小升初数学备考比和比例知识点总结

合集下载

小升初数学重点难点:比和比例知识点总结

小升初数学重点难点:比和比例知识点总结

小升初数学重点难点:比和比例知识点总结
小升初考试是小学生面临的第一次重要的考试,它关系到小学生是否可以接受更好的初等教育。

为了帮助小学生更好的做好小升初的复习备考,小升初频道为大家准备了小升初数学重点难点,希望大家在小升初的备考过程中有所参考!
小升初数学重点难点:比和比例
比和比例
比:两个数相除又叫两个数的比。

比号前面的数叫比的前项,比号后面的数叫比的后项。

比值:比的前项除以后项的商,叫做比值。

比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变。

比例:表示两个比相等的式子叫做比例。

a:b=c:d或
比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。

正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B 成正比。

反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B 成反比。

比例尺:图上距离与实际距离的比叫做比例尺。

按比例分配:把几个数按一定比例分成几份,叫按比例分配。

希望我们准备的小升初数学重点难点符合小学生的实际需求,能在你们复习备考过程中起到实际的作用,愿大家都以优异的成绩考入理想的重点初中院校!。

202X年小升初数学常考十大内容比和比例

202X年小升初数学常考十大内容比和比例

千里之行,始于足下。

202X年小升初数学常考十大内容比和比例202X年小升初数学常考十大内容比和比例:一、比的含义与性质比的含义:比较两个数(多个数)的大小关系。

比的性质:等比例关系、比例的乘方性质、比例的倒数性质等。

二、比的运算与化简比的四则运算:加法、减法、乘法、除法。

比的化简:将比化为最简比及最简形式。

三、比例的表示与运算比例的表示:用冒号(:)、分数、百分数等形式表示比例关系。

比例的运算:分项、交叉、调整等运算。

四、比例问题解决比例问题的解决:根据已知条件设置等比关系,利用比例的性质解决问题。

五、整数的倍数与约数整数的倍数:一个整数能被另一个整数整除,则这个整数是另一个数的倍数。

整数的约数:能整除该整数的正整数。

六、公约数与公倍数公约数:两个或多个整数的约数中,除了1以外还有其他公因数。

公倍数:两个或多个整数的倍数中,除了0以外还有其他公倍数。

第1页/共2页锲而不舍,金石可镂。

七、最大公约数与最小公倍数最大公约数:两个或多个数的公约数中最大的一个。

最小公倍数:两个或多个数的公倍数中最小的一个。

八、比例与图形比例与图形的关系:包括长度比、面积比、容积比等比例的关系。

九、加减换位运算法加减换位运算法:在求解带有等比关系的计算过程中的一种方法。

十、实际问题解决实际问题解决:将实际问题转化为数学问题,利用比例的知识解决实际问题。

以上是202X年小升初数学常考的十大内容比和比例。

掌握好这些内容,对于小升初数学考试会起到很大的帮助。

希望你能够认真学习和复习这些知识,取得好成绩!。

小升初数学上册知识点:比和比例

小升初数学上册知识点:比和比例

小升初数学上册知识点:比和比率对小升初数学上册知识点:比和比率你认识多少呢,看看下文吧,希望您读后能够有所收获 ! 两个数相除又叫做两个数的比 .一、比和比率的性质性质 1:若 a: b=c: d,则 (a + c): (b + d)= a : b=c: d;性质 2:若 a: b=c: d,则 (a - c):(b - d)= a : b=c: d;性质 3:若 a: b=c: d,则 (a +x c) : (b +x d)=a : b=c: d;(x 为常数 )性质 4:若 a: b=c: d,则 ad = b(即外项积等于内项积)正比率:假如 ab=k(k 为常数 ),则称 a、 b 成正比 ;反比率:假如 ab=k(k 为常数 ),则称 a、 b 成反比 .二、比和比率内行程问题中的表此刻行程问题中,由于有速度 =,因此:当一组物体行走速度相等,那么行走的行程比等于对应时间的反比 ;当一组物体行走行程相等,那么行走的速度比等于对应时间的反比 ;其实 ,任何一门学科都离不开照本宣科,重点是记忆有技巧, “死记”以后会“活用”。

不记着那些基础知识 ,怎么会向高层次进军 ?特别是语文学科涉猎的范围很广 ,要真实提升学生的写作水平 ,单靠剖析文章的写作技巧是远远不够的,一定从基础知识抓起 ,每日挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新奇的资料等。

这样,就会在有限的时间、空间里给学生的脑海里注入无穷的内容。

与日俱增,积少成多 ,进而收到磨铁成针,绳锯木断的功能。

当一组物体行走时间相等,那么行走的速度比等于对应行程的正比.1.A 和 B 两个数的比是8: 5,每一数都减少34 后, A 是 B 的 2 倍,试求这两个数.家庭是少儿语言活动的重要环境,为了与家长配合做好少儿阅读训练工作,孩子一入园就召开家长会,给家长提出初期抓好少儿阅读的要求。

我把少儿在园里的阅读活动及阅读状况实时传达给家长,要求孩子回家向家长朗读儿歌,表演故事。

小升初数学常考十大内容比和比例

小升初数学常考十大内容比和比例

小升初数学常考十大内容-比和比例小升初数学常考十大内容比和比例1 、比和比例的意义比的意义是:两个数相除又叫做两个数的比,比例的意义是:表示两个比相等的式子叫做比例。

比例是比的结果,比是比例的基础。

他们都是衡量数量关系的一种工具。

比和比例,是小学数学中的一个重要内容,也是学习更多数学知识的重要基础.有了“比”和“比例”这两个概念和表达方式,对于处理倍数、分数等问题,要方便灵活得多. 比和比例的相关知识在生活中用非常广泛,我们在以后还要进行更广泛更深入的学习。

因此,要为以后的学习打下坚实的基础。

2、比和比例的基本类型及解法(一)比和比例的分配最基本的比例问题是求比或比值,从已知一些比或者其他数量关系,求出新的比.例1、甲、乙、丙三人同去商场购物,甲花钱数的乙花钱数的,乙花钱数的等于丙花钱数的,结果丙比甲多花93元,问他们三人共花了多少钱?解、根据比例与乘法的关系甲数×=乙数×即:甲数:乙数=:=2:3乙数×=丙数×即:乙数:丙数=:=16:21连比后是甲∶乙∶丙=(2×16)∶(3×16)∶(3×21 )=32∶48∶63.三人共花了93÷(63-32)×(32+48+63)=429(元)答:甲、乙、丙三人共花了429元.下面我们转向求比的另一问题,即“比的分配”问题,当一个数量被分成若干个数量,如果知道这些数量之比,我们就能求出这些数量.例2一个分数,分子与分母之和是100.如果分子加23,分母加32,新的分数约分后是,原来的分数是多少?解:新的分数,分子与分母之和是(10+23+32),而分子与分母之比2∶3.因此分子=(100+23+32)×=62分母=(100+23+32)×=93原来分数是=答:原来分数是例3加工一个零件,甲需3分钟,乙需3.5分钟,丙需4分钟,现有1825个零件要加工,为尽早完成任务,甲、乙、丙应各加工多少个?所需时间是多少?解:三人同时加工,并且同一时间完成任务,所用时间最少,要同时完成,应根据工作效率之比,按比例分配工作量.三人工作效率之比是::=28:24:21他们分别需要完成的工作量是甲完成1825×=700(个)乙完成1825×=600(个)丙完成1825×=525(个)所需时间是700×3=2100分钟)=35小时 .答:甲、乙、丙分别完成700个,600个,525个零件,需要35小时.(二)比的变化已知两个数量的比,当这两个数量发生增减变化后,当然比也发生变化.通过变化的描述,如何求出原来的两个数量呢?.例4、有一些球,其中红球占,当再放入8个红球后,红球占总球数的,问现在共有多少球?解:其他球的数量没有改变.增加8个红球后,红球与其他球数量之比是5∶(14-5)=5∶9.在没有球增加时,红球与其他球数量之比是1∶(3-1)=1∶2=4.5∶9.因此8个红球是5-4.5=0.5(份).现在总球数是8÷0.5×(5+9)=224(个)答:现在共有球224个.本题的特点是两个数量中,有一个数量没有变.把1∶2写成4.5∶9,就是充分利用这一特点.本题也可以列出如下方程求解:(x+8)∶2x=5∶9.例5 张家与李家的收入钱数之比是8∶5,开支的钱数之比是8∶3,结果张家结余240元,李家结余270元.问每家各收入多少元?解一:我们采用“假设”方法求解.如果他们开支的钱数之比也是8∶5,那么结余的钱数之比也应是8∶5.张家结余240元,李家应结余x元.有240∶x=8∶5,x=150(元).实际上李家结余270元,比150元多120元.这就是8∶5中5份与8∶3中3份的差,每份是120÷(5-3)=60.(元).因此可求出张家:开支60×8=480(元),收入480+240=720(元)李家:开支60×3=180(元),收入180+270=450(元)答:张家收入720元,李家收入450元.解二:设张家收入是8份,李家收入是5份.张家开支的3倍与李家开支的8倍的钱一样多.我们画出一个示意图:张家开支的3倍是(8份-240)×3.李家开支的8倍是(5份-270)×8.从图上可以看出5×8-8×3=16份,相当于270×8-240×3=1440(元).因此每份是1440÷16=90(元).张家收入是90×8=720(元),李家收入是90×5=450(元).本题也可以列出比例式:(8x-240)∶(5x-270)=8∶3.例6 小明和小强原有的图画纸之比是4∶3,小明又买来15张.小强用掉了8张,现有的图画纸之比是5∶2.问原来两人各有多少张图画纸?解一:充分利用已知数据的特殊性.4+3=7,5+2=7,15-8=7.原来总数分成7份,变化后总数仍分成7份,总数多了7张,因此,新的1份=原来1份+1原来4份,新的5份,5-4=1,因此新的1份有15-1×4=11(张).小明原有图画纸11×5-15=40(张),小强原有图画纸11×2+8=30(张).答:原来小明有40张,小强有30张图画纸.解二:我们也可采用“假设”方法.先要将两个比中的前项化成同一个数(实际上就是通分)4∶3=20∶155∶2=20∶8.假设小强也买来15×=(张),那么变化后的比仍是20:15 但现在是20∶8,因此这个比的每一份是()÷(15-8)=小明现有20×=55(张),原有55-15=40(张)小强现有8×=22(张),原有22+8=30(张)“假设”这一思路是很有用的,希望大家能很好掌握,灵活运用.从课外的角度,我们更应启发小同学善于思考,去找灵巧的解法,这就要充分利用数据的特殊性.因此我们总是先讲述灵巧的解法,利于心算,促进思维.(三)比例的其他问题比例关系可以用比表示,也可以用分数表示,例如,甲比乙的多7,这里必须用分数来说,而不能用比.实际上它还是隐含着比例关系:(甲-7)∶乙= 2∶3.因此,有些分数问题,就是比例问题. .例7、有两堆棋子, A堆有黑子 350个和白子500个, B堆有黑子400个和白子100个,为了使A堆中黑子占A堆的,B堆中黑子占,要从B堆中拿到 A堆黑子、白子各多少个?解:要B堆中黑子占,即黑子与白子之比是3:1,先从B堆中拿出黑子100个,使余下黑子与白子之比是(40-100)∶100=3∶1.再要从 B堆拿出黑子与白子到A堆,拿出的黑子与白子数目也要保持3∶1的比.现在 A堆已有黑子 350+ 100= 450个),与已有白子500个,相差50个黑子,占就是两种棋子一样多,从B堆再拿出黑子与白子,要相差50个,又要符合3∶1这个比,要拿出白子数是50÷(3-1)=25(个).再要拿出黑子数是 25×3= 75(个).答:从B堆拿出黑子 175个,白子25个.例8 张、王、李三人共有108元,张用了自己钱数的,王用了自己钱数的,李用了自己钱数的,各买了一支相同的钢笔,问张和李剩下的钱共有多少元?解:设钢笔的价格是1.张有的钱数是1÷=王有的钱数是1÷=李有的钱数是1÷=这样就可以求出,钢笔价格是108÷(++)=108÷=24(元)张剩下的钱数是24×(-1)=16(元)李剩下的钱数24×(-1)=12(元)16+12=28(元)答:张、李两人剩下的钱共28元.。

小升初数学比例专题知识

小升初数学比例专题知识

⼩升初数学⽐例专题知识相关推荐⼩升初数学⽐例专题知识汇总 1、⽐的意义和性质 (1)⽐的意义:两个数相除⼜叫做两个数的⽐。

“:”是⽐号,读作“⽐”。

⽐号前⾯的数叫做⽐的前项,⽐号后⾯的数叫做⽐的后项。

⽐的前项除以后项所得的商,叫做⽐值。

同除法⽐较,⽐的前项相当于被除数,后项相当于除数,⽐值相当于商。

⽐值通常⽤分数表⽰,也可以⽤⼩数表⽰,有时也可能是整数。

⽐的后项不能是零。

根据分数与除法的关系,可知⽐的前项相当于分⼦,后项相当于分母,⽐值相当于分数值。

(2)⽐的性质⽐的前项和后项同时乘上或者除以相同的数(0除外),⽐值不变,这叫做⽐的基本性质。

(3)求⽐值和化简⽐求⽐值的⽅法:⽤⽐的'前项除以后项,它的结果是⼀个数值可以是整数,也可以是⼩数或分数。

根据⽐的基本性质可以把⽐化成最简单的整数⽐。

它的结果必须是⼀个最简⽐,即前、后项是互质的数。

(4)⽐例尺图上距离:实际距离=⽐例尺 要求会求⽐例尺;已知图上距离和⽐例尺求实际距离;已知实际距离和⽐例尺求图上距离。

线段⽐例尺:在图上附有⼀条注有数⽬的线段,⽤来表⽰和地⾯上相对应的实际距离。

(5)按⽐例分配在农业⽣产和⽇常⽣活中,常常需要把⼀个数量按照⼀定的⽐来进⾏分配。

这种分配的⽅法通常叫做按⽐例分配。

⽅法:⾸先求出各部分占总量的⼏分之⼏,然后求出总数的⼏分之⼏是多少。

2、⽐例的意义和性质 (1)⽐例的意义表⽰两个⽐相等的式⼦叫做⽐例。

组成⽐例的四个数,叫做⽐例的项。

两端的两项叫做外项,中间的两项叫做内项。

(2)⽐例的性质在⽐例⾥,两个外项的积等于两个两个内向的积。

这叫做⽐例的基本性质。

(3)解⽐例 根据⽐例的基本性质,如果已知⽐例中的任何三项,就可以求出这个数⽐例中的另外⼀个未知项。

求⽐例中的未知项,叫做解⽐例。

3、正⽐例和反⽐例 (1)成正⽐例的量 两种相关联的量,⼀种量变化,另⼀种量也随着变化,如果这两种量中相对应的两个数的⽐值(也就是商)⼀定,这两种量就叫做成正⽐例的量,他们的关系叫做正⽐例关系。

六年级下册数学知识点解析:比和比例

六年级下册数学知识点解析:比和比例

小升初数学知识点解析:比和比例两个数相除又叫做两个数的比.一、比和比例的性质性质1:若a: b=c:d,则(a + c):(b + d)= a:b=c:d;性质2:若a: b=c:d,则(a - c):(b - d)= a:b=c:d;性质3:若a: b=c:d,则(a +x c):(b +x d)=a:b=c:d;(x为常数)性质4:若a: b=c:d,则a×d = b×c;(即外项积等于内项积)正比例:如果a÷b=k(k为常数),则称a、b成正比;反比例:如果a×b=k(k为常数),则称a、b成反比.二、比和比例在行程问题中的体现在行程问题中,因为有速度=路程时间,所以:当一组物体行走速度相等,那么行走的路程比等于对应时间的反比;当一组物体行走路程相等,那么行走的速度比等于对应时间的反比;当一组物体行走时间相等,那么行走的速度比等于对应路程的正比.1.A和B两个数的比是8:5,每一数都减少34后,A是B的2倍,试求这两个数.【分析与解】方法一:设A为8x,则B为5x,于是有(8x-34):(5x-34)=2:1,x=17,所以A为136,B为85.方法二:因为减少的数相同,所以前后A 、B的差不变,开始时差占3份,后来差占1份且与B 一样多,也就是说减少的34,占开始的3-1=2份,所以开始的1份为34÷2=17,所以A为17×8=136,B为17×5=85.2.近年来火车大提速,1427次火车自北京西站开往安庆西站,行驶至全程的511再向前56千米处所用时间比提速前减少了60分钟,而到达安庆西站比提速前早了2小时.问北京西站、安庆西站两地相距多少千米?【分析与解】设北京西站、安庆西站相距多少千米?(511x+56):x=60:120,即(511x+56):x=1:2,即x=1011x+112,解得x=1232.即北京西站、安庆西站两地相距1232千米,3.两座房屋A和B各被分成两个单元.若干只猫和狗住在其中.已知:A房第一单元内猫的比率(即住在该单元内猫的数目与住在该单元内猫狗总数之比)大于B房第一单元内猫的比率;并且A房第二单元内猫的比率也大于B房第二单元内猫的比率.试问是否整座房屋A内猫的比率必定大于整座房屋B内猫的比率?【分析与解】如下表给出的反例指出:对所提出问题的回答应该是否定的.表中具体写出了各个单元及整座房屋中的宠物情况和猫占宠物总数的比率.4.家禽场里鸡、鸭、鹅三种家禽中公篱与母篱数量之比是2:3,已知鸡、鸭、鹅数量之比是8:7:5,公鸡、母鸡数量之比是1:3,公鸭、母鸭数量之比是3:4.试求公鹅、母鹅的数量比.【分析与解】公鸡占家禽场家禽总数的=21124615:(3544)45:46:(3544)46:47.333345⨯⨯+⨯⨯=⨯⨯+⨯⨯=8118751310⨯=+++,母鸡占总数的3 10;公鸭占总数的8338753420⨯=+++,母鸭占总数的420;公鹅占总数的213332102020-+=+(),母鹅占总数的234232102020-+=+(),公鹅、母鹅数量之比为322020::3:2.5.在古巴比伦的金字塔旁,其朝西下降的阶梯旁6m的地方树立有1根走子,其影子的前端正好到达阶梯的第3阶(箭头).另外,此时树立l根长70cm自杆子,其影子的长度为175cm,设阶梯各阶的高度与深度都是50cm,求柱子的高度为多少?【分析与解】70cm的杆子产生影子的长度为175cm;所以影子的长度与杆子的长度比为:175:70=2.5倍.于是,影子的长度为6+1.5+1.5×2.5=11.25,所以杆子的长度为11.25÷2.5=4.5m.6.已知三种混合物由三种成分A、B、C组成,第一种仅含成分A和B,重量比为3:5;第二种只含成分B和C,重量比为I:2;第三种只含成分A和C,重量之比为2:3.以什么比例取这些混合物,才能使所得的混合物中A,B和C,这三种成分的重量比为3:5:2 ?【分析与解】注意到第一种混合物种A、B重量比与最终混合物的A、B重量比相同,均为3:5.所以,先将第二种、第三种混合物的A 、B 重量比调整到 3:5,再将第二种、第三种混合物中A 、B 与第一种混合物中A 、B 视为单一物质.第二种混合物不含A ,第三种混合物不含B ,所以1.5倍第三种混合物含A 为3,5倍第二种混合物含B 为5,即第二种、第三种混合物的重量比为5:1.5.于是此时含有C 为5×2+1.5×3=14.5,在最终混合物中C 的含量为3A /5B 含量的2倍.有14.5÷2-1=6.25,所以含有第一种混合物6.25.即第一、二、三这三种混合物的比例为6.25:5:1.5=25:20:6.7.现有男、女职工共1100人,其中全体男工和全体女工可用同样天数完成同样的工作;若将男工人数和女工人数对调一下,则全体男25天完成的工作,全体女工需36天才能完成,问:男、女工各多少人?【分析与解】 直接设出男、女工人数,然后在通过方程求解,过程会比较繁琐.设开始男工为“1”,此时女工为“k ”,有1名男工相当k 名女工.男工、女工人数对调以后,则男工为“k ”,相当于女工“k 2”,女工为“I”.有k 2:1=36:25,所以k=65. 于是,开始有男工数为11k +×1100=500人,女工600人.8.有甲乙两个钟,甲每天比标准时间慢5分钟,而乙每天比标准时间快5分钟,在3月15日的零点零分的时候两钟正好对准.若已知在某一时刻,乙钟和甲钟时针与分针都分别重合,且在从3月15日开始到这个时候,乙钟时针与分针重合的次数比甲钟多10次,那么这个时候的标准时间是多少?【分析与解】 标准的时钟每隔56511分钟重合一次. 假设经历了x 分钟. 于是,甲钟每隔52460651124605⨯⨯⨯-分钟重合一次,甲钟重合了246052460⨯-⨯×x 次; 同理,乙钟重合了246052460⨯+⨯×x 次; 于是,需要乙钟比甲钟多重合 246052460⨯+⨯×x-246052460⨯-⨯×x=102460⨯×x=10; 所以,x=24×60;所以要经历24×60×65511分钟,则为524606551165246011⨯⨯=⨯天. 于是为65天510(24)10()1111⨯=小时106(60)541111⨯=分钟.9.一队和二队两个施工队的人数之比为3:4,每人工作效率之比为5:4,两队同时分别接受两项工作量与条件完全相同的工程,结果二队比一队早完工9天.后来,由一队工人23与二队工人13组成新一队,其余的工人组成新二队.两支新队又同时分别接受两项工作量与条件完全相同的工程,结果新二队比新一队早完工6天.试求前后两次工程的工作量之比?【分析与解】一队与二队的工作效率之比为:(3×5):(4×4)=15:16.一队干前一个工程需9÷116=144天.新一队与新二队的工作效率之比为:2112(3544):(3544)46:47.3333⨯⨯+⨯⨯⨯⨯+⨯⨯=新一队干后一个工程需6÷147=282天.一队与新一队的工作效率之比为2115:(3544)45:46 33⨯⨯+⨯⨯=所以一队干后一个工程需282×4645天.前后两次工程的工作量之比是144:(282×4645)=(144×45):(282×46)=540:1081.。

小升初数学比例知识点总结

小升初数学比例知识点总结

小升初数学比例知识点总结一、比例的概念比例是指两个或多个数量之间的关系,这种关系可以用等比例符号“:”表示。

比例的定义是:如果两个比的两个比较量与被比两个比较量的比相等,就称这两个比成比例。

比例常常用于描述同类事物的数量关系,比如长度、面积、体积等。

二、比例的性质1. 已知两个比等于一个比,可以得到一个比和其中一个已知的比等于另一个比。

2. 两个等比例的两个对应项的乘积相等。

3. 如果a:b=c:d,那么a+b:b=d+c:d。

4. 如果a:b=c:d,那么a/c=b/d。

5. 如果a:b=c:d,那么a+b:a-b=c+d:c-d。

三、比例的运算1. 求比例中的未知项求一个等比例中的未知项,可以通过已知项的关系用代数式去解决。

2. 比例的倍数、分数比例的倍数就是将比例中的每个项都乘以一个相同的数,比例的分数就是将比例中的每个项都除以一个相同的数。

3. 比例的倒数两个比例倒数的关系就是各项颠倒位置,然后再求分数。

四、比例的应用1. 图形的放大缩小通过比例的知识,可以让学生理解图形放大缩小的原理,帮助学生更好地理解几何图形的属性。

2. 比例的等价关系在解决实际问题时,可以通过比例的等价关系,将复杂的问题简化,从而更容易解决。

3. 求解实际问题比例常常用于解决各种实际问题,比如两个商品的单价比较、不同材料的成本比较、图形的伸缩比例等等。

五、小结比例是小学数学中一个重要的知识点,学生在掌握比例的概念、性质、运算和应用后,可以更好地理解实际问题,同时也有助于学生更好地理解几何图形和代数式。

因此,学生在学习数学时,要重视比例知识的学习,多进行练习,加深对比例知识点的理解。

希望通过本文的总结,能够帮助小学生更好地掌握比例知识,取得更好的学习成绩。

比和比例—小升初复习讲义(通用版 含详解)17页

 比和比例—小升初复习讲义(通用版 含详解)17页

2021-2022学年小升初数学精讲精练专题汇编讲义第5讲比和比例知识点一:比1.比的意义:两个数相除又叫作两个数的比。

2.比的各部分名称及比的读法:4 : 5=4÷5=0.8↓↓↓↓前项比号后项比值3.比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变4.求比值与化简比(1)求比值:前项除以后项所得的商是比的结果,叫比值。

同类量的比,其比值没有单位名称; 不同类量的比,其比值有单位名称。

例如:100千米:5时=20千米/时(2)化简比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

把两个数的比化成最简整数比的,称为化简比或比的化简。

5.比与分数、除法的关系关系:比与分数相比,比的前项相当于分子,比的后项相当于分母,比值相当于分数值,比号相当于分数线;比与除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于商,比号相当于除号。

(1)比、分数和除法之间的联系与区别如下表所示:由比与分数、除法各部分间的关系可知,比的基本性质、分数的基本性质以及商不变的规律三者只是说法不同,其实质是一样的。

6.按比分配:(1)在工农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配,这种分配方法通常叫作按比分配。

(2)按比分配应用题的特征:已知总数量和部分数量的比,求各部分数量。

(3)常用的解题方法有两种:一种是先求总份数,再求各部分量占总量的几分之几,最后求各部分数量;另一种是先求每份是多少,再求几份是多少。

知识点二:比例1.比例的意义:表示两个比相等的式子叫做比例。

2.比例的各部分名称:组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

3.比例的基本性质:在比例里,两个外项的积等于两个内项的积。

这叫做比例的基本性质。

4.比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

2019精选小升初数学知识点之比和比例精品教育.doc

2019精选小升初数学知识点之比和比例精品教育.doc

精选小升初数学知识点之比和比例小升初数学考试复习知识点众多,下面是查字典数学网为大家分享的小升初数学知识点之比和比例,供大家参考!1.比的意义和性质(1)比的意义两个数相除又叫做两个数的比。

“:”是比号,读作“比”。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比值通常用分数表示,也可以用小数表示,有时也可能是整数。

比的后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

(2)比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

(3)求比值和化简比求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。

它的结果必须是一个最简比,即前、后项是互质的数。

(4)比例尺图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

(5)按比例分配在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

2、比例的意义和性质(1)比例的意义表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

(2)比例的性质在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

(3)解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

3、正比例和反比例(1)成正比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

小升初数学备考比和比例知识点总结

小升初数学备考比和比例知识点总结

小升初数学备考比和比例知识点总结小升初数学考试中,学生常常因为基础知识的不牢固而失分,甚至阻碍到自己升入理想的初中,下面为大伙儿分享小升初数学备考比和比例知识点,期望对大伙儿有关心!比和比例一、比和比例的联系与区别:二、比同分数、除法的联系与区别:三、求比值与化简比的区别:四、化简比:①整数比的化简方法是:用比的前项和后项同时除以它们的最大公约数。

②小数比的化简方法是:先把小数比化成整数比,再按整数比化简方法化简。

③分数比的化简方法是:用比的前项和后项同时乘以分母的最小公倍数。

五、比例尺:我们把图上距离和实际距离的比叫做这幅图的比例尺。

六、比例尺=图上距离︰实际距离比例尺=图上距离/实际距离正比例、反比例一样说来,“教师”概念之形成经历了十分漫长的历史。

杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。

这儿的“师资”,事实上确实是先秦而后历代对教师的别称之一。

《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”因此也指教师。

这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副事实上的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。

一、正比例:两种相关联的量,一种量变化,另一种量也随着变化,假如这两种量中相对应的两个数的比值(也确实是商)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。

让学生把一周看到或听到的新奇事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积存的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。

如此,即巩固了所学的材料,又锤炼了学生的写作能力,同时还培养了学生的观看能力、思维能力等等,达到“一石多鸟”的成效。

二、反比例:两种相关联的量,一种量变化,另一种量也随着变化,假如这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

小学六年级数学小升初珍藏版复习资料第5讲 比和比例(解析)

小学六年级数学小升初珍藏版复习资料第5讲 比和比例(解析)

2022-2023学年小升初数学精讲精练专题汇编讲义第5讲比和比例知识点一:比1.比的意义:两个数相除又叫作两个数的比。

2.比的各部分名称及比的读法:4 : 5=4÷5=0.8↓↓↓↓前项比号后项比值3.比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变4.求比值与化简比(1)求比值:前项除以后项所得的商是比的结果,叫比值。

同类量的比,其比值没有单位名称; 不同类量的比,其比值有单位名称。

例如: 100千米:5时=20千米/时(2)化简比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

把两个数的比化成最简整数比的,称为化简比或比的化简。

5.比与分数、除法的关系关系:比与分数相比,比的前项相当于分子,比的后项相当于分母,比值相当于分数值,比号相当于分数线;比与除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于商,比号相当于除号。

(1)比、分数和除法之间的联系与区别如下表所示:名称比分数除法联系前项分子被除法:(比号)一(分数线)÷(除号)后项分母除数比值分数值商知识精讲除法各部分间的关系可知,比的基本性质、分数的基本性质以及商不变的规律三者只是说法不同,其实质是一样的。

6.按比分配:(1)在工农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配,这种分配方法通常叫作按比分配。

(2)按比分配应用题的特征:已知总数量和部分数量的比,求各部分数量。

(3)常用的解题方法有两种:一种是先求总份数,再求各部分量占总量的几分之几,最后求各部分数量;另一种是先求每份是多少,再求几份是多少。

知识点二:比例1.比例的意义:表示两个比相等的式子叫做比例。

2.比例的各部分名称:组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

3.比例的基本性质:在比例里,两个外项的积等于两个内项的积。

这叫做比例的基本性质。

小升初数学比和比例知识点-word文档

小升初数学比和比例知识点-word文档

2019年小升初数学比和比例知识点数学比和比例知识点比和比例1.比的意义和性质(1)比的意义数学比和比例知识点:两个数相除又叫做两个数的比。

:是比号,读作比。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比值通常用分数表示,也可以用小数表示,有时也可能是整数。

比的后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

(2)比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

(3)求比值和化简比求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。

它的结果必须是一个最简比,即前、后项是互质的数。

(4)比例尺图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

(5)按比例分配在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

2、比例的意义和性质(1)比例的意义表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

(2)比例的性质在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

(3)解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

3、正比例和反比例(1)成正比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

备战小升初数学知识点之比和比例

备战小升初数学知识点之比和比例

备战2019小升初数学知识点之比和比例比和比例1.比的意义和性质(1)比的意义两个数相除又叫做两个数的比。

“:”是比号,读作“比”。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比值通常用分数表示,也可以用小数表示,有时也可能是整数。

比的后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

(2)比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

(3)求比值和化简比求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。

它的结果必须是一个最简比,即前、后项是互质的数。

(4)比例尺图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

(5)按比例分配在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

2、比例的意义和性质(1)比例的意义表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

(2)比例的性质在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

(3)解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

3、正比例和反比例(1)成正比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

小升初必考比例知识点总结

小升初必考比例知识点总结

小升初必考比例知识点总结一、比例的定义比例是指两个相同性质的量之间的对应关系。

在比例中,被比较的两个量称为成比例的量,记作a:b。

比例具有以下特点:1. 两个成比例的量之间有对应关系,即a和b是对应的;2. 在比例中,a称为比例中的第一项,b称为比例中的第二项;3. 比例中第一项和第二项相乘的乘积称为比例的扩大或者放大;4. 在比例中,a:b可以简写成a÷b,即比例可以简写成分数形式;5. 成比例的两个量相除的结果是相同的,即a÷b=c÷d;6. 两个比例相等时,它们是对应相等的,即a:b=c:d。

二、比例的性质:1. 在比例中,两个成比例的量相乘的乘积是相等的,即a×b = c×d。

2. 如果比例中的第一项和第二项都乘以同一个非零实数k,得到的新的比例和原来的比例相等,即ka:kb=a:b。

3. 如果比例中的第一项和第二项互换位置得到的新的比例和原来的比例相互倒数,即a:b=b:a。

三、比例的应用:1. 比例的画法:当一个实际问题已知两个成比例的量之一的值时,可以根据已知条件画出比例图,从而解决问题。

2. 比例的简化:当一个比例不是最简形式时,可以根据最大公约数的性质,把一个比例化简为最简形式。

求法是分子和分母同时除以它们的最大公约数。

3. 比例的倒数:当一个比例的两个比例中的两项互换位置时,得到的新比例叫原比例的倒数。

四、比例的四则运算:1. 比例的加法:如果有两个比例a:b和c:d,它们的和为(a+c):(b+d)。

2. 比例的减法:如果有两个比例a:b和c:d,它们的差为(a-c):(b-d)。

3. 比例的乘法:如果有两个比例a:b和c:d,它们的积为(ac):(bd)。

4. 比例的除法:如果有两个比例a:b和c:d,它们的除法为(ad):(bc)。

以上就是小升初必考的比例知识点总结,希望对大家有所帮助。

比和比例知识点总结归纳

比和比例知识点总结归纳

比和比例知识点总结归纳比和比例是数学中常见的概念,主要用于对不同大小的量进行比较和描述。

比和比例的运用可以帮助我们进行数据分析和问题解决,因此对这两个概念的理解与掌握非常重要。

本文将对比和比例的基本概念、性质、运算规则以及在实际问题中的应用进行总结和归纳。

一、比的概念与性质比是通过两个数的比较来描述它们之间的大小关系。

比通常以":"或"/"分隔两个数,例如2:3、4/5等。

比的性质包括以下几个方面:1. 比的相等性:如果两个比相等,则其相对应的两个数也相等。

例如,2:3=4:6,则2=4,3=6。

2. 比的基本单位:比的基本单位是1,即"a:a"的比值等于1。

例如,5:5=1。

3. 比的向量性:比可以进行加、减运算。

例如,2:3+3:4=5:7,2:3-3:4=-1:7。

二、比例的概念与性质比例是由两个相等的比构成的等比关系。

比例常用":"表示,例如2:3=4:6,可以读作"2与3的比等于4与6的比"。

比例的性质如下:1. 比例的反比性:如果两个比成反比,即a:b和c:d满足ad=bc,则称a、b、c、d成比例。

例如,2:3和4:6成反比。

2. 比例的传递性:如果a:b和b:c成比例,则a:c也成比例。

例如,2:3和3:4成比例,则2:3和3:4的比也成比例。

3. 比例的倒数性:如果a:b成比例,则b:a的比为a:b的倒数。

例如,2:3成比例,则3:2为2:3的倒数。

三、比和比例的运算规则比和比例运算是比较常见的数学运算,掌握其运算规则可以更好地解决实际问题。

以下是比和比例的运算规则:1. 比的乘法:如果a:b和c:d成比例,则(a×c):(b×d)也成比例。

2. 比的除法:如果a:b和c:d成比例,则(a÷c):(b÷d)也成比例。

3. 比的平方根:如果a:b成比例,则√a:√b也成比例。

比和比例知识点归纳完整版

比和比例知识点归纳完整版

比和比例知识点归纳标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]比和比例知识点归纳1、比的意义和性质比的意义:两个数相除又叫做两个数的比。

例如:9 : 6 = 1.5前比后比项号项值比的基本性质:比的前项和后项都乘以或除以相同的数(零除外),比值不变。

应用比的基本性质可以化简比。

习题:一、判断。

1、比的前项和后项同时乘一个相同的数,比值不变。

()2、比的基本性质和商的基本性质是一致的。

()3、10克盐溶解在100克水中,这时盐和盐水的比是1:10. ()4、比的前项乘5,后项除以1/5,比值不变。

()5、男生比女生多2/5,男生人数与女生人数的比是7:5. ()6、“宽是长的几分之几”与“宽与长的比”,意义相同,结果表达不同。

()7、2/5既可以看做分数,也可以看做是比。

()二、应用题。

1.一项工程,甲单独做20天完成,乙单独做30天完成。

(1)写出甲、乙两队完成这项工程所用的时间比,并化简。

(2)写出甲、乙两队工作效率比,并化简。

2.育才小学参加运动会的男生人数和女生人数的比是5∶3,其中女生72人。

那么男生比女生多多少人3.食品店有白糖和红糖共360千克,红糖的质量是白糖的。

红糖和白糖各有多少千克4.甲、乙两个车间的平均人数是162人,两车间的人数比是5∶7。

甲、乙两车间各有多少人?5.有一块长方形地,周长100米,它的长与宽的比是3∶2。

这块地有多少平方米?6.建筑用混凝土是由水泥、沙、石子按5∶4∶3搅拌而成,某公司建住宅楼需混凝土2400吨,需水泥、沙、石子各多少吨?外项2、比例的意义和性质:比例的意义:表示两个比相等的式子叫做比例。

例如:9 :6 = 3 : 2内项比例的基本性质:在比例中两个内项的积等于两个外项的积。

应用比例的基本性质可以解比例。

3、比和分数、除法的关系:习题:一、填空(1)两个数相除又叫做两个数的()。

(2)在5:4中,比的前项是(),后项是(),比值是()(3)8:9读作:(),这个比还可以写成()。

2020年小升初数学热点题型 四 比和比例

2020年小升初数学热点题型 四  比和比例

【要点归纳】一、比的认识2020年小升初数学热点题型四比和比例【重点】1.比的基本性质--比的前项和后项同时乘以或除以相同的数(0 除外),比值不变。

2.求比值--比的前项除以后项所得的商。

(结果可是整数、小数、分数;一定不能含有比号)3.化简比--把两个数的比化成最简整数比。

(结果是最简整数比;一定含有比号)【难点】比跟分数、除法的主要区别--比表示两个数的倍数关系;分数是一种数;除法是一种运算。

二、比例的认识【重点】1.比例的意义--表示两个比相等的式子。

2.比例的各部分名称--组成比例的四个数叫作比例的项,其中两端的两项叫作比例的外项,中间的两项叫作比例的内项。

3.比例的基本性质--在比例里,两个内项的积等于两个外项的积。

【难点】解稍复杂一点的比例。

解比例的依据是比例的基本性质。

三、按比例分配问题的应用【重点】1.已知总量及两个(或几个)部分量间比的关系,求各部分量的具体数量。

方法一:分数法--先求按一定的比将总量分成几份,再用总量乘各部分量占总量的分率;方法二:平均分法--先求按一定的比将总量分成几份,用总量除以份数,求出一份的具体数量,再用一份的具体数量与各部分量所占的份数相乘。

2.已知一个具体数量和它与另外一个具体数量间比的关系,求总量。

方法一:分数法--先求按一定的比将总量分成几份,再用具体数量除以它所占总量的分率;方法二:平均分法--先用具体数量除以它所占的份数,求出一份的具体数量,再用一份的具体数量乘总量的份数。

3.已知一个具体数量和它与另外一个具体数量间比的关系,求另一个量。

方法一:分数法--先求按一定的比将总量分成几份,再用具体数量除以它所占总量的分率;求出总量,然后用总量乘另一个量所占总量的分率;方法二:平均分法--先用具体数量除以它所占的份数,求出一份的具体数量,再用一份的具体数量乘另一个量所占的份数。

4.已知总量及两个部分量间比的关系与差,求具体量或总量。

方法一:分数法--先求出每个具体量各占总量的几分之几,然后用较大的具体数量所占总量的分率减去较小的具体数量所占总量的分率,最后用两个具体数量的差除以这个分率,就可求出总量。

比和比例知识点总结

比和比例知识点总结

比和比例知识点总结一、比的概念比是指两个数用冒号“:”表示的关系。

比的表示方法是“a:b”,读作“a比b”。

在比中,a称为比的前项,b称为后项。

两个比相等,当且仅当它们的前项与后项成比例。

二、比的性质1. 同比如果一个比的两个比数分别与另一个比的两个比数成比例,则这两个比相等。

2. 反比如果一个比的两个比数颠倒位置,所得到的新比为原来比的倒数,称为一个比的两个比数成反比。

3. 倍比如果一个比的两个比数各增加或各减少相同的倍数,所得新比是原来的比的倍数。

4. 增比在一定条件下,如果一个比的前项和后项都增大/减小相同倍数,所得新比是原来比的倍比。

三、比的运算1. 比的比较比较两个比的大小,有三种方法:a. 通分法。

通分后比较。

b. 扩项法。

扩大比的项数,再比较。

c. 同比法。

同分比较。

2. 立体比的简化一般用除法缩小比,使比中的两个数互质。

3. 等比中有中项若a:b=c:d,那么b和c的平均数是等于a和d的平均数。

四、比例的概念比例是一个等量关系,其中的四个量两两成比例。

在比例a:b=c:d中,a、b、c、d都是比值,a、d是比例的首尾项,b、c是比例的中项。

五、比例的性质1. 同比例在两个等比例中,相等的角逢相等,它们的对应线与对应线成比例。

2. 同比例在两个等比例中,相等的角对相等的对应线成对比例。

3. 反比例若两个比例各项颠倒位置,则它们的倒数为反比例。

4. 大于倒数在一个不等比例中,相等的角否定相等的对应线成反比例。

5. 增项比在等比例中,各角同增加/减小一个相等的角,两图仍成等比例。

六、比例的运算1. 比例改写若a:b=c:d,那么ac=bd 。

2. 分式作比一个分子,多个分母,也可以理解为分式比较大小。

3. 复合比例当一个比例与另一个比例成比例,称作复合比例。

4. 混合比例分为直接比例和间接比例,一个正比例,一个反比例。

七、比例的应用1. 比例尺比例尺是地图上实际长度与地图上长度的比值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019小升初数学备考比和比例知识点总结小升初数学考试中,学生常常因为基础知识的不牢固而失分,甚至影响到自己升入理想的初中,下面为大家分享小升初数学备考比和比例知识点,希望对大家有帮助!
比和比例
一、比和比例的联系与区别:
二、比同分数、除法的联系与区别:
三、求比值与化简比的区别:
四、化简比:
①整数比的化简方法是:用比的前项和后项同时除以它们的最大公约数。

②小数比的化简方法是:先把小数比化成整数比,再按整数比化简方法化简。

③分数比的化简方法是:用比的前项和后项同时乘以分母的最小公倍数。

五、比例尺:我们把图上距离和实际距离的比叫做这幅图的比例尺。

六、比例尺=图上距离︰实际距离比例尺=图上距离/实际距离正比例、反比例
一般说来,“教师”概念之形成经历了十分漫长的历史。

杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。

这儿的“师资”,其实就是先秦而
后历代对教师的别称之一。

《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。

这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。

一、正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。

让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。

这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。

二、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

三、正比例与反比例的区别:
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。

为什
么?还是没有彻底“记死”的缘故。

要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。

可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。

这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。

这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。

以上是为大家分享的小升初数学备考比和比例知识点,希望能够切实的帮助到大家,同时希望大家认真学习,加油哦~。

相关文档
最新文档