cos 2sin cos 2A B C A B C -++-=,即()()12sin cos cos 4sin sin sin 2A B C B C A B C --+==⎡⎤⎣⎦,1sin sin sin 8A B C ∴=,设ABC ∆的外接圆半径为R ,则2sin sin sin a b cR A B C===,[]2111sin 2sin 2sin sin 1,2224S ab C R A R B C R ==⨯⨯⨯=∈,2R ∴≤≤338sin sin sin abc R A B C R ⎡∴=⨯=∈⎣,C 、D 选项不一定正确;对于A 选项,由于b c a +>,()8bc b c abc ∴+>≥,A 选项正确;对于B 选项,()8ab a b abc +>≥,即()8ab a b +>成立,但()ab a b +>成立. 故选:A. 【点睛】本题考查了利用三角恒等变换思想化简、正弦定理、三角形的面积计算公式、不等式的基本性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题. 32.B 【分析】根据向量运算可知三角形中中线与垂线重合,可知三角形为等腰三角形,即可确定三角形形状. 【详解】因为AB AC BA BC →→→→⋅=⋅,所以0AB AC BC →→→⎛⎫⋅+= ⎪⎝⎭,即0AB CA CB →→→⎛⎫⋅+= ⎪⎝⎭,所以在ABC 中,AB 与AB 边上的中线垂直,则CA CB →→=,同理0BC AC AB →→→⎛⎫⋅+= ⎪⎝⎭,AC AB →→=,所以AC AB CB →→→==,ABC 是等边三角形. 故选:B 【点睛】本题主要考查了向量的数量积,向量垂直,考查了运算能力,属于中档题. 33.B 【分析】由题意可得2b a c =+,平方后整理得22242a c b ac +=-,利用三角形面积可求得ac 的值,代入余弦定理可求得b 的值. 【详解】解:∵a ,b ,c 成等差数列, ∴2b a c =+,平方得22242a c b ac +=-,①又ABC 的面积为32,且30B ∠=︒, 由11sin sin 3022ABC S ac B ac ==⋅︒△1342ac ==,解得6ac =, 代入①式可得222412a c b +=-,由余弦定理得222cos 2a c b B ac +-=,22241231226122b b b ---===⨯,解得24b =+,∴1b =+ 故选:B . 【点睛】本题考查等差数列的性质和三角形的面积公式,涉及余弦定理的应用,属于中档题. 34.A 【分析】利用余弦定理化角为边,得出c b ABC =, 是等腰三角形. 【详解】ABC ∆中,c cos 2a B c =,由余弦定理得,2222a c b cosB ac+-=, ∴22222a a c b c ac +-= 220c b ∴-= ,∴c b ABC =,是等腰三角形. 【点睛】本题考查余弦定理的应用问题,是基础题. 35.C 【分析】在ABC 中,根据5AB AC ==,6BC =,由余弦定理求得7cos 25A =,再由平方关系得到sin A ,然后由正弦定理2sin BCR A=求解. 【详解】在ABC 中,5AB AC ==,6BC =,由余弦定理得:2222225567cos 225525AB AC BC A AB AC +-+-===⋅⨯⨯,所以24sin 25A ==,。
高中数学向量专项练习(含答案)
高中数学向量专项练习一、选择题1. 已知向量若则()A. B. C. 2 D. 42. 化简+ + + 的结果是()A. B. C. D.3.已知向量, 若与垂直, 则()A. -3B. 3C. -8D. 84.已知向量, , 若, 则()A. B. C. D.5.设向量, , 若向量与平行, 则A. B. C. D.6.在菱形中, 对角线, 为的中点, 则()A. 8B. 10C. 12D. 147.在△ABC中, 若点D满足, 则()A. B. C. D.8.在中, 已知, , 若点在斜边上, , 则的值为().A. 6B. 12C. 24D. 489.已知向量若, 则()A. B. C. D.10.已知向量, , 若向量, 则实数的值为A. B. C. D.11.已知向量, 则A. B. C. D.12.已知向量, 则A. B. C. D.13.的外接圆圆心为, 半径为, , 且, 则在方向上的投影为A. 1B. 2C.D. 314.已知向量, 向量, 且, 则实数等于()A. B. C. D.15.已知平面向量, 且, 则实数的值为()A. 1B. 4C.D.16.是边长为的等边三角形, 已知向量、满足, , 则下列结论正确的是()A. B. C. D.17.已知菱形的边长为, , 则()A. B. C. D.18.已知向量, 满足, , 则夹角的余弦值为( )A. B. C. D.19.已知向量=(1, 3), =(-2, -6), | |= , 若(+ )·=5, 则与的夹角为()A. 30° B. 45° C. 60° D. 120°20.已知向量, 则的值为A. -1B. 7C. 13D. 1121.如图, 平行四边形中, , 则()A. B. C. D.22.若向量 , , 则 =( )A. B. C. D.23.在△ 中, 角 为钝角, , 为 边上的高, 已知 , 则 的取值范围为(A )39(,)410 (B )19(,)210 (C )33(,)54 (D )13(,)2424. 已知平面向量 , , 则向量 ( )A. B. C. D.25.已知向量 , , 则A. (5,7)B. (5,9)C. (3,7)D.(3,9) 26.已知向量 , 且 , 则实数 =( )A. -1B. 2或-1C. 2D. -227.在 中, 若 点 满足 , 则 ( )A. B. C. D.28.已知点 和向量 , 若 , 则点 的坐标为( )A. B. C. D.29.在矩形ABCD 中, 则 ( )A. 12B. 6C.D.30. 已知向量 , ,则 ( ).A. B. C. D.31.若向量 与 共线且方向相同, 则 ( )A. B. C. D.32.设 是单位向量, 且 则 的最小值是( )A. B. C. D.33.如图所示, 是 的边 上的中点, 记 , , 则向量 ( )A. B. C. D.34.如图, 在 是边BC 上的高, 则 的值等于 ( )ADCB35.已知平面向量的夹角为, ()A. B. C. D.36.已知向量且与共线, 则()A. B. C. D.二、填空题37. 在△ABC中, AB=2, AC=1, D为BC的中点, 则=_____________.38.设, , 若, 则实数的值为()A. B. C. D.39.空间四边形中, , , 则()A. B. C. D.40. 已知向量, , 满足, , 若, 则的最大值是 .41. 化简: = .42. 在中, 的对边分别为, 且, , 则的面积为 .43. 已知向量=(1, 2), •=10, | + |=5 , 则| |= .44.如图, 在中, 是中点, , 则.45. 若| |=1, | |=2, = + , 且⊥, 则与的夹角为________。
高三数学向量专项练习题及答案
高三数学向量专项练习题及答案一、选择题1. 设向量a = (2, 3)、b = (4, -1),则a + b的坐标表示为:A. (6, 2)B. (2, 2)C. (6, -2)D. (2, -2)答案:A. (6, 2)2. 设向量a = (3, 2),则2a的坐标表示为:A. (3, 2)B. (6, 4)C. (2, 3)D. (6, 2)答案:B. (6, 4)3. 已知向量a = (5, -3)和b = (1, 2),则向量a与向量b的数量积为:A. 5B. 1C. -7D. -1答案:C. -74. 向量a, b的夹角θ满足sinθ = 1/2,则θ的大小为:A. 30°B. 45°C. 60°D. 90°答案:C. 60°5. 平面上三点A(1, 2),B(3, 4),C(5, 1)所确定的三角形ABC的面积为:A. 4B. 6C. 7D. 8答案:B. 6二、填空题1. 设向量a = (2, 5),则|a|的值为________。
答案:sqrt(29)2. 设向量a与向量b的夹角θ满足cosθ = 1/√2,则θ的大小为________。
答案:45°3. 平面直角坐标系中,若点A(3, 4)到点B(-2, -3)的距离为√k,则k= ________。
答案:504. 已知向量a = (2, 3),向量b = (4, -1),则向量a - b = (_______,_______)。
答案:(-2, 4)5. 平面上三点A(1, 2),B(3, 4),C(5, 1)所确定的三角形ABC的周长为________。
答案:约9.21三、解答题1. 已知向量a = (2, 3),向量b = (4, -1),求向量a与向量b的数量积。
解答:向量a与向量b的数量积为:a·b = 2×4 + 3×(-1) = 8 - 3 = 5。
高考数学《向量》专题复习(专题训练)
高考《向量》专题复习1.向量的有关概念:(1)向量的定义:既有大小又有方向的量。
向量可以任意平移。
(2)零向量:长度为0的向量叫零向量,记作:0.(3)单位向量:长度为一个单位长度的向量叫做单位向量。
任意向量的单位化:与共线的单位向量是.(4)相等向量:长度相等且方向相同的两个向量叫相等向量。
(5)平行向量又叫共线向量,记作:∥.①向量)0(→→→≠a a 与→b 共线,则有且仅有唯一一个实数λ,使→→=a b λ; ②规定:零向量和任何向量平行;④平行向量无传递性!(因为有);(6)向量的加法和减法满足平行四边形法则或三角形法则;2.平面向量的坐标表示及其运算:(1)设),(11y x a =→,),(22y x b =→,则),(2121y y x x b a ++=+→→; (2)设),(11y x a =→,),(22y x b =→,则),(2121y y x x b a --=-→→;(3)设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则=),(1212y y x x --; (4)设),(11y x a =→,),(22y x b =→,向量平行→→b a //1221y x y x =⇔; (5)设两个非零向量),(11y x a =→,),(22y x b =→,则2121y y x x b a +=⋅→→, 所以002121=+⇔=⋅⇔⊥→→→→y y x x b a b a ; (6)若),(y x a =→,则22y x a +=→;(7)定比分点:设点P 是直线21,p p 上异于21,p p 的任意一点,若存在一个实数λ,使 21PP P P λ=,则λ叫做点P 分有向线段21P P 所成的比,P 点叫做有向线段21P P 的以定比为λ的定比分点;当P 分有向线段21P P 所成的比为λ,则点P 分有向线段21P P 所成的比为1λ. 注意:①设111(,)P x y 、222(,)P x y ,(,)P x y 分有向线段21P P 所成的比为λ,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩, 在使用定比分点的坐标公式时,应明确(,)x y ,11(,)x y 、22(,)x y 的意义,即分别为分点,起点,终点的坐标。
【新人教】高考数学总复习专题训练向量检测卷
数学高考总复习 向量检测卷一.选择题:本大题共10小题,每小题5分,共50分.1.设,a b R ∈,集合{1,,}{0,,}ba b a b a+=,则b a -=( ) A .1 B .1- C .2 D .2-2.函数()sin ([,0])f x x x x π=∈-的单调递增区间是A .5[,]6ππ--B .5[,]66ππ--C .[,0]3π-D .[,0]6π- 3.若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a = A .(12)--, B .(12)-, C .(12)-, D .(12),4.设()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件5.已知数列{n a }的前n 项和29nS n n =-,第k 项满足58k a <<,则k =A .9B .8 C. 7 D .66.半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为A .)33arccos(-B .)36arccos(-C .)31arccos(-D .)41arccos(- 7.由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为 A .1 B. CD .38.从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为 A .41 B .12079 C .43D .2423 9.定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为A.0B.1C.3D.5 10.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有二.填空题:本大题共5小题,每小题5分,共25分.11. 若621x ax ⎛⎫+ ⎪⎝⎭的二项展开式中3x 的系数为52, 则a = (用数字作答).12. (2007湖北)设变量x y ,满足约束条件30023x y x y x -+⎧⎪+⎨⎪-⎩≥,≥,≤≤,则目标函数2x y +的最小值为13.在ABC △中,若1tan 3A =,150C =,1BC =,则AB =14.若函数()1222-=--aax x x f 的定义域为R ,则实数a 的取值范 围15.设椭圆2212516x y +=上一点P 到左准线的距离为10,F 是该椭圆的左焦点,若点M 满足1()2OM OP OF =+ ,则||OM= .三.解答题:本大题共6小题,共75分. 16.(本小题满分12分) 已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC的夹角为θ.(I )求θ的取值范围;(II )求函数2()2sin 4f θθθ⎛⎫=+ ⎪⎝⎭π的最大值与最小值.17.(本小题满分12分)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(I )任选1名下岗人员,求该人参加过培训的概率;(II )任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列和期望.18. (本小题满分12分)四棱锥S -ABCD 中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD 。
【新课标】备战高考数学专题复习测试题——向量(文科)
高考第一轮复习专题素质测试题向 量(文科)班别______学号______姓名_______评价______ (考试时间120分钟,满分150分,试题设计:隆光诚)一、选择题(每小题5分,共60分. 以下给出的四个备选答案中,只有一个正确)1.(07全国Ⅰ)已知向量)5,6(),6,5(=-=b a ,则a 与b( )A.垂直B.不垂直也不平行 C.平行且同向D.平行且反向2.(10湖南)若非零向量、满足||||=,0)2(=⋅+,则与的夹角为( ) A.30° B.60° C.120° D.150°3. (09湖北) 若向量)2,4(),1,1(),1,1(=-==b a,则=( )A. b a +3B. b a -3C. b a 3+-D. b a 3+4.(05北京)若||1,||2,a b c a b ===+,且c a ⊥ ,则向量a 与b 的夹角为( )A.30°B.60°C.120°D.150°5.(06湖南)已知向量),2,1(),,2(==b t a 若1t t =时,a ∥b ;2t t =时,b a ⊥,则( )A .1,421-=-=t t B. 1,421=-=t t C. 1,421-==t t D. 1,421==t t 6.(06广东)如图所示,D 是ABC ∆的边AB 上的中点,则向量CD =( )A.12BC BA -+B. 12BC BA --C. 12BC BA -D. 12BC BA +7.(08重庆)若点P 分有向线段AB 所成的比为31-,则点B 分有向线段PA 所成的比是( )A .23-B .21-C.12D. 38.(08辽宁)将函数21xy =+的图象按向量平移得到函数12x y +=的图象,则( ) A .)1,1(--=B .)1,1(-=C .)1,1(=D .)1,1(-=9.(09全国Ⅱ) 已知向量25||,10),1,2(=+=⋅=b a,则=||( )ACBC.5D.2510.(07福建)对于向量..a b c和实数λ,下列命题中真命题是( )A .若0a b ⋅= ,则0a = 或0b =B .若0a λ= ,则0λ=或0a =C .若22a b = ,则a b = 或a b =- D .若a b a c ⋅=⋅ ,则b c =11.(10全国Ⅱ)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若=====CD 则,2||,1||,,( )A.3231+ B. 3132+ C. 5453+ D. b a 5354+ 12.(08山东)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量)sin ,(cos ),1,3(A A n m =-=→→若→→⊥n m ,且a cos B + b cos A = c sin C ,则角A ,B 的大小分别为( ) A .,63ππB.2,36ππC.,36ππD.,33ππ二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题号后的横线上)13.(05福建)在△ABC 中,∠A=90°,k k 则),3,2(),1,(==的值是 .14.(06天津)设向量a 与b 的夹角为θ,(33)a = ,,2(11)b a -=-,,则c o s θ= .15.(08全国Ⅱ)设向量)3,2(),2,1(==→→b a ,若向量→→+b a λ与向量)7,4(--=→c 共线,则=λ .16.(10江西)已知向量a ,b 满足||2b =,a 与b 的夹角为60︒,则b 在a 上的投影是 .三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤)17.(本题满分10分,08福建17)已知向量(sin ,cos ),(1,2),m A A n ==- 且0m n ⋅= .(1)求tan A 的值; (2)求函数()cos 2tan sin ()f x x A x x R =+∈的值域.18.(本题满分12分,09湖南16) 已知向量)2,1(),sin 2cos ,(sin =-=→→b a θθθ. (Ⅰ)若→a //→b ,求tan θ的值; (Ⅱ)若||||→→=b a ,0<θ<π,求θ的值.19.(本题满分12分,06湖北16)设向量)cos ,(cos ),cos ,(sin x x b x x a ==→→,x ∈R ,函数)()(→→→+⋅=b a a x f .(Ⅰ)求函数)(x f 的最大值与最小正周期;(Ⅱ)求使不等式)(x f ≥23成立的x 的取值集合.20.(本题满分12分,07山东17)在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,.(Ⅰ)求cos C ; (Ⅱ)若52CB CA = ,且9a b +=,求c .21.(本题满分12分,10安徽16)△ABC 的面积是30,内角A 、B 、C 所对边长分别为a 、b 、c ,cosA=1213. (Ⅰ)求AB AC ⋅; (Ⅱ)若1=-b c ,求a 的值.22.(本题满分12分,05湖北17)已知向量ba x f t xb x x a ⋅=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围.参考答案:一、选择题答题卡:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A CBCCAAACBBC二、填空题 13.23-. 14.10103. 15. 2 . 16. 1 .三、解答题17.解:(Ⅰ)由题意得sin 2cos 0m n A A ⋅=-=,因为0cos ≠A ,所以2tan =A . (Ⅱ)由(Ⅰ)知2tan =A 得.23)21(sin 2sin 2sin 21sin 22cos )(22+--=+-=+=x x x x x x f,sin [1,1]x R x ∈∴∈- .当1sin 2x =,()f x 有最大值32;当sin 1x =-,()f x 有最小值3-. 所以所求函数()f x 的值域为3[3,]2-.18. 解:(Ⅰ) 因为→a //→b ,所以2sin 2cos 1sin θθθ-=,即2sin cos 2sin θθθ=-, 于是 θθcos sin 4=,故tan θ=14.(Ⅱ)由 ||||→→=b a 知,2sin θ+(cos θ-2sin θ2)=5,所以1-2sin2θ + 42sin θ=5.从而522cos 142sin 21=-⨯+-θθ,即12c o s 2si n -=+θθ,于是22)42sin(-=+πθ. 又由0<θ<π知,4π< 2θ+4π<94π,所以2θ+4π=54π,或2θ+4π=74π. 因此θ=2π,或θ=34π..23)42sin(2223)2cos 222sin 22(2222cos 12sin 211cos cos sin cos sin )()(1.192222++=++=+++=+++=⋅+=+⋅=→→→→→→πx x x xx x x x x x b a a b a a x f )解:(因为x ∈R ,所以函数)(x f 的最大值为232+,最小正周期为πωπ==2T . (Ⅱ)0)42sin(2323)42sin(22)(≥+≥++=ππx x x f 得由, .,2422Z k k x k ∈+≤+≤ππππ所以 解得.,838Z k k x k ∈+≤≤+-ππππ因此使不等式)(x f ≥23成立的x 的取值集合为⎭⎬⎫⎩⎨⎧∈+≤≤+-Z k k x k x ,838ππππ. 20.解:(Ⅰ)73tan =C >0,C ∴是锐角..81tan 11cos 2=+=∴C C(Ⅱ)25=⋅ , 5cos 2ab C ∴=.从而.20=ab由余弦定理得,3649)(41cos 2222222=-+=-+=-+=ab b a ab b a B ab b a c6c ∴=.21.解:(Ⅰ)由1312cos =A ,得135cos 1sin 2=-=A A . 又.156,3013521sin 21=∴=⋅==∆bc bc A bc S所以.1441312156cos =⨯==⋅∴A bc(Ⅱ)由余弦定理知:.251312156215621cos 22)(cos 22222=⨯⨯-⨯+=-+-=-+=A bc bc b c A bc c b a .5=∴a22.解法1:依定义)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若3=x )x,23)(,)1,1(,230)(22x x x g x x t x f -=--≥⇔≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间)1,1(-上恒成立⇔.5),1()(m ax ≥-=≥t g x g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t5≥t t 的取值范围是故.解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f ' 的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在3=x )('x。
高考数学复习空间向量及其运算理专题训练(含答案)
高考数学复习空间向量及其运算理专题训练(含答案)空间中具有大小和方向的量叫做空间向量。
向量的大小叫做向量的长度或模。
以下是查字典数学网整理的空间向量及其运算理专题训练,请考生练习。
一、填空题1.已知A(1,0,1),B(4,4,6),C(2,2,3),D(10,14,17),则这四个点________(填共面或不共面).[解析] =(3,4,5),=(1,2,2),=(9,14,16),设=x+y,即(9,14,16)=(3x+y,4x+2y,5x+2y),得x=2,y=3. [答案] 共面2.(2019济南调研)在下列命题中:若向量a,b共线,则向量a,b所在的直线平行;若向量a,b所在的直线为异面直线,则向量a,b一定不共面;若三个向量a,b,c,两两共面,则向量a,b,c共面;已知空间的三个向量a,b,c.则对于空间的任意一个向量p 总存在实数x,y,z得p=xa+yb+zc.其中不正确的命题是________(填序号).[解析] a与b共线,a,b所在直线也可能重合,故不正确.根据平移向量的意义知,空间任两向量a,b都共面,故错误.三个向量a,b,c中任两个一定共面,但它们三个却不一定共面,故不正确.只有当a,b,c不共面时,空间任意一向量p才能表示为p=xa+yb+zc,故不正确.[答案]3.已知空间四边形OABC中,点M在线段OA上,且OM=2MA,点N为BC中点,设=a,OB=b,=c,则=________.(用a,b,c表示)[解析] =-=(+)-=b+c-a.[答案] b+c-a4.(2019上海高考)若a,b,c为任意向量,mR,则下列等式不一定成立的是________.(填序号)(a+b)c=ac+b(a+b)+c=a+(b+c);m(a+b)=ma+nb;(ab)c=a(bc).[解析] (ab)c=|a||b|cos c,a(bc)=|b||c|cos a,a与c的模不一定相等且不一定同向,故错.[答案] (4)5.已知P,A,B,C四点共面且对于空间任一点O都有=2++,则=________.[解析] 根据共面向量知P,A,B,C四点共面,则=x+y+z,且x+y+z=1,所以2++=1,=-.[答案] -6.若向量a=(1,,2),b=(2,-1,2)且a与b的夹角的余弦值为,则等于________.[解析] 由已知得==,解得=-2或=.[答案] -2或7.(2019徐州模拟)已知O点为空间直角坐标系的原点,向量=(1,2,3),=(2,1,2),=(1,1,2),且点Q在直线OP上运动,当取得最小值时,的坐标是________.[解析] 点Q在直线OP上,设点Q(,,2),则=(1-,2-,3-2),=(2-,1-,2-2),=(1-)(2-)+(2-)(1-)+(3-2)(2-2)=62-16+10=62-.当=时,取得最小值-.此时=.[答案]图768.如图76所示,已知空间四边形OABC,OB=OC,且AOB=AOC=,则cos〈,〉的值为________.[解析] 设=a,=b,=c,由已知条件〈a,b〉=〈a,c〉=,且|b|=|c|,=a(c-b)=ac-ab=|a||c|-|a||b|=0,即〈〉=,所以cos〈,〉=0.[答案] 0二、解答题9.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5),(1)求以,为边的平行四边形的面积;(2)若|a|=,且a分别与,垂直,求a的坐标.[解] (1)由题意可得:=(-2,-1,3),=(1,-3,2),cos〈,〉===,sin〈,〉=,以,为边的平行四边形的面积为S=2||||sin〈,〉=14=7.(2)设a=(x,y,z),由题意得解得或向量a的坐标为(1,1,1)或(-1,-1,-1).图7710.(2019张家港调研)如图77,在棱长为a的正方体ABCDA1B1C1D1中,G为BC1D的重心,(1)试证:A1,G,C三点共线;(2)试证:A1C平面BC1D.[证明] (1)=++=++,可以证明:=(++)=,∥,即A1,G,C三点共线.(2)设=a,CD=b,=c,则|a|=|b|=|c|=a,且ab=bc=ca=0,=a+b+c,=c-a,=(a+b+c)(c-a)=c2-a2=0,因此,即CA1BC1,同理CA1BD,又BDBC1=B,A1C平面BC1D.要练说,得练看。
高考数学平面向量多选题复习训练题(含答案解析)
高考数学平面向量多选题复习训练题(含答案解析)1.(2022·河北廊坊·模拟预测)已知实数m 、n 和向量a 、b ,下列结论中正确的是( ) A .()m a b ma mb −=− B .()m n a ma na −=−C .若ma mb =,则a b =D .若()0ma na a =≠,则m n =【答案】ABD 【解析】 【分析】利用平面向量的线性运算可判断ABCD 选项. 【详解】对于A 选项,()m a b ma mb −=−,A 对; 对于B 选项,()m n a ma na −=−,B 对;对于C 选项,若ma mb =,则()0m a b −=,所以,0m =或a b =,C 错;对于D 选项,若()0ma na a =≠,则()0m n a −=,所以,0−=m n ,即m n =,D 对. 故选:ABD.2.(2021·全国·模拟预测)如图,在ABC 中,6BC =,D ,E 是BC 的三等分点,且4AD AE ⋅=,则( )A .2133AE AB AC =+ B .1122AD AB AE =+ C .4⋅=−AB AC D .2228AB AC +=【答案】BCD 【解析】 【分析】由向量的线性运算即可判断A ,B,取DE 的中点G ,由6BC =,D ,E 是BC 的三等分点得G 是BC 的中点,计算可得2214AD AE AG DE ⋅=−,进而得出25AG =,计算可判断选项C,由C 可知2AB AC AG +=,两边平方,化简计算可判断选项D .【详解】对于A ,()11123333AE AC CE AC CB AC AB AC AB AC =+=+=+−=+,故选项A 不正确;对于B ,由题意得D 为BE 的中点,所以1122AD AB AE =+,故选项B 正确; 对于C ,取DE 的中点G ,由6BC =,D ,E 是BC 的三等分点得G 是BC 的中点,且2DE =,所以221114224AD AE AG DE AG DE AG DE ⎛⎫⎛⎫⋅=−⋅+=−= ⎪ ⎪⎝⎭⎝⎭,所以25AG =,22111594224AB AC AG BC AG BC AG BC ⎛⎫⎛⎫⋅=−⋅+=−=−=− ⎪ ⎪⎝⎭⎝⎭,故选项C 正确;对于D ,由G 是BC 的中点得2AB AC AG +=,两边平方得22224AB AB AC AC AG +⋅+=,所以2220828AB AC +=+=,故选项D 正确.故选:BCD.3.(2021·山东·二模)若,,a b c 均为单位向量,且0,()()0a b a c b c ⋅=−⋅−≤,则||a b c +−的值可能为( )A 1B .1CD .2【答案】AB 【解析】 【分析】由0,()()0a b a c b c ⋅=−⋅−≤,得到()1c a b +≥r r r ,再由a b c +−=r r r.【详解】因为,,a b c 均为单位向量,且0,()()0a b a c b c ⋅=−⋅−≤,所以2()0a b c a b c ⋅−++≤r r r r r r ,即()1c a b +≥r r r,所以a b c +−r r r1,故选:AB4.(2021·黑龙江·密山市第一中学模拟预测)在ABC 中,有如下四个命题正确的有( ) A .若0AC AB ⋅>,则ABC 为锐角三角形B .若BA BC AC +=,则ABC 的形状为直角三角形C .ABC 内一点G 满足0GA GB GC ++=,则G 是ABC 的重心D .若PA PB PB PC PC PA ⋅=⋅=⋅,则点P 必为ABC 的外心 【答案】BC 【解析】 【分析】对于A ,由0AC AB ⋅>可得角A 为锐角,从而可判断,对于B ,对BA BC AC +=两边平方化简,再结合余弦定理可得结论,对于C ,由向量加法和共线及三角形重心概念判断,对于D ,由向量运算性质和三角形垂心概念可判断 【详解】解:对于A ,由0AC AB ⋅>,得s 0co AC AB A >,所以cos 0A >,所以角A 为锐角,但不能判断三角形为锐角三角形,所以A 错误,对于B ,因为BA BC AC +=,所以2222BA BA BC BC AC +⋅+=,即2222cos BA BA BC B BC AC +⋅+=,所以222cos cos 2BA BC ACB B BA BC+−−==,得cos 0B =,因为(0,)B π∈,所以2B π=,所以三角形为直角三角形,所以B 正确,对于C ,因为0GA GB GC ++=,所以GA GB GC +=−,所以2GD GC =−(D 为BA 的中点),所以,,G C D 三点共线,所以点G 在BA 边的中线CD 上,同理,可得点G 在其它两边的中线上,所以G 是ABC 的重心,所以C 正确,对于D ,因为PA PB PB PC ⋅=⋅,所以0PA PB PB PC ⋅−⋅=,()0PB PA PC PB CA ⋅−=⋅=,所以PB CA ⊥,所以点P 在边CA 的高上,同理可得点 P 也在其它两边的高上,所以点P 为ABC 的垂心,所以D 错误, 故选:BC5.(2021·全国·模拟预测)下列说法正确的是( ) A .若,,a b c 为平面向量,//,//a b b c ,则//a c B .若,,a b c 为平面向量,,a b b c ⊥⊥,则//a cC .若1,2a b ==r r ,()a b a +⊥r r r ,则a 在b 方向上的投影为12−D .在ABC 中,M 是AB 的中点,AC =3AN ,BN 与CM 交于点P ,AP =AB λ+AC μ,则λ=2μ 【答案】CD 【解析】 【分析】利用向量共线的概念判断A 、B ,;利用向量数量积的定义可判断C ;利用向量共线的推论即可判断D. 【详解】A ,若0b =,则0与任意向量共线,所以a 与c 不一定平行,故A 错误;B ,若,a b b c ⊥⊥,则0a b ⋅=,0b c ⋅=,当,,a b c 共面时,//a c , 若,,a b c 不共面时,a 与c 不平行,故B 错误;C ,若()a b a +⊥r r r ,则()0a b a +⋅=r r r ,所以21a b a ⋅=−=−,a 在b 方向上的投影为12a b b⋅=−r r r ,故C 正确; D ,AP AN NP =+,设NP aNB =, 则()1133AP AC aNB AC a NC CB =+=++ ()112333AC aNC aCB AC aAC a CA AB =++=+++ 1233AC aAC aCA aAB =+++1133a AC aAB ⎛⎫=−+ ⎪⎝⎭, 设a λ=,则1133μλ=−,即31μλ=−,①12AP AM MP AB MP =+=+,设MP bMC =, 1111122222AP AB bMC AB b AB BA AC b AB bAC ⎛⎫⎛⎫=+=+++=−+ ⎪ ⎪⎝⎭⎝⎭, 1122λμ=−,即21λμ=−,②由①②可得25λ=,15μ=,即2λμ=,故D 正确. 故选:CD6.(2021·江苏南京·一模)设()0,0O ,()1,0A ,()0,1B ,点Р是线段AB 上的一个动点,AP AB λ=uu u r uu u r,若OP AB PA PB ⋅⋅≥,则实数λ的值可以为( ) A .1 B .12C .13D .14【答案】ABC 【解析】 【分析】设出P 点的坐标,结合OP AB PA PB ⋅⋅≥求得λ的取值范围. 【详解】设(),P x y ,由()01AP AB λλ=≤≤得()()()1,1,1,x y λλλ−=−=−, 所以()11,x P y λλλλ−=−⎧⇒−⎨=⎩, 由OP AB PA PB ⋅⋅≥得()()()()1,1,1,1,1λλλλλλ−⋅−≥−⋅−−,()()111λλλλλλ−+≥−−−,222122,241011λλλλλλ−≥−−+≤⇒≤≤由于01λ≤≤,所以11λ≤≤.111,,123⎡⎤∈⎢⎥⎣⎦,所以ABC 正确,D 错误.故选:ABC7.(2022·江苏·海安高级中学二模)关于平面向量a b c ,,,下列说去不正确的是( ) A .若··a c b c =,则a b = B .·(··)a b c a c b c =++ C .若22a b =,则··a c b c = D .()()····a b c b c a = 【答案】ACD 【解析】 【分析】令0=c 时可判断A ;利用()a b c a c b c +⋅=⋅+⋅,可判断B ;由22=a b 可知a 与b 的模长相等,但()−⋅a b c 不一定为0可判断C ;()⋅⋅a b c 与c 共线的向量,()·b c a ⋅与a 共线,可判断D . 【详解】0=c 时,0⋅=⋅=a c b c ,a 与b 可任取,故A 错;()a b c a c b c +⋅=⋅+⋅,故B 对;22=a b 可知a 与b 的模长相等,()−⋅a b c 不一定为0,∴⋅≠⋅a c b c ,故C 错;()⋅⋅a b c 与c 共线的向量,()·b c a ⋅与a 共线的向量. ∴()()⋅⋅≠⋅⋅a b b c a c ,D 错. 故选:ACD.8.(2022·山东潍坊·一模)已知向量()1,2OP =,将OP 绕原点O 旋转﹣30°,30°,60°到123,,OP OP OP的位置,则( ). A .130OP OP ⋅= B .12PP PP =C .312OP OP OP OP ⋅=⋅D .点1P 坐标为⎝⎭【答案】ABC 【解析】 【分析】根据向量的夹角判断A ,再由全等三角形可判断B ,根据向量的数量积的定义判断C ,根据向量的模相等判断D. 【详解】因为OP 绕原点O 旋转﹣30°,30°,60°到123,,OP OP OP , 所以1OP →与3OP →的夹角为90︒,故130OP OP ⋅=,A 选项正确; 由题意知,12△△OPP OPP ≅,所以12PP PP =,即12PP PP =,故B 正确; 因为312,60,,60OP OP OP OP →→→→<>=︒<>=︒,312||||||||OP OP OP OP →→→→===, 所以由数量积的定义知312OP OP OP OP ⋅=⋅,故C 正确;若点1P 坐标为⎝⎭,则1||||OP OP →→=≠D 不正确. 故选:ABC9.(2022·辽宁·育明高中一模)“圆幂定理”是平面几何中关于圆的一个重要定理,它包含三个结论,其中一个是相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.如图,已知圆O 的半径为2,点P 是圆O 内的定点,且OP =AC 、BD 均过点P ,则下列说法正确的是( )A .PA PC ⋅为定值B .OA OC ⋅的取值范围是[]2,0−C .当AC BD ⊥时,AB CD ⋅为定值 D .AC BD ⋅的最大值为12【答案】AC 【解析】 【分析】根据题设中的圆幂定理可判断AC 的正误,取AC 的中点为M ,连接OM ,利用向量的线性运算可判断B 的正误,根据直径的大小可判断D 的正误. 【详解】如图,设直线PO 与圆O 于E ,F .则()()222PA PC PA PC EP PF OE PO OE PO PO EO ⋅=−=−=−−+=−=−,故A 正确.取AC 的中点为M ,连接OM ,则()()22OA OC OM MA OM MC OM MC ⋅=+⋅+=−()222424OM OMOM =−−=−,而2202OM OP ≤≤=,故OA OC ⋅的取值范围是[]4,0−,故B 错误.当AC BD ⊥时,()()AB CD AP PB CP PD AP CP PB PD ⋅=+⋅+=⋅+⋅ 24AP CP PB PD EP PF =−−=−=−,故C 正确.因为4,4AC BD ≤≤,故16AC BD ⋅≤,故D 错误. 故选:AC10.(2022·江苏苏州·模拟预测)在ABC 中,AB c =,BC a =,CA b =,下列命题为真命题的有( )A .若a b >,则sin sin AB >B .若0a b ⋅>,则ABC 为锐角三角形C .若0a b ⋅=,则ABC 为直角三角形D .若()()0b c a b a c +−⋅+−=r r r r r r,则ABC 为直角三角形 【答案】ACD 【解析】 【分析】利用正弦定理判断选项A ,利用数量积的性质判断选项B 和C ,利用数量积的性质和余弦定理判断选项D . 【详解】解:A :若a b >,由正弦定理得2sin 2sin R A R B >, sin sin A B ∴>,则 A 正确;B :若0a b ⋅>,则cos()0ACB π−∠>, cos 0ACB ∴∠<,即ACB ∠为钝角, ABC ∴为钝角三角形,故 B 错误;C :若0a b ⋅=,则AC BC ⊥,ABC ∴为直角三角形,故 C 正确;D :若()()0b c a b a c +−⋅+−=r r r r r r ,则22()0b a c −−=r r r,2222a c b a c ∴+−=⋅r r r r r ,222cos 2a c b Ba c +−=−r r r r r , 由余弦定理知222cos 2a c bB a c +−=r r r r r, cos cos B B ∴=−,则cos 0B =,(0,)B π∈,2B π∴=,ABC 为直角三角形,故 D 正确.故选:ACD .11.(2022·全国·模拟预测)如图,直角三角形ABC 中,D ,E 是边AC 上的两个三等分点,G 是BE 的中点,直线AG 分别与BD , BC 交于点F ,H 设AB a =,AC b =,则( )A .1123AG a b =+B .1136AF a b =+C .1123EG a b =− D .3255AH a b =+【答案】ACD 【解析】 【分析】以A 为坐标原点,分别以AC ,AB 的方向为x 轴,y 轴的正方向建立平面直角坐标系,分别写出各点坐标,特别联立方程组解得H ,再根据选项一一判断即可. 【详解】以A 为坐标原点,分别以AC ,AB 的方向为x 轴,y 轴的正方向建立平面直角坐标系,设AB a =,AC b =,则()0,0A ,,03b D ⎛⎫ ⎪⎝⎭,2,03b E ⎛⎫ ⎪⎝⎭,(),0C b ,()0,B a ,,32b a G ⎛⎫⎪⎝⎭.又F 为ABE △的重心,则2,93b a F ⎛⎫⎪⎝⎭,直线AG 的方程为32a y x b =,直线BC 的方程为1x y b a +=,联立解得23,55H b a ⎛⎫ ⎪⎝⎭,则,32b a AG ⎛⎫= ⎪⎝⎭,2,93b a AF ⎛⎫= ⎪⎝⎭,,32b a EG ⎛⎫=− ⎪⎝⎭,23,55AH b a ⎛⎫= ⎪⎝⎭因为()0,a AB a ==,(),0b AC b ==,所以1123AG a b =+,1239AF a b =+,1123EG a b =−,3255AH a b =+.故选:ACD .12.(2022·广东·二模)如图,已知扇形OAB 的半径为1,2AOB π∠=,点C 、D 分别为线段OA 、OB 上的动点,且1CD =,点E 为AB 上的任意一点,则下列结论正确的是( )A .OE AB ⋅的最小值为0 B .EA EB ⋅的最小值为1C .⋅EC ED 的最大值为1 D .⋅EC ED 的最小值为0【答案】BCD 【解析】 【分析】以O 为原点建立如图所示的直角坐标系,得()01,B ,()10,A ,设EOA θ∠=,则()cos sin 0,2,πθθθ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭E ,求出2sin 4πθ⎛⎫⋅=− ⎪⎝⎭AB OE ,利用θ的范围可判断A ;求出EA 、EB 的坐标,由14πθ⎛⎫⋅=+ ⎪⎝⎭EA EB ,利用θ的范围可判断B ;设()[](),00,1∈C t t ,可得(D ,求出EC 、ED ,由⋅EC ED ()1sin θϕ=−+,利用 t 、ϕ、θ,的范围可判断CD. 【详解】以O 为原点建立如图所示的直角坐标系,所以()01,B ,()10,A , 设EOA θ∠=,则()cos sin 0,2,πθθθ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭E ,()cos sin ,θθ=OE , ()11,=−AB ,所以sin cos 4πθθθ⎛⎫⋅=−=− ⎪⎝⎭AB OE ,因为0,2πθ⎡⎤∈⎢⎥⎣⎦,所以,444πππθ⎡⎤−∈−⎢⎥⎣⎦,所以sin 4πθ⎡⎛⎫−∈⎢ ⎪⎝⎭⎣⎦,所以[]1,1⋅∈−AB OE ,OE AB ⋅的最小值为1−,故A 错误; ()1cos ,sin θθ=−−EA ,()cos ,1sin θθ=−−EB ,所以22cos cos sin sin 14πθθθθθ⎛⎫⋅=−+−+=+ ⎪⎝⎭EA EB ,因为0,2πθ⎡⎤∈⎢⎥⎣⎦,所以3,444πππθ⎡⎤+∈⎢⎥⎣⎦,所以sin 4πθ⎤⎛⎫+∈⎥ ⎪⎝⎭⎣⎦,所以114πθ⎛⎫⎡⎤+∈ ⎪⎣⎦⎝⎭,1⎡⎤⋅∈⎣⎦EA EB ,EA EB ⋅的最小值为1B 正确;设()[](),00,1∈C t t ,又1=CD ,所以OD (D ,()cos ,sin θθ=−−EC t ,()cos sin θθ=−ED ,所以()22cos cos sin 1cos θθθθθθ⋅=++=−EC ED t t()1sin θϕ=−+,其中cos ϕϕ==t ,又[]0,1t ∈,所以[]cos ,sin 0,1ϕϕ∈,所以0,2πϕ⎡⎤∈⎢⎥⎣⎦,[]0,ϕθπ+∈,()[]sin 0,1ϕθ+∈,()[]sin 1,0ϕθ−+∈−,所以[]0,1⋅∈EC ED , ⋅EC ED 的最小值为0,故CD 正确.故选:BCD.13.(2022·辽宁·东北育才学校二模)对于非零向量m ,n ,定义运算“⊗”,||||sin ,m n m n m n ⊗=〈〉.已知两两不共线的三个向量a ,b ,c ,则下列结论正确的是( ) A .若a b ⊥,则⊗=a b a b B .()()a b c a b c ⊗=⊗ C .()a b a b ⊗=−⊗ D .()()()a b c a c b c +=+⊗⊗⊗【答案】AC 【解析】 【分析】A. 由运算“⊗”,||||sin ,m n m n m n ⊗=〈〉求解判断;B.举例()()()1,0,0,1,0,1===−a b c 求解判断;C.设,a b 的夹角为θ,则,−a b 的夹角为πθ−,由运算“⊗”,||||sin ,m n m n m n ⊗=〈〉求解判断;D.举例()()()1,0,0,1,1,1===a b c ,由运算“⊗”,||||sin ,m n m n m n ⊗=〈〉求解判断; 【详解】A. 因为a b ⊥,所以,90=a b ,则sin ,⊗==a b a b b a b a ,故正确;B. 若()()()1,0,0,1,0,1===−a b c ,则()()0,1,()0⊗=−⊗=a b c a b c ,所以()()⊗≠⊗a b c a b c ,故错误;C.设,a b 的夹角为θ,则,−a b 的夹角为πθ−,所以()sin ,()sin sin θπθθ⊗=−⊗=−−=a b a b a b a b a b ,则()a b a b ⊗=−⊗,故正确; D. 若()()()1,0,0,1,1,1===a b c ,则()0()()2,+=+=⊗⊗⊗a b c a c b c ,所以()()()+≠+⊗⊗⊗a b c a c b c ,故错误;故选:AC14.(2022·山东·模拟预测)已知在△ABC 中,AB =,2AB AM =uu u r uuu r,2CM CN =,若0AN BC ⋅=,则( )A .23AB AC AN += B .()2AB ACCM −C .AB AC ⊥D .45ACM ∠=︒【答案】BC 【解析】根据条件先推出,M N 是中点,利用中线向量的表达式可判断AB 选项,利用0AN BC ⋅=可以判断C 选项,根据C 选项和题目条件可判断D 选项.【详解】因为2AB AM =uu u r uuu r,2CM CN =,所以,M N 分别为,AB CM 的中点, 所以()1122AN AM AC =+=111242AB AC AB AC ⎛⎫+=+ ⎪⎝⎭,所以24AB AC AN +=,故选项A 错误;由222AB AC AM AC −=−=2CM ,得()2AB AC CM −,故选项B 正确;因为AB =,()()12AN BC AC AM AC AB ⋅=+⋅− ()221111*********AC AB AC AB AC AB AB AC AB AC ⎛⎫⎛⎫=+⋅−=−−⋅=−⋅= ⎪ ⎪⎝⎭⎝⎭,所以AB AC ⊥,故选项C 正确;由AB AC ⊥,得tan 2AM AB ACM AC AC ∠== 则45ACM ∠≠︒,故选项D 错误. 故选:BC.15.(2022·全国·模拟预测)如图,在等腰梯形ABCD 中,222AB AD CD BC ===,E 是BC 的中点,连接AE ,BD 相交于点F ,连接CF ,则下列说法正确的是( )A .3142AE AB AD →→→=+B .3255AF AB AD →→→=+C .1255BF AB AD →→→=−+ D .13105CF AB AD →→→=− 【答案】ABD 【解析】 【分析】根据平面向量的线性运算并结合平面向量共线定理即可判断答案.对于A 选项,1122AE AB BE AB BC AB AB AD DC →→→→→→→→→⎛⎫=+=+=+−++ ⎪⎝⎭11312242AB AB AD AB AB AD →→→→→→⎛⎫=+−++=+ ⎪⎝⎭,故A 选项正确;对于B 选项,因为B ,F ,D 三点共线,设()1AF x AB x AD →→→=+−,由AF AE →→∥,所以存在唯一实数λ,使得AF AE λ→→=,结合A 可知,()3131114242x AB x AD AB AD x AB x AD λλλ→→→→→→⎛⎫⎛⎫⎛⎫+−=+⇒−=−+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为,AB AD →→不共线,所以303415102x x x λλ⎧−=⎪⎪⇒=⎨⎪−+=⎪⎩,所以3255AF AB AD →→→=+,故B 选项正确; 对于C 选项,结合B ,2255BF AF AB AB AD →→→→→=−=−+,故C 选项错误;对于D 选项,结合B ,132********CF CD DA AF AB AD AB AD AB AD →→→→→→→→→→=++=−−++=−,故D 选项正确. 故选:ABD.16.(2021·全国·模拟预测)已知ABC 的重心为G ,点E 是边BC 上的动点,则下列说法正确的是( ) A .AG BG CG +=− B .若2133AE AB AC =+,则EAC 的面积是ABC 面积的13C .若2AB AC ==,3BC =,则76AB AG ⋅=D .若2AB AC ==,3BC =,则当EA EB ⋅取得最小值时,37||2EA =【答案】AC 【解析】 【分析】利用平面向量的基底表示,结合重心的性质,判断选项AB ,利用余弦定理计算角,根据平面向量的基底表示计算向量的数量积,从而判断选项CD.设AB 的中点为D ,则2GA GB GD +=,则2AG BG GD CG +=−=−,即2CG GD =,由重心性质可知成立,故A 正确;32AE AB AC =+,则22AE AC AB AE −=−,即2CE EB =,所以E 为边BC 上靠近点B 的三等分点,则EAC 的面积是ABC 面积的23,故B 错误;在ABC 中,由余弦定理得1cos 8A =−,则()211()33AB AG AB AB AC AB AB AC ⋅=⋅+=+⋅=117422386⎡⎤⎛⎫+⨯⨯−= ⎪⎢⎥⎝⎭⎣⎦,故C 正确; 由余弦定理得3cos 4ABC ∠=,所以2()EA EB EB EB BA EB EB BA ⋅=⋅+=+⋅=2||||EB EB BA +⋅22339cos()||||2416ABC EB EB EB π⎛⎫−∠=−=−− ⎪⎝⎭,则当3||4EB =时,EA EB ⋅取得最小值916−,此时()229337||422cos 16416=−=+−⨯⨯⨯∠=EA EB AB ABC ,37||4=EA ,故D 错误. 故选:AC【点睛】一般计算平面向量的数量积时,如果不能采用定义或者坐标公式运算时,可利用向量的基底表示,根据向量的线性运算法则将所求向量表示为已知向量的和或差进行计算.17.(2022·广东茂名·一模)已知点A 是圆C :()2211x y ++=上的动点,O 为坐标原点,OA AB ⊥,且||||OA AB =,O ,A ,B 三点顺时针排列,下列选项正确的是( )A .点B 的轨迹方程为()()22112x y −+−= B .||CB的最大距离为1C .CA CB ⋅1 D .CA CB ⋅的最大值为2 【答案】BD 【解析】 【分析】如图,过O 点作//,OD AB OD AB =且,设点(),B x y ,利用相关点代入法,可求得轨迹方程为()()22112x y ++−=,可判断A ;根据点到圆上距离的最值求解,可判断B ;设[0,90]CAO ,∠=θθ∈,将向量的数量积表示成关于θ的函数,可判断C ,D ;【详解】如图,过O 点作//,OD AB OD AB =且则点()1,0C −,设点()00,A x y ,设xOA α∠=,则2xOD πα∠=−,设||OA a =,所以,0cos x a α=,0sin y a α=,所以,0cos sin 2D x a a y παα⎛⎫=−== ⎪⎝⎭,0sin cos 2D y a a x παα⎛⎫=−=−=− ⎪⎝⎭,即点()00,D y x −,因为()0000,OB OA OD x y y x =+=+−,设点(),B x y ,可得0000x x y y y x =+⎧⎨=−⎩,解得0022x y x x y y −⎧=⎪⎪⎨+⎪=⎪⎩, 因为点A 在圆()2211x y ++=上,所以()220011x y ++=,将0022x y x x y y −⎧=⎪⎪⎨+⎪=⎪⎩代入方程()220011x y ++=可得221122x y x y −+⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭, 整理可得()()22112x y ++−=,所以A 是错的, 所以CB的最大距离为1B 是对的, 设,090CAO θθ︒∠=≤≤,2o ()1||||cos(90)CA CB CA CA AB CA CA AB CA AB ⋅=⋅+=+⋅=+⋅−θ 1|OA |sin 12cos sin 1sin 22=+=+=+≤θθθθ所以CA CB ⋅的最大值为2,D 是对的. 故选:BD18.(2021·全国·模拟预测)在ABC 中,D ,E 分别是线段BC 上的两个三等分点(D ,E 两点分别靠近B ,C 点),则下列说法正确的是( ) A .AB AC AD AE +=+ B .若F 为AE 的中点,则1344BF AC AB =− C .若0AB AC ⋅=,1AB =,2AC =,则109AD AE ⋅=D .若3AB AC AB AC +=−,且AB AC =,则60CAB ∠=︒ 【答案】ACD 【解析】 【分析】取BC 的中点M ,则M 也是DE 的中点,根据向量的加法运算即可判断A ;根据平面向量基本定理及线性运算即可判断B ;根据平面向量数量积的运算律即可判断C ;根据平面向量基本定理及线性运算结合等腰三角形的性质即可判断D. 【详解】解:对于A ,取BC 的中点M ,则M 也是DE 的中点, 则有()()1122AM AB AC AD AE =+=+,所以AB AC AD AE +=+,故A 正确; 对于B ,若F 为AE 的中点,则111251223363BF BA AF AB AE AB AB AC AB AC ⎛⎫=+=−+=−++=−+ ⎪⎝⎭,故B 错误;对于C ,因为D ,E 分别为线段BC 上的两个三等分点,所以()()()111333AD AE AB BD AC CE AB BC AC BC AB AC AB ⎛⎫⎛⎫⎡⎤⋅=+⋅+=+−=+− ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦,()221212122533333999AC AC AB AB AC AC AB AB AC AB ⎡⎤⎛⎫⎛⎫−−=+⋅+=++ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,()21014099AC =⨯++=,故C 正确;对于D ,由A 选项得,2AB AC AM +=, 由AB AC CB −=,因为3AB AC AB AC +=−,所以32AM CB =,即AM CM = 因为AB AC =,所以AM BC ⊥,AM 平分BAC ∠,在Rt AMC 中,tan AM ACB CM∠=60ACB ∠=︒,所以ABC 为等边三角形,所以60CAB ∠=︒,故选:D. 故选:ACD.19.(2021·全国·模拟预测)如图,已知点G 为ABC 的重心,点D ,E 分别为AB ,AC 上的点,且D ,G ,E 三点共线,AD mAB =,AE nAC =,0m >,0n >,记ADE ,ABC ,四边形BDEC 的面积分别为1S ,2S ,3S ,则( )A .113m n+= B .12S mn S = C .1345S S ≥ D .1345S S ≤ 【答案】ABC 【解析】 【分析】连接AG 并延长交BC 于点M ,由三角形重心结合向量运算探求m ,n 的关系, 再借助三角形面积公式及均值不等式即可逐项判断作答. 【详解】连接AG 并延长交BC 于点M ,如图,因G 为ABC 的重心,则M 是BC 边的中点,且23AG AM =uuu r uuu r,又D ,G ,E 三点共线,即(01)DG tDE t =<<,则有(1)AG t AD t AE =−+,而AD mAB =,AE nAC =,又()12AM AB AC =+uuu r uu u r uuu r ,于是得11(1)33t mAB tnAC AB AC −+=+,而AB 与AC 不共线,因此,11(1),33t m tn −==,113(1)33t t m n+=−+=,A 正确;ADE 边AD 上的高为sin AE BAC ∠,ABC 边AB 上的高为sin AC BAC ∠,则121sin 2·1sin 2AD AE BAC S AD AEmn S AB ACAB AC BAC ⋅∠===⋅∠,B 正确;由A可知,11133m n =+≥23m n ==时取“=”,则有49mn ≥,即1249S S ≥,而121S S <,于是得11213212121141145119S S S S S S S S S S ==−=−≥=−−−−,C 正确,D 错误. 故选:ABC20.(2021·全国·模拟预测)已知向量()3,2a =−,()2,1b =r,(),1c λ=−,R λ∈,则( )A .若()2a b c +⊥,则4λ= B .若a tb c =+,则6t λ+=− C .a b μ+的最小值为D .若向量a b +与向量2b c +的夹角为锐角,则λ的取值范围是(),1−∞− 【答案】ABC 【解析】 【分析】对于A ,根据两向量垂直时其数量积为0可求得λ的值;对于B ,根据向量相等建立方程组可求得λ、t 的值,即可得t λ+的值;对于C ,由模的计算公式求出a b μ+,然后利用二次函数的性质求解即可;对于D ,由两向量的夹角为锐角时其数量积大于0且两向量不共线即可求出λ的范围. 【详解】对于A ,因为()21,4a b +=,(),1c λ=−,()2a b c +⊥, 所以()()21410a b c λ+⋅=⨯+⨯−=,解得4λ=,所以A 正确; 对于B ,由a tb c =+,得()()()()3,22,1,12,1t t t λλ−=+−=+−, 则3221t t λ−=+⎧⎨=−⎩,解得93t λ=−⎧⎨=⎩,故6t λ+=−,所以B 正确;对于C ,因为()()()3,22,123,2a b μμμμ+=−+=−+, 所以(2a b μμ+=− 则当45μ=时,a b μ+取得最小值为C 正确;对于D ,因为()1,3a b +=−,()24,1b c λ+=+,因为向量a b +与向量2b c +的夹角为锐角, 所以()()()214310a b b c λ+⋅+=−⨯++⨯>,解得1λ<−;由题意知向量a b +与向量2b c +不共线,()11340λ−⨯−⨯+≠,解得133λ≠−. 所以λ的取值范围是1313,,133⎛⎫⎛⎫−∞−⋃−− ⎪ ⎪⎝⎭⎝⎭,所以D 不正确.综上可知,选ABC . 故选:ABC.21.(2021·全国·模拟预测)已知ABC 是半径为2的圆O 的内接三角形,则( ) A .若π3C =,则6AB AO ⋅=uu u r uuu r B .若()2BC BA AC AC +⋅=,则AB 为圆O 的一条直径C .若OA OB OA OB −=⋅uu r uu u r uu r uu u r ,则OA ,OB 的夹角π3θ=D .若20OA AB AC ++=,则22BC =【答案】AC 【解析】 【分析】对于A ,结合正弦定理求出AB ,过点O 作⊥OD AB 于D ,得0DO AB ⋅=,然后将AB AO ⋅转化为()AB AD DO ⋅+uu u r uuu r uuu r 即可求解;对于B ,根据平面向量运算法则可由()20BC BA AC AC +⋅−=uu u r uu r uu u r uu u r 得到20BA AC ⋅=uu r uu u r,由此可作出判断;对于C ,将OA OB OA OB −=⋅uu r uu u r uu r uu u r 两边平方,利用向量的数量积运算求出cos θ的值,从而结合0OA OB ⋅>求得角θ;对于D ,由题设条件并结合平面向量的线性运算得到0OB OC +=,由此可作出判断. 【详解】对于A ,由正弦定理,得π2sin 22sin3AB R C ==⨯=过点O 作⊥OD AB 于D ,则0DO AB ⋅=,所以()AB AO AB AD DO AB AD AB DO ⋅=⋅+=⋅+⋅uu u r uuu r uu u r uuu r uuu r uu u r uuu r uu u r uuu r(22110622AB =+=⨯=uu u r ,故A 正确;对于B ,()()()220BC BA AC AC BC BA AC AC BC BA CA AC BA AC +⋅−=+−⋅=++⋅=⋅=uu u r uu r uu u r uu u r uu u r uu r uu u r uu u r uu u r uu r uu r uu u r uu r uu u r ,所以AB AC ⊥,所以BC 为圆O 的一条直径,故B 不正确; 对于C ,由OA OB OA OB −=⋅uu r uu u r uu r uu u r ,两边平方,得288cos 16cos θθ−=,解得1cos 2θ=或cos 1θ=−,易知,0OA OB ⋅>,则π0,2θ⎛⎫∈ ⎪⎝⎭,所以π3θ=,故C 正确;对于D ,由20OA AB AC ++=,得0OA AB OA AC OB OC +++=+=,所以点O 是线段BC 的中点,所以4BC =,故D 不正确.综上可知,选AC. 故选:AC22.(2021·全国·模拟预测)已知向量a ,b 满足2=a ,()2,2b =,且26a b +=,则下列结论正确的是( ) A .a b ⊥ B .23a b +=C .(2,a =或(2,a =−D .a 与2a b +的夹角为45°【答案】ABC 【解析】 【分析】对于A ,由26a b +=,两边平方求解判断;对于B ,由a b +平方求解;对于C ,设(),a x y =,由26a b +=求解判断;对于D ,利用夹角公式求解判断. 【详解】对于A ,由()2,2b =,得22b =,因为26a b +=,所以224436a b b a ⋅+=+,又2=a ,所以0a b ⋅=,a b ⊥,故A 正确;对于B ,因为22224812a b b a b a +⋅=+++==,所以23a b +=,故B 正确;对于C ,设(),a x y =,则2(4,4)a b x y +=++,22(4)(4)36x y +++=,解得0x y +=,从而(2,a =或(2,a =−,故C 正确;对于D ,()241cos ,22632a a ba ab a a b⋅++===⨯⋅+,故D 错误. 故选:ABC23.(2021·山东泰安·模拟预测)如图,在直角三角形ABC 中,90,A AB AC ===点P 在以A 为圆心且与边BC 相切的圆上,则( )A .点P 所在圆的半径为2B .点P 所在圆的半径为1C .PB PC ⋅的最大值为14D .PB PC ⋅的最大值为16【答案】AC 【解析】 【分析】Rt ABC 斜边BC 上的高即为圆的半径;把求PB PC ⋅的最大值通过向量加法的三角形法则转化为求42PA PM +⋅的最大值,从而判断出P ,M ,A 三点共线,且P ,M 在点A 的两侧时取最大值. 【详解】设AB 的中点为M ,过A 作AH 垂直BC 于点H ,因为90,A AB AC ===所以5BC =,52AM =,所以由1122AB AC BC AH =,得2AB AC AH BC ==,所以圆的半径为2,即点P 所在圆的半径为2,所以选项A 正确,B 错误;因为PB PA AB =+,PC PA AC =+,0AC AB ⋅=, 所以()()2·PB PC PA AB PA AC PA PA AC AB PA ⋅=++=+⋅+⋅ ()242AC A PA PA PA B PM =+⋅+=+⋅ ,所以当P ,M ,A 三点共线,且P ,M 在点A 的两侧时,2P PA M ⋅取最大值,且最大值为()max52222102PA P PM A PM ⋅=⋅=⨯⨯=, 所以PB PC ⋅的最大值为41014+=,所以选项C 正确,D 错误.故选:AC.24.(2022·重庆·模拟预测)重庆荣昌折扇是中国四大名扇之一,始于1551年明代嘉靖年间,明末已成为贡品人朝,产品以其精湛的工业制作而闻名于海内外.经历代艺人刻苦钻研、精工创制,荣昌折扇逐步发展成为具有独特风格的中国传统工艺品,其精雅宜士人,其华灿宜艳女,深受各阶层人民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长,偏称游人携袖里,不劳侍女执花傍;宫罗旧赐休相妒,还汝团圆共夜凉”图1为荣昌折扇,其平面图为图2的扇形COD ,其中2,333COD OC OA π∠===,动点P 在CD 上(含端点),连接OP 交扇形OAB 的弧AB 于点Q ,且OQ xOC yOD =+,则下列说法正确的是( )图1 图2 A .若y x =,则23x y += B .若2y x =,则0OA OP ⋅= C .2AB PQ ⋅≥− D .112PA PB ⋅≥【答案】ABD 【解析】 【分析】建立平面直角系,表示出相关点的坐标,设2(cos ,sin ),[0,]3Q πθθθ∈ ,可得(3cos ,3sin )P θθ,由OQ xOC yOD =+,结合题中条件可判断A,B;表示出相关向量的坐标,利用数量积的运算律,结合三角函数的性质,可判断C ,D. 【详解】如图,作OE OC ⊥ ,分别以,OC OE 为x ,y 轴建立平面直角坐标系,则13(1,0),(3,0),((22A C B D −− ,设2(cos ,sin ),[0,]3Q πθθθ∈ ,则(3cos ,3sin )P θθ,由OQ xOC yOD =+可得3cos 3,sin 2x y y θθ=−= ,且0,0x y >> ,若y x =,则22223cos sin (3))12x x θθ+=−+=,解得13x y == ,(负值舍去),故23x y +=,A 正确;若2y x =,则3cos 302x y θ=−=,(1,0)(0,1)0OA OP ⋅=⋅=,故B 正确;3((2cos ,2sin )3cos )23AB PQ πθθθθθ⋅=−⋅=−=− ,由于[0,]3θ2π∈,故[,]333πππθ−∈−,故)33πθ−≥−,故C 错误;由于1(3cos 1,3sin ),(3cos ,3sin 2PA PB θθθθ=−=+,故1(3cos 1,3sin )(3cos ,3sin 2PA PB θθθθ⋅=−⋅+173sin()26πθ=−+ ,而5[,]666πππθ+∈, 故173sin(17)2611322PA PB πθ⋅=−+≥−=,故D 正确, 故选:ABD25.(2022··一模)平面向量,,a b c →→→,满足1a →=,2b →=且a a b →→→⎛⎫⊥− ⎪⎝⎭,20→→→→⎛⎫⎛⎫−⋅−= ⎪ ⎪⎝⎭⎝⎭c a c b ,则下列说法正确的是( )A .2→→+=a b B .a →在b →方向上的投影是1C .c →1 D .若向量m →满足2→→⋅=m a ,则→→→⎛⎫⋅− ⎪⎝⎭m m b 的最小值是54【答案】ACD 【解析】 【分析】结合题意,直接根据两向量垂直和向量的数量积运算,即可判断A 选项;根据a →在b →方向上的投影是cos a b a bθ→→→→⋅=进行计算,即可判断B 选项;设,,OA a OB b OC c →→→→→→===,根据题意可知OA BA ⊥,并取2→→=OD OA ,从而得出动点C 在以BD 为直径的圆上,设BD 的中点为E ,从而得出max 1=+OC OE ,即可判断C 选项;设→→=OM m ,由2→→⋅=m a 可知故M 在垂线l 上,根据向量的加减法运算得出22→→→→→⎛⎫⋅−=− ⎪⎝⎭m m b MF OF ,过F 作l 的垂线,垂足为1M ,可知2221924+⎛⎫≥== ⎪⎝⎭OD AD MF M F ,即可求出→→→⎛⎫⋅− ⎪⎝⎭m m b 的最小值,从而可判断D 选项. 【详解】解:因为1a →=,2b →=且a a b →→→⎛⎫⊥− ⎪⎝⎭,则20a a b →→→−⋅=,所以1a b →→⋅=,又221,4→→==a b ,则22224412→→→→→→+=+⋅+=a b a a b b ,则2→→+=a b A 正确;由于a →在b →方向上的投影是1cos 2θ→→→→⋅==a ba b,故B 错误;设,,OA a OB b OC c →→→→→→===,由于a a b →→→⎛⎫⊥− ⎪⎝⎭,即→→→⎛⎫⊥− ⎪⎝⎭OA OA OB ,故OA BA ⊥,因为20→→→→⎛⎫⎛⎫−⋅−= ⎪ ⎪⎝⎭⎝⎭c a c b ,取2→→=OD OA ,则0→→→→⎛⎫⎛⎫−⋅−= ⎪ ⎪⎝⎭⎝⎭OC OD OC OB ,所以0→→⋅=DC BC ,所以动点C 在以BD 为直径的圆上,如图, 1,2==OA OB ,则2OD =,2BD =,设BD 的中点为E ,OB 的中点为F ,过D 作OD 的垂线l ,则max 1=+OC OE ,因为OE =c →1,故C 正确; 设→→=OM m ,因为2→→⋅=m a ,即2→→⋅=OM OA ,则cos 2→→⋅∠=OM OA AOM , 所以cos 2→∠==OM AOM OD ,故M 在垂线l 上,而→→→→→→→→→⎛⎫⎛⎫⎛⎫⋅−=⋅=+⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭m m b OM BM MF FO MF FB ,又F 是OB 的中点,所以→→=−FB FO ,则22→→→→→⎛⎫⋅−=− ⎪⎝⎭m m b MF OF ,过F 作l 的垂线,垂足为1M ,则2221924+⎛⎫≥== ⎪⎝⎭OD AD MF M F ,又1OF =,所以2295144→→→→→⎛⎫⋅−=−≥−= ⎪⎝⎭m m b MF OF ,所以→→→⎛⎫⋅− ⎪⎝⎭m m b 的最小值是54,故D 正确.故选:ACD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 4) 设 a ( x1, y1 ) , b (x2, y2 ) , 向量平行 a// b x1y2 x2 y1 ;
( 5) 设两个非零向量 a (x1, y1) , b ( x2, y 2) , 则 a b x1x2 y1 y2 ,
所以 a b a b 0 x1x2 y1 y2 0 ;
( 6) 若 a ( x, y) , 则 a
?????????
?????????
???|? ?????+??| ???|? ?????)??(λ>0 ),
则
ABC 的外心一定在满足条件
的 P 点集合中 ;
7. 已知 O 是锐角三角形 △ ABC 的外接圆的圆心
,
且 ∠A= ,
6
若 ???????????????????????+??????????????????????????=?
变式训练 : 1.已知向量 ????= ( -1 , -2 ), ????= ( 1 , λ), 若 ????, ????的夹角为钝角 , 则 λ的取值范围是 _____________ 2.在 △ ABC 中 , |AB|=5 , |AC|=6 , 若 B=2 C, 则向量 ??????在?????????上???的投影是 _________
存在 OP OM x MA y MB mOM n OA OB , 其中 m n = _____________
例 1 .下列命题 :
① 若????与 ???共线 , 则存在唯一的实数 λ, 使????=λ????;
② 若向量 ???、 ????所在的直线为异面直线 , 则向量 ????、 ???一定不共面 ;
x2 y2 ;
( 7) 定比分点 : 设点 P 是直线 p1 , p2 上异于 p1, p2 的任意一点 , 若存在一个实数 , 使
P1P PP2 , 则 叫做点 P 分有向线段 P1P2 所成的比 , P 点叫做有向线段 P1P2 的以定比
为 的定比分点 ; 当 P 分有向线段 P1P2 所成的比为 1
② 动点
P
满足
??????=?????????+??λ? (|?????????|???+?
?????????
|???|?)(λ>0),
则
ABC 的内心一定在满足条件的
P 点集合
中;
③ 动点 P 满足 ??????=????????+??λ? (|?????|??????????????+??|?????|??????????????)??(λ>0), 则 ABC 的重心一定在满足条件的
其中正确的命题有 ________________(__填序号 )
.
.
..
.
.
..
例 2.已知向量 ????,
???夹角为
??
3,
|????|=2 ,
对任意
x∈R,
有|????+ x???| ≥??|?- ???|,
则|t ???-????|+| t ????- ???|( t
2
∈ R) 的最小值是 ______________
并根据这些点确定对应的定比
, 应 明确 ( x, y) , ( x1, y1) 、 ( x2 , y2 ) 的意义 , 即分别为分点 ,
在具体计算时应根据题设条件 , 灵活地确定起点 , 分点和终点 ,
x x1 x2 2
.当
1 时 , 就得到线段 P1P2 的中点公式 y y1 y2 .
2
② 的符号与分点 P 的位置之间的关系 :
( 1) 平面向量分解定理 : 如果 e1 、 e2 是同一平面内的两个不共线向量 , 那么对于这一平面
内的任意向量 a , 有且只有一对实数 1、 2 , 使 a 1e1 2 e2 成立 , 我们把 不共线的 向量 e1 、 e2 叫做这一平面内所有向量的一组基底 。
( 2) O 为 平面 任 意一 点, A、B、C 为平 面另外 三点 , 则 A、 B、C 三 点共 线
( 5) 向量数量积的应用 : 设两个非零向量 a 、 b , 其夹角为 , 则 cos
ab
,
ab
当 a b a b 0 时 , 为直角 ; 当 a b 0 时 , 为锐角或 a, b 同向 ;注意 : a b 0 是 为锐角的 ____________条_件 ; 当 a b 0 时 , 为钝角或 a, b 反向 ;注意 : a b 0 是 为钝角的 ____________条_件 ; ( 6) 向量三角不等式 : a b a b a b
3.如图 , 在
ABC 中 ,
已知
∠BAC=
??
,
|??????|?=??2 ,
|??????|??=?3 ,
点
D 为边
BC 上一点 ,
满足
3
??????+??2? ??????=??3???????,??? 点 E 是 AD 上一点 , 满足 ??????=??2???????,??? 则 |??????|?=??______________
当 P 点在线段 P1P2 上时
0;
当 P 点在线段 P1P2 的延长线上时
当 P 点在线段 P1P2 的反向延长线上时
1;
1
0;
3.平面向量的数量积 :
( 1 ) 两个向量的夹角 : 对于非零向量 a 、 b , 作 OA a , OB b ,
0
称为向量 a 、 b 的夹角 。
AOB
( 2 ) 平面向量的数量积 : 如果两个非零向量 a 、 b , 它们的夹角为
③ 向量 ????、????、 ???共面 , 则它们所在直线也共面 ;
④ 若 A、 B、 C 三点不共线
,
O 是平面
ABC 外一点 ,
若
???????=??
1 3
???????+?? 1
3
???????+??
1 3
??????,???
则点
M一
定在平面 ABC 上 , 且在 ABC 内部 ;
⑤ 若 a// b , 且 b// c , 则 a// c ; ⑥ 若 a b 0 , 则它们的夹角为锐角 ;
△ ABC 可绕圆心旋转 , M 、 N 分别是边 AC 、 AB 的中点 , OM ON 的取值范围是
_____________
.
.
..
.
.
..
11. 如图 , 已知点 P( 2, 0), 且正方形 ABCD 内接于 ⊙O :x2+ y2=1 , M 、 N 分别为边 AB、 BC 的中点 . 当正方形 ABCD 绕圆心 O 旋转时 , ??????????????的???取值范围为 _________
.
, 则点 P 分有向线段 P1P2 所成的比为
注 意 : ① 设 P1 (x1, y1 ) 、 P2( x2 , y2 ) , P( x, y) 分 有 向 线 段 P1P2 所 成 的 比 为 , 则
.
.
..
.
.
..
x x1
x2
1
,
y y1
y2
1
在使用定比分点的坐标公式时
起点 , 终点的坐标 。
OA λ1OB λ2OC 且λ1 λ2 1.
5. 空间向量
空间向量是由平面向量拓展而来的 , 它是三维空间里具有大小和方向的量 , 它的坐标表示有
x, y, z.空间向量的性质与平面向量的性质相同或相似
, 故在学习空间向量时 , 可进行类
比学习 。
如 , 若 M→P、 M→A 、 M→B 三个向量共面 , 则 MP x MA y MB .同时 , 对于空间任意一点 O,
的中点分别为 M 、 N, 则 ??????的???最小值为 _____________
例
4. 已知平面向量
??? ?,
??? ?,
????满足 |???|= √2,
|????|=1 ,
?????????=-1 ,
且????- ????与 ????- ????的夹角为
??
4,
则
|???|的最大值为 ______________
.
.
..
.
.
..
例 3.如图 , 在等腰三角形 ABC 中 , 已知 |AB|=| AC|=1 , ∠A=120 °,E、 F分别是 AB、 AC 上 的点 , 且 ???????=?? ????????,??? ????????=? ????????,??? 且 λ, μ∈(0, 1 ), 且 λ +4 μ =1 ,若线段 EF、 BC
当 a, b 同向 a b a b , a b a b ;
当 a, b 反向 a b a b , a b a b ;
.
.
..
.
.
..
当 a, b 不共线
a b a b a b;
( 4) a b 的几何意义 : 数量积 a b 等于 a 与 b 在 a 上的投影的乘积 。
.
.
..
.
.
..
4. 平面向量的分解定理
AB
.
AB
( 4) 相等向量 : 长度相等且方向相同的两个向量叫相等向量 。
( 5) 平行向量又叫共线向量 , 记作 : a ∥b .
① 向量 a (a 0) 与 b 共线 , 则有且仅有唯一一个实数
, 使b a;
② 规定 : 零向量和任何向量平行 ;
③ 两个向量平行包含两个向量共线 , 但两条直线平行不包含两条直线重合 ;
..
.
.
..
高考 《向量 》专题复习
1.向量的有关概念 :