复旦大学2011~2012学年《高等数学A上》第一学期期末考试试卷及答案

合集下载

高等数学期末考试试题及答案(大一考试)

高等数学期末考试试题及答案(大一考试)

(2010至2011学年第一学期)课程名称: 高等数学(上)(A 卷)考试(考查): 考试 2008年 1 月 10日 共 6 页 注意事项:1、 满分100分。

要求卷面整洁、字迹工整、无错别字。

2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。

3、 考生必须在签到单上签到,若出现遗漏,后果自负。

4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同交回,否则不给分。

试 题一、单选题(请将正确的答案填在对应括号内,每题3分,共15分)1. =--→1)1sin(lim21x x x ( ) (A) 1; (B) 0; (C) 2; (D)212.若)(x f 的一个原函数为)(x F ,则dx e f e xx )(⎰--为( )(A) c e F x +)(; (B) c eF x+--)(;(C) c e F x+-)(; (D )c xe F x +-)( 3.下列广义积分中 ( )是收敛的. (A)⎰+∞∞-xdx sin ; (B)dx x⎰-111; (C) dx x x ⎰+∞∞-+21; (D)⎰∞-0dx e x。

4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( )(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导;(C) )(x f 可积(常义),则)(x f 一定有界; (D) 函数)(x f 连续,则⎰xadt t f )(在[]b a ,上一定可导。

5. 设函数=)(x f nn x x211lim++∞→ ,则下列结论正确的为( )(A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x二、填空题(请将正确的结果填在横线上.每题3分,共18分)1. 极限=-+→xx x 11lim 20 _____.2. 曲线⎩⎨⎧=+=321ty t x 在2=t 处的切线方程为______. 3. 已知方程xxe y y y 265=+'-''的一个特解为x e x x 22)2(21+-,则该方程的通解为 .4. 设)(x f 在2=x 处连续,且22)(lim2=-→x x f x ,则_____)2(='f5.由实验知道,弹簧在拉伸过程中需要的力F (牛顿)与伸长量s 成正比,即ks F =(k 为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________焦耳。

复旦大学2014~2015学年《高等数学A上》第一学期期末考试试卷及答案

复旦大学2014~2015学年《高等数学A上》第一学期期末考试试卷及答案

上,曲线上凸;在区间
e
3 2
,
上,曲线下凸。拐点为
e
3 2
,
3 2
e
3


装 订
(5) cos x
1 cos3
xC
;(6) ln 2 2
π
;(7)
X
5 8
1 1

线
3
2
6 1


(8)一定有解。

2.(本题满分 8 分) a 1 , b 1。

2

3.(本题满分 8 分)(1) 4 ;(2)是极小值点。
x1 x2 a1,
(8)已知
a1
a2
a3
0
,问线性方程组
x2
x3
a2 ,
是否一定有解?请说明理由。
x3 x1 a3
3
2.(本题满分
8
分)
设函数
f
(x)
asixnxb,
cos x
x
1,
x 0, x 0 在 x 0 点可导,求常数
a 、 b 的值。
3.(本题满分
8
分)设函数
f
在 x 0 点附近有定义,且满足
6
复旦大学数学科学学院 2014~2015 学年第一学期期末考试试卷
《高等数学 A》(I)A 卷试题答案
1.(本题满分 48 分,每小题 6 分)(1) t ;(2)0; 2
(3)在 (, 1]上单调减少,在[1, ) 上单调增加。 f (1) 17 为极小值; 12
(4)在在区间
0,
e
3 2
x
(t
1)(t
2)

复旦大学《高等数学》2011-2012学年第一学期期末试卷A卷

复旦大学《高等数学》2011-2012学年第一学期期末试卷A卷

1 060 31□A 卷高等数学 C (上)05数学科学学院医学试验班、八年制临床医学题号 一二 三四五六七八总分得分一、 填充题(3 5 ) 1 .设 sin x是f x 的一个原函数,答案: 1则为 xf x dx = 。

22 .设0 ,则。

答案: 361 0 3 . A 0 0 01 6 0答案: 00 0 2 0 0 00 1 3 0 00 0 023 00 13 12 0 0 0 0 01 0 ,则 A 1= 。

2 0 0 30 0 0 01 0 2x 44 . lim。

n答案: 35 . 1 sin 2 x dx 。

答案:2二、 单选题(3 5 )1 . lim f x 是f x 在x 0 的某空心邻域内无界的( )条件。

xx 0A .充分 B. 必要 C. 充分必要 D. 无关 答案: A2 .lim f x 2 , x 0 x32答案: C23sin 2x x 0 f 3x 1 3 ( )。

4 3x 1 x 2 x 3 03 .设 A 为齐次线性方程组 x 1 tx 2 x 3 0 的系数矩阵,若有三阶方阵B 0 ,且 AB 0 ,则( )。

x 1x 2 tx 3 0A. t 2, 且B 0B. t 2, 且B 0C. t 1, 且B 0D. t 1, 且B 0答案: C4 .下列积分中可直接用 Newton-Leibniz 公式计算积分的是(6x 3B. 11dx C.60dx答案: A )。

e1e x ln x5 . x ,有f x f x ,且 fx 0k 0 ,则 f x 0()。

A . 0 1 x 2 dxx cos x A .D. B. C. D.1dx 则lim1k答案:CC. kD. k 1.lim0答案:32 .dx答案:lnsinC3. 设y f x 由方程xy2 sin x3 y3x 确定,求dy。

答案:dx4 .y arctan3e x,求dy。

3e x(19e2x)cos x1,x 05.设f x x 1,0x1,求f x dx。

高数(大一上)期末试题及答案

高数(大一上)期末试题及答案

高数(大一上)期末试题及答案第一学期期末考试试卷(1)课程名称:高等数学(上)考试方式:闭卷完成时限:120分钟班级:学号:姓名:得分:一、填空(每小题3分,满分15分)1.lim (3x^2+5)/ (5x+3x^2) = 02.设 f''(-1) = A,则 lim (f'(-1+h) - f'(-1))/h = A3.曲线 y = 2e^(2t) - t 在 t = 0 处切线方程的斜率为 44.已知 f(x) 连续可导,且 f(x)。

0,f(0) = 1,f(1) = e,f(2) = e,∫f(2x)dx = 1/2ex,则 f'(0) = 1/25.已知 f(x) = (1+x^2)/(1+x),则 f'(0) = 1二、单项选择(每小题3分,满分15分)1.函数 f(x) = x*sinx,则 B 选项为正确答案,即当x → ±∞ 时有极限。

2.已知 f(x) = { e^x。

x < 1.ln x。

x ≥ 1 },则 f(x) 在 x = 1 处的导数不存在,答案为 D。

3.曲线 y = xe^(-x^2) 的拐点是 (1/e。

1/(2e)),答案为 C。

4.下列广义积分中发散的是 A 选项,即∫dx/(x^2+x+1)在区间 (-∞。

+∞) 内发散。

5.若 f(x) 与 g(x) 在 (-∞。

+∞) 内可导,且 f(x) < g(x),则必有 B 选项成立,即 f'(x) < g'(x)。

三、计算题(每小题7分,共56分)1.lim x^2(e^(2x)-e^(-x))/((1-cosx)sinx)lim x^2(e^(2x)-e^(-x))/((1-cosx)/x)*x*cosxlim x(e^(2x)-e^(-x))/(sinx/x)*cosxlim (2e^(2x)+e^(-x))/(cosx/x)应用洛必达法则)2.lim {arcsin(x+1) + arcsin(x-1) - 2arcsin(x)}/xlim {arcsin[(x+1)/√(1+(x+1)^2)] + arcsin[(x-1)/√(1+(x-1)^2)] - 2arcsin(x)/√(1+x^2)}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+x^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+x^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+(x+1)^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+(x-1)^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin[(x-1)/√(1+(x-1)^2)]} π/2 (应用洛必达法则)3.y = y(x) 由 x + y - 3 = 0 确定,即 y = 3 - x,因此 dy/dx = -1.4.f(x) = arctan(2x-9) - arctan(x-3) 的导数为 f'(x) = 1/[(2x-9)^2+1] - 1/[(x-3)^2+1],因此 f'(x)。

高等数学试卷A上2011

高等数学试卷A上2011

复旦大学数学科学学院2011~2012学年第一学期期末考试试卷A 卷数学科学学院1.(本题满分48分,每小题6分)计算下列各题:(1)求曲线1)cos(2-=-+e xy e y x 在点)1,0(处的切线方程;(2)求极限)1ln(13lim ++∞→xx x ;(装 订 线 内 不 要 答 题 )(3)设函数2)(23+++=cx bx ax x f 在1=x 点取极小值0,且该函数的图像以)2,0(为拐点,求a ,b ,c 的值。

(4)设一元函数f 满足C x dx x xf +=⎰arcsin )((C 是任意常数),求dx x f ⎰)(1;(5)求定积分⎰-++ππdx x x x )sin ||2cos 1(3;(6)若⎰∞-+∞→=⎪⎭⎫ ⎝⎛-+a x xx dx xe a x a x 2lim ,求常数a ;(7)已知)0,4,2(1=a ,)1,1,2(2-=a ,),1,4(3t -=a ,问t 为何值时,1a ,2a ,3a 线性相关?(8)已知3R 中的两组基为T )1,1,1(1-=a ,T )1,1,1(2-=a ,T )1,1,1(3-=a ,和T )1,1,1(1=b ,T )1,1,0(2=b ,T )1,0,0(3=b ,求从基{1a ,2a ,3a }到基{1b ,2b ,3b }的过渡矩阵。

2.(本题满分8分)求点)1,0(到曲线x x y -=2的最短距离。

3.(本题满分8分)求曲线nxnx nx n e x e e x y 32)1()sin (6lim +-=+∞→(),(∞+-∞∈x )与两条直线x y 21=和1=x 所围平面图形的面积。

4.(本题满分9分)问λ为何值时,线性方程组⎪⎩⎪⎨⎧--=-+--=--+=-+-1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x 有唯一解、无穷多解、无解?请说明理由。

《高等数学(一)》期末复习题(答案)

《高等数学(一)》期末复习题(答案)

《高等数学(一)》期末复习题一、选择题1. 极限)x x →∞的结果是 ( C ).(A )0 (B ) ∞ (C ) 12(D )不存在 2. 设()xxx f +-=11ln,则)(x f 是 ( A ). (A )奇函数 (B) 偶函数 (C )非奇非偶函数 (D )既奇又偶函数 3. 极限21lim sinx x x→= ( A ) . (A )0 (B) 1 (C )+∞ (D )-∞ 4. 方程3310x x -+=在区间(0,1)内( B ).(A )无实根 (B )有唯一实根 (C )有两个实根 (D )有三个实根 5. 设()()ln 1f x x =+,g (x )=x ,则当0x →时,()f x 是()g x 的( A ).(A )等价无穷小 (B) 低阶无穷小(C )高阶无穷小 (D) 同阶但非等价无穷小 6. 下列变量中,是无穷小量的为( A ).(A ))1(ln →x x (B ))0(1ln +→x x (C )cos (0)x x → (D ))2(422→--x x x 7. 极限011lim(sinsin )x x x x x→- 的结果是( C ).(A )0 (B ) 1 (C ) 1- (D )不存在8. 下列函数中满足罗尔定理条件的是( D ).(A )()2,[0,1]f x x x =-∈ (B) 3(),[0,1]f x x x =∈ (C )(),[1,1]f x x x =∈- (D)4(),[1,1]f x x x =∈-9. 函数1cos sin ++=x x y 是( C ).(A )奇函数 (B )偶函数 (C )非奇非偶函数 (D )既是奇函数又是偶函数 10. 当0→x 时, 下列是无穷小量的是( B ).(A )1+x e (B) )1ln(+x (C) )1sin(+x (D) 1+x11. 当x →∞时,下列函数中有极限的是( A ).(A )211x x +- (B) cos x (C) 1xe(D)arctan x 12. 方程310(0)x px p ++=>的实根个数是 ( B ).(A )零个 (B )一个 (C )二个 (D )三个 13.21()1dx x '=+⎰( B ).(A )211x + (B )211C x++ (C ) arctan x (D ) arctan x c + 14. 定积分()f x dx ⎰是( A ).(A )一个函数族 (B )()f x 的的一个原函数 (C )一个常数 (D )一个非负常数15.函数(ln y x =+是( A ).(A )奇函数 (B )偶函数 (C ) 非奇非偶函数 (D )既是奇函数又是偶函数 16. 设函数在区间上连续,在开区间内可导,且,则( B ).(A) (B) (C) (D) 17. 设曲线221x y e-=-,则下列选项成立的是( C ). (A) 没有渐近线 (B) 仅有铅直渐近线 (C) 既有水平渐近线又有铅直渐近线 (D) 仅有水平渐近线 18. 设是的一个原函数,则等式( D )成立.(A )(B) (C ) (D)19. 设⎰+=C x dx x xf arcsin )(,则⎰=dx x f )(1( B ). (A )C x +--32)1(43 (B )C x +--32)1(31 (C )C x +-322)1(43 (D )C x +-322)1(32()f x []0,1()0,1()0f x '>()00f <()()10f f >()10f >()()10f f <F x ()f x ()dd d x f x x F x (())()⎰='=+⎰F x x f x c()()d '=⎰F x x F x ()()d dd d xf x x f x (())()⎰=20. 数列})1({nn n-+的极限为( A ).(A )1(B) 1-(C) 0(D) 不存在21. 下列命题中正确的是( B ).(A )有界量和无穷大量的乘积仍为无穷大量(B )有界量和无穷小量的乘积仍为无穷小量 (C )两无穷大量的和仍为无穷大量 (D )两无穷大量的差为零 22. 若()()f x g x ''=,则下列式子一定成立的有( C ).(A)()()f x g x = (B)()()df x dg x =⎰⎰(C)(())(())df x dg x ''=⎰⎰(D)()()1f x g x =+ 23. 下列曲线有斜渐近线的是 ( C ).(A)sin y x x =+ (B)2sin y x x =+ (C)1siny x x =+ (D)21sin y x x=+ 24. 函数)1,0(11)(≠>+-=a a a a x x f x x ( B ).(A )是奇函数 (B )是偶函数(C )既奇函数又是偶函数 (D )是非奇非偶函数 25. 下列函数中满足罗尔定理条件的是( D ).(A )]1,0[,1)(∈-=x x x f (B)]1,0[,)(2∈=x x x f (C )()sin ,[1,1]f x x x =∈- (D)]1,1[,)(2-∈=x x x f26. 若函数221)1(xx x x f +=+,则=)(x f ( B ). (A )2x (B )22-x (C )2)1(-x (D )12-x 27. 设函数,ln )(x x x f =则下面关于)(x f 的说法正确的是( A ).(A )在(0,e 1)内单调递减 (B)在(+∞,1e)内单调递减 (C )在(0,+∞)内单调递减 (D)(0,+∞)在内单调递增28. 设1)(+=x x f ,则)1)((+x f f =( D ).(A )x (B )x + 1 (C )x + 2 (D )x + 329. 已知0)1(lim 2=--+∞→b ax x x x ,其中a ,b 是常数,则( C ).(A )1,1==b a , (B )1,1=-=b a (C )1,1-==b a (D )1,1-=-=b a 30. 下列函数在指定的变化过程中,( B )是无穷小量.(A ) (B )(C ) (D )31. 设函数(),2x xe ef x -+=则下面关于)(x f 的说法正确的是( B ) .(A )在(0,)+∞内单调递减 (B)在(,0)-∞内单调递减 (C )在(,0)-∞内单调递增 (D)在(,)-∞+∞内单调递增32. 下列函数中,在给定趋势下是无界变量且为无穷大的函数是( C ).(A ))(1sin∞→=x xx y (B )())(1∞→=-n n y n (C ))0(ln +→=x x y (D ))0(1cos 1→=x xx y33. 设⎪⎩⎪⎨⎧≤>=0,0,1sin )(x x x xx x f ,则)(x f 在0=x 处( B ). (A )连续且可导(B )连续但不可导 (C )不连续但可导(D )既不连续又不可导34. 在下列等式中,正确的是( C ).(A )()()f x dx f x '=⎰ (B) ()()df x f x =⎰(C )()()df x dx f x dx=⎰ (D)[()]()d f x dx f x =⎰ 35. 曲线x x y -=3在点(1,0)处的切线是( A ).(A )22-=x y(B )22+-=x ye 1xx ,()→∞sin ,()xxx →∞ln(),()11+→x x x xx +-→110,()(C )22+=x y(D )22--=x y36. 已知441x y =,则y ''=( B ). (A ) 3x (B )23x (C )x 6 (D ) 6 37. 若x xf =)1(,则=')(x f ( D ).(A )x 1 (B )21x (C )x 1- (D )21x-38. 下列各组函数中,是相同的函数的是( B ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 39. 函数()()20ln 10x f x x a x ≠=+⎨⎪=⎩ 在0x =处连续,则a =( B ).(A )0 (B )14(C )1 (D )240. 曲线ln y x x =的平行于直线10x y -+=的切线方程为( A ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 41. 设函数()||f x x =,则函数在点0x =处( C ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 42. 设()f x 可微,则0()(2)limh f x f x h h→--=( D ).(A )()f x '- (B)1()2f x ' (C )2()f x '- (D)2()f x '43. 点0x =是函数4y x =的( D ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 44. 曲线1||y x =的渐近线情况是( C ). (A )只有水平渐近线 (B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线45.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( D ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭46.x x dxe e -+⎰的结果是( A ).(A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ (D )ln()x x e e C -++47. 下列各组函数中,是相同函数的是( C ).(A) ()f x x =和()g x =()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =48. 设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( D ).(A) 0 (B) 1 (C) 2 (D)不存在49. 设函数22456x y x x -=-+,则2x =是函数的( A ).(A) 可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 50. 设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为( C ). (A) 0 (B)2π(C)锐角 (D)钝角 51. 曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( D ).(A) 12,ln2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭52. 函数2x y x e -=及图象在()1,2内是( B ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的 53. 以下结论正确的是( C ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.54. 设函数22132x y x x -=-+,则1x =是函数的( A ).(A )可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 55. 设函数()y f x =的一个原函数为12x x e ,则()f x =( A ).(A) ()121x x e - (B)12xx e - (C) ()121x x e + (D) 12xxe56. 若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( D ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+57. 函数21,0e ,0xx x y x ⎧+<=⎨≥⎩在点0x =处( D ).(A )连续且可导 (B) 不连续且不可导 (C) 不连续但可导 (D) 连续但不可导 58. 函数 2)1ln(++-=x x y 的定义域是( C ).(A ) []1,2- (B ) [)1,2- (C )(]1,2- (D )()1,2- 59. 极限x x e ∞→lim 的值是( D ).(A )∞+ (B ) 0 (C )∞- (D )不存在 60. =--→211)1sin(limx x x ( C ).(A )1 (B ) 0 (C )21-(D )2161. 曲线 23-+=x x y 在点)0,1(处的切线方程是( B ).(A ) )1(2-=x y (B ))1(4-=x y (C )14-=x y (D ))1(3-=x y62. 函数, 0,0xx x y e x <⎧=⎨≥⎩在点0x =处( B ). (A )连续且可导 (B) 不连续且不可导 (C) 不连续但可导 (D) 连续但不可导 63. 下列各微分式正确的是( C ).(A ))(2x d xdx = (B ))2(sin 2cos x d xdx = (C ))5(x d dx --= (D )22)()(dx x d = 64. 设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( B ). (A )2sin x (B ) 2sin x - (C )C x +2sin (D )2sin 2x-65. 设()f x 可微,则0(2)()limh f x h f x h→+-=( D ).(A )()f x '- (B)1()2f x ' (C)2()f x '- (D)2()f x ' 66.⎰=+dx x xln 2( B ).(A )Cx x ++-22ln 212 (B )C x ++2)ln 2(21(C )C x ++ln 2ln (D )C xx++-2ln 1 67. 函数)1lg(12+++=x x y 的定义域是( B ).(A )()()+∞--,01,2 (B )()),0(0,1+∞- (C )),0()0,1(+∞- (D )),1(+∞-68. 设0tan 4()lim6sin x x f x x →+=,则0()lim x f x x→=( B ) .(A )1 (B )2 (C )6 (D )24 69. 下列各式中,极限存在的是( A ).(A ) x x cos lim 0→ (B )x x arctan lim ∞→ (C )x x sin lim ∞→ (D )x x 2lim +∞→70. =+∞→xx xx )1(lim ( D ). (A )e (B )2e (C )1 (D )e1 71. 设0sin 4()lim5sin x x f x x →+=,则0()lim x f x x→=( B ) .(A )0 (B )1 (C )5 (D )2572. 曲线x x y ln =的平行于直线01=+-y x 的切线方程是( C ).(A )x y = (B ))1)(1(ln --=x x y (C )1-=x y (D ))1(+-=x y73. 已知x x y 3sin = ,则=dy ( B ).(A )dx x x )3sin 33cos (+- (B )dx x x x )3cos 33(sin + (C )dx x x )3sin 3(cos + (D )dx x x x )3cos 3(sin + 74. 下列等式成立的是( C ).(A )⎰++=-C x dx x 111ααα (B )⎰+=C x a dx a x x ln (C )⎰+=C x xdx sin cos (D )⎰++=C xxdx 211tan 75. 极限01lim sinx x x→= ( A ) . (A ) 0 (B) 1 (C )+∞ (D) -∞ 76. 设()1cos f x x =-,()2g x x =,则当0x →时,()f x 是()g x 的( D ).(A )等价无穷小 (B) 低阶无穷小 (C ) 高阶无穷小 (D) 同阶但非等价无穷小 77. 计算⎰xdx x e x cos sin sin 的结果中正确的是( D ).(A )C e x +sin (B )C x e x +cos sin (C )C x e x +sin sin (D )C x e x +-)1(sin sin78. 5lg 1)(-=x x f 的定义域是( D ).(A )()),5(5,+∞∞- (B )()),6(6,+∞∞-(C )()),4(4,+∞∞- (D )())5,4(4, ∞- ()),6(6,5+∞79. 如果函数f (x )的定义域为[1,2],则函数f (x )+f (x 2)的定义域是( B ).(A )[1,2] (B )[1,2] (C )]2,2[- (D )]2,1[]1,2[ --80. 函数)1lg()1lg(22x x x x y -++++=( D ).(A )是奇函数,非偶函数 (B )是偶函数,非奇函数 (C )既非奇函数,又非偶函数 (D )既是奇函数,又是偶函数 81. 设()sin f x x x =,则)(x f 是( C ).(A )非奇非偶函数 (B) 奇函数 (C)偶函数 (D) 既奇又偶函数 82. 函数)10(1)(2≤≤--=x x x f 的反函数=-)(1x f( C ).(A )21x - (B )21x --(C ))01(12≤≤--x x (D ))01(12≤≤---x x 83. 下列数列收敛的是( C ).(A )1)1()(1+-=+n n n f n (B )⎪⎩⎪⎨⎧-+=为偶数为奇数n nn n n f ,11,11)((C )⎪⎩⎪⎨⎧+=为偶数为奇数n n n n n f ,11,1)( (D )⎪⎪⎩⎪⎪⎨⎧-+=为偶数为奇数n n n f nn n n ,221,221)(84. 设1111.0个n n y =,则当∞→n 时,该数列( C ).(A )收敛于0.1 (B )收敛于0.2 (C )收敛于91(D )发散 85. 下列极限存在的是( A ).(A )2)1(lim x x x x +∞→ (B )121lim -∞→x x (C )x x e 10lim → (D )x x x 1lim 2++∞→ 86. xx xx x x sin 2sin 2lim 22+-+∞→=( A ).(A )21(B )2 (C )0 (D )不存在 87. =--→1)1sin(lim 21x x x ( B ).(A )1 (B )2 (C )21(D )0 88. 下列极限中结果等于e 的是( B ).(A )xx x x x sin 0)sin 1(lim +→ (B )x xx x x sin )sin 1(lim +∞→ (C )xxx xxsin )sin 1(lim -∞→- (D )xxx xxsin 0)sin 1(lim +→89. 函数||ln 1x y =的间断点有( C )个. (A )1 (B )2 (C )3 (D )4 90. 下列结论错误的是( A ).(A )如果函数f (x )在点x =x 0处连续,则f (x )在点x =x 0处可导; (B )如果函数f (x )在点x =x 0处不连续,则f (x )在点x =x 0处不可导; (C )如果函数f (x )在点x =x 0处可导,则f (x )在点x =x 0处连续; (D )如果函数f (x )在点x =x 0处不可导,则f (x )在点x =x 0处也可能连续。

11-高数期末(1)试题答案

11-高数期末(1)试题答案

Dxz={(x,z)|0≤z≤H,-R≤x≤R}. 于是有
1
x2
dS y2 z2
1 Dxz R 2 z 2
1
(x)2 R2 x2
dxdz

H dz 0 R2 z2
R R
R dx
R2 x2
[1 R
arctan
z R
]0H
[R arcsin
x R
0
h
r
3 dr

2

h2 4


2
h
2
12. 设一个密度均匀的半球体占有空间区域 : x2 y2 z2 R2 , z 0, 试求该半球体质心的坐标.
解:因为密度均匀,故该半球体对 z 轴对称,可知质心在 z 轴上,故有 x y 0 , 所以只要计算 z .
运用球面坐标有
M(2,-1,-1);直线
l
的对称式方程为
x 0

y 1

z 1

知方向向量 s=(0,-1,-1),故平面
方程:y-z=0,从而平面
与该球面的交线为

( y
x z
2)
2
0

(
y

1)
2
(z 1)2
6

于是该交线向 xOy 面的投影柱面为
(x-2)2+2(y+1)2=6,从而投影曲线为
f

(x

1) x
f

y(x

1 )(x x

1) x
f


2xf

y(x2

高等数学上复旦大学出版习题1答案.pdf

高等数学上复旦大学出版习题1答案.pdf

x1
=
sin
x2
,即 A 中不同的元素
x1,
x2
有相同的
像,∴f 不是单射.
综上所述, f 为满射,但不是单射.
(3)∵∀x1, x2 ∈ A , 且 x1 ≠ x2 ,有 ex1 ≠ ex2 ,即 A 中不同的元素有不同的像,∴f 是单射.
又∵ 0 ∈ B,∀x ∈ A, ex ≠ 0 ,即 B 中的元素 0 没有原像,∴f 不是满射.
2. 设 X = {1, 2,3, 4,5, 6}, A = {1, 2,3}, B = {2, 4, 6},C = {1,3,5} ,求 A∪ B ∪ C, A ∩ B ∩C , CXA,CXA∪CXB,
CXA∩CXB.
解: A∪ B ∪ C = {1, 2,3}∪{2, 4, 6}∪{1,3,5} = X
⎨ ⎩
x

0
所以函数的定义域是 (−∞, 0) ∪ (0, 4].
(2)要使函数有意义,必须
所以函数的定义域是[-3,0) ∪(0,1) . (3)要使函数有意义,必须
⎧ x+3≥0
⎧x ≥ −3
⎪⎨lg(1− x) ≠ 0

⎪ ⎨
x

0
⎪⎩ 1− x > 0
⎪⎩ x < 1
x2 −1≠ 0 即 x ≠ ±1
(2)不正确. 例如: A={1,2},B={1},C={1,3}有 A∩B=A∩C={1},但 B≠C.
4. 判定下列映射哪些是满射,哪些是单射,哪些是一一映射?
(1) A=(-∞,+∞),B=(-∞,+∞), f : x ∈ A |→ y = x3 ∈ B ;
(2) A=(-∞,+∞),B=[-1,1], f : x ∈ A |→ y = sin x ∈ B ;

大学第一学期高等数学期末考试A(含答案)打印

大学第一学期高等数学期末考试A(含答案)打印

第一学期期末考试机电一体化专业《 高等数学 》 试卷( A )1.函数()314ln 2-+-=x x y 的定义域是(),2[]2,(∞+--∞Y )。

2.若函数52)1(2-+=+x x x f ,则=)1(f ( -5 )。

3.=→xx x 20lim ( 0 ) 4.函数xxx f -=)(的间断点是x =( 0 )。

5. 设735223-+-=x x x y 则y '=( 31062+-x x )。

1、设()00=f , 且()00='f 存在, 则()=→xx f x 0lim ( C );A. ()x f ' B. ()0f ' C. ()0f D. ()021f 2、17下列变量中是无穷小量的有 ( C ); A. )1ln(1lim0+→x x B. )1)((2()1)(1(lim 1-++-→x x x x x C. x x x 1cos 1lim ∞→ D. xx x 1sin cos lim 0→3、下列各组函数为同一函数的原函数的是 ( C );A. 31)(x x F =与324)(x x F -= B. 31)(x x F =与32214)(x x F -=C. C x x F +=21sin 21)(与x C x F 2cos 41)(2-=D.x x F ln )(1=与22ln )(x x F =4、在函数()x f 连续的条件下, 下列各式中正确的是 ( C );A. ()()x f dx x f dx d b a =⎰ B. ()()x f dx x f dx d ab =⎰C. ()()x f dt t f dx d x a =⎰ D. ()()x f dt t f dxd ax =⎰ 5、下列说法正确的是 ( D ); A. 导数不存在的点一定不是极值点 B. 驻点肯定是极值点 C. 导数不存在的点处切线一定不存在D. ()00='x f 是可微函数()x f 在0x 点处取得极值的必要条件1、函数的三要素为: 定义域, 对应法则与值域. (√ )2、函数)(x f 在区间[]b a ,上连续是)(x f 在区间[]b a ,上可积的充分条件。

高等数学试卷A上2012

高等数学试卷A上2012

复旦大学数学科学学院2012~2013学年第一学期期末考试试卷A 卷数学科学学院1.设函数 )(x f y =由方程1=-+xy ey x 确定,求二阶导数)0(f '' ;2.计算⎰+++dx x x x 54642;3.计算⎰+∞+12211dx x x ;4.求x x dtxt x x sin tan )1ln(lim 00-+⎰→.二. (本题共24分,每小题6分)1.求矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=2311112313522231A 的秩;2.设矩阵B ,A 满足B 3A AB +=,其中⎪⎪⎪⎭⎫ ⎝⎛=120210002A ,求矩阵B ;3.设A 是一个43⨯的矩阵,2)A (rank =,方程组b A =x 有三个特解T )3(T )2(T )1(1)3,2,(1,4)3,1,(2,3)2,1,(1,-=-=-=x ,x ,x ,求方程组b A =x 的通解。

4.设=)(x f 81212sin 41111sin 21010sin 842xx xe x e x e x ,求)0(f '的值。

三. (本题8分)(1)求极限()3233231212lim++--+-++∞→x x x x x x x 。

四. (本题10分)讨论方程a xex =-的根的个数。

五. (本题10分)设有方程组⎪⎩⎪⎨⎧=++=++=++.93,3,4321321321x bx x x bx x x x ax ,问b a ,为何值时,方程组无解?有唯一解?有无穷多解?有无穷多解时请求出其通解。

六. (本题10分)设A 是一个三阶实对称阵,其特征值为3,1,1,对应于特征值3=λ的特征向量为T)0,1,1(-。

(1) 求矩阵A ;(2) 设3R 上的线性变换A 由Ax x =)(A 所确定,求A 在基T )0,0,1(,T )0,1,1(,T )1,1,1(下的表示矩阵B ,问A 与B 是否相似,为什么?七. (本题8分)平面图形D 由曲线2,1,2y ==-=y x x 所围, 将上述图形D 绕轴1=x 旋转一周得到一个旋转体,求此旋转体的体积和表面积。

(2021年整理)高等代数2011-2012第一学期期末试卷答案

(2021年整理)高等代数2011-2012第一学期期末试卷答案

(完整)高等代数2011-2012第一学期期末试卷答案(完整)高等代数2011-2012第一学期期末试卷答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高等代数2011-2012第一学期期末试卷答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高等代数2011-2012第一学期期末试卷答案的全部内容。

(完整)高等代数2011-2012第一学期期末试卷答案高等代数2011—2012第一学期期末试卷答案课程名称:《高等代数》参考答案及评分标准(A 卷)考试(考查):考试 时间:200 年 月 日 本试卷共7页,满分100 分; 考试时间:120 分钟答题前请将密封线内的项目填写清楚一.选择题(本大题共8个小题,每小题3分,共24分.请在每小题的四个备选答案中选出一个正确的答案,并将其号码填入题后的括号内)。

1.在[]F x 里一定能整除任意多项式的多项式是 【 B 】 A .零多项式 B .零次多项式 C .本原多项式 D .不可约多项式2.设()1g x x =+是6242()44f x x k x kx x =-++-的一个因式,则=k 【 C 】A .4B .3C .2D .13.A ,B 是n 阶方阵,则下列结论成立的是 【 C 】A .AB O A O ≠⇔≠且B O ≠ B 。

0A A O =⇔=C .0AB A O =⇔=或B O =D . 1||=⇔=A I A4.设n 阶矩阵A 满足220A A I --=,则下列矩阵哪个不可逆 【 B 】A 。

2A I +B 。

A I +C .A I -D .A5.设A 为3阶方阵,且1)(=A r ,则 【 A 】 A 。

高数上期末试题及答案

高数上期末试题及答案

高等数学期末及答案一、 填空题(每小题3分,本题共15分)1、.______)31(lim 2=+→xx x 。

2、当k 时,⎪⎩⎪⎨⎧>+≤=00e)(2x k x x x f x 在0=x 处连续.3、设x x y ln +=,则______=dydx4、曲线x e y x-=在点(0,1)处的切线方程是5、若⎰+=C x dx x f 2sin )(,C 为常数,则=)(x f 。

二、 单项选择题(每小题3分,本题共15分)1、若函数xx x f =)(,则=→)(lim 0x f x ( )A 、0B 、1-C 、1D 、不存在 2、下列变量中,是无穷小量的为( )A. )0(1ln+→x xB. )1(ln →x xC. )0(cosx→x D. )2(422→--x x x 3、满足方程0)(='x f 的x 是函数)(x f y =的( ).A .极大值点B .极小值点C .驻点D .间断点 4、下列无穷积分收敛的是( )A 、⎰+∞sin xdx B 、dx e x ⎰+∞-02 C 、dx x ⎰+∞1D 、dx x⎰+∞01 5、设空间三点的坐标分别为M (1,1,1)、A (2,2,1)、B (2,1,2)。

则AMB ∠=A 、3π B 、4π C 、2πD 、π 三、 计算题(每小题7分,本题共56分)1、求极限 xx x 2sin 24lim-+→ 。

2、求极限 )111(lim 0--→x x e x 3、求极限 2cos 12limxdt e xt x ⎰-→4、设)1ln(25x x e y +++=,求y '5、设)(x y f =由已知⎩⎨⎧=+=ty t x arctan )1ln(2,求22dx yd 6、求不定积分 dx x x ⎰+)32sin(127、求不定积分x x exd cos ⎰8、设⎪⎪⎩⎪⎪⎨⎧≥+<+=011011)(x xx e x f x, 求⎰-2d )1(x x f四、 应用题(本题7分)求曲线2x y =与2y x =所围成图形的面积A 以及A 饶y 轴旋转所产生的旋转体的体积。

高等数学上_复旦大学出版_习题一答案

高等数学上_复旦大学出版_习题一答案

(2) y =ln( x +2) + 1; (4) y =1 +cos 3 x , x ∈ [0, π].
1− x 1− y 解得 x = , 1+ x 1+ y
所以函数 y =
1− x 1− x 的反函数为 y = ( x ≠ −1) . 1+ x 1+ x
(2)由 y = ln( x + 2) + 1得 x = e y −1 − 2 , 所以,函数 y = ln( x + 2) + 1的反函数为 y = e x −1 − 2
1 x .即函数 y = 有上界. 2 1 + x2
x 为奇函数,所以函数的图形关于原点对称 ,由对称性及函数有上界知 ,函数必有下界 ,因而 1 + x2
4
高等数学上(复大版)习题一
x 函数 y = 有界. 1+ x2
又由 y1 − y2 =
x1 x ( x − x )(1 − x1 x2 ) 知,当 x1 > x2 且 x1 x2 < 1 时, y1 > y2 ,而 − 2 2 = 1 22 2 2 1 + x1 1 + x2 (1 + x1 )(1 + x2 )
1
高等数学上(复大版)习题一
综上所述 , f 是单射 .,但不是满射 . 5. 下列函数是否相等 ,为什么 ?
(1) f ( x) = x 2 , g ( x) = x ; (3) f ( x ) =
解: (1)相等 .
(2) y = sin 2 (3 x + 1), u = sin 2 (3 t + 1);
13. 判断下列函数的奇偶性 :

高等数学期末考试试题及答案(大一考试)

高等数学期末考试试题及答案(大一考试)

五、设函数由方程确定,求.(8分)六、若有界可积函数满足关系式,求。

(8分)七、求下列各不定积分(每题6分,共12分)(1).八、设求定积分。

(6分)九、讨论函数的单调区间、极值、凹凸区间和拐点坐标.(10分)十、求方程的通解(6分)十一、求证:.(5分)第一学期高等数学(上)(A)卷分标准题3分,共15分)2。

B 3。

D 4。

B 5.D分,共18分)为任意常数),4. 2 , 5。

6。

分 (6)分解:………………3分…………….6分 (8)导 (3)数)…………6分分解:(1)。

……。

.3分 (6)分分=……………6分时有极大值2,有极小值。

在上是凸的,在上是凹的,拐点为(0,0)………10分十、解;…………………..3分设方程(1)的解为代入(1)得………5分…………………….6分十一、证明:令………………1 分又…。

3分的图形是凸的,由函数在闭区间连续知道最小值一定在区间端点取到。

,所以…………。

5分.(2010至2011学年第一学期)一、单项选择题(15分,每小题3分)1、当时,下列函数为无穷小量的是( )(A)(B) (C)(D)2.函数在点处连续是函数在该点可导的()(A)必要条件(B)充分条件(C)充要条件(D)既非充分也非必要条件3.设在内单增,则在内()(A)无驻点(B)无拐点(C)无极值点(D)4.设在内连续,且,则至少存在一点使()成立。

(A)(B)(C)(D)5.广义积分当( )时收敛。

(A) (B) (C)(D)二、填空题(15分,每小题3分)1、若当时,,则;2、设由方程所确定的隐函数,则;3、函数在区间单减;在区间单增;4、若在处取得极值,则;5、若,则;三、计算下列极限.(12分,每小题6分)1、2、四、求下列函数的导数(12分,每小题6分)1、,求2、,求五、计算下列积分(18分,每小题6分)1、2、3、设,计算六、讨论函数的连续性,若有间断点,指出其类型。

(7分)七、证明不等式:当时,(7分)八、求由曲线所围图形的面积。

高等数学期末考试试题及答案(大一考试)

高等数学期末考试试题及答案(大一考试)

(2010至2011学年第一学期)课程名称: 高等数学(上)(A 卷)注意事项:1、 满分100分。

要求卷面整洁、字迹工整、无错别字。

2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。

3、 考生必须在签到单上签到,若出现遗漏,后果自负。

4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同交回,否则不给分。

试 题一、单选题(请将正确的答案填在对应括号内,每题3分,共15分) 1. =--→1)1sin(lim21x x x ( ) (A) 1; (B) 0; (C) 2; (D)212.若)(x f 的一个原函数为)(x F ,则dx e f e x x )(⎰--为( )(A) c e F x +)(; (B) c eF x+--)(;(C) c e F x+-)(; (D )c xe F x +-)( 3.下列广义积分中 ( )是收敛的. (A)⎰+∞∞-xdx sin ; (B)dx x ⎰-111; (C) dx x x ⎰+∞∞-+21; (D)⎰∞-0dx e x 。

4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( )(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导; (C) )(x f 可积(常义),则)(x f 一定有界; (D) 函数)(x f 连续,则⎰xadt t f )(在[]b a ,上一定可导。

5. 设函数=)(x f nn x x211lim++∞→ ,则下列结论正确的为( )(A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x二、填空题(请将正确的结果填在横线上.每题3分,共18分) 1. 极限=-+→xx x 11lim20_____.2. 曲线⎩⎨⎧=+=321t y t x 在2=t 处的切线方程为______. 3. 已知方程xxe y y y 265=+'-''的一个特解为x e x x 22)2(21+-,则该方程的通解为 .4. 设)(x f 在2=x 处连续,且22)(lim2=-→x x f x ,则_____)2(='f5.由实验知道,弹簧在拉伸过程中需要的力F (牛顿)与伸长量s 成正比,即ks F =(k 为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________焦耳。

高等数学上期末试卷(含答案)

高等数学上期末试卷(含答案)

一. 选择题:(每小题3分,共15分)1. 若当0x →时,arctan x x -与nax 是等价无穷小,则a = ( ) B A. 3 B.13 C. 3- D. 13- 2. 下列函数在[1,1]-上满足罗尔定理条件的是 ( )C A. ()f x x = B. 3()f x x =C. ()e e xxf x -=+ D. 1,10()0,01x f x x -≤≤⎧=⎨<≤⎩3. 如果()e ,xf x -=则(ln )d f x x x'=⎰ ( )B A. 1C x -+ B. 1C x+ C. ln x C -+ D. ln x C + 4.曲线y x=渐近线的条数是( ) C A. 1 B. 2 C. 3 D. 45. 设函数()f x 与()g x 在[,]a a -上均具有二阶连续导数,且()f x 为奇函数,()g x 为偶函数,则[()()]d aa f x g x x -''''+=⎰( ) DA. ()()f a g a ''+B. ()()f a g a ''-C. 2()f a 'D. 2()g a '二. 填空题:(每小题3分,共15分)1. 要使函数2232()4x x f x x -+=-在点2x =连续,则应补充定义(2)f = .142. 曲线2e x y -=在区间 上是凸的.(,22-序号3.设函数322(21)e ,x y x x x =+++则(7)(0)y =______________.77!2+4. 曲线231x t y t⎧=+⎨=⎩在2t =点处的切线方程是 . 37.y x =- 5.定积分11(cos x x x -+=⎰ .π2三.解下列各题:(每小题10分,共40分)1.求下列极限(1)22011lim .ln(1)x x x →⎡⎤-⎢⎥+⎣⎦. 解:原式=2240ln(1)lim x x x x→-+ …………..2分 2302211lim.42x xx x x →-+== ………….3分 (2)()22220e d lim e d xt xx t t t t-→⎰⎰.解:原式= ()222202e d e limext x x x t x --→⋅⎰………….3分 22000e d e =2lim2lim 2.1x t xx x t x--→→==⎰ …………..2分2. 求曲线0πtan d (0)4x y t t x =≤≤⎰的弧长.解:s x x == …………..5分ππ440sec d ln sec tan |ln(1x x x x ==+=+⎰ ………..5分 3. 设()f x 满足e ()d ln(1e ),x x f x x C =-++⎰求()d .f x x ⎰解:1(),1e xf x -=+ …………..4分 1e ()d d d 1e 1e xx xf x x x x ---=-=++⎰⎰⎰ …………..3分 ln(1e ).x C -=++ …………..3分4. 已知2lim e d ,xc x x x c x x x c -∞→+∞+⎛⎫= ⎪-⎝⎭⎰求常数.c 解:2lim e ,xc x x c x c →+∞+⎛⎫= ⎪-⎝⎭………….4分 221e d (24cxc c x x -∞=-⎰ …………. 4分 5.2c = …………. 2分四.解下列各题:(每小题10分,共30分)1. 设()f x 在[,]a b 上连续,且()0,f x >且1()()d d ,()xba xF x f t t t f t =-⎰⎰求证: (1)[,],()2;x a b F x '∀∈≥(2)()F x 在(,)a b 内恰有一个零点.证明:(1)1()()2,()F x f x f x '=+≥= ……3分 (2)()F x 在[,]a b 上连续 ……1分11()()d d d 0,()()a bb aaa F a f t t t t f t f t =-=-<⎰⎰⎰ ……2分1()()d d ()d 0,()b bb aba Fb f t t t f t t f t =-=>⎰⎰⎰ ……2分由零点定理,()F x 在(,)a b 内至少有一个零点. ……1分 又()F x 在[,]a b 上严格单调增,从而()F x 在(,)a b 内恰有一个零点.……1分2. 设直线(01)y ax a =<<与抛物线2y x =所围成图形的面积为1,S 它们与直线1x =围成图形的面积为2.S(1)确定a 的值,使12S S S =+取得最小值,并求此最小值; (2)求该平面图形绕x 轴旋转一周所得的旋转体的体积.解:22(0,0),(,)y ax a a y x=⎧⇒⎨=⎩ ……..2分 1220()d ()d a aS ax x x x ax x =-+-⎰⎰31,323a a =-+21()0,22S a a a '=-=⇒=唯一驻点()20,S a a ''=>最小值2(.26S = ……..4分1222222π[()()]d π[()()]d 22x V x x x x x x =-+-1π.30+=……..4分 3. 设()f x 在[0,1]上二次可微,且(0)(1)0,f f ==证明:存在(0,1),ξ∈使得()()0.f f ξξξ'''+=证明:令()(),F x xf x '=则()F x 在[0,1]上可微, ……..3分(0)(1)0,f f ==()f x 在[0,1]上可微,由罗尔定理存在(0,1),η∈使()=0f η'……..3分(0)()0,F F η==由罗尔定理存在(0,)(0,1),ξη∈⊂使()=0F ξ' ()()(),F x f x xf x ''''=+(0,1),()()=0.f f ξξξξ'''∴∈+ ……..4分。

高数a上册期末试题及答案

高数a上册期末试题及答案

高数a上册期末试题及答案一、选择题(每题5分,共20题)1. 设函数 $f(x) = \sqrt{3x-2}$,则其定义域为A. $(-\infty, \frac{2}{3}]$B. $\left[ \frac{2}{3}, \infty \right)$C. $[\frac{2}{3}, \infty)$D. $(-\infty, \frac{2}{3}) \cup [\frac{2}{3}, \infty)$答案:C2. 函数 $y = \sin^2 x + \cos^2 x$ 的值域为A. $(-\infty, 1]$B. $[0, 1]$C. $[1, \infty)$D. $[\frac{1}{2}, 1]$答案:B3. 设函数 $f(x) = e^x \ln x$,则 $f'(x) = $A. $e^x \ln x$B. $e^x \left( \frac{1}{x} + \ln x \right)$C. $e^x \left( \ln x - \frac{1}{x} \right)$D. $e^x \left( \frac{1}{x} - \ln x \right)$答案:B4. 若直线 $y = 3x + b$ 与抛物线 $y = ax^2 + bx + 1$ 相切,则 $a + b = $A. 2B. 3C. 4D. 5答案:D5. 函数 $f(x) = \frac{x-1}{\sqrt{x^2 + 1}}$ 的渐近线为A. $y = x - 1$B. $y = x + 1$C. $y = -x + 1$D. $y = -x - 1$答案:A6. 函数 $f(x) = \ln(1 + e^{2x})$ 的反函数为A. $f^{-1}(x) = \ln(x) - \ln(1 - x^2)$B. $f^{-1}(x) = \ln(x^2 - 1)$C. $f^{-1}(x) = \frac{e^x - 1}{2}$D. $f^{-1}(x) = \frac{1}{2} \ln(x) + \ln(1 - x)$答案:D7. 设函数 $f(x) = \arcsin (\sin x)$,则当 $x = \frac{5\pi}{6}$ 时,$f(x) =$A. $\frac{5\pi}{6}$B. $\frac{\pi}{6}$C. $\frac{\pi}{3}$D. $\frac{2\pi}{3}$答案:C8. 函数 $f(x) = \frac{\sin x}{\cos^2 x}$ 的最大值为A. 1B. $\sqrt{3}$C. 2D. $2\sqrt{3}$答案:D9. 函数 $f(x) = x^2 + 2x + 1$ 在区间 $[-1, 1]$ 上的最大值为A. 0B. 1C. 2答案:D10. 函数 $f(x) = \frac{x^2 - 1}{x^2 + 1}$ 的图像关于直线 $x = a$ 对称,则 $a = $A. 1B. 0C. -1D. 2答案:B11. 设 $\sin \alpha = \frac{1}{4}$,$\cos \beta = \frac{4}{5}$,且$\alpha$ 和 $\beta$ 都是第二象限角,则下列四个式子中成立的是A. $\sin (\alpha - \beta) = -\frac{3}{4}$B. $\sin (\alpha + \beta) = \frac{3}{8}$C. $\cos (\alpha - \beta) = \frac{1}{5}$D. $\cos (\alpha + \beta) = \frac{2}{5}$答案:C12. 如果点 $A(1, 2)$ 在抛物线 $y = -x^2 + 3x + k$ 上,那么 $k = $A. -3B. -5D. -9答案:B13. 设函数 $f(x) = x^3 - 3x^2 - 4x + 12$,则 $f'(x)$ 的零点有A. -2, 2B. -1, 3C. -4, 3D. -1, 4答案:A14. 设点 $P(x, y)$ 满足 $y^2 = px$,其中 $p > 0$ 是常数,则焦点所在的直线方程为A. $y = -\frac{p}{2}$B. $x = -\frac{p}{2}$C. $y = \frac{p}{2}$D. $x = \frac{p}{2}$答案:B15. 函数 $f(x) = x^3 - 3x + 1$ 在区间 $[0, 2\pi]$ 上的最小值为A. -1B. 0D. 2答案:A16. 设直线 $y = 2x + 1$ 与曲线 $y = x^2 + bx + c$ 相切,则 $b + c = $A. 0B. $\frac{1}{2}$C. 1D. 2答案:C17. 设函数 $f(x) = (1 - x^2) \cos x$,则 $f''(x)$ 的一个零点在A. $(0, \frac{\pi}{2})$B. $(0, \pi)$C. $(\pi, 2\pi)$D. $(\pi, 3\pi)$答案:B18. 设函数 $f(x) = \sin^2 x - \sqrt{3} \sin x \cos x + \cos^2 x$,则$f(x)$ 的最大值为A. 2B. $2\sqrt{2}$C. 3D. $2 + \sqrt{3}$答案:C19. 设函数 $f(x) = e^x$,$g(x) = x^2$,则 $f(x) \cdot g(x) = $A. $e^{x^2}$B. $x^2 e^x$C. $x^2 e^{x^2}$D. $x^2 + e^x$答案:B20. 设 $a > 0$,则 $\lim\limits_{x \to +\infty} \frac{x^a}{e^x}$ 的值为A. 0B. $\frac{1}{e}$C. 1D. $+\infty$答案:A二、计算题(每题10分,共4题)1. 求函数 $f(x) = \frac{2x^2 - 3x + 1}{x - 1}$ 的极限 $\lim\limits_{x\to 1} f(x)$.解:使用“分子分母可约”的性质,可将函数 $f(x)$ 化简为 $f(x) = 2x - 1$,则 $\lim\limits_{x \to 1} f(x) = \lim\limits_{x \to 1} (2x - 1) = 2(1) - 1 = 1$.答案:12. 求曲线 $y = e^x$ 与直线 $y = kx$ 相交的两个点的坐标,其中 $k > 0$ 是常数.解:将曲线 $y = e^x$ 和直线 $y = kx$ 代入方程中,得到 $e^x = kx$,然后可以使用迭代法或图像法求得相交点的坐标.答案:相交点的坐标为 $(x_1, e^{x_1})$ 和 $(x_2, e^{x_2})$,其中$x_1$ 和 $x_2$ 是满足方程 $e^x = kx$ 的两个解.3. 求曲线 $y = \sin x$ 与直线 $y = x$ 相交的点的个数,并说明理由.解:将曲线 $y = \sin x$ 和直线 $y = x$ 代入方程中,得到 $\sin x = x$,然后可以通过分析函数的周期性和图像来确定相交点的个数.答案:方程 $\sin x = x$ 的解存在无穷个,但相交点的个数取决于给定的区间. 在区间 $[0, \pi]$ 上,方程有一个解;在区间 $[2\pi, 3\pi]$ 上,方程又有一个解. 因此,相交点的个数是不确定的.4. 求函数 $y = x^2 + x$ 在区间 $[-2, 2]$ 上的最大值和最小值,并求出取得最大值和最小值的点.解:首先求导数 $y' = 2x + 1$,然后令 $y' = 0$,解得 $x = -\frac{1}{2}$,将 $x = -2, -\frac{1}{2}, 2$ 代入函数 $y = x^2 + x$,得到对应的 $y$ 值. 最大值为 $y = y_{\text{max}}$ 对应的点为 $(-\frac{1}{2},y_{\text{max}})$,最小值为 $y = y_{\text{min}}$ 对应的点为 $(-2,y_{\text{min}})$ 和 $(2, y_{\text{min}})$.答案:最大值为 $y_{\text{max}} = \frac{5}{4}$,取得最大值的点为 $(-\frac{1}{2}, \frac{5}{4})$;最小值为 $y_{\text{min}} = -2$,取得最小值的点为 $(-2, -2)$ 和 $(2, -2)$.三、证明题(每题20分,共2题)1. 证明函数 $f(x) = \frac{x^3}{3} - x^2 + 2x$ 的导数 $f'(x)$ 恒大于零.证明:求导数 $f'(x) = x^2 - 2x + 2$,我们可以通过判别式来判断 $f'(x)$ 的正负性.判别式为 $\Delta = (-2)^2 - 4(1)(2) = 4 - 8 = -4$,由于 $\Delta < 0$,所以判别式小于零,即 $f'(x)$ 的二次项系数小于零,说明二次项的系数是正的,从而导数 $f'(x)$ 恒大于零.证毕.2. 证明函数 $f(x) = x^3 - 3x^2 + 3$ 的图像关于直线 $x = 1$ 对称.证明:要证明函数的图像关于直线 $x = 1$ 对称,需证明对于任意$x$ 值,函数 $f(x)$ 和 $f(2 - x)$ 的函数值相等.将 $f(x) = x^3 - 3x^2 + 3$ 代入 $f(2 - x)$,得到 $f(2 - x) = (2 - x)^3 -3(2 - x)^2 + 3$,对其进行展开和化简得到 $f(2 - x) = (2 - x)^3 - 3(2 -x)^2 + 3 = x^3 - 3x^2 + 3 = f(x)$,即 $f(x) = f(2 - x)$,证明了函数的图像关于直线 $x = 1$ 对称.证毕.四、应用题(每题50分,共1题)1. 求函数 $f(x) = x^3 + x^2 - 3x$ 的驻点及其对应的极值.解:求导函数 $f'(x) = 3x^2 + 2x - 3$,令 $f'(x) = 0$,求得驻点的 $x$ 坐标,然后将其代入原函数求得对应的 $y$ 坐标.求导的一阶导数方程为 $f'(x) = 3x^2 + 2x - 3 = 0$,通过求根公式求得 $x = -1$ 和 $x = \frac{1}{3}$,将其代入原函数 $f(x)$ 得到对应的$y$ 坐标.将 $x = -1$ 代入 $f(x)$,得到 $f(-1) = (-1)^3 + (-1)^2 - 3(-1) = -1 + 1+ 3 = 3$,将 $x = \frac{1}{3}$ 代入 $f(x)$,得到 $f(\frac{1}{3}) =(\frac{1}{3})^3 + (\frac{1}{3})^2 - 3(\frac{1}{3}) = \frac{1}{27} +\frac{1}{9} - 1 = 0$.因此,函数 $f(x) = x^3 + x^2 - 3x$ 的驻点及其对应的极值为 $(-1, 3)$ 和 $(\frac{1}{3}, 0)$.答案:驻点为 $(-1, 3)$ 和 $(\frac{1}{3}, 0)$,分别对应极大值和极小值.。

(完整版),期末高等数学(上)试题及答案,推荐文档

(完整版),期末高等数学(上)试题及答案,推荐文档

1、(本小题 3 分)
解: 原式
lim
x2
3x 6x2
2 12 18x
12
6x lim x 2 12 x 18
2
2、(本小题 3 分)
(1
x x2)2
dx
1 d(1 x2 ) 2 (1 x 2) 2
11 2 1 x2 c.
3、(本小题 3 分)
因为 arctan x
而 lim arcsin 1 0
lim
x
x
x
x
1
1
(10 )(11 )
x
x
10 11 21
(10 1 ) 2 x
6 10 11 7
2
16、( 本小题 10 分 )
解:
cos2x dx
1 sin x cosx
d( 1 sin 2x 1) 2
1 1 sin 2x 2
1 ln 1 sin 2x c
2
二、解答下列各题 (本大题共 2 小题,总计 13 分 ) 1、(本小题 5 分)

F ( 1) 1 0 , F (1) 1 0 .
22
由零点定理知存在
x1
1 [
,1]
,使
F ( x1 )
0.
2
由 F ( 0) 0 ,在 [ 0, x1] 上应用罗尔定理知,至少存在一点
(0, x1) ( 0,1) ,使 F ( ) f ( ) 1 0 ,即 f ( ) 1 …
第 7 页,共 7 页
9、(本小题 5 分)
3
求 x 1 x dx. 0
10、( 本小题 5 分 )
求函数 y 4 2 x
11、( 本小题 5 分 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f (x)
1
(t
t
2
)
sin
2n
tdt
1
(t
t2
)t 2ndt
1
,x 0。
0
0
(2n 2)(2n 3)
7.(本题满分 8 分)证明:显然 f (x) x 1 。由 Lagrange 中值定理得 x2
f
(b)
f
(a)
2
1
(b
a)
0,1
a
b。
为证明右面的不等式,考察函数 g(x) x 1 。易知 g(x) 2 x ,令 g(x) 0
(2 )x1 2x2 2x3 1,
2x1 (5 )x2 4x3 2,
2x1
4x2 (5 )x3 1
有唯一解、无穷多解、无解?请说明理由。
5
5.(本题满分
10
分)设
A
2 0
0 0
0 1

B
1 0
0 1
0 0

0 1 0
0 6 2
(1)求 A 的特征值和特征向量;
(2)问 A 是否相似于对角矩阵?若是,求正交矩阵 S ,使得 S T AS 为对角矩阵;
(3)问 A 和 B 是否相似?请说明理由。
6
6.(本题满分 9 分)设 f (x)
x
(t
t
2
)
sin
2n
tdt

n
是正整数),证明:当
x
0
时成
0

f (x)
1

(2n 2)(2n 3)
7
7.(本题满分 8 分)设1 a b , f (x) 1 ln x ,证明 x

2
ห้องสมุดไป่ตู้

4.(本题满分 9 分)
当 1且 10 时,方程组有唯一解;
当 10时,方程组无解;
当 1时,方程组有无穷多解。
5.(本题满分
10
分)(1)A
的特征值为
2
,1,
1。对应于
2
的特征向量为
1 c 0

0
对应于
1
的特征向量为
0 c 1
,对应于
1的特征向量为
c
0 1
复旦大学数学科学学院 2011~2012 学年第一学期期末考试试卷
A卷
数学科学学院

1.(本题满分 48 分,每小题 6 分)计算下列各题:

(1)求曲线 e2xy cos(xy) e 1在点 (0, 1) 处的切线方程;

线






1
(2)求极限 lim x ; ln(x31) x
1
(3)设函数 f (x) ax3 bx2 cx 2 在 x 1点取极小值 0,且该函数的图像以 (0, 2) 为 拐点,求 a , b , c 的值。
0 f (b) f (a) 1 (b a) 。 4

8
复旦大学数学科学学院 2011~2012 学年第一学期期末考试试卷
《高等数学 A》(上)试题(答案)
1.(本题满分 48 分,每小题 6 分)(1) y 2x 1 0 ;(2) 3 e ;
(3) a
1,b
0,c
3;(4)
1 (1
(4)设一元函数
f
满足 xf (x)dx
arcsin
x C ( C 是任意常数),求
1 dx ; f (x)
(5)求定积分 ( 1 cos 2x | x | sin 3 x)dx ;
2
(6)若 lim x a x a xe2xdx ,求常数 a ;
x x a
(7)已知 a1 (2, 4,0) ,a2 (2, 1,1) ,a3 (4, 1, t) ,问 t 为何值时,a1 ,a2 ,a3 线 性相关?
3
2.(本题满分 8 分)求点 (0, 1) 到曲线 y x2 x 的最短距离。
3.(本题满分
8
分)求曲线
y
lim
n
6 x(e nx (1
sin enx )( x 2 )e3nx
x
(,
) )与两条直线
y
1 2
x
和 x 1所围平面图形的面积。
4
4.(本题满分 9 分)问 为何值时,线性方程组
(8)已知 R 3 中的两组基为 a1 (1, 1, 1)T , a2 (1, 1, 1)T , a3 (1, 1, 1)T ,
和 b1 (1, 1, 1)T , b2 (0, 1, 1)T , b3 (0, 0, 1)T ,
求从基{ a1 , a2 , a3 }到基{ b1 , b2 , b3 }的过渡矩阵。

c
为任意非零常
1
1
数);
1 0
0
2 0 0
(2)
S
0
1/
2
1/
2

S
T
AS
0
1
0

0 1/ 2 1/ 2
0 0 1
(3) A 与 B 相似。
6.(本题满分 9 分)证明:由于 f (x) (x x2 )sin 2n x ,则当 0 x 1时 f (x) 0 ,
当 x 1时 f (x) 0 ,因此 f 在 x 1点取[0, ) 上的最大值。于是
x2
x3
得驻点 x 2 。因为当1 x 2 时 g(x) 0 ;当 x 2 时 g(x) 0 ,所以 g(2) 1 为 4
极大值,且它是 g(x) 在 (1, ) 上的唯一极值,因此也是最大值,即
于是
g(x) x 1 1 , x (1, ) 。 x2 4
f (b) f (a) 1 (b a) 1 (b a) 。
2
4
3
x2)2
C
;(5) 4
2 ;(6) 5 ;
3
2
(7)
9 5
;(8)
1 2
2 2 2
1 1 2
0 1

1
( 装
2.(本题满分 8 分) 5 。 4

线
0,
x 0,
内 不
3.(本题满分
8
分)即求曲线
y
x 1 x 2
,
与两条直线 y 1 x 和 x 1所围
x0
2


平面图形的面积。答案: 1 ln 2 。
相关文档
最新文档