氢谱解析
核磁氢谱解析
如 成盐后氮旁边的CH2会低场偏移0.5 ppm,同 样在CDCl3或DMSO做溶剂的谱图中没有成盐之前的氨活 泼氢在0.5-4.0ppm处,但成盐后活泼氢会出在10- 12ppm处,并且是两个NH.HCl,这也是鉴定氨是否成盐 的一种方法。
重水交换
重水交换是在核磁管里加入1-2滴重水,摇匀,再做谱图会发现 活泼氢消失。
1) ROH; RNH2; R2NH; ArOH; ArSH; ArNH2; RSO3H; RCOOH;RNH2.HCl的活泼氢是比较容易交换;
2) RCOH; RCONH2; ArCONH2; RCONHR`; ArCONHAr; ArCONHR的活泼氢有时比较难交换,特别是醛氢,这时候在 加完重水后可以用电吹风加热一下,稍等片刻再进行检测,会 发现活泼氢明显减少或消失。但谱图会发现水峰信号增强.在 CDCl3中此时HDO峰会在4.8 ppm的位置。
值得一提的是卤素与不饱和烷烃连接时同时有共轭 作用和诱导作用:
F的共轭作用大于诱导作用,所以邻位的氢谱和碳谱 都移向高场;
Cl的共轭作用和诱导作用相互抵消所以影响很小; Br到I共轭作用小于诱导作用所以相比较邻位氢明 显偏向低场。
记住三类取代基的概念
1. 使邻,间,对位氢的化学位移值影响不大的集团就是在 有机化学中使苯环弱活化和弱钝化的集团.这类集团有CH3, -CH2-,-CH(CH3)2, -CH=CHR, , -Cl, -Br.
下面是我们比较常见的两种结构的互变异构.在有些化合物中只表现一种 构型.有些化合物中两种构型皆有,此时在核磁管里面加入浓盐酸1-2滴,会 发现变为单一的构型,这样的方法比升温要方便。
核磁共振氢谱解析步骤
核磁共振氢谱解析步骤
核磁共振氢谱解析步骤如下:
1.观察图谱是否符合要求:如四甲基硅烷的信号是否正常、杂音大
不大、基线是否平、积分曲线中没有吸收信号的地方是否平整。
如果存在问题,需要重新测试图谱。
2.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式
中的氢原子数目:可以利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子数目。
3.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤
立的甲基质子信号,然后再解析偶合的甲基质子信号。
4.解析羧基、醛基、分子内氢键等低磁场的质子信号。
5.解析芳香核上的质子信号。
氢谱解析知识点总结
氢谱解析知识点总结一、氢谱解析的原理氢谱解析是利用核磁共振(NMR)技术对物质中氢原子进行分析的一种方法。
其原理基于氢原子核在外加磁场下发生的磁共振现象,通过测量氢原子核的共振频率和强度,可以得到有关样品组成和结构的信息。
在氢谱解析中,采用的主要是质子核磁共振(1H-NMR)技术,即利用氢原子核的磁共振进行分析。
1.1 原子核的磁矩氢原子核由一个质子组成,其核自旋为1/2,因此具有磁矩。
在外加磁场下,氢原子核会产生磁偶极矩,这导致核在磁场中存在能级分裂现象,从而引起共振现象。
1.2 核磁共振现象当氢原子核处于外部磁场中时,其核磁矩会与外部磁场发生相互作用,导致核的能量发生分裂,分裂的能级差与外部磁场的强度成正比。
当外部磁场的强度等于核的共振频率时,会发生共振吸收,此时氢原子核会发生能级跃迁,产生共振信号。
通过测量共振频率,可以得到氢原子核的化学环境和结构信息。
1.3 化学位移在氢谱解析中,样品中的不同氢原子会由于其化学环境不同而呈现出不同的共振频率。
这是因为,氢原子的共振频率与其周围的化学环境有关,如化学键的种类和数目、邻近的官能团等。
这种现象称为化学位移,通过化学位移可以对不同氢原子进行识别和定量分析。
1.4 耦合效应在一些情况下,样品中的氢原子之间会发生相互耦合,使得它们的共振频率发生变化。
这种现象称为耦合效应,通过耦合效应可以得到关于氢原子之间的相互作用和化学键的信息,进一步帮助解析样品的结构和成分。
以上是氢谱解析的基本原理,了解这些知识点有助于加深对氢谱解析技术的理解,为后续的仪器分析和谱图解析打下基础。
二、氢谱解析的仪器分析氢谱解析的仪器主要是核磁共振谱仪,利用核磁共振谱仪可以对样品进行快速准确的分析。
核磁共振谱仪通常由磁体、射频系统、梯度磁场和检测器等部分组成,其工作原理是利用外部静态磁场和射频辐射来引起样品中核的共振现象。
2.1 磁体核磁共振谱仪中的磁体是用来产生外部静态磁场的装置,常见的磁体有永磁体和超导磁体。
核磁共振氢谱解析
原子核的进动
在磁场中,原子核的自旋取向有2I+1个。各个取向由一个自旋量子 数m表示。
磁旋比:1H=26753, 2H=410 7,13C= 6726弧度/秒 高斯
N
2 H0 H0
自旋角速度ω,外磁场H0,进动频率ν
共振条件
原子核在磁场中发生能级分裂,在磁场的垂直方向上加小交变电场, 如频率为v射,当v射等于进动频率ν ,发生共振。低能态原子核吸收 交变电场的能量,跃迁到高能态,称核磁共振。
能级分裂
两种取向代表两个能级,m=-1/2能级高于m=1/2能级。
E
N
I
H 0 2 N H 0
核的回旋和核磁共振
当一个原子核的核磁矩处于磁场BO中,由于核自身的旋 转,而外磁场又力求它取向于磁场方向,在这两种力的 作用下,核会在自旋的同时绕外磁场的方向进行回旋, 这种运动称为Larmor进动。
Boltzmann分布
• 在质子群中处于高低能态的核各有多少?
• 在绝对温度0度时,全部核处于低能态 • 在无磁场时,二种自旋取向的几率几乎相等 • 在磁场作用下,原子核自旋取向倾向取低能态,但室温时热能比 原子核自旋取向能级差高几个数量级,热运动使这种倾向受破坏, 当达到热平衡时,处于高低能态的核数的分布服从Boltzmann分 布:
•1H-NMR o how many types of hydrogen ? o how many of each type ? o what types of hydrogen ? o how are they connected ?
NMR谱的结构信息
化学位移 偶合常数 积分高度
1. 核磁共振的基本原理
• • • • 原子核的磁矩 自旋核在磁场中的取向和能级 核的回旋和核磁共振 核的自旋弛豫
核磁共振氢谱的解析
2.2核磁共振氢谱的解析1、自旋偶合系统及分类(1)自旋-自旋偶合机理自旋核与自旋核之间的相互作用称自旋-自旋偶合(spin-spin coupling),简称自旋偶合。
下图是1,1,2-三氯乙烷的1HNMR谱。
双峰和三峰的出现是由于相邻的氢核在外加磁场B中产生不同的局部磁场且相互影响造成的。
CHCl2中有两种取向,与B同向和与B反向,粗略认为二者几率相等。
同向取向使CH2Cl的氢感受到外磁场强度稍稍增强,其共振吸收稍向低场(高频)位移,反向取向使CH2Cl的氢感受到的外磁场强度稍稍降低,其共振吸收稍向高场(低频)端位移,故CH使CH2裂分为双峰。
这种自旋-自旋偶合机理,认为是空间磁性传递的,即偶极-偶极相互作用。
对自旋-自旋偶合的另一种解释,认为是接触机理。
即自旋核之间的相互偶合是通过核之间成键电子对传递的。
根据Pauling原理(成键电子类的自旋方向相反)和Hund规则(同一原子对成键电子应自旋平行)及对应的电子自旋取向与核的自旋取向相同时,势能稍有降低,以Ha -C-C-Hb为例分析。
无偶合时Hb有一种跃迁方式,所吸收的能量为,在Ha 的偶合作用下,Hb有两种跃迁方式,对应的能量分别为E1,E2。
在Hb 的偶合作用下,Ha也被裂分为双峰,分别出现在处,峰间距等于Jab,J为偶合常数。
所以自旋-自旋偶合是相互的,偶合的结果产生谱线增多,即自旋裂分。
偶合常数(J)是推导结构的又一重要参数。
在1HNMR谱中,化学位移(δ)提供不同化学环境的氢。
积分高度(h)代表峰面积,其简化为各组数目之比。
裂分峰的数目和J值可判断相互偶合的氢核数目及基团的连接方式。
(2)n+1规律某组环境完全相等的n个核(I=1/2),在B中共有(n+1)种取向,使与其发生偶合的核裂分为(n+1)条峰。
这就是(n+1)规律,概括如下:某组环境相同的氢若与n个环境相同的氢发生偶合,则被裂分为(n +1)条峰。
某组环境相同的氢,若分别与n个和m个环境不同的氢发生偶合,且J值不等,则被裂分为(n+1)(m+1)条峰。
核磁共振氢谱的解析要点
2.2核磁共振氢谱的解析1、自旋偶合系统及分类(1)自旋-自旋偶合机理自旋核与自旋核之间的相互作用称自旋-自旋偶合(spin-spin coupling),简称自旋偶合。
下图是1,1,2-三氯乙烷的1HNMR谱。
双峰和三峰的出现是由于相邻的氢核在外加磁场B中产生不同的局部磁场且相互影响造成的。
CHCl2中有两种取向,与B同向和与B反向,粗略认为二者几率相等。
同向取向使CH2Cl的氢感受到外磁场强度稍稍增强,其共振吸收稍向低场(高频)位移,反向取向使CH2Cl的氢感受到的外磁场强度稍稍降低,其共振吸收稍向高场(低频)端位移,故CH使CH2裂分为双峰。
这种自旋-自旋偶合机理,认为是空间磁性传递的,即偶极-偶极相互作用。
对自旋-自旋偶合的另一种解释,认为是接触机理。
即自旋核之间的相互偶合是通过核之间成键电子对传递的。
根据Pauling原理(成键电子类的自旋方向相反)和Hund规则(同一原子对成键电子应自旋平行)及对应的电子自旋取向与核的自旋取向相同时,势能稍有降低,以Ha -C-C-Hb为例分析。
无偶合时Hb有一种跃迁方式,所吸收的能量为,在Ha 的偶合作用下,Hb有两种跃迁方式,对应的能量分别为E1,E2。
在Hb 的偶合作用下,Ha也被裂分为双峰,分别出现在处,峰间距等于Jab,J为偶合常数。
所以自旋-自旋偶合是相互的,偶合的结果产生谱线增多,即自旋裂分。
偶合常数(J)是推导结构的又一重要参数。
在1HNMR谱中,化学位移(δ)提供不同化学环境的氢。
积分高度(h)代表峰面积,其简化为各组数目之比。
裂分峰的数目和J值可判断相互偶合的氢核数目及基团的连接方式。
(2)n+1规律某组环境完全相等的n个核(I=1/2),在B中共有(n+1)种取向,使与其发生偶合的核裂分为(n+1)条峰。
这就是(n+1)规律,概括如下:某组环境相同的氢若与n个环境相同的氢发生偶合,则被裂分为(n +1)条峰。
某组环境相同的氢,若分别与n个和m个环境不同的氢发生偶合,且J值不等,则被裂分为(n+1)(m+1)条峰。
氢谱解析简介
H C C X
H H
取代基 3J 顺
3J 反
-Li -CH3 -F 19.3 10.0 4.7 23.9 16.8 12.
(3) 远程耦合
远程耦合是指超过三个化学键以上的核
间耦合作用; 只有当两个核处于特殊空间位置时,跨 越四个或四个以上化学键的耦合作用才 能检测到; 耦合常数很小。
化学等价(化学位移等价) 分子中处于 相同化学环境的相同原子或基团。
化学等价的核化学位移值相同。
HA X HA' HB Y HB' X HA' Y HA Y HB
一般规律 甲基上的三个氢或饱和碳上三个相同 基团化学等价; 固定环上CH2的两个H不化学等价; 与手性碳直接相连的CH2上两个H不 化学等价; 单键不能自由旋转时,连在同一碳上 的两个相同基团不化学等价。
能形成氢键和发生交换反应,因此化
学位移值受测定时温度、样品浓度以 及所用溶剂等因素影响,在一定范围 内变化。
第二节
耦合作用的一般规则 和一级谱图
峰的精细结构——裂分峰数目和相对强度、裂 分峰之间的裂距;
由相邻的1H之间的相互作用产生的,称为自旋 偶合和自旋裂分;
可提供相邻基团的情况。
1.核的等价性
第一节
1H
的化学位移
谱峰的位置,用化学位移值δ 表示; 处于不同化学环境的1H有不同的δ 值, 所以可用于确定的含氢基团的类型及其 在分子中所处环境;
羧酸 烯醇 14 13 12 11 10 醛 9 芳香烃 8 7 6 5 烯烃
炔烃 OCHn NCHn CCHn
4
3
2
1
0
1. 化学位移的产生
核磁共振氢谱解析
核磁共振氢谱解析
核磁共振氢谱(NMR)是一种分析有机分子结构的技术。
在该技术中,核磁共振仪会对样品中的氢原子进行激发,使其产生共振信号,然后测量该信号的频率和强度。
利用核磁共振氢谱技术可以确定分子中不同类型氢原子的相对数量和结构。
每种氢原子所产生的信号的位置、强度和形状均有所不同,可以通过与已知的标准进行比较,从而确定分子结构中每个氢原子的位置和数目。
在解析核磁共振氢谱时,可以通过以下步骤进行:
1. 确定信号的化学位移:信号的化学位移是指共振信号在谱图中所处位置的数值。
该数值可以通过将信号的频率与参考化合物的信号频率进行比较得出。
2. 确定信号的数量:每种不同类型的氢原子所产生的信号数量是确定的,可以通过比较谱图中各个信号的峰的面积或积分来确定每种氢原子的相对数量。
3. 确定信号的形状:不同类型氢原子产生的信号的形状可以有所不同,可能是单峰、双峰或多峰。
该信号形状可以提供分子结构的信息。
4. 确定化合物的结构:通过确定化学位移、数量和形状,可以确定化合物中氢原子的位置和数目,从而确定化合物的结构。
总之,核磁共振氢谱解析是一种能够确定有机分子结构的技术,对有机化学和药物化学等领域具有重要的应用价值。
分析化学课件-核磁共振氢谱的解析
二、核磁共振氢谱的解析方法
(一)解析顺序 1.首先检查内标物的峰位是否准确,底线是否平坦,
溶剂中残存的 1H 信号是否出现在预定的位置。 2.根据已知分子式,算出不饱和度U。 3.根据氢谱的积分曲线计算出各个信号对应的 H
数即氢分布。
4.先解析孤立甲基峰,例如,CH3-O- 、CH3-N -及CH3-Ar等均为单峰。
(b)
图14-9 C9H9Br02 1H-NMR谱
(a) (b)
解析:(1)计算不饱和度
U 2 2 9 10 5 2
(2)推测结构式
由紫外光谱得知有 B 带和 R 带,说明 2个结 构式中均含有苯环和羰基。又由红外光谱得知化合物 (a)在指纹区位于840cm-1处有一吸收带,可以推测可 能为对取代苯;化合物(b)在指纹区800cm-1,890cm-1 左右有两个吸收峰,可能为间取代苯。
2.氢分布
a: 6H(1.8cm) b: 1H(0.3cm) c: 2H(0.6cm) d: 2H(0.6cm) e: 2H(0.6cm)
可能有苯环
3. 推断
a: 二重峰(6个H) 可能为
CH3 CH
CH3
b: 七重峰(1个H)
CH3 CH
CH3
可能为
c: (2H) 单峰
C9H13N C6H4 --) C3H7
3.51 单峰
2
3.60 单峰
3
7.20 单峰
5
可能结构式为:
可能基团 CH2 CH3
相邻基团
O CH2 C
O CH3
O CH2 C O CH3
(1) O
CH2 O C CH3
(2)
O O CH2 C CH3
核磁共振氢谱解析
AB BC
4 8
核磁共振波谱的测定
• • 样品:纯度高,固体样品和粘度大液体样品必须溶解。 溶剂:氘代试剂(CDCl3, C6D6 ,CD3OD, CD3COCD3, C5D5N ) • 标准:四甲基硅烷 (CH3)4Si ,缩写:TMS 优点:信号简单,且在高场,其他信号在低场, 值为正值;沸点低(26。5 C),利于回收样品; 易溶于有机溶剂;化学惰性 实验方法:内标法、外标法 此外还有:六甲基二硅醚(HMDC, 值为0.07ppm), 4,4-二甲基-4-硅代戊磺酸钠(DSS, 水溶性,作为极性化合物的内标, 但三个CH2的 值为0.5~3.0ppm,对样品信号有影响)
I=n/2 n = 0 , 1 , 2 , 3 ---(取整数)
一些原子核有自旋现象,因而具有角动量,原子核是带电的粒 子,在自旋的同时将产生磁矩,磁矩和角动量都是矢量,方向是 平行的。 哪些原子核有自旋现象? 实践证明自旋量子数I与原子核的质量 数A和原子序数Z: A Z I 自旋形状 NMR信号 原子核 12C,16O, 偶数 偶数 0 无自旋现象 无 32S, 28Si, 30Si 1H, 13C, 奇数 奇数或偶数 1/ 2 自旋球体 有 15N, 19F, 31P 奇数 奇数或偶数 3/2, 5/2,--- 自旋惰球体 有 11B,17O,33S,35Cl,79Br,127I 2H, 10B, 偶数 奇数 1, 2, 3, --- 自旋惰球体 有 14N
1H
13C
19F 31P
60.000 MHZ 15.086 MHZ 56.444 MHZ 24.288 MHZ
对于1H 核,不同的频率对应的磁场强度:
射频 40 MHZ 60 100 200 300 500 磁场强度 0.9400 特斯拉 1.4092 2.3500 4.7000 7.1000 11.7500
核磁共振氢谱图谱解析
核磁共振氢谱图谱解析1. 引言核磁共振氢谱是一种利用核磁共振技术研究物质中氢原子的化学环境和结构的方法。
氢是最常见的元素之一,广泛存在于化学化工、生物医药等领域。
通过核磁共振氢谱图谱的解析,可以了解样品的分子结构、官能团和化学环境等信息,对于化学合成、物质性质研究、质量控制等具有重要意义。
本文将介绍核磁共振氢谱图谱的基本原理、谱峰解析步骤和谱峰解析的应用实例,帮助读者更好地理解和应用核磁共振氢谱图谱解析技术。
2. 核磁共振氢谱基本原理核磁共振(Nuclear Magnetic Resonance, NMR)基于原子核的磁性和电磁波的相互作用,通过施加磁场和射频脉冲来激发样品中的氢原子核,根据吸收或发射电磁波的频率差异来获得谱图信息。
核磁共振氢谱图谱的横坐标表示化学位移或称为化学位移标尺(Chemical Shift, δ),单位为ppm(parts per million)。
纵坐标表示吸收强度或强度积分。
3. 核磁共振氢谱图谱解析步骤3.1 样品准备样品是进行核磁共振氢谱图谱解析的基础,需要制备纯度高、浓度适宜的样品。
样品制备时要注意避免杂质的干扰,需选用适合的溶剂,并校正溶剂的化学位移标尺。
3.2 光谱仪参数设置在进行核磁共振实验前,需要根据样品的特点和要研究的问题来调整光谱仪的参数。
如调节磁场强度、扫描速度、脉冲宽度和接收增益等。
3.3 谱峰解析核磁共振谱峰的位置、形状和峰面积等参数与样品的结构和环境密切相关,通过分析谱峰的特征来推断样品的化学结构。
谱峰解析通常包括以下几个方面的内容:3.3.1 化学位移解析化学位移是谱图上谱峰的位置信息,表示了不同原子在化学环境中所受到的磁场强度的差异。
通过与参考物质的化学位移进行比较,可以推断样品中含有的官能团和化学结构。
3.3.2 耦合常数解析耦合常数是指谱图上峰之间的距离信息,用于描述不同耦合离子对之间的相互作用。
通过分析谱峰之间的相对位置和大小关系,可以预测样品中的化学键和官能团。
核磁共振氢谱解析
原子核的进动
在磁场中,原子核的自旋取向有2I+1个。各个取向由一个自旋量子 数m表示。
磁旋比:1H=26753, 2H=410 7,13C= 6726弧度/秒 高斯
N
2 H0 H0
自旋角速度ω,外磁场H0,进动频率ν
共振条件
原子核在磁场中发生能级分裂,在磁场的垂直方向上加小交变电场, 如频率为v射,当v射等于进动频率ν ,发生共振。低能态原子核吸收 交变电场的能量,跃迁到高能态,称核磁共振。
1H
13C
19F 31P
60.000 MHZ 15.086 MHZ 56.444 MHZ 24.288 MHZ
对于1H 核,不同的频率对应的磁场强度:
射频 40 MHZ 60 100 200 300 500 磁场强度 0.9400 特斯拉 1.4092 2.3500 4.7000 7.1000 11.7500
化学等价
处于相同化学环境的原子 — 化学等价原子
化学等价的质子其化学位移相同,仅出现一组 NMR 信号。
化学不等价的质子在 NMR 谱中出现不同的信号 组。
例1:CH3-O-CH3 例2:CH3-CH2-Br 例3:(CH3)2CHCH(CH3)2 例4:CH3-CH2COO-CH3 一组NMR 信号 二组NMR信号 二组NMR 信号 三组NMR 信号
试比较下面化合物分子中 Ha Hb Hc 值的大小。
CH3 CH3-O-CH2-C-CH3
a b
Cl
c
b>a>c
电负性较大的原子,可减小H原子受到的屏蔽作用,引起 H原子向低场移动。向低场移动的程度正比于原子的电负
性和该原子与H之间的距离。
氢谱解析
核磁共振波谱
所谓核磁共振是指处在外磁场中的物质 原子核系统受到相应频率(兆赫数量级的射 频)的电磁波作用时,在其磁能级之间发生 的共振跃迁现象。检测电磁波被吸收的情况 就可以得到核磁共振波谱。根据核磁共振波 谱图上共振峰的位置、强度和精细结构可以 研究分子结构。
核磁共振基本原理 1.核磁共振现象的产生
取向为m=+1/2的核,磁矩方向与B0方向一致,其能量为:
E+1/2=-gNμNmB0=-1/2gNμNB0=-hγB0/4π
取向为m=-1/2的核,磁矩方向与B0方向相反,其能量为:
E-1/2=-gNμNmB0=1/2gNμNB0=hγB0/4π
磁核的两种不同取向代表两个不同的能级, m=+1/2,核处 于低能级,m=-1/2,核处于高能级。 ⊿E= E-1/2- E+1/2=γhB0/2π
(1) 各种基团中质子化学位移值的范围 化学位 移是利用核磁共振推测分子结构的重要依据, 了解并记住各种类型质子化学位移分布的大致 情况,对于初步推测有机物结构类型十分必要。
羧 酸
烯 醇 醛 芳香烃
烯烃
炔烃 XCHn CCHn 2 1 0
14 13 12 11 10
9
8
7
6
5
4
3
(2)1H化学位移的数据表和经验公式
1)原子核的基本属性 原子核有自旋运动,在量子力学中用自旋量子数I描述核的 运动状态。 表1 各种核的自旋量子数
质量数 质子数 偶数 偶数 奇数 偶数 奇数 偶数 奇数 中子数 偶数 奇数 奇数 偶数 自旋量子数I 0 n/2(n=2,4,…) n/2(n=1,3,5…) 典型核
12C, 16O 2H,14N 1H,13C,19F,31P,15N
碳谱、氢谱的解析
碳谱、氢谱的解析碳谱与氢谱一般解析分析氢谱有如下的步骤。
(1)区分出杂质峰、溶剂峰、旋转边带。
杂质含量较低,其峰面积较样品峰小很多,样品和杂质峰面积之间也无简单的整数比关系。
据此可将杂质峰区别出来。
氘代试剂不可能100%氘代,其微量氢会有相应的峰,如CDCl3中的微量CHCl3在约7.27ppm处出峰。
边带峰的区别请阅6.2.1。
(2)计算不饱和度。
不饱和度即环加双键数。
当不饱和度大于等于4时,应考虑到该化合物可能存在一个苯环(或吡啶环)。
(3)确定谱图中各峰组所对应的氢原子数目,对氢原子进行分配。
根据积分曲线,找出各峰组之间氢原子数的简单整数比,再根据分子式中氢的数目,对各峰组的氢原子数进行分配。
(4)对每个峰的δ、J都进行分析。
根据每个峰组氢原子数目及δ值,可对该基团进行推断,并估计其相邻基团。
对每个峰组的峰形应仔细地分析。
分析时最关键之处为寻找峰组中的等间距。
每一种间距相应于一个耦合关系。
一般情况下,某一峰组内的间距会在另一峰组中反映出来。
通过此途径可找出邻碳氢原子的数目。
当从裂分间距计算J值时,应注意谱图是多少兆周的仪器作出的,有了仪器的工作频率才能从化学位移之差Δδ(ppm)算出Δν(Hz)。
当谱图显示烷基链3J耦合裂分时,其间距(相应6-7Hz)也可以作为计算其它裂分间距所对应的赫兹数的基准。
(5)根据对各峰组化学位移和耦合常数的分析,推出若干结构单元,最后组合为几种可能的结构式。
每一可能的结构式不能和谱图有大的矛盾。
(6)对推出的结构进行指认。
每个官能团均应在谱图上找到相应的峰组,峰组的δ值及耦合裂分(峰形和J值大小)都应该和结构式相符。
如存在较大矛盾,则说明所设结构式是不合理的,应予以去除。
通过指认校核所有可能的结构式,进而找出最合理的结构式。
必须强调:指认是推结构的一个必不可少的环节。
如果未知物的结构稍复杂,在推导其结构时就需应用碳谱。
在一般情况下,解析碳谱和解析氢谱应结合进行。
H NMR⑦氢谱解析
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学M
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学M
氢谱解析
乙酸乙酯氢谱(600MHz)
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学M
国大学MOOC
CDCl3
中国大学MOOC
数
中国大学MOOC
常
合
耦
③
算
计
中国大学MOOC
中国大学M
③ ① CDCl3
中国大学MOOC
水 峰
中国大学MOOC
的
剂
中国大学MOOC
溶
中国大学MOOC
中国大学M
3H, t, CH3 3JHH=7.8 Hz
数
常
合
耦
算
计
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学M
③ ②
①CDCl3
国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学M
③烯氢耦合
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学M
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学M
氢谱解析
中国大学MOOC
中国大学MOOC
中国大学MOOC
中国大学MOOC
① 确定溶剂峰:CDCl3(质子7.27,水~1.5),CD3SOCD3(质 子2.5,水3.3)。溶剂峰无需解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
£ O
b
£ C H3C « H N CH3
a
由于存在溶剂效应,在查阅或报道核磁共振 数据时应注意标明测试时所用的溶剂。如使用 混合溶剂,还应说明两种者的比例。
(7) 交换反应
当一个分子有两种或两种以上的形式,且各 种形式的转换速度不同时,会影响谱峰位置和 形状。如N,N-二甲基甲酰胺在不同温度下甲基 信号的变化:
核磁共振波谱
核磁共振波谱
所谓核磁共振是指处在外磁场中的物质 原子核系统受到相应频率(兆赫数量级的射 频)的电磁波作用时,在其磁能级之间发生 的共振跃迁现象。检测电磁波被吸收的情况 就可以得到核磁共振波谱。根据核磁共振波 谱图上共振峰的位置、强度和精细结构可以 研究分子结构。
核磁共振基本原理 1.核磁共振现象的产生
(3) 核磁共振产生的条件 自旋量子数I(I≠0)的磁核在外磁场的作用下 原来简并的能级分裂为2I+1个能级,当外界电磁 波的能量正好等于相邻能级间的能级差即E外= ⊿E时,核就能吸收电磁波能量从较低能级跃迁 到较高能级。被吸收的电磁波频率为 v=⊿E/h=γB0/2π
核磁共振产生的条件另一种表述:外界电磁 波的频率正好等于核的进动频率。
耦合常数J表示耦合的磁核之间的相互 干扰程度,以赫兹为单位。J和外加磁场无关, 而与两个核在分子中相隔的化学键数目和种 类有关。所以通常在J的左上角标以两核相 距的化学键数目,在键的右下角标明相互耦 合的两个核的种类。如1H-C-C-1H中两个1H之 间相隔三个键,其耦合常数表示为3JH-H。
核磁共振氢谱
化学位移测定时,常用的标准物为四甲基硅烷,简称 TMS,优点为: • • 化学性质不活泼 具有对称结构
• Si的电负性比C的电负性小,TMS中的氢核和碳核 处在高电子密度区,产生较大的屏蔽效应
• TMS沸点低
在1H和13C谱中规定标准物TMS的化学位移值δ=0, 位于图谱的右边,在它的左边为正值,右边为负值,绝 大部分有机化合物的氢核或碳核的化学位移值都是正值。
来。如环己烷直立氢(Hax)和平伏氢(Heq) 的化学位移值不同。
环己烷C-1上的氢, 2-3键和5-6键 的作用使直立氢(Hax)处于屏蔽区,而 平伏氢(Heq)处于去屏蔽区,两者的化 学位移差HeqHax0.5。
(5) 氢键的影响
R R O H
O C R
H O CH C R
H O
两个电负性基团分别通过共价键和氢键产生吸 电子诱导作用,使共振发生在低场。 分子间氢键的形成与样品浓度、测定温度以及 溶剂等有关,因此相应的质子 不固定,如醇 羟基和脂肪胺基的质子 一般在0.5~5,酚羟 基质子则在4~7。
(6) 溶剂效应
由于溶质分子受到不同溶剂影响而引起的化 学位移变化称为溶剂效应。例如:N,N-二甲基 甲酰胺
.. CH3 b C N H CH3 a O
O
+ CH3 b C N H CH3 a
- 在氘代氯仿溶剂中,b2.88;a2.97。 - 逐步加入各向异性溶剂苯,a和b甲基的化学 位移逐渐靠近,然后交换位置。
(2)磁性核在外磁场中(B0)中的行为
若I≠0的磁性核处于外磁场中B0中产生以下现 象: • 原子核的进动 核受到磁场力的作用围绕外磁场方向作旋 转运动,同时保持本身的自转。这种运动方式称 为进动或拉摩进动。进动频率v表示为:
• 原子核的取向和能级分裂
自旋核在外磁场中取向是空间方向量子化的,取决于磁量 子数m的取值(m可取I,I-1,I-2…-I,共取2I+1个不连续的值)。 对于1H,13C等I=1/2的核,只有两种取向。现以I=1/2的核为例进 行讨论。
CH3Br 2.68 2.8
相邻电负性基团的个数
CH3Cl 3.05 CH2Cl2 5.30 CHCl3 7.27
与电负性基团相隔的距离(键数)
CH3OH CH3CH2OH CH3CH2CH2OH CH3 3.39 1.18 0.93
(2) 各向异性效应
非球形对称的电子云,如 电子,对邻近 质子附加一个各向异性的磁场,即该磁场在某 些区域与外磁场B0的方向相反,使外磁场强度 减弱,起抗磁性屏蔽作用(+),简称屏蔽作 用,而在另一些区域与外磁场B0方向相同,对 外磁场起增强作用,产生顺磁性屏蔽作用,简 称去屏蔽作用(-)。
因耦合而产生的多重峰相对强度可用二项式 (a+b)n 展开的系数表示,n为磁等价核的个 数; 裂分峰组的中心位置是该组磁核的化学位移 值。裂分峰之间的裂距反映耦合常数J 的大 小;
磁等价的核相互之间有耦合作用,但没有谱 峰裂分的现象。
3. 一级谱图
符合上述规则的核磁共振谱图称为一级谱图。 一般规定相互耦合的两组核的化学位移差 (以频率Hz表示)至少是它们的耦合常数的6 倍以上,即 /J 6时,得到的谱图为一级谱 图。 /J 6时为高级谱图,高级谱图中磁核之间 耦合作用不符合上述规则。
1)原子核的基本属性 原子核有自旋运动,在量子力学中用自旋量子数I描述核的 运动状态。 表1 各种核的自旋量子数
质量数 质子数 偶数 偶数 奇数 偶数 奇数 偶数 奇数 中子数 偶数 奇数 奇数 偶数 自旋量子数I 0 n/2(n=2,4,…) n/2(n=1,3,5…) 典型核
12C, 16O 2H,14N 1H,13C,19F,31P,15N
(1) 各种基团中质子化学位移值的范围 化学位 移是利用核磁共振推测分子结构的重要依据, 了解并记住各种类型质子化学位移分布的大致 情况,对于初步推测有机物结构类型十分必要。
羧 酸
烯 醇 醛 芳香烃
烯烃
炔烃 XCHn CCHn 2 1 0
14 13 12 11 10
9
8
7
6
5
4
3
(2)1H化学位移的数据表和经验公式
氢键形成对质子化学位移的影响规律:
氢键缔合是放热过程,温度升高不利于氢键形 成,能形成氢键的质子谱峰向高场移动;
在非极性溶剂中,浓度越稀,越不利于形成氢 键。随着浓度减小,质子共振向高场移动;
改变测定温度或浓度,观察谱峰位置改变可确 定OH或NH等产生的信号; 分子内氢键的生成与浓度无关,相应的质子总 是出现在较低场。
取向为m=+1/2的核,磁矩方向与B0方向一致,其能量为:
E+1/2=-gNμNmB0=-1/2gNμNB0=-hγB0/4π
取向为m=-1/2的核,磁矩方向与B0方向相反,其能量为:
E-1/2=-gNμNmB0=1/2gNμNB0=hγB0/4π
磁核的两种不同取向代表两个不同的能级, m=+1/2,核处 于低能级,m=-1/2,核处于高能级。 ⊿E= E-1/2- E+1/2=γhB0/2π
分子之间的交换反应
-OH、-NH2等活泼氢可在分子间交换。如羧 酸水溶液中发生如下交换反应:
RCOOH(a)+HOH(b) RCOOH(b)+HOH(a)
结果在核磁共振谱图上,只观测到一个平均 的活泼氢信号,信号的位置与溶液中羧酸和水 的摩尔比有关: 观测=Naa+Nbb
2.各类1H的化学位移
(1) 诱导效应 核外电子云的屏蔽作用是影响 质子化学位移的主要因素。 邻近原子或基团的电负性大小
CH3X
X电负性 CH3X
X电负性
CH3F 4.26 4.0 CH3CH3 0.88 2.5
CH3OCH3 3.24 3.5 CH3H 0.2 2.1
CH3Cl 3.05 3.1 CH3Li -1.95 0.98
扫频:固定磁场强度B0,改变照射频率v。
一般仪器大多采用扫场的方法
3. 自旋-自旋偶合 在高分辨率 时,CH2和CH3 的吸收峰分裂 为四重峰和三 重峰
乙醇的1HNMR
裂分峰的产生是由于CH2和CH3两个基团上的1H相 互干扰引起的,这种磁核之间的相互干扰称为自旋自旋耦合,由自旋耦合产生的多重谱峰现象称为自 旋裂分.
凡是I≠0的原子核都有核磁共振现象,以I =1/2核的 核磁共振研究得最多。
自旋角动量P
原子核的磁矩μ和磁旋比γ
自旋核相当于一个小磁体,其磁性可用核磁矩μ 来描述
原子核的旋磁比γ=μ/P为一常数,是原子核的基 本属性,与核的质量、所带电荷以及朗得因子有关。不 同的原子核的γ不同, γ越大,核的磁性越强,在核磁 共振中越容易检测。
化学位移的测定
测定时一般将TMS作为内标和样品一起溶解于合适的 溶剂中,氢谱和碳谱所用溶剂一般为氘代溶剂,常用的氘 代溶剂有氘代氯仿,氘代丙酮,重水等。 测定化学位移有两种实验方法: 从低场向高场变化,当B0正好与分子中某一种化学环境的 核共振频率满足共振条件时,产生吸收信号,出现吸收峰。
扫场:固定照射电磁波频率,不断改变外磁场强度B0,
4.3.2
耦合作用的一般规则 和一级谱图
1.核的等价性
化学等价(化学位移等价) 分子中处于相同化 学环境的相同原子或基团。
HA X HA' HB Y HB' X HA' Y HA Y HB
一般规律 –甲基上的三个氢或饱和碳上三个相同基团 化学等价; –固定环上CH2的两个H不化学等价; –与手性碳直接相连的CH2上两个H不化学等价; –单键不能自由旋转时,连在同一碳上的两 个相同基团不化学等价。
2)化学位移的表示方法
化学位移用位移常数δ 表示
(1)
(2)
其中V0(标准),v0(样品)为标准物中磁核和样品中 磁核的共振频率,B标准,B样品分别为标准物中的磁核 和样品中的磁核产生共振吸收时外磁场的强度。
对于(1)适合于固定照射电磁波频率改变外 磁场强度的扫场式仪器,对于(2)适合固定磁场 改变射频的扫频式仪器。