不定方程选讲
六年级奥数专题培优讲义不定方程及解析全国通用
六年级奥数专题培优讲义——不定方程及解析知识点梳理:在列方程组解答应用题时,有两个未知数,就需要有两个方程。
有三个未知数,就需要有三个方程。
当未知数的个数多于方程的个数时,这样的方程称为不定方程,为纪念古希腊数学家丢番图,不定方程也称为丢番图方程。
不定方程在小学奥数乃至以后初高中数学的进一步学习中,有着举足轻重的地位。
而在小学阶段打下扎实的基础,无疑很重要。
不定方程是由于联立方程的条件“不足”而出现的,从一般情况来说,有无数多个解。
不过,我们要注意到它的“预定义”条件,比如未知项是自然数,比如在数位上的数码不仅是自然数,而且是一位数等等,甚至题干中直接给出限制条件,这样,就使得不定方程的解“定”下来了。
这种情况也不排除它的取值不止一种。
不定方程解的情况比较复杂,有时无法得出方程的解,有时又会出现多个解。
如果考虑到题中以一定条件所限制的范围,会有可能求出唯一的解或几种可能的解(而这类题的限制范围往往与整数的分拆有很大关系)。
解答这类方程,必须要对题中明显或隐含的条件加以判断、推理,才能正确求解。
【例1】★求方程2725=+y x 的正整数解。
【解析】因为2y 为偶数,27为奇数,所以5x 为奇数,即x 为奇数⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==15,63,111y x y x y x【小试牛刀】求方程4x +10y =34的正整数解【解析】因为4与10的最大公约数为2,而2|34,两边约去2后,得 2x +5y =17,5y 的个位是0或5两种情况,2x 是偶数,要想和为17,5y 的个位只能是5,y 为奇数即可;2x 典型例题的个位为2,所以x 的取值为1、6、11、16……x =1时,17-2x =15,y =3,x =6时,17-2x = 5,y =1,x =11时,17-2x =17 -22,无解所以方程有两组整数解为:16,31x x y y ==⎧⎧⎨⎨==⎩⎩ 【例2】★ 设A ,B 都是正整数,并且满足3317311=+B A ,求B A +的值。
竞赛讲座 不定方程
竞不定方程不定方程的问题主要有两大类:判断不定方程有无整数解或解的个数;如果不定方程有整数解,采取正确的方法,求出全部整数解.(1) 不定方程解的判定如果方程的两端对同一个模m(常数)不同余,显然,这个方程必无整数解.而方程如有解则解必为奇数、偶数两种,因而可以在奇偶性分析的基础上应用同余概念判定方程有无整数解.例1 证明方程2x2-5y2=7无整数解.证明∵2x2=5y2+7,显然y为奇数.①若x为偶数,则∴∵方程两边对同一整数8的余数不等,∴x不能为偶数.②若x为奇数,则但5y2+7∴x不能为奇数.因则原方程无整数解.说明:用整数的整除性来判定方程有无整数解,是我们解答这类问题的常用方法.例2 (第14届美国数学邀请赛题)证明方程无整数解证明如果有整数x,y使方程①成立,则=知(2x+3y2)+5能被17整除.设2x+3y=17n+a,其中a是0,±1,±2,±3,±4,±5,±6,±7,±8中的某个数,但是这时(2x+3y)2+5=(17n)2+34na+(a2+5)=a2+5(mod17),而a2+5被17整除得的余数分别是5,6,9,14,4,13,7,3,1,即在任何情况下(2x+3y)2+5都不能被17整除,这与它能被17整除矛盾.故不存在整数x,y使①成立.例3 (第33届美国数学竞赛题)满足方程x2+y2=x3的正整数对(x,y)的个数是(). (A)0 (B)1(C)2(D)无限个(E)上述结论都不对解由x2+y2=x3得y2=x2(x-1),所以只要x-1为自然数的平方,则方程必有正整数解.令x-1=k2(k为自然数),则为方程的一组通解.由于自然数有无限多个,故满足方程的正整数对(x,y)有无限多个,应选(D).说明:可用写出方程的一组通解的方法,判定方程有无数个解.(2) 不定方程的解法不定方程没有统一的解法,常用的特殊方法有:配方法、因式(质因数)分解法、不等式法、奇偶分析法和余数分析法.对方程进行适当的变形,并正确应用整数的性质是解不定方程的基本思路.例4 求方程的整数解.解(配方法)原方程配方得(x-2y)2+y2=132.在勾股数中,最大的一个为13的只有一组即5,12,13,因此有8对整数的平方和等于132即(5,12),(12,5),(-5,-12),(-12,-5),(5-,12),(12,-5),(-5,12),(-12,5).故原方程组的解只能是下面的八个方程组的解解得例5 (原民主德国1982年中学生竞赛题)已知两个自然数b和c及素数a满足方程a2+b2=c2.证明:这时有a<b及b+1=c.证明(因式分解法)∵a2+b2=c2,∴a2=(c-b)(c+b),又∵a为素数,∴c-b=1,且c+b=a2.于是得c=b+1及a2=b+c=2b+1<3b,即<.而a≥3,∴≤1,∴<1.∴a<b.例6(第35届美国中学数学竞赛题)满足联立方程的正整数(a,b,c)的组数是(A)0 (B)1 (C)2 (D)3 (E)4解(质因数分解法)由方程ac+bc=23得(a+b)c=23=1×23.∵a,b,c为正整数,∴c=1且a+b=23.将c和a=23-b代入方程ab+bc=44得(23-b)b+b=44,即(b-2)(b-22)=0,∴b1=2,b2=22.从而得a1=21,a2=1.故满足联立方程的正整数组(a,b,c)有两个,即(21,2,1)和(1,22,1),应选(C).例7求不定方程2(x+y)=xy+7的整数解.解由(y-2)x=2y-7,得分离整数部分得由x为整数知y-2是3的因数,∴y-2=±1,±3,∴x=3,5,±1.∴方程整数解为例8 求方程x+y=x2-xy+y2的整数解.解(不等式法)方程有整数解必须△=(y+1)2-4(y2-y)≥0,解得≤y≤.满足这个不等式的整数只有y=0,1,2.当y=0时,由原方程可得x=0或x=1;当y=1时,由原方程可得x=2或0;当y=2时,由原方程可得x=1或2.所以方程有整数解最后我们来看两个分式和根式不定方程的例子.例9 求满足方程且使y是最大的正整数解(x,y).解将原方程变形得由此式可知,只有12-x是正的且最小时,y才能取大值.又12-x应是144的约数,所以,12-x=1,x=11,这时y=132.故满足题设的方程的正整数解为(x,y)=(11,132).例9(第35届美国中学生数学竞赛题)满足0<x<y及的不同的整数对(x,y)的个数是().(A)0 (B)1 (C)3 (D)4 (E)7解法1 根据题意知,0<x<1984,由得当且仅当1984x是完全平方数时,y是整数.而1984=26·31,故当且仅当x具有31t2形式时,1984x 是完全平方数.∵x<1984,∵1≤t≤7.当t=1,2,3时,得整数对分别为(31,1519)、(124,1116)和(279,775).当t>3时y≤x不合题意,因此不同的整数对的个数是3,故应选(C).解法2 ∵1984=∴由此可知:x必须具有31t2形式,y必须具有31k2形式,并且t+k=8(t,k均为正整数).因为0<x<y,所以t<k.当t=1,k=7时得(31,1519);t=2,k=6时得(124,1116);当t=3,k=5时得(279,775).因此不同整数对的个数为3.练习1.(第26届国际数学竞赛预选题)求三个正整数x、y、z满足.2.求的整数解.3.(全俄1986年数学竞赛题)求满足条件的整数x,y的所有可能的值.4.(1988年全国初中数学竞赛题)如果p、q、、都是整数,并且p>1,q>1,试求p+q的值.练习1.不妨设x≤y≤z,则,故x≤3.又有故x≥2.若x=2,则,故y≤6.又有,故y≥4.若y=4,则z=20.若y=5,则z=10.若y=6,则z无整数解.若x=3,类似可以确定3≤y≤4,y=3或4,z都不能是整数.2.先求出,然后将方程变形为y=5+x-2要使y为整数,5x-1应是完全平方数,…,解得3.简解:原方程变形为3x2-(3y+7)x+3y2-7y=0由关于x的二次方程有解的条件△≥0及y为整数可得0≤y≤5,即y=0,1,2,3,4,5.逐一代入原方程可知,原方程仅有两组解(4,5)、(5,4).4.易知p≠q,不妨设p>q.令=n,则m>n由此可得不定方程(4-mn)p=m+2,解此方程可得p、q之值.。
不定方程ppt课件
解:因为(107,37)=1,所以有解;故
y 2x 25 33x 37
令y1
25 33x 37
,即7 y1
33x
25
x
y1
25 4 y1 33
令
25 4 y1 33
x1有 33 x1
4 y1
25
故y1
6 8x1
1 x1 4
,令1 x1 4
y2令x1
4y2
1
令y2 t, x1 1 4t 故
(5)几类特殊的不定方程
§1 二元一次不定方程
定义:形如 ax by c
其中 ( a 0,b 0)a,b,c为整数的方程称为二元 一次不定方程。
例:2X+3Y=5
5U+6V=21
定理: ax by c 有解的充要条件是
(a,b)|c
证:设方程有解 x0 , y0则有 ax0 by0 c
程有无穷解,其一切解可表示成
x y
x0 y0
b1t a1t
t 0,1,2,
其中
证 是:方把程的y解x 。yx00
b1t a1t
代入不定方程成立,所以
又设 x, y 是不定方程的任一解,又因为 x0 , y0
是一特解
则有 a(x x0 ) b( y y0 ) 0 ,即有 a1(x x0 ) b1( y y0 ) 有 a1 | b1( y y0 )
a1x1 a2 x2 d2t2 , d2t2 a3x3 d3t3, d t n1 n1 an xn c
先解最后一个方程的解,得 tn1, xn 然后把其代入倒数第二个方程求得一 切解,如此向上重复进行,求 得所有 方程的解。
例1:求不定方程 25x 13y 7z 4的整数解.
初等数论不定方程
初等数论不定方程一、知识归纳:所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些(如要求是有理数、整数或正整数等等)的方程或方程组。
不定方程也称为丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。
不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。
不定方程的重要性在数学竞赛中也得到了充分的体现,每年世界各地的数学竞赛吉,不定方程都占有一席之地;另外它也是培养学生思维能力的好材料,数学竞赛中的不定方程问题,不仅要求学生对初等数论的一般理论、方法有一定的了解,而且更需要讲究思想、方法与技巧,创造性的解决问题。
在本节我们来看一看不定方程的基础性的题目。
1.不定方程问题的常见类型:(1)求不定方程的解;(2)判定不定方程是否有解;(3)判定不定方程的解的个数(有限个还是无限个)。
2.解不定方程问题常用的解法:(1)代数恒等变形:如因式分解、配方、换元等;(2)不等式估算法:利用不等式等方法,确定出方程中某些变量的范围,进而求解;(3)同余法:对等式两边取特殊的模(如奇偶分析),缩小变量的范围或性质,得出不定方程的整数解或判定其无解;(4)构造法:构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解;(5)无穷递推法。
以下给出几个关于特殊方程的求解定理:(一)二元一次不定方程(组)定义1.形如(不同时为零)的方程称为二元一次不定方程。
定理1.方程有解的充要是;定理2.若,且为的一个解,则方程的一切解都可以表示成为任意整数)。
定理3.元一次不定方程,()有解的充要条件是.方法与技巧:1.解二元一次不定方程通常先判定方程有无解。
若有解,可先求一个特解,从而写出通解。
当不定方程系数不大时,有时可以通过观察法求得其解,即引入变量,逐渐减小系数,直到容易得其特解为止;2.解元一次不定方程时,可先顺次求出,……,.若,则方程无解;若|,则方程有解,作方程组:求出最后一个方程的一切解,然后把的每一个值代入倒数第二个方程,求出它的一切解,这样下去即可得方程的一切解。
(完整版)小学奥数-不定方程(教师版)
不定方程如$知识梳理]在列方程组解答应用题时,有两个未知数,就需要有两个方程。
有三个未知数,就需要有三个 方程。
当未知数的个数多于方程的个数时, 这样的方程称为不定方程,为纪念古希腊数学家丢番图,不定方程也称为丢番图方程。
不定方程在小学奥数乃至以后初高中数学的进一步学习中,有着举足 轻重的地位。
而在小学阶段打下扎实的基础,无疑很重要。
不定方程是由于联立方程的条件“不足”而出现的,从一般情况来说,有无数多个解。
不过, 我们要注意到它的“预定义”条件,比如未知项是自然数,比如在数位上的数码不仅是自然数,而 且是一位数等等,甚至题干中直接给出限制条件,这样,就使得不定方程的解“定”下来了。
这种 情况也不排除它的取值不止一种。
不定方程解的情况比较复杂,有时无法得出方程的解,有时又会出现多个解。
如果考虑到题中 以一定条件所限制的范围,会有可能求出唯一的解或几种可能的解(而这类题的限制范围往往与整 数的分拆有很大关系)。
解答这类方程,必须要对题中明显或隐含的条件加以判断、推理,才能正确 求解。
特色讲解]【例1】★求方程5x 2y 27的正整数解。
【解析】因为2y 为偶数,27为奇数,所以5x 为奇数,即x 为奇数x 1x 3 x 5 , ,y 11 y 6 y 1【小试牛刀】求方程 4x + 10y = 34的正整数解【解析】因为4与10的最大公约数为2,而2|34,两边约去2后,得2x + 5y = 17, 5y 的个位是0 或5两种情况,2x 是偶数,要想和为17, 5y 的个位只能是5, y 为奇数即可;2x 的个位为2,所以 x 的取值为1、6、11、16……x= 1 时,17-2x = 15, y = 3, x= 6 时,17-2x = 5 , y = 1 , x= 11 时,17 — 2x = 17 — 22,无解 所以方程有两组整数解为:dx 1 x y 3,y【例2】★ 设A , B 都是正整数,并且满足 A11[解析]3A 11B 17 33333A+11B=17,因为 A 、B 为正整数,所以 A=2, B=1, A+B=3【例3】★ ★(北大附中入学考试真题) 14个大、中、小号钢珠共重 100克,大号钢珠每个重 12克,中号每个重 8克,小号每个重 5克。
§2不定方程课件
43 x 27 y -4的特解x0 (5) (4) 20, y0 8 (4) 32
所以258 x 162 y 24的一切整数解为 x 20 - 27t , y 32 43t (t Z )
2013-12-20 四川文理学院 数财系
ax by c , a , b, c Z , a , b 0 (1)
的方程称为二元一次不定方程
2013-12-20 四川文理学院 数财系
4
例1.判断哪些是不定方程
(1) 7 x 4 y 100 ( x, y Z ) (2) 4 x1 6 x2 10 x3 20 x4 15 ( x1 , x4 Z ) (3) x 2 y 3 z 7 ( x, y, z Z ) (4) 3m 15 n 17 (5) 3 x 2 7 xy 2 x 5 y 17 0( x, y Z ) ( 6) (7 ) x y z ( x, y , z Z )
所以7 x 4 y 100的特解x0 - 1 100 -100 , ( ) y0 2 100 200
所以7 x 4 y 100的一切整数解为 x -100 - 4t , y 200 7t
2013-12-20
(t Z )
四川文理学院 数财系
16
例4 求方程 258 x 162 y 24 的一切整数解
变量代换法 解:原方程可化为 88 x 81 y 1
令 x y z, 则方程可化为 7 x 81z 1.
再令u x 11z,则方程可化为 7u 4z 1
x y z 100 1 5 x 3 y 3 z 100
高一联赛班春季班第13讲初等数论——不定方程
第 13 讲初等数论不定方程13.1 不定方程不定方程是指求含有多个未知数的方程的整数解的问题. 这类问题,常常需要进行较高技巧的代数变形,同时亲密注意方程中隐含的各样数论性质,综合性很强,是数论命题中一个重要部分.本讲研究一些较为基础的不定方程,这些方程的求解过程中代数方法( 代数变形、因式分解或许不等式控制等 ) 所占比率较大,只用到较为浅易的数论知识.【例 1】求全部正整数n ,使得 n318n2115n391 为正立方数.【例 2】求方程的全部整解:y2 2 y x420x3104x240x2015 .【例 3】设 n 是一个三位数(100 n 999).求全部的n,使得n2的末三位数等于n .【例 4】求全部的三元整数组(x, y, z) ,使得 x3y3z3 3 xyz2015 .【例 5】设p是质数,整数x, y, z 知足0 x y z p . 若 x3 , y3 , z3除以p的余数相等,证明:x y z | x2y2z2 .【例 6】已知 34! 295 232 799 039 604 cd0 847 618 609 643 5ab 000 000 .求 abcd【例 7】求全部质数p ,使得p x y31建立,此中x, y 为正整数.【例 8】方程x y201500 有多少对整数解(x, y) ?【例 9】求出全部的奇质数p ,使得p |1p 1 2 p 1...2015 p 1 .实战操练【操练 1】设 P x46x311x23x 31 ,求使P为完整平方数的整数x 的值.【操练 2】求方程的全部整数解:(m2n)( m n2 ) (m n)3【操练 3】求全部的两位正整数a, b ,使得 100a b,201a b 均为四位数,且均是平方数【操练 4】求有多少个正整数对(m, n) ,使得 7m 3n102004,且 m | n .【操练 5】求全部这样的 2 的幂,将其(十进制表示中的)首位删去后,剩下的数还是一个 2 的幂.【操练 6】求方程y2 1 x x2x3x4的全部整数解.。
第12课 不定方程
第12课 不定方程【知识要点】不定方程(组)是指未知数的个数大于方程个数的方程(组),这样的方程一般有无穷多组解,但我们一般仅研究其整数解或有理数解,对于实际问题,甚至只要求出正整数解。
不定方程的理论与整除理论紧密相连,是数论中内容极其丰富的一个分支。
最简单的不定方程是二元一次不定方程,形如ax+by=c ①,其中a,b,c 都是已知的整数,且a,b 不为0。
一般地,不定方程问题关心以下三个方面:(1)判断方程是否有整数解,如果有,求出一个解;(2)判断方程是否有无穷多个解;(3)求出方程的全部整数解。
对方程①可以完全解决以上三个问题。
次数高于一次的不定方程,可以借助因式分解求解。
关于二元一次不定方程ax+by=c 有无整数解,有下面的:定理1:若二元一次不定方程ax+by=c 中,a 和b 的最大公约数不能整除c ,则方程没有整数解。
例如,方程2x +4y =5没有整数解。
(想一想,为什么?)定理2:如果正整数a,b 互质,则方程ax+by=c 有整数解。
例如,3x +5y =7,3与5互质,x =-1,y =2是这个方程的一组整数解。
定理3:如果(a,b )|c ,则ax+by=c 有整数解。
定理4:如果(a,b )=1,且方程ax+by=c 有一组整数解(x 0,y 0),则此方程式的所有整数解可表示为:⎩⎨⎧-=+=)t at y y bt x x 为整数(00 或 00(x x b t y ya t t =-⎧⎨=+⎩为整数) 例如,3x +5y =7的所有整数解可表示为1523(x t y t t =--⎧⎨=+⎩为整数) 4、一次不定方程的整数解的求法:根据上面的定理,求解方程ax+by=c 的关键是找出其一组特解(x 0,y 0),这可以采用观察法或辗转相除法,我们将结合例子说明这一点。
【例题选讲】例1、判断下列不定方程(组)哪些有整数解,哪些没有整数解。
(1) 4x +6y =7 (2) 4x +8y =10 (3) ⎩⎨⎧=-=+12536z y y x (4)⎩⎨⎧=-=+121036z y y x例2、求方程3x +5y =1的整数解。
不定方程讲义
不定方程讲义不定方程是一种数学方程,其中变量存在于未知状态,即不能直接求出其值,而只能求解出其解的集合,而不是唯一的解。
因此,不定方程被称为是没有唯一解的方程。
它最早出现在16世纪,并在19世纪变得流行。
在20世纪,不定方程研究得到迅速发展,对现代数学的发展起着重要作用。
一般来说,不定方程有三大类:一类是一元不定方程,即一个未知量(比如x)只有一个;一类是二元不定方程,即有两个未知量(比如x、y);还有一类是多元不定方程,即有多个未知量(比如x1、x2、x3等)。
一元不定方程的表达式由一个不等号构成,其左右两边的函数因式都是自变量。
一元不定方程的求解方法有两种:一是原根法,即先将不定方程化成一元二次方程,再利用二次方程的求解方法;二是递推法,即依次构造函数极值序列,并从中求解取得解。
二元不定方程的形式由两个不等号构成,其左右两边的变量可以不同,并且有可能存在多个解。
二元不定方程的解法大体分为两类:一是利用变量代换法,即变量同义表明方程的等价性;另一类是利用不定积分的方法,即根据定义先积分得到方程的解。
多元不定方程的表达式通常含有多个不等式,其中包括多个自变量,最常见的求解方法是利用矩阵把不定方程化成一元表达式,再利用之前介绍的求一元不定方程的方法求解。
此外,也可以利用多项式的方法,即把多元不定方程的表达式变换为多项式的形式,根据多项式的特性求解。
除了上述所提到的求解不定方程的三大类外,还有许多其他形式的不定方程,如指数不定方程、对数不定方程等。
它们的求解方法均不相同,但基本原理大致相同,最终都是要把不定方程变成一元表达式,再按照一元不定方程的求解方法求解。
总之,从本质上讲,不定方程是一种难以求解的方程,因为只能求得其解的集合,而无法直接得到唯一的解。
不过,利用现代数学的研究成果,我们现在可以用各种数学手段,比如偏微分方程、矩阵分析、不定积分等,来解决不定方程的求解问题,从而发掘出解的集合。
综上,不定方程是一组无法求出唯一解的一组方程,可以分为一元、二元和多元不定方程,各有不同的方式求解。
不定式方程(六年级)
不定式方程(六年级)一:不定方程知识精讲一.不定方程的定义1.一次不定方程:含有两个未知数的一个方程.叫做二元一次方程.由于它的解不唯一.所以也叫做二元一次不定方程.2.多元不定方程:含有三个未知数的方程叫三元一次方程.它的解也不唯一.二.不定方程的解法及步骤1.常规方法:观察法、试验法、枚举法.2.多元不定方程解法:根据已知条件确定一个未知数的值.或者消去一个未知数.这样就把三元一次方程变成二元一次不定方程.按照二元一次不定方程解即可.3.涉及知识点:列方程、数的整除、大小比较.三.解不定方程的步骤1.列方程.2.消元.3.写出表达式.4.确定范围.5.确定特征.6.确定答案.四.技巧总结1.写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数.同时考虑用范围小的未知数表示范围大的未知数.2.消元技巧:消掉范围大的未知数.三点剖析重难点:不定方程的解法以及应用.题模精讲题模一不定方程的计算例1.1.1、判断下列不定方程是否有正整数解.若有.求出所有正整数解.【1】;【2】;【3】;【4】.【1】【2】【3】【4】无整数解解析:【1】..所以.即得.【2】..所以..【3】..所以..【4】..所以.无整数解.例1.1.2、已知△和☆分别表示两个自然数.并且.则△+☆=__________.答案:5解析:依题意得11△+5☆=37.易知其自然数解为△=2.☆=3.所以△+☆=5.例1.1.3、有三个分子相同的最简假分数.化成带分数后为.已知a.b.c都小于10.a.b.c依次为__________.__________. __________.答案:7.3.2由题意有.解这个不定方程.得.例1.1.4、已知代表两位整数.求方程的解.题模二不定方程的应用例1.2.1、有150个乒乓球分装在大、小两种盒子里.大盒每盒装12个.小盒每盒装7个.问:需要大盒子__________个、小盒子__________个.才能恰好把这些球装完.答案:大盒9个.小盒6个或者大盒2个.小盒18个解析:设需要x个大盒子.y个小盒子.依题意得:.解得..所以需要大盒9个.小盒6个或者大盒2个.小盒18个.例1.2.2、某单位的职工到郊外植树.其中有男职工.也有女职工.并且有的职工各带一个孩子参加.男职工每人种13棵树.女职工每人种10棵树.每个孩子种6棵树.他们一共种了216棵树.请问:其中有__________名男职工.答案:12名解析:设有x名男职工.y名女职工.则孩子有名.依题意得:.整理得:.化简得.解得...其中只有时才是整数.所以有12名男职工.例1.2.3、有甲、乙、丙、丁四种货物.若购买甲1件、乙5件、丙1件、丁3件共需195元;若购买甲2件、乙1件、丙4件、丁2件共需183元;若购买甲2件、乙6件、丙6件、丁5件共需375元.现在购买甲、乙、丙、丁各一件共需多少元?答案:81元解析:设购买甲一件要x元.乙一件要y元.丙一件要z元.丁一件要w元.依题意得:注意到题目要求的是.所以完全可以不求x、y、z、w分别是多少.想办法整体求出.观察发现要直接凑出或它的倍数并不容易.一个比较明显的是可以求出.可以用来调整x和z的系数.接着可以让y和w的系数变的一样.得.得.所以.故现在购买甲、乙、丙、丁各一件共需81元.【当然本题可以直接看出得到】例1.2.4、将一根长为380厘米的合金铝管截成若干根长为36厘米和24厘米两种型号的短管.加工损耗忽略不计.问:剩余部分的管子最少是多少厘米?答案:8厘米解析:设已经截出了根长36厘米的管子和根长24厘米的管子.那么被截出的管子一共长厘米.由.得:一定是12的倍数.而380不是12的倍数.所以是没有自然数解的!管子不可能刚好被用尽.那么最少会剩下多少厘米呢?由于一定是12的倍数.小于380且能被12整除的最大自然数是372.而的自然数解是存在的.如.也就是截出1根长36厘米的管子和14根长24厘米的管子.能够使得截出的管子总长度达到最大值372厘米.所以剩余部分最少是厘米.例1.2.5、有纸币60张.其中1分、1角、1元和10元各有若干张.请你判断:这些纸币的总面值能否恰好是100元?答案:不能解析:设1分的有x张.1角的有y张.1元的有z张.10元的有w张.依题意得.得.很明显等号左边是9的倍数.而等号右边不是9的倍数.所以无自然数解.故这些纸币的总面值不能恰好是100元.例1.2.6、现有一架天平和很多个13克和17克的砝码.用这些砝码.不能称出的最大整数克重量是多少?【砝码只能放在天平的一边】答案:191解析:设用了x个13克的砝码.y个17克的砝码.要称的重量为c克.依题意.就是求使无自然数解的c的最大值.利用拓展14解法二中提到的结论.c最大取时.无自然数解.所以不能称出的最大整数克重量是191克.例1.2.7、现有1.7升和4升的两个空桶和一个大桶里的100升汽油.用这两个空桶要倒出1升汽油.至少需要倒多少次?26次解析:依题意.模拟的倒几次后会发现.本题和不定方程:和的解有关系.先解出这两个不定方程:的解为:的解为:其中.这个解明显要小.下面解释一下它的含义.先看它对应的过程:1、倒满1.7升;2、1.7升倒入4升;3、倒满1.7升;4、1.7升倒入4升;5、倒满1.7升;6、1.7升倒入4升中.还剩1.1升;7、4升的倒入大桶里;8、1.1升倒入4升;9、倒满1.7升;10、1.7升倒入4升;11、倒满1.7升;12、1.7升倒入4升.还剩0.5升;13、4升的倒入大桶里;14、0.5升倒入4升;15、倒满1.7升;16、1.7升倒入4升;17、倒满1.7升;18、1.7升倒入4升;19、倒满1.7升;20、倒入4升.还剩1.6升.21、4升的倒入大桶里;22、1.6升倒入4升;23、倒满1.7升;24、倒入4升;25、倒满1.7升;26、倒入4升.还剩1升.可以看出.每次从大桶中倒入两个小桶的都是1.7升.每次从两个小桶中倒回大桶的都是4升.所以两个小桶中量出的1升可以看做是.倒进的1.7x减去倒出的4y的差.那么就得到了上面的不定方程.另一个不定方程同理也很容易想明白.例1.2.8、某校开学时.七年级新生人数在500~1000范围内.男、女生的比例为.到八年级时.由于收40名转学生.男、女生的比例变为.请问.该年级入学时.男、女生各有多少人?答案:男生320人.女生280人设开始时共人.后来变为人.则..易知a为8的倍数.b为5的倍数.故可设..方程化简为.且.解得..入学时总人数为人.男生320人.女生280人.例1.2.9、在新年联欢会上.某班组织了一场飞镖比赛.如图.飞镖的靶子分为三块区域.分别对应17分、11分和4分.每人可以扔若干次飞镖.脱靶不得分.投中靶子就可以得到相应的分数.试问:如果比赛规定恰好投中100分才能获奖.要想获奖至少需要投中几个飞镖?如果规定恰好投中120分才能获奖.要想获奖至少需要投中几个飞镖?随堂练习随练1.1、下列方程的自然数解:【1】.则;【2】.则;【3】.则;【4】.则.答案:【1】【2】【3】无解【4】解析:枚举法.随练1.2、小高有若干张8分的邮票.墨莫有若干张15分的邮票.两人的邮票总面值是99分.那么小高的8分邮票有__________张.答案:3张解析:设小高有8分邮票x张.15分邮票y张.依题意得:.解得.所以小高有3张8分邮票.随练1.3、将426个乒乓球装在三种盒子里.大盒每盒装25个.中盒每盒装20个.小盒每盒装16个.现共装了24盒.则用了__________个大盒.随练1.4、新发行的一套珍贵的纪念邮票共三种不同的面值:20分、40分和50分.其中面值20分的邮票售价5元.面值40分的邮票售价8元.面值50分的邮票售价9元.小明花了156元买回了总面值为8.3元的邮票.那么三种面值的邮票分别买了____________________张.答案:20分的邮票3张.40分的邮票3张.50分的邮票13张解析:设买了x张20分的邮票.y张40分的邮票.z张50分的邮票.依题意得:.消y得.解得..…….同时还要满足y为整数.经验证当时.符合题意.所以买了20分的邮票3张.40分的邮票3张.50分的邮票13张.课后作业作业1、方程有________组自然数解.答案:11解析:易知y可为0至的所有自然数.即方程有11组自然数解.作业2、求的所有整数解.答案:为任意整数】解析:先找出一组基本的解.然后写出所有解即可.作业3、求不定方程2x+3y+5z=15的正整数解.答案:解析:先确定z的值.把三元一次不定方程转化为二元一次不定方程.再进行计算.正整数解如下:.作业4、设A和B都是自然数.并且满足.那么__________.答案:3解析:.又因为A、B为自然数得..作业5、有两种不同规格的油桶若干个.大油桶能装8千克油.小油桶能装5千克油.44千克油恰好装满这些油桶.问:大油桶__________个.小油桶__________个.答案:大油桶3个.小油桶4个解析:设有x个大油桶.y个小邮桶.依题意得.解得.所以有3个大油桶.4个小邮桶.作业6、新学期开始了.几个老师带着一些学生去搬全班的100本教科书.已知老师和学生共14人.每名老师能搬12本.每名男生能搬8本.每名女生能搬5本.恰好一次搬完.问:搬书的老师__________名、男生__________名、女生__________名.答案:老师3名.男生2名.女生8名解析:设搬书的老师有x名.男生有y名.女生有z名.依题意得:.消去z得.解得.所以.所以搬书的老师有3名.男生2名.女生8名.作业7、小李去文具店买圆珠笔、铅笔和钢笔.每种笔都只能整盒买.不能单买.钢笔4支一盒.每盒5元;圆珠笔6支一盒.每盒6元;铅笔10支一盒.每盒7元.小李总共花了97元.买了90支笔.请问:三种笔分别买了多少盒?答案:圆珠笔3盒.铅笔2盒.钢笔13盒解析:设圆珠笔买了x盒.铅笔买了y盒.钢笔买了z盒.依题意得:.消去x得.解得..……将y、z代入原方程组.发现只有时.x有自然数解.所以买了圆珠笔3盒.铅笔2盒.钢笔13盒.作业8、卡莉娅到商店买糖.巧克力糖13元一包.奶糖17元一包.水果糖7.8元一包.酥糖10.4元一包.最后他共花了360元.且每种糖都买了.请问:卡莉娅共买了多少包奶糖?答案:12包解析:不妨设巧克力糖、奶糖、水果糖和酥糖分别有包、包、包和包.则.把系数都化成整数.得:.由于我们只关心奶糖的数量.我们将未知数分为一组.其余未知数分为另一组:.也就是.令.则.它的自然数解只有.所以卡莉娅共买了12包奶糖.作业9、雨轩图书馆内有两人桌、三人桌和四人桌共五十多张.其中两人桌的数量为四人桌数量的2倍.这天除了某张桌子坐满外.其它两人桌每桌都只坐1人.三人桌每桌都只坐2人.四人桌每桌都只坐3人.且恰好平均每11人占用17个座位.请问:图书馆两人桌、三人桌、四人桌分别有多少张?答案:二人桌24张;三人桌19张;四人桌12张解析:设图书馆有三人桌x张.四人桌y张.则两人桌有2y张.依题意得:.化简得.解得..……为符合三种桌子共五十多张.发现只有这组解符合.图书馆两人桌有24张.三人桌19张.四人桌12张.。
第三讲---不定方程(教用)
第三讲 不定方程所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些条件约束(如要求是有理数、整数或正整数等等)的方程或方程组,不定方程也称为丢番图方程. 不定方程问题的常见类型:(1)求不定方程的解; (2)判定不定方程是否有解;(3)判定不定方程的解的个数(有限个还是无限个)。
(一)多元一次不定方程(组)定义1.形如c by ax =+(,,,,Z c b a ∈b a ,不同时为零)的方程称为二元一次不定方程。
定理1.方程c by ax =+(,,,,Z c b a ∈b a ,不同时为零)有整数解的充要条件是c b a |),(. 定理2. 若00,y x 为 c by ax =+的一个整数解,则方程的一切整数解都可以表示成⎪⎪⎩⎪⎪⎨⎧-=+=t b a ay y t b a b x x ),(),(00 t (为任意整数). 【例题分析】1.求不定方程2510737=+y x 的整数解.解:先求110737=+y x 的一组特解,为此对37,107运用带余除法:33372107+⨯=,433137+⨯=, 18433+⨯=将上述过程回填,得:378)372107(9378339)3337(93749374843748331⨯-⨯-⨯=⨯-⨯=-⨯-=⨯-=⨯--=⨯-=9107)26(3737261079⨯+-⨯=⨯-⨯=由此可知:9,2611=-=y x 是方程110737=+y x 的一组特解,于是 650)26(250-=-⨯=x ,2259250=⨯=y 是方程2510737=+y x 的一组特解. 因此原方程的一切整数解为:⎩⎨⎧-=+-=ty t x 37225107650 . 2.求不定方程213197=+y x 的所有正整数解.解:用原方程中的最小系数7去除方程的各项,并移项得:753230719213yy y x -+-=-=因为y x ,是整数,故u y=-753也一定是整数,于是有375=+u y . 用5去除上式的两边,得523573uu u y -+-=-=. 令523u v -=为整数,由此得352=+v u 。
第八讲不定方程
第八讲不定方程【知识概述】当未知数的个数多于方程的个数时,我们就称这样的方程为不定方 程。
小定方程的解不唯一,.般情况下,不定方程的解有无数个.如果题 目巾有条件加以限制,它的解就是有限的。
这一讲我们研究:求不定方程的白然数解的方法,以及列水定方程解 决实际问题。
例题】『|掌例1求不定方程3.r+5_—34的自然数解。
【思路点拨】为了便于求解,将方程进行适当变形:把其中一个未知数用 另一个未知数来表示。
特方程3453=+y x变形为:5334x y -= 从这个式子中可以看出“34—3T”必须是5的倍数,用列表法从自然 教。
开始试验,求出方程的解。
同步什蜱求下列不定方程的自然数解。
952=+y x 2∞=+y x 43345=+y Lx例2求不定方程3864=+y x的自然数解。
【思路点拨】先将不定方程3864=+y x进行适当变形.643 8xy-=用列表法从自然数。
开始试验,求出方程的解。
注意这个不定方程的自然数解不止一组。
同步精肄求下列不定方程的自然数解。
2132=+yx25945=+yx399512=+yx例3在停车场有*些车,其中汽车有4个轮子,摩托车有3个轮于,这些车共有20个轮子,那么三轮摩托车有多少辆?【思路点拨】根据题目中的条件可以得到这样一个等量关系式:所有汽车的轮子十所有摩托车的轮子-20个根据这个等量关系,列不定方程进行解答。
f||步精蜱1甲种铅笔7角钱一支,乙种铅笔3角钱一支,张明用6元钱恰好买阿种不同的铅笔共多少支?2大汽车能容纳54人,小汽车能容纳36人,现有378人,问大、小汽车各要几辆才能使每个人都】‘车且每个车上无空座’(两种车都要用)3大盒子每盒装1l粒玻璃球,小盒子每盒装8粒玻璃球。
要把89个玻璃球装入盒内,要求每个盒子恰好装满,需要大,小盒子各多少个?倒4某地水费·不超过10吨时,每吨0.45儿;超过10吨时,超出部分每吨0 8元,李家比张家多变水费3 3元,如果耐家的用水域都是整数吨,两家各交水费多少元7【思路点拨】根据“李家比张末多交水费3 3元”可以得到这样一个等量关系式:李家交的水费张家交的水费一3 3元根据这个等量关系,列不定方程进行解答。
【数论第四讲】不定方程
不定方程一、定义:把未知数的个数多于方程的个数的方程(组)称为不定方程.这里的“不定”指的是方程的解不定.二、基本思路与方法:1.因式分解法,对方程的一边进行因式分解,另一边作质因数分解,对比两边,转化为若干个方程构成的方程组,进而求解。
2.配方法,将方程的一边变为平方和的形式,另一边为常数,再用不等式予以处理。
3.不等式估计,利用不等式工具确定不定方程中某元的范围,再利用整数性“夹逼”出该元的取值。
4.运用整除性把“大数”化为“小数”,使方程的解明朗化。
5.同余方法,如果不定方程12(,,,)0n F x x x =L 有整数解,则对任意*m N ∈,其整数解12(,,,)n x x x L 满足12(,,,)0(mod )n F x x x m ≡L 。
利用这一条件,同余可以作为探求不定方程整数解的一块试金石。
6.构造法,在不易得出方程的全部解时,通过构造法可以提供其部分解,从而证明该方程有解或者有无穷多个解,适合于处理存在性问题。
7.无穷递降法,适合证明不定方程没有正整数解。
三、例题选讲:例1.求所有满足方程222511(11)x y xy +=-的正整数解(,)x y 。
解:法1(因式分解):方程即2(2)(5)11x y x y --=-,可得解得(,)(14,27)x y =。
法2(配方法):方程即22211812()1148y x y -+=,即222(411)81181x y y -+⨯= 例2.将113表示成k 个连续正整数之和,求项数k 的最大值。
解:设这k 个连续正整数中最小的数为a ,则1113(1)2ka k k =+-,即112(1)23ka k k +-=⋅,作因式分解可得11(21)23k a k +-=⋅。
显然,为了让k 尽量大,则需a 尽量小,故需k 与21a k +-的取值尽量接近,因此令523k =⋅,6213a k +-=,可得122a =,486k =。
第20讲 不定方程-数学大赛六年级培训教程
短
氌
{ 为不定方程(或不定方程组)。比如:4x-3y=8是不定 方 程,2a+b=30是 不 定 方 b-c=4
氭 吕 氏 春
程组。
秋 氱
为纪念古希腊数学家丢番图,不定方 程 也 称 为 丢 番 图 方 程。之 所 以 把 它 们 叫
不定方程,是因为它们的解不确定(不 唯 一)。一 般 情 况 下,如 果 不 加 以 限 制,不 定
虚
乙 用 户 用 电 量 少 于 50 度 。
心 万
详 解暋设甲用户用电x 度,乙用户用电y 度,依题意列方程得:
事 能
成
0.8暳(x-50)+0.45暳50-0.45暳y=3.3,
氋 自
整 理 得 16x-9y=416,
满 十
则x=26+91y6,
事 九 空
因为x、y 均为整数,所以y 为16的倍数且小于50,
善
学
第二十讲暋不定方程
者 氋 假
人
之
不定方程是数论中一个古老的分支,我国 对 不 定 方 程 的 研 究 已 有 数 千 年 的 历
长 以
史 ,“百 鸡 问 题 暠、“中 国 剩 余 定 理 暠等 一 直 流 传 至 今 。
补
其
当方程的个数比方程中未知数的个数 少 时,我 们 就 称 这 样 的 方 程(或 方 程 组)
所以y 可取4、11、18、25,则x 为12、8、4、0,
将x、y 的值分别代入栚式,得z的值为84、81、78、75,
经
检验
:ìîíïïïïzyx===72055或
ìïïx=4 îíïïzy==7188或
ìïïx=8 îíïïzy==8111或
不定方程(组)及其应用专题讲座
解方程x^3+2x^2-5x-6=0,可 以通过扩展欧几里得算法或中国 剩余定理等方法求解,得到解为 {x=-2, x=-3, x=1}。
05
不定方程(组)的未来研究 方向
多解的不定方程
总结词
研究多解的不定方程是未来研究的一个重要方向,旨在探索更多解的存在性、解的个数 以及解的性质。
详细描述
对于多解的不定方程,研究主要集中在寻找新的求解方法、证明解的存在性、分析解的 个数以及研究解的性质等方面。此外,这类研究还涉及到对特定类型的不定方程进行分
THANKS
感谢观看
实例
解方程x^2-3x+2=0,可以通过因式分解得到(x-1)(x-2)=0,从而得到解为{x=1, x=2}。
高次不定方程
总结词
高次不定方程的解法通常需要采 用特殊的数学技巧和公式。
详细描述
实例
高次不定方程是指未知数的最高 次数大于二次的不定方程。由于 这类方程较为复杂,其解法通常 需要采用特殊的数学技巧和公式。 常见的解法有扩展欧几里得算法、 中国剩余定理等。
实例
解方程组{2x+3y=5, 3x+4y=6},可以通过消元法或代入法 求解,得到解为{x=2, y=-1}。
二次不定方程
总结词
二次不定方程的解法通常采用因式分解、配方法或求根公式等。
详细描述
二次不定方程是指未知数的最高次数为二次的不定方程,形如ax^2+bx+c=0,其中a、b、c为已知数,x为未知数。解这 类方程时,可以采用因式分解、配方法或求根公式等方法求解。
类讨论,以揭示其内在的数学规律和特点。
无解的不定方程
总结词
无解的不定方程是另一个重要的研究方 向,主要关注如何证明一个不定方程无 解,以及无解的条件和性质。
小学奥数——不定方程-教师版
第6讲 不定方程【知识要点】一次不定方程:含有两个未知数的一个方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程;常规方法:观察法、试验法、枚举法;多元不定方程:含有三个未知数的方程叫三元一次方程,它的解也不唯一;多元不定方程解法:根据已知条件确定一个未知数的值,或者消去一个未知数,这样就把三元一次方程变成二元一次不定方程,按照二元一次不定方程解即可;涉及知识点:列方程、数的整除、大小比较;解不定方程的步骤:1、列方程;2、消元;3、写出表达式;4、确定范围;5、确定特征;6、确定答案;技巧总结:A 、写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数,同时考虑用范围小的未知数表示范围大的未知数;B 、消元技巧:消掉范围大的未知数;【例题】例1、已知1999×△+4×□=9991,其中△, □是自然数,那么□= . 1998.提示: △是小于4的奇数,检验△=1或3两种情况即可.例2、不定方程172112=+y x 的整数解是 .没有整数解.若方程有整数解,则x 123,y 213,因此y x 21123+,且3|17,产生矛盾,因此原方程没有整数解.例3如果在分数4328的分子分母上分别加上自然数a 、b ,所得结果是127,那么a+b 的最小值等于 . 24。
依题意,有1274328=++b a , 于是可得12(28+a )=7(43+b ),即12a +35=7b ①显然,7|35.又因(12,7)=1,故7|a .由①知, b 随a 增大而增大,所以a 取最小值7时, b 也取最小值,是17. 所以, a +b 的最小值是7+17=24。
例4、甲、乙两个小队的同学去植树.甲小队一人植树6棵,其余每人都植树13棵;乙小队有一人植树5棵,其余每人都植树10棵.已知两小队植树棵数相等,且每小时植树的棵数大于100而不超过200,那么甲、乙两小队共有 人.32。
华杯赛初二辅导-第六讲-不定方程
华杯赛初二辅导 第六讲 不定方程一、知识概述不定方程(组)是数论中的一个重要课题,不仅是数学竞赛,甚至在中考试卷中也常常出现. 对于不定方程(组),我们往往只求整数解,甚至是只求正整数解,加上条件限制后,解就可确定.有时还可以解决计数、求最值等方面的问题.二元一次不定方程是最简单的不定方程,一些复杂的不定方程(组)常常要转化为二元一次不定方程问题加以解决.本讲重点,求一次不定方程(组)的整数解。
不定方程(组)是指未知数的个数多于方程的个数的方程(组),其特点是往往有无穷多个解,不能唯一确定.重要定理:设a 、b 、c 、d 为整数,则不定方程c by ax =+有:定理1 若,),(d b a =且d 不能整除c ,则不定方程c by ax =+没有整数解;定理2 若),(00y x 是不定方程c by ax =+且的一组整数解(称为特解),则⎩⎨⎧-=+=aty y bt x x 00,(t 为整数)是方程的全部整数解(称为通解). (其中d b a =),(,且d 能整除c ).定理3 若),(00y x 是不定方程1=+by ax ,1),(=b a 的特解,则),(00cy cx 是方程c by ax =+的一个特解. (其中d b a =),(,且d 能整除c ).求整系数不定方程c by ax =+的正整数解,通常有以下步骤: (1) 判断有无整数解; (2) 求出一个特解; (3) 写出通解;(4) 有整数t 同时要满足的条件(不等式组),代入命题(2)中的表达式,写出不定方程的正整数解.解不定方程(组),需要依据方程(组)的特点,并灵活运用以下知识和方法:(1)分离整系数法; (2)穷举法; (3)因式分解法; (4)配方法; (5)整数的整除性; (6)奇偶分析; (7)不等式分析; (8)乘法公式.二、典型例题【例1】求下列不定方程的整数解(1)862=+y x ; (2)13105=+y x . 【分析】根据定理1、定理2确定方程的整数解. 【解答】(1)原方程变形为:43=+y x , 观察得到⎩⎨⎧==1,1y x 是43=+y x 的一组整数解(特解), 根据定理2 ,)(1,31是整数t ty t x ⎩⎨⎧-=+=是原方程的所有整数解.(2)∵(5,10)=5,但5不能整除13,∴根据定理1,原方程的无整数解.【点评】先判断方程是否有整数解,多于系数不大的题目优先选用观察法寻找特解. 求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是一样的.【实践】求下列不定方程的整数解(1)211147=+y x ; (2)11145=-y x .答案:(1)无整数解;(2))(51,145是整数t ty t x ⎩⎨⎧-=-= 【例2】求方程213197=+y x 的所有正整数解.【分析】此方程的系数较大,不易用观察法得出特解.根据方程用y 来表示x ,再将含y 的代数式分离出整系数部分,然后对分数系数部分进行讨论,赋予y 不同的整数,寻找一个使分数系数部分成为正整数的y 0,然后再求x 0,写出通解,再解不等式组确定方程的正整数解. 【解答】∵(7,19)=1,根据定理2,原方程有整数解.由原方程可得75323075314210719213yy y y y x -+-=-+-=-=, 由此可观察出一组特解为x 0=25,y 0=2.∴方程的通解为)(72,1925是整数t ty t x ⎩⎨⎧-=+=.其中⎩⎨⎧>->+072,01925t t ∴⎪⎪⎩⎪⎪⎨⎧<->72,1925t t ∴721925<<-t ∴0,1-=t 代入通解可得原方程的正整数解为⎩⎨⎧==⎩⎨⎧==.2,25.9,6y x y x 或 【点评】根据定理2解这类方程,若未知数的系数较大不容易观察出一组整数解时,可用一个未知数去表示另一个未知数,再利用整数的知识,这是解二元一次不定方程基本的方法,称为分离整系数法. 这样就容易找出一组整数解来.【实践】求方程2654731=+y 的正整数解. 答案: x=4,y=3.【例3】大客车能容纳54人,小客车能容纳36人,现有378人要乘车,问需要大、小客车各几辆才能使每个人都能上车且各车都正好坐满.【分析】本题是不定方程的应用,根据题意列出方程并求出非负整数解即可.【解答】设需要大客车x 辆,小客车y 辆,根据题意可列方程 3783654=+y x ,即2123=+y x .又(3,2)=1,根据定理2,原方程有整数解. 易知⎩⎨⎧==9,1y x 是一个特解,通解为)(99,21是整数t t y t x ⎩⎨⎧-=+=由题意可知⎩⎨⎧≥-≥+099,021t t 解得.3,2,1,0=t 相应地⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==.0,7.3,5.6,3.9,1y x y x y x y x 答:需要大客1车辆,小客车9辆;或需要大客车3辆,小客车6辆;或需要大客车5辆,小客车3辆;也可以只要大客车7辆,不要小客车.【点评】一般来说实际问题通常取正整数解或者非负整数解.【实践】某次考试共需做20道小题,对1道得8分,错一道扣5分,不做不得分.某生共得13分,他没做的题目有几道? 答案:7【例4】某人的生日月份数乘以31,生日的日期数乘以12,相加后得347,求此人的生日. 【分析】本题的隐含条件是:月份的取值[1,12],日期的取值[1,31].【解答】设此人生日的月份数为x ,日期数y. 根据题意可列方程 31x+12y=347.〈方法一〉 〈方法二〉特解:)(3116125165是整数通解:t ty t x y x ⎩⎨⎧-=+=⎩⎨⎧== )31347(|123134712x x y -∴-=答:此人的生日为5月16日.【点评】求出通解后,要利用隐含条件求出符合题意的解. 其中方法二是利用了同余的知识.1655125121121)(512)12(mod 711)12(mod 31347===∴=∴≤+≤∴≤≤+=∴≡∴≡∴y x x t t x t t x x x 代入原方程得:把是整数 .16503131161121251311121是符合题意解解得⎩⎨⎧==∴=∴⎩⎨⎧≤-≤≤+≤∴⎩⎨⎧≤≤≤≤y x t t t y x【实践】已知有一个三位数,如果它本身增加3,那么新的三位数的各位数字和就减少到原来的31,求一切这样三位数的和. 答案:432【例5】(新加坡数学竞赛题)设正整数m,n 满足698+=+mn n m ,则m 的最大值为 .【分析】把m 用含有n 的代数式表示,用分离整系数法,再结合整除的知识,求出m 的最大值. 【解答】∵698+=+mn n m ,∴n mn m 968-=-,n m n 96)8(-=- 由题意可得,n ≠8,∴8669866729869896-+=-+-=--=--=n n n n n n n m , ∵m,n 为正整数, ∴ 当n=9时,m 有最大值为75.【点评】此题是求最值的问题,利用分离整系数法是一种典型的常用方法.【实践】(北京市数学竞赛题)有8个连续的正整数,其和可以表示成7个连续的正整数的和,但不能3个连续的正整数的和,那么这8个连续的正整数中最大数的最小值是 . 答案:28【例6】我国古代数学家张建丘所著《算经》中的“百钱买百鸡”问题:鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一,百钱买百鸡,问鸡翁,鸡母,鸡雏各几何? 【分析】分析:用x,y,z 来表示鸡翁,鸡母,鸡雏的只数,则可列方程组:⎪⎩⎪⎨⎧=++=++1001003135z y x z y x如何解这个不定方程组?消元转化为不定方程.【解答】解:设鸡翁,鸡母,鸡雏的只数分别为x,y,z.⎪⎩⎪⎨⎧=++=++)2(1003135)1(100z y x z y x (2)×3-(1)得:14x +8y =200,即7x +4y =100.〈方法一〉)(71844.184是整数通解:,特解:t t y t x y x ⎩⎨⎧-=+=⎩⎨⎧== .2,1,07181071804400=∴⎪⎩⎪⎨⎧<->⎩⎨⎧>->+∴⎩⎨⎧>>t t t t t y x 解得 ⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===844128111878184,z y x z y x z y x 原方程有三组解:相应地 〈方法二〉〉下面的方法同〈方法一为整数)(通解:的特解是其特解为令.75004300.1004750030053,147t t y tx y x y x y x y x ⎩⎨⎧--=+==+⎩⎨⎧-==∴⎩⎨⎧-===+ 〈方法三〉下面方法同〈一〉是整数得:代入把是整数,即,,).(71844718)3(44).(44)4(mod 30:)4(mod 7100)7100(|4)3(71004t ty tx ty t x t t x x x x x y ⎩⎨⎧-=+=∴-=+=+=∴≡≡∴-∴-= 【点评】充分挖掘题目的隐含条件,进而求整数解.【实践】如果1只兔可换2只鸡,2只兔可换3只鸭,5只兔可换7只鹅.某人用20只兔换得鸡、鸭、鹅共30只.问:其中的鸡、鸭、鹅各多少只? 答案:(2,21,7)、(4,12,14)、(6,3,21)【例7】求方程23732=++z y x 的整数解.【分析】对于三元一次不定方程,可以另外引进一个未知数,将其转化为方程组,然后分别解方程组中的各个方程,从而得到原方程的解.【解答】设t y x =+32,则原方程可看作⎩⎨⎧=+=+)2(.237)1(,32z t t y x 对于方程(1)x =-t ,y =t 是一个特解, 从而(1)的整数解是)()4(.2)3(,3-是整数u u t y u t x ⎩⎨⎧+=-= 又t =2,z =3是方程(2)的一个特解,于是(2)的整数解是)()6(.72)5(,3是整数v v t v z ⎩⎨⎧+=-= 将(6)代入(3)、(4)消去t 得到原方程的所有整数解为:)(.3,272,372是整数、v u v z u v y u v x ⎪⎩⎪⎨⎧-=++=---=【点评】一次不定方程在无约束条件的情况下,通常有无数组整数解,由于求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是一样的,将解中的参数作适当代换,就可以化为同一形式.【实践】求方程7892439=+-z y x 的整数解. 答案:)(.83213,3,238是整数、v u v u z v y u v x ⎪⎩⎪⎨⎧--=-=+-=【例8】(海峡两岸友谊赛试题)甲组同学每人有28个核桃,乙组同学每人有30个核桃,丙组同学没人有31个核桃,三组共有核桃总数是365个.问:三个小组共有多少名同学?【分析】设甲组同学a 人,乙组同学b 人,丙组同学c 人,由题意得365313028=++c b a . 要求c b a ++,可以运用放缩法从确定c b a ++的取值范围入手.【解答】设甲组同学a 人,乙组同学b 人,丙组同学c 人,则365313028=++c b a .∵)(31365313028)(28c b a c b a c b a ++<=++<++,∴2836531365<++<c b a .∵c b a ++是整数,∴c b a ++=12或13.但当c b a ++=13时,得132=+c b ,无正整数解. 答:三个小组共有12名同学.【点评】整体考虑和的问题,巧妙运用放缩法.【实践】Alice wants to buy some radios, pens and bags. If she buys 3 radios,6 pens,2 bags,she will pay ¥302. Ifshe buys 5 radios,11 pens,3 bags,she will pay ¥508. Question: How much will Alice pay for 1 radio,1 pen and 1 bag? 答案:96【例9】一个布袋里有红、黄、蓝三种颜色大小相同的木球.红球上标有数字1,黄球上标有数字2,蓝球上标有数字3.小明从布袋中摸出10个球,它们上面所标的数字和等于21.(1) 小明摸出的球中,红球的个数最多不超过几个? (2) 若摸出的球中三种颜色都有,有多少种不同的摸法?【分析】由于知道三种球的个数和,因此可设二元.第(2)问计数问题的实质是就是求正整数解的组数. 【解答】(1)设小明摸的红球有x 个,黄球有y 个,蓝球有)(y x --10个,则21)10(32=--++y x y x , 整理,得x y 29-=,因为x 、y 均为正整数,可知x 的最大值为4.即红球最多不超过4个.(2)由(1)知蓝球的个数是1)29(1010+=---=--=x x x y x z ,又∵.290.01,029,0,0,0,0<<⎪⎩⎪⎨⎧>+>->∴⎪⎩⎪⎨⎧>>>x x x x z y x 解得 ∴.4,3,2,1=x因此共有4种不同的摸法,如下:(1,7,2),(2,5,3),(3,3,4),(4,1,5).【点评】此题求的是未知数的范围及可能取值的个数,因此不需要求出方程的通解,而是根据题意对未知数的限制利用不等式分析出未知数的取值范围,以及整数解的个数.【实践】已知有两堆水泥,若从第一堆中取出100袋放进第二堆,则第二堆比第一堆多一倍;相反,若从第二堆中取出一些放进第一堆,则第一堆比第二堆多5倍.问第一堆中可能的最少水泥袋数是多少?并在这种情况下求出第二堆水泥的袋数. 答案:170,40.【例10】设非负整数n ,满足方程n z y x =++2的非负整数(x,y,z )的组数记为n a . (1)求3a 的值;(2)求2001a 的值.【分析】审清题中n a 的n 与方程n z y x =++2是同一个非负整数,3a 的含义是方程32=++z y x 的非负整数解的(x,y,z )的组数.【解答】(1)当n=3时,原方程为32=++z y x ,由于.10,0,0≤≤≥≥z y x 得 当z=1时,方程为x+y=1,其解(x,y )=(0,1),(1,0) 有2组;当z=0时,方程为x+y=3,其解(x,y )=(0,3),(1,2),(2,1),(3,0) 有4组. 综上,3a =6.(2)当n=2001时,原方程为20012=++z y x ,由于.10000,0,0≤≤≥≥z y x 得当z=1000时,方程为x+y=1,其解有2组;当z=999时,方程为x+y=3,其解有4组; 当z=998时,方程为x+y=5,其解(x,y )=(0,5),(1,4),(2,3),(3,2),(4,1),(5,0)有6组;…;当z=0时,方程为x+y=2001,其解(x,y )=(0,2001),(1,2000),…,(2001,0) 有2002组. 综上,2001a =2+4+6+…+2002=1003002.【点评】此题综合较强,涉及解不定方程、分类讨论、计数等方面的知识,需要灵活运用所学只是解决问题.【实践】一次不定方程x+y+z=1999的非负整数解有( )个. CA.20001999B.19992000C.2001000D.2001999三、总结反思以上介绍了初中数学竞赛中一次不定方程的基本解法、各种解题技巧以及应用. 解不定方程的基本方法是分离整系数法,要熟练掌握. 在具体应用问题上,能将实际问题转化为不定方程的问题,并根据题意挖掘题目的隐含条件,也就是未知数的取值范围.四、巩固练习1.(2000年希望杯竞赛题)若a 、b 均为正整数,且2a>b ,2a+b=10,则b 的值为( ) A .一切偶数 B .2、4、6、8 C .2、4、6 D .2、4 2.若正整数x,y 满足2004a=15y ,则 x+y 的最小值为 .3.如果三个既约真分数6,432b a ,的分子都加上b ,这时得到的三个分数之和为6.求这三个既约真分数的和.4.(重庆市竞赛题)一个盒子里装有不多于200粒棋子,如果每次2粒、3粒、4粒或6粒地取出,最终盒内都剩余1粒棋子;如果每次11粒地取出,那么正好取完.问:盒子里装有多少粒棋子?5.(2006年国际城市竞赛题)一辆汽车下坡的速度是72km/h,在平地上的速度是63km/h,上坡的速度是56km/h.汽车从A地到B地用了4h,而返程用了4小时40分,求AB两地的距离.答案:5 4.121 5.2731.D2.6733.12。
不定方程选讲
不定方程选讲一、一次不定方程(组)1.求不定方程某+y+z=2007正整数解的个数。
2.求不定方程2某+3y+5z=15的正整数解。
3.解不定方程11某+15y=7。
4.解不定方程50某+45y+36z=10。
5某+7y+2z=24,5.解不定方程组3某-y-4z=4.6.解不定方程6某+15y+21z+9w=30。
7.求有多少个正整数对(m,n),使得7m+3n=102004,且m︱n。
(04年日本数学奥林匹克)二、二次不定方程及其常用解法8.求满足方程2某2+5y2=11(某y-11)的正整数数组(某,y)。
9.解不定方程14某2-24某y+21y2+4某-12y-18=0。
10.解不定方程3某2+5y2=345。
11.解不定方程某2-5某y+6y2-3某+5y-11=0。
12.求方程某y -2某+y=4的整数解。
3513求能使等式+=1成立的所有正整数m,n。
mn14.求方程2某y-2某2+3某-5y+11=0的整数解。
15.求方程3某y+y2-6某-2y=2的整数解。
16.求方程某2+y=某2y-1000的正整数解。
17.求所有的整数对(某,y),使得某3=y3+2y2+1。
18.求方程某2+y2=z2中0<z<10的所有互质的解。
三、证明不定方程无解19.求证方程某2+y2=2007没有整数解。
20.试证:不定方程某2-3yn=-1(n是正整数)没有正整数解。
21.求证方程某2-3y2=17没有整数解。
-1-22.求证方程某2-2某y2+5z+3=0没有整数解。
23.证明方程某14+某24+某34+……+某144=2022无整数解。
24.求证方程某2+y2=1992没有整数解。
25.证明方程某2+y2-19某y-19=0无正整数解。
四、其他不定方程的解6某-y-z=18,26.求下面方程组的正整数解:222某+y+z=1987.27求使(a3+b)(a+b3)=(a+b)4成立的所有整数对(a,b)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不定方程选讲
一、一次不定方程(组)
1.求不定方程x +y +z =2007正整数解的个数。
2.求不定方程2x +3y +5z =15的正整数解。
3.解不定方程11x +15y =7。
4.解不定方程50x +45y +36z =10。
5.解不定方程组⎩⎨⎧5x +7y+2z =24,
3x -y -4z =4.
6.解不定方程6x +15y +21z +9w =30。
7.求有多少个正整数对(m ,n ),使得7m +3n =102004,且m ︱n 。
(04年日本数学奥林匹克) 二、二次不定方程及其常用解法
8.求满足方程2x 2+5y 2=11(xy -11)的正整数数组(x ,y )。
9.解不定方程14x 2-24xy +21y 2+4x -12y -18=0。
10.解不定方程3x 2+5y 2=345。
11.解不定方程x 2-5xy +6y 2-3x +5y -11=0。
12.求方程xy -2x +y =4的整数解。
13求能使等式3m + 5
n =1成立的所有正整数m ,n 。
14.求方程2xy -2x 2+3x -5y +11=0的整数解。
15.求方程3xy +y 2-6x -2y =2的整数解。
16.求方程x 2+y = x 2y -1000的正整数解。
17.求所有的整数对(x ,y ),使得x 3 = y 3+2y 2 +1。
18.求方程x 2+y 2= z 2中0<z <10的所有互质的解。
三、证明不定方程无解
19.求证方程x 2+y 2= 2007没有整数解。
20.试证:不定方程x 2-3y n =-1 (n 是正整数)没有正整数解。
21.求证方程x 2-3y 2=17没有整数解。
22.求证方程x 2-2xy 2+5z +3=0没有整数解。
23.证明方程x 14+x 24+x 34+……+x 144=2015无整数解。
24.求证方程x 2+y 2=1992没有整数解。
25.证明方程x 2+y 2-19xy -19=0无正整数解。
四、其他不定方程的解
26.求下面方程组的正整数解:⎩⎨⎧6x -y -z =18,
x 2+y 2+z 2=1987.
27求使(a 3+b )(a+b 3)= (a+b )4成立的所有整数对(a,b )。
(04年澳大利亚数学奥林匹克) 28.解不定方程xyz +xy +yz +zx +x +y +z =2008。
29.解不定方程5x 2+2y 2=98。
30.求不定方程4xyz =5(xy +yz +zx )的正整数解。
31.解不定方程y 2+y =x 4+x 3+x 2+x 。
32.求方程 2x ·3y -5z ·7w = 1 的所有非负整数解(x ,y ,z ,w )。
(05年中国数学奥林匹克) 练习:
1.不定方程7x -15y =31的解为 。
2.不定方程组⎩⎨
⎧=+-=++.
452,1032z y x z y x 的解为 。
3.不定方程5x -14y =11的正整数解为 。
4.不定方程4x 2-4xy -3y 2=21的正整数解为 。
5.方程x 2-dy 2=1,d =-1时的非负整数解为 。
6.不定方程x 2-18xy +35=0的正整数解为 。
7.取1分、2分、5分的纸币共10张,付给1角8分钱,问有几种不同的取法? 8.求x 2+y 2= z 2中0<z <60的所有互质的解。
9.求不定方程组⎩⎨⎧x +y +z =0,x 3+y 3+z 3=-18
的整数解。
10.求不定方程5x -3y =2的正整数解。
11.证明:不定方程x 2+y 2+z 2+3(x +y +z )+5=0没有有理数解。
12.求不定方程1
2
(x +y )(y +z ) (z +x )+(x +y +z )3=1-xyz 的所有整数解。
练习答案
1.⎩⎨⎧+-=+=.731,1563t y t x 2.⎪⎩
⎪⎨⎧+=+=--=.
23,3,
85t z t y t x (t 为整数)。
3.)0(.51,145≥⎩⎨⎧+=+=t t t y t x 为整数,且。
4.由4x 2
-4xy -3y 2
=21得:(2x +y )(2x -3y )=21,故解为:⎩⎨⎧==,5,8y x ⎩
⎨
⎧==.1,
3y x 5.x =0,y =1和x =1,y =0。
6.由x 2-18xy +35=0得:18y =35
x +x ,x 是35的约数,得⎩
⎨⎧==⎩
⎨⎧==.
2,35,2,1y x y x 。
7.解:设1分、2分、5分的纸币分别有x 张,y 张,z 张,得:⎩⎨
⎧=++=++.
1852,
10z y x z y x
消去z 得:4x +3y =32。
因为x ,y ,z 是非负整数,所以不同的取法有:⎪⎩
⎪⎨⎧===⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===.0,8,2;1,4,5;2,0,8z y x z y x z y x 8.解: a 2+b 2<60,a >b >0,得a ≤7。
又因为a ,b 一奇一偶,求出a ,b 的值即得所有解。
所有互质的解列表如下:
9.解:由原方程组中x +y +z =0得z =-(x +y ),代入x 3+y 3+z 3=-18得:xy (x +y )=6,故xyz =
-6,x 、y 、z 都是6的约数,并且只有一个是负数,从而得其整数解为:x =-3,y =2,z =1。
10.解:显然x =1,y =1是原方程的解,若x ≠1,则y ≠1。
因≡x
51(m od4),)4(mod )1(3y y -≡,1-)4(mod 2)1(≡-y
,故y =2y 1+1是奇数(y 1∈N )
因)9(mod 03≡y
,故)9(mod 25≡x。
因)9(mod 25),9(mod 15),9(mod 155
6
3
≡≡-≡,
故)9(mod 255556≡≡+q ,正整数x 为6q+5形式的整数。
因为)7(mod 1)2(566≡-≡,所以)7(mod 3)2(5555≡-≡≡x , 而)7(mod 356323
3111
2⨯⨯≡⨯≡≡+y y y ,故对任意不为1的正整数x ,y ,
y
x 35-2(m od7)。
此时原方程无解。
综上,原方程只有一组正整数解:(1,1)。
11.解:将方程两边乘以4配方知:原方程等价于7)32()32()32(222=+++++z y x 。
上述方程有有理数解等价于不定方程:2
2
2
2
7m c b a =++有整数解(a ,b ,c ,m ),其中m >0. 若方程有整数解(a ,b ,c ,m ),m >0,设m 是所有这样的解中最小的正整数。
如果m 是偶数,则)4(mod 0222≡++c b a ,注意到,完全平方数≡0或1(m od4),所以,
a ,
b ,
c 都为偶数,设n m c c b b a a 2,2,2,2111====,则221212
17n c b a =++,这表明
),,,(111n c b a 也是方程的整数解,与m 的最小性矛盾。
如果m 是奇数,则由于奇数的平方≡1(m od8),故)8(mod 72
2
2
≡++c b a ,这时,当然有
)4(mod 3222≡++c b a ,由于前面的讨论,可知a ,b ,c 都为奇数,这导致)8(mod 3222≡++c b a ,与)8(mod 7222≡++c b a 矛盾。
所以方程没有整数解(使m >0的),故原命题成立。
12.解:作代换,设x +y =u ,y +z =v ,z +x =w ,则方程变形为:
4uvw +(u +v +w )3=8-(u -v +w )(u +v -w )(-u +v +w ),即4(u 2v +v 2w +w 2u +uv 2+vw 2+wu 2)+8uvw =8,
即u 2v +v 2w +w 2u +uv 2+vw 2+wu 2+2uvw =2。
故(u +v )(v +w )(w +u )=2.于是:(u +v ,v +w ,w +u )=(1,1,2),(-1,-1,2),(-2,-1,1)及对称的情形,分别求解得:(u ,v ,w )=(1,0,1),(1,-2,1),(-1,0,2),故(x ,y ,z )=(1,0,0),(2,-1,-1)。
故整数解为(x ,y ,z )=(1,0,0),(0,1,0),(0,0,1),(2,-1,-1),(-1,2,-1),(-1,-1,2)共6组解。