银行考试十大数字推理规律
行测数字推理题技巧
行测数字推理题技巧
1.规律分析:首先看给出的数字序列是否存在其中一种规律,例如递增、递减、交替等。
通过观察规律,可以将下一个数字或者数字序列进行
推理。
2.数字运算:在数字推理题中,经常出现的是数字的运算关系。
可以
通过加减乘除等简单的运算符号,对给出的数字进行运算,从而得出新的
数字或者数字序列。
3.数字特征:观察给出的数字是否有一些特殊的特征,例如是否为质数、完全平方数、斐波那契数列等,可以通过这些特征进行逻辑推理。
4.数字拆分:有些数字推理题给出的数字较大,可以将其拆分成小的
数字,然后再进行运算或者找规律。
5.条件限制:有些数字推理题在给出的数字序列中存在一些限制条件,例如数字的位数、数字之间差距等。
可以通过这些限制条件进行推理。
6.平均数:在有些数字推理题中,给出的数字序列的平均数可能有特
殊的含义,通过计算平均数,可以得到下一个数字或者数字序列。
7.数字替换:有些数字推理题中,给出的数字序列中存在一些数字可
以进行替换,通过替换数字,可以发现其中一种规律。
2017银行校园招聘:行测备考数字推理题型及技巧
2017银行校园招聘:行测备考数字推理题型及技巧中公金融人提示您,2017年银行校园招聘考试报名公告还未发布,据往年情况预测,今年的网申时间大概会在9到10月,机考考试时间将会在11月(仅供参考,具体以实际通知为准)。
在银行招聘考试笔试中,行测往往都是一个重点考察科目,不同于现在的国考与省考,在银行招聘行测的笔试中,数字推理几乎每年必考。
所以,掌握数字推理的常考题型以及相对应的技巧,能够在考试中脱颖而出。
在数字推理的考察中,银行招聘考试经常涉及到的考察题型有等差数列、和数列、倍数数列、分式数列以及组合数列。
无论哪种类型都会有一定的解题思路和技巧。
1、等差数列——数列单调变化,各项数字之间的变化幅度不大。
常见考点:1、基本等差数列,如2、5、8、11、(?)下一个就是14,这是一个公差为4的等差数列。
2、二级等差及变式,后项减前项等到一个等差数列。
例题1:2、8、18、32、()A. 48B.50C.64D.72【答案】B【中公解析】2 8 18 32 ( 50 )作差6 10 14 18公差为4的等差数列1、和数列常见考点:1、典型和数列:前两项和等于第三项2、变式:前两项和经变化后得第三项例2: 25、30、50、75()190A.100B.125C.110D.120【答案】D【中公解析】第一项+第二项-5=第三项,依此类推,50+75-5=120,75+120-5=190三、倍数数列——数列变化趋势明显,且数与数之间有较为明显的倍数关系常见考点:1、等比数列:如1、2、4、8(?)下一个就是16,这是一个公比为2的等比数列。
2、倍数数列变式:项余项之间的倍数呈现规律变化,或倍数变式后前项和后项有其他数量关联。
例3:4、11、27、61()A.106B.117C.131D.163【答案】C【中公解析】从第二项开始,每一项等于前一项的2倍加上连续奇数,4×2+3=11,11×2+5=27,27×2+7=61,61×2+9=(131)1、分式数列——题干以分数为主常见考点:1、分子分母分别变化,各自成规律,分数改写为分母递增为主例4:1、1、4/3、2、16/5()A.32/7B.16/7C.32/3D.16/3【答案】D【中公解析】各项依次改写为1/1、2/2、4/3、8/4、16/5分子是公比为2的等比数列,分母是连续自然数,所填项为32/6=(16/3)。
数字推理十大规律
备考规律一:等差数列及其变式【例题】7,11,15,()A.19B.20C.22D.25【答案】A选项【解析】这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间也满足此规律,那么在此基础上对未知的一项进行推理,即15+4=19,第四项应该是19,即答案为A.(一)等差数列的变形一:【例题】7,11,16,22,()A.28B.29C.32D.33【答案】B选项【解析】这是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是6.假设第五个与第四个数字之间的差值是X,我们发现数值之间的差值分别为4,5,6,X.很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=7,则第五个数为22+7=29.即答案为B选项。
(二)等差数列的变形二:【例题】7,11,13,14,()A.15B.14.5C.16D.17【答案】B选项【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是2;第四个与第三个数字之间的差值是1.假设第五个与第四个数字之间的差值是X.我们发现数值之间的差值分别为4,2,1,X.很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=0.5,则第五个数为14+0.5=14.5.即答案为B选项。
(三)等差数列的变形三:【例题】7,11,6,12,()A.5B.4C.16D.15【答案】A选项【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。
银行考试--十大数字推理规律
银行考试--十大数字推理规律备考规律一:等差数列及其变式【例题】7,11,15,(? )A 19????B 20 ????C 22 ???D 25【答案】A选项【解析】这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间也满足此规律,那么在此基础上对未知的一项进行推理,即15+4=19,第四项应该是19,即答案为A。
(一)等差数列的变形一:【例题】7,11,16,22,(? )A.28??? B.29???? C.32???? D.33【答案】B选项【解析】这是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是6。
假设第五个与第四个数字之间的差值是X,我们发现数值之间的差值分别为4,5,6,X。
很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=7,则第五个数为22+7=29。
即答案为B 选项。
(二)等差数列的变形二:【例题】7,11,13,14,(? )A.15??? B.14.5???? C.16??? D.17【答案】B选项【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是2;第四个与第三个数字之间的差值是1。
假设第五个与第四个数字之间的差值是X。
我们发现数值之间的差值分别为4,2,1,X。
很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=0.5,则第五个数为14+0.5=14.5。
即答案为B选项。
(三)等差数列的变形三:【例题】7,11,6,12,(? )A.5??? B.4???? C.16??? D.15【答案】A选项【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。
银行数字推理口诀
行政职业能力测验数字推理口诀整体观察分AB,线性趋势明走A,增幅一般做加减,做差不会超三级,减幅同样此道理,典型数列熟记心。
增幅较大做乘除,做商同样不超三。
增幅很大想幂次,常用幂数要熟悉。
线性趋势弱走B,要找视觉冲击点,何为此点如何找,特殊数字勿放过。
列长项多6以上,考虑分组或隔项。
摇摆数列忽大小,基本思路是隔项,若要见到双括号,一定隔项成规律。
摇摆双括同时出,义无反顾找隔项。
整数分数混着搭,提示要做乘除法。
全是分数先约分,能划一时先划一,突破口在固定数,分子、母与项有关。
正负交叠要做商,肯定没错不夸张。
根数整数混搭时,先将整数化根数,号外数字移号里,此为一定是药方。
遇到根数加减式,平方差公式帮忙。
递推数列很难做,五则运算和乘方。
看到纯小数数列,整、小部分分开想。
似连续而不连贯,考虑质数或合数。
数字很大3位上,考虑微观是抓手。
数列如有公约数,约去公因是正法。
相邻项有公约数,因式分解可办好。
以上方法皆受挫,除3 除5看余数。
如若还是想不出,蒙猜办法可帮忙。
选项整数小数混,小数多半是答案。
数项负数选项同,负数多半是选择。
另外直猜接近值,肯定八九不离十。
原来数列题也有套路可循!咱不怕了!公务员考试行政能力测验解题心得数列篇第一步:整体观察,若有线性趋势则走思路A,若没有线性趋势或线性趋势不明显则走思路B。
注:线性趋势是指数列总体上往一个方向发展,即数值越来越大,或越来越小,且直观上数值的大小变化跟项数本身有直接关联(别觉得太玄乎,其实大家做过一些题后都能有这个直觉)第二步思路A:分析趋势1,增幅(包括减幅)一般做加减。
基本方法是做差,但如果做差超过三级仍找不到规律,立即转换思路,因为公考没有考过三级以上的等差数列及其变式。
例1:-8,15,39,65,94,128,170,()A.180 B.210 C. 225 D 256解:观察呈线性规律,数值逐渐增大,且增幅一般,考虑做差,得出差23,24,26,29,34,42,再度形成一个增幅很小的线性数列,再做差得出1,2,3,5,8,很明显的一个和递推数列,下一项是5+8=13,因而二级差数列的下一项是42+13=55,因此一级数列的下一项是170+55=225,选C。
绝招:3分钟搞定行测数字推理(不得不看)
1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b2)深一愕模型,各数之间的差有规律,如1、2、5、10、17。
它们之间的差为1、3、5、7,成等差数列。
这些规律还有差之间成等比之类。
B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。
3)看各数的大小组合规律,作出合理的分组。
如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。
而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。
所以7*7-9=40 , 9*9-7=74 , 40*40-74=1526 , 74*74-40=5436,这就是规律。
4)如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数7+14=10+11=9+12。
首尾关系经常被忽略,但又是很简单的规律。
B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。
5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。
如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4 =60、5^3-5=120、6^3-6=210。
这组数比较巧的是都是6的倍数,容易导入歧途。
6)看大小不能看出来的,就要看数的特征了。
如21、31、47、56、69、72,它们的十位数就是递增关系,如25、58、811、1114,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上fjjngs解答:256,269,286,302,(),2+5+6=132+6+9=172+8+6=163+0+2=5,∵256+13=269269+17=286286+16=302 ∴下一个数为302+5=307。
银行招聘3500题答案(数字推理解析)
2 12 36 80 (150)
↓ ↓↓↓ ↓ 2×12 3×22 4×32 5×42 (6×52)
44.【答案】A。 解析:多次方数列变式。
4
↓ 31+12
13 36 (97) 268
↓↓ ↓ ↓ 32+22 33+32 34+42 (35+52)
45.【答案】C。 解析:将 3 写为 姨 9 、2 姨 7 写为 姨28 ,根号下的数字 2、9、28、65、(126)依次为 13+
75,75×2-1=(149)。
方 法 二 ,第 一 项 ×2+ 第 二 项 = 第 三 项 。 2×2+5=9 ,5×2+9=19 ,9×2+19=37 ,19×2+37=75 ,37×2+
75 = ( 149 ) 。
8.【答案】A。 解析:
3 2
1 2
1 4
3 20
1 10
(
1 14
)
↓↓ ↓ ↓ ↓
56.【答案】A。 解析:分式化为最简式时均得到 3 ,选项中只有 A 项满足题意。 14
57.【答案】B。
解析:各项依次是 1 3
、2 4
、3 5
、4 6
、( 5 7
),分子、分母都是连续自然数。
58.【答案】D。
解析:分母均化为
2,则分子为
和数列
3、4、7、11、(18),下一项为
18 2
=(9)。
48.【答案】A。 解析:平方数列变式。
6 7 18 23 38 (47)
↓↓↓↓↓
↓
22+2 32-2 42+2 52-2 62+2 (72-2)
行测考试十大数据推理规律
一、行测考试十大数据推理规律:①奇偶数规律:各个数都是奇数(单数)或偶数(双数)。
②等差:相邻数之间的差值相等,整个数字序列依列递增或递减。
③等比:相邻数之间的比值相等,整个数字序列依次递增或递减。
④二级等差:相邻数之间的差或比构成了一个等差数列。
⑤二级等比数列:相邻数之间的差或比构成一个等比数列。
⑥加法规律:前两个数之和等于第三个数。
⑦减法规律:前两个数之差等于第三个数。
⑧乘法(除法)规律:前两个数之乘积(或相除)等于第三个数。
⑨完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含。
⑩混合型规律:由以上基本规律组合而成,可以是二级、三级的基本规律,也可能是两个规律的数列交叉组合成一个数列。
二、经典题型分类练习:1.等差数列例1:1, 4, 7, 10, 13,( )A.14B.15C.16D.172.等差数列的变式例1:3, 4, 6, 9,( ),18A.11B.12C.13D.143.“两项之和等于第三项”型例1:34, 35, 69, 104, ( )A.138B.139C.173D.179例2:…101102203305508( )1321…A.812B.814C.813D. 8114.等比数列例1:3, 9, 27, 81, ( )A.433B.342C.243D.1355.等比数列的变式例1:8, 12, 24, 60, ( )A.90B.120C.180D.240例2:8, 14, 26, 50, ( )A.104B.100C. 98D. 76例3:1/2, 1, 7/5, 13/9, ( )A. 17/13B. 19/15C. 21/17D. 23/196.平方型及其变式例1:1, 4, 9, ( ), 25, 36A.10B.14C.16D.20例2:1/2, 1, 5/7, ( ), 9/32A. 5/11B.7/11C.7/16D.9/167.利用“凑整法”求解例1:52+136+38+64的值为:A. 300B. 292C. 290D. 280例2:12.5×0.25×0.5×32的值为:( )A. 50.25B. 100C. 50D. 258.利用“尾数估算法”求解例1:425+683+544+828的值是:A. 2484B. 2482C. 2480D. 2478例2:1997+1998+1999+2000+2001A. 9993B. 9994C. 9995D. 9996。
数字推理的十大规律
数字推理的十大规律数字推理是通过对数字、数字关系、数字规律等进行分析、推理来解决问题的一种思维方式。
数字推理可以应用于数学、逻辑、信息处理、统计学等领域。
在数字推理中,存在着一些常见的规律,通过了解这些规律,我们可以更好地进行数字推理。
下面是数字推理中的十大常见规律:1. 自然数规律自然数规律是最基本的数字规律之一。
自然数由1开始依次递增,其中包含了所有整数。
我们可以通过对自然数序列的观察,进一步推导出一些数学规律。
例如,自然数序列的平方数规律:1, 4, 9, 16, 25, ...,可以看出平方数是自然数序列的某种特殊规律。
2. 等差数列规律等差数列是一种特殊的数字序列,其中相邻的数字之间的差值是相等的。
等差数列常用于数学题目、数列的求和问题等。
例如,2, 5, 8, 11, 14, ...,可以看出每个数字都比前一个数字增加了3。
3. 等比数列规律等比数列是一种特殊的数字序列,其中相邻的数字之间的比值是相等的。
等比数列常用于数学问题中,比如指数增长、连续复利等。
例如,2, 6, 18, 54, ...,可以看出每个数字都是前一个数字乘以3。
4. 斐波那契数列规律斐波那契数列是一个非常特殊的数列,其中每个数字都是前两个数字之和。
斐波那契数列在自然界中广泛存在,如植物的叶子排列、兔子繁殖等。
例如,1, 1, 2, 3, 5, 8, 13, ...,可以看出每个数字都是前两个数字之和。
5. 奇偶数规律奇偶数规律是数字推理中的一种常见规律。
奇数是整数中不能被2整除的数,偶数则是能被2整除的数。
例如,1, 3, 5, 7, 9, ...是奇数序列;2, 4, 6, 8, 10, ...是偶数序列。
6. 质数规律质数是只能被1和自身整除的自然数。
质数规律在密码学、因数分解等领域有重要应用。
例如,2, 3, 5, 7, 11, ...,可以看出每个数字都是质数。
7. 素数规律素数是指除了1和本身外没有其他除数的数,素数可以是质数或者合数。
银行测试专项::数字推理
A、11;B、12;C、13;D、14解答:答案为C。
这道题表面看起来没有什么规律,但稍加改变处理,就成为一道非常容易的题目。
顺次将数列的后项与前项相减,得到的差构成等差数列1,2,3,4,5,……。
显然,括号内的数字应填13。
在这种题中,虽然相邻两项之差不是一个常数,但这些数字之间有着很明显的规律性,可以把它们称为等差数列的变式。
例题3:1,4,7,10,13,()A.14B.15C.16D.17答案为C。
我们很容易从中发现相邻两个数字之间的差是一个常数3,所以括号中的数字应为16。
等差数列是数字推理测验中排列数字的常见规律之一。
⊙等比数列及其变式例题4:3,9,27,81,()A、243;B、342;C、433;D、135解答:答案为A。
这也是一种最基本的排列方式,等比数列。
其特点为相邻两个数字之间的商是一个常数。
该题中后项与前项相除得数均为3,故括号内的数字应填243。
例题5:8,8,12,24,60,()A、1;B、3;C、2/25;D、2/5解答:这个数列则是相除形式的数列,即后一项是前两项之比,所以未知项应该是2/25,即选C。
⊙求平方数及其变式例题12:1,4,9,(),25,36A、10;B、14;C、20;D、16解答:答案为D。
这是一道比较简单的试题,直觉力强的考生马上就可以作出这样的反应,第一个数字是1的平方,第二个数字是2的平方,第三个数字是3的平方,第五和第六个数字分别是5、6的平方,所以第四个数字必定是4的平方。
对于这类问题,要想迅速作出反应,熟练掌握一些数字的平方得数是很有必要的。
对于这种题,考生应熟练掌握一些数字的平方得数。
如:10的平方=10011的平方=12112的平方=14413的平方=16914的平方=196A、11B、13C、14D、18解析:本题的数字规律是:从左到右相邻三项,第一项与第二项的和再除以2,可以得到第三项。
即:(0+16)÷2=8,(16+8)÷2=12,(8+12)÷2=10,(12+10)÷2=(?)。
行测指导:数字推理30种解题技巧
行测指导:数字推理30 种解题技巧一、当一列数中出现几个整数,而只有一两个分数并且是几分之一的时候,这列数常常是负幂次数列。
【例】 1、4、3、1、1/5 、1/36 、()二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意察看分式数列的分子、分母是向来递加、递减或许不变,并以此为依照找到打破口,经过“约分”、“反约分”实现分子、分母的各自成规律。
【例】 1/162/132/58/74()三、当一列数比较长、数字大小比较靠近、有时有两个括号时,常常是间隔数列或分组数列。
【例】 33、32、34、31、35、30、36、29、()四、在数字推理中,当题干和选项都是个位数,且大小改动不稳准时,常常是取尾数列。
取尾数列一般拥有相加取尾、相乘取尾两种形式。
【例】 6、7、3、0、3、3、6、9、5、()五、当一列数都是几十、几百或许几千的“清一色”整数,且大小改动不稳准时,常常是与数位有关的数列。
【例】 448、516、639、347、178、()六、幂次数列的实质特点是:底数和指数各自成规律,而后再加减修正系数。
关于幂次数列,考生要成立起足够的幂数敏感性,当数列中出现 6?、 12?、 14?、 21?、 25?、 34?、 51?、312?,就优先考虑 43、112(53)、 122、63、44、73、83、55。
【例】 0、9、26、65、124、()七、在递推数列中,当数列选项没有显然特点时,考生要注意察看题干数字间的倍数关系,常常是一项推一项的倍数递推。
【例】 118、60、32、20、()八、假如数列的题干和选项都是整数且数字颠簸不大时,不存在其余显然特点时,优先考虑做差多级数列,其次是倍数递推数列,常常是两项推一项的倍数递推。
【例】 0、6、24、60、120、()九、当题干和选项都是整数,且数字大小颠簸很大时,常常是两项推一项的乘法或许乘方的递推数列。
【例】 3、7、16、107、()十、当数列选项中有两个整数、两个小数时,答案常常是小数,且一般是经过乘除来实现的。
银行考试行测备考:数字推理解题思路
银行考试行测备考:数字推理解题思路下边就银行考试中的数字推理浅谈一下数字推理的一些个答题技巧。
数理能力主要测查考生理解、把握事物间量化关系和解决数量关系问题的能力。
数字推理题所涉及的数字规律千变万化,对于数字推理题没有万能的解法,建议考生应重点分析题干数字的运算关系和位置关系。
这就要求考生掌握相关的基础数学知识,还要掌握一定的解题方法,提高解题速度。
所以解题的时候需要也是要用一些思维方式。
(一)直觉思维直觉思维是对事物直观认识的特殊思维方式,是逻辑思维的凝结或简缩。
它包括数字直觉和运算直觉两个方面。
数字直觉数字直觉是人们对数字基本属性深入了解之后形成的。
通过数字直觉解决数字推理问题的实质是灵活运用数字的基本属性。
自然数平方数列:由于题干数字的迷惑性,数字推理规律隐藏得很深,解题时可能是直觉思维、构造思维、转化思维交替运用的过程,是猜证结合的过程,这就是一种综合思维。
当前数字推理规律求新求异,真题中时有“出人意外”的数字推理规律出现,这就要求我们在掌握一些基本解题方法的基础上,结合对数字推理规律的积累,多角度开阔思路,实现数字推理解题能力的全面提升。
(二)解题思路1.当数列呈递增或递减趋势,且变化幅度不大时,优先使用作差法。
另外,当数列中无明显规律,寻找数项特征和结构特征也没有头绪时,也可以考虑使用作差法理清关系。
2.当数字之间存在明显倍数关系时,应优先应考虑使用作商法。
3.数列有平稳、递增趋势,但通过作差不能解决问题,利用多次方和作商也不能解决时,可考虑取两项或三项求和,从而寻找新数列的规律。
4.拆分法的应用,拆分法是指将数列中的数字拆分成两个或多个部分,然后通过每部分的规律得到原数列规律的方法,在公务员考试中,拆分法主要有整数乘积拆分与整数加减拆分两种。
对于这种题型,一般来说一套卷子5道,考生在考场上不要过于纠结该种题型,平时只有多做题才能在考场上发挥出预想到的效果,见识更多的规律才行。
银行招聘考试有必要报培训班吗?当前,银行招聘考试逐渐成为应届毕业生,特别是金融类专业重点关注的热门考试之一,银行招聘考试如同中考、高考、公务员等一样,给了一个可以通过自身的努力与奋斗实现自己的理想与自身价值的平台。
银行招聘考试知识点――数字推理之组合数列
银行招聘考试知识点――数字推理之组合数列吉林银行招聘网为您提供吉林省银行招聘包括中国银行、农业银行、工商银行、建设银行、交通银行、政策性银行、大型股份制银行、地方性银行、外资银行等考试报名时间、报名入口、职位表、备考指导、时事政治、模拟试题、笔试面试/递补/体检等考试信息。
更多吉林省银行招聘考试信息,请关注吉林中公金融人。
在近几年的银行招聘笔试中,数字推理一直是考查内容的一部分,但这部分内容对于许多备考的学员来说存在一定的难度。
究其原因,是不少学员在面对一连串数字时不知道该如何下手,该如何寻找突破口,对各种数列的基本特点不是很清楚。
那么,今天中公金融人就带领大家一起来学习一下数字推理中非常重要的一类数列——组合数列。
一、组合数列的特点与分类组合数列的数列长度一般较长,数字变化幅度不大且一般不具有单调性。
在考试中,组合数列一般分为两类:间隔数列、分段数列。
其中间隔数列是指奇数项满足某种规律,偶数项满足某种规律。
这两种规律可相同,也可不同。
如:11,28,14,24,17,20,20,16,(),()奇数项:11,14,17,20是一个公差为3的等差数列,可知第一个空填23;偶数项:28,24,20,16是一个公差为-4的等差数列,可知第二个空填12。
而另外一类是分段数列,它是指将原数列进行合理的分组,将每一组作为一个整体,包括两两分段,三三分段。
如:2,2,5,10,7,21,3,12,11,()这个例子是典型的两两分段,两两之间分别是1倍、2倍、3倍、4倍、(5倍),所以所填的空为11×5=55。
二、例题展示【例题1】2,1,3,4,5,27,7,256,(),()A.9,3125B.10,1024C.11,3125D.12,1024【答案】C【中公解析】此题中数列偏长,并且需要我们填入两个空,我们可以考虑间隔数列。
其中奇数项:2,3,5,7是连续的质数,则第一个空填11;偶数项:1,4,27,256是多次方数列,1=12,4=22,27=33,256=44,则要填的第二个空为55=3125。
银行招聘笔试数字推理
银行招聘笔试数字推理练习题二:101. 11,30,67,()。
解析:2的立方加3 ,3的立方加3.......答案是128。
102. 102 ,96 ,108 ,84 ,132 ,()。
解析:依次相差-6.+12.-24.+48.(-96)所以答案是 36。
103. 1 ,32 ,81 ,64 ,25 ,(),1 ,1/8。
解析:1^6.2^5.3^4.4^3.5^2.(6^1).7^1.8^-1 。
答案是6。
104. -2 ,-8 ,0 ,64 ,()。
解析:1^3×(-2)=-22^3×(-1)=-83^3×0=04^3×1=64答案:5^3×2=250105. 2 ,3 ,13 ,175 ,()。
解析:( C=B^2+2×A )13=3^2+2×2175=13^2+2×3答案:30651=175^2+2×13106. 3 , 7 , 16 , 107 ,()。
解析:16=3×7-5;107=16×7-5;答案:1707=107×16-5 。
107. 0 ,12 ,24 ,14 ,120 ,16 ,()。
A.280 B.32 C.64 D.336解析:奇数项 1的立方-1 3的立方-3 5的立方-5 7的立方-7108. 16 ,17 ,36 ,111 ,448 ,()。
A.639B.758C.2245D.3465 解析:16×1=16 16+1=17,17×2=34 34+2=36,36×3=108 108+3=111,111×4=444 444+4=448,448×5=2240 2240+5=2245。
109. 1 3 2 4 5 16 ()。
A.28B.75C.78D.80解析:1*3-13*2-22*4-34*5-45*16-5=75。
银行考试十大数字推理规律例题和答案解析
银行考试十大数字推理规律例题和答案解析备考规律一:等差数列及其变式【例题】7,11,15,( )A 19B 20C 22D 25【答案】A选项【解析】这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间也满足此规律,那么在此基础上对未知的一项进行推理,即15+4=19,第四项应该是19,即答案为A。
(一)等差数列的变形一:【例题】7,11,16,22,( )A.28 B.29 C.32 D.33【答案】B选项【解析】这是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是6。
假设第五个与第四个数字之间的差值是X,我们发现数值之间的差值分别为4,5,6,X。
很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=7,则第五个数为22+7=29。
即答案为B选项。
(二)等差数列的变形二:【例题】7,11,13,14,( )A.15 B.14.5 C.16 D.17【答案】B选项【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是2;第四个与第三个数字之间的差值是1。
假设第五个与第四个数字之间的差值是X。
我们发现数值之间的差值分别为4,2,1,X。
很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=0.5,则第五个数为14+0.5=14.5。
即答案为B选项。
(三)等差数列的变形三:【例题】7,11,6,12,( )A.5 B.4 C.16 D.15【答案】A选项【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。
数字推理十大题型秒杀技巧
数字推理十大题型秒杀技巧
1. 数字推理里的等差数列题型,那简直就是送分题呀!比如说1,3,5,7,这不是很明显的等差数列嘛,公差为2,下一个数不就是9 嘛!
2. 等比数列题型,哇塞,一旦发现规律就超简单的!像2,4,8,16,这倍数关系多明显呀,下一个肯定是 32 啦!
3. 平方数列题型,这可得瞪大眼睛找呀!像 1,4,9,16,不就是平方数嘛,下一个就是 25 咯!
4. 立方数列题型,这个有点难度哦,但找到了就很有成就感呀!比如1,8,27,64,那下一个就是 125 呀!
5. 组合数列题型,就像玩拼图一样有趣呢!比如奇数项和偶数项各有规律,找到就轻松解题啦!
6. 数字拆分题型,把数字拆开来分析,哎呀,真的很有意思!像34 可以拆成 3 和 4 嘛,然后再找规律。
7. 分数数列题型,这可不能被分数吓到呀!比如1/2,2/3,3/4,那下一个不就是 4/5 嘛!
8. 根式数列题型,虽然看着有点复杂,但找到了根号里的规律就迎刃而解啦!
9. 周期数列题型,就像循环播放的音乐一样有规律呀!比如1,2,
3,1,2,3,那下一个当然还是 1 啦!
10. 递推数列题型,一环扣一环的,多有意思呀!像前面两个数相加等于后面一个数,找到这个关系就好办啦!
我觉得呀,掌握了这些数字推理的秒杀技巧,就像是拥有了一把打开数字世界大门的钥匙,能让我们在数字的海洋里畅游无阻!。
行测数量关系技巧:数字推理常考考点总结
⾏测数量关系技巧:数字推理常考考点总结 ⾏测数量的运算⼀直是⾏测考试的重点题型,下⾯由店铺⼩编为你精⼼准备了“⾏测数量关系技巧:数字推理常考考点总结”,持续关注本站将可以持续获取更多的考试资讯!⾏测数量关系技巧:数字推理常考考点总结 数字推理是公考中常考的⼀种题型,⽐如在事业单位考试、银⾏招聘、国企央企招聘中经常会考察考⽣数字推理的能⼒。
数字推理如同图形推理⼀样有很多推理规则,所以掌握常考题型和常考推理规则是学好数字推理的前提。
以下内容为数字推理常考的内容,⼩编希望能够帮助各位考⽣掌握数字推理考试的特点和重点。
⼀、等差数列 等差数列是数字推理常考题型之⼀,等差数列的主要特点为数列呈现单调性,并且相邻数字之间的倍数关系在1-3倍左右。
等差数列主要考察的题型如下: ⼆、和数列 和数列跟差数列⼀样是考察的重点题型。
和数列的主要特征是数列数字较⼩,数列⽐其他常规数列长,和数列的常考题型如下: 1、基础数列:前n项和为后⼀项 例:1,1,2,3,5,8,13,(21) 解:前两项和为后⼀项。
2、和数列±数列 例:6,5,10,14,23,(36) 解:前两项和减去1,得到后⼀项。
3、逐和后成新数列 例:1,1,2,3,4,7,6 ( ) 解:俩俩逐和之后得到质数列,2, 3, 5, 7, 11, 13,因此下⼀个数字为11。
⼆、多次⽅数列 学习多次⽅数列之前要先培养多次⽅数字的敏感性,需要掌握的多次⽅数列如下: (1)1-20的平⽅:1²=1;2²=4 ;3²=9;4²=16;5²=25;6²=36;7²=49;8²=64;9²=81;10²=100;11²=121;12²=144;13²=169;14²=196;15²=225;16²=256;17²=289;18²=324;19²=361;20²=400 (2)1-10的⽴⽅:1³=1;2³=8; 3³=27;4³=64;5³=125;6³=216;7³=343;8³=512;9³=729;10³=1000 以上为各位考⽣必须掌握的数列,以便能够更好的识别多次⽅数列。
行测数量关系技巧:数字推理常考考点总结
行测数量关系技巧:数字推理常考考点总结1500字数量关系是行测考试中的一大常考考点,主要内容包括数字推理和数量关系推理。
在数字推理部分,常考的题型包括数字组合、数字运算、数字排列等。
下面是关于数字推理的一些常考考点总结:一、数字组合:1. 数字组合:给定一组数字,按照一定规律组合后求出结果。
常见的规律有数字之和、数字之差、数字之积等。
2. 数字替换:给定一组数字,将其中某几个数字替换为其他数字,求替换后的结果。
常见的规律有数字之和、数字之差、数字之积等。
二、数字运算:1. 加减乘除:根据给定的加减乘除法则,求解表达式的结果。
2. 数字计算:根据给定的数字以及计算规则,计算最终结果。
常见的规则有数字之和、数字之差、数字之积等。
三、数字排列:1. 数字排序:根据给定的排列规则,求出待排序数字的顺序。
常见的规则有从小到大排列、从大到小排列等。
2. 数字替换:将给定数字按照一定规则进行排列后,将某几个数字替换为其他数字,求替换后的结果。
在数量关系推理部分,常考的题型包括数量比较、数量关系、数量推理等。
下面是关于数量关系推理的一些常考考点总结:一、数量比较:1. 大小比较:根据给定的数值大小进行比较,求出最大值或最小值。
常见的比较方法有大小排列、数值相加、数值相减等。
2. 数量关系:根据给定的数值关系进行推理,求出符合要求的数值。
常见的关系有倍数关系、百分比关系、比例关系等。
二、数量关系:1. 数量变化:根据给定的数量变化规律,推断出下一个数值。
常见的变化规律有线性关系、指数关系、循环关系等。
2. 数量比例:根据给定的数量比例,求出未知的数量。
常见的比例关系有百分比、比例尺、三角函数等。
三、数量推理:1. 数列推理:根据给定的数列规律,推断出下一个数列。
常见的规律有等差数列、等比数列、斐波那契数列等。
2. 数字推理:根据给定的数字规则,推断出满足规则的数字。
常见的规则有数字之和、数字之差、数字之积等。
以上是关于数量关系推理的一些常考考点总结,希望对大家的行测备考有所帮助。
浦发银行认知能力题型
浦发银行认知能力题型1.导言在招聘过程中,浦发银行一直重视候选人的认知能力。
认知能力是指候选人在处理信息、解决问题、梳理逻辑等方面的能力。
本文将介绍一些常见的浦发银行认知能力题型,帮助候选人更好地准备面试。
2.数字推理题数字推理题是浦发银行在评估候选人数学思维能力时经常采用的一种题型。
这类题目要求候选人通过观察一系列数字或数字之间的关系来推理出一个规律或者填充一个空缺的数字。
候选人需要运用逻辑推理和数学知识来解答问题。
示例题目:1,4,9,16,?可以通过观察到每个数字都是前一个数字的平方来得出答案:1,4,9,16,253.文字推理题除了数字推理题,浦发银行还喜欢考察候选人的文字逻辑能力。
文字推理题是一种要求候选人通过分析、比较和推理文章中的信息来回答问题的题型。
这类题目需要候选人综合运用语言理解、逻辑思考和推理能力。
示例题目:小明比小红大两岁,小红比小强小四岁。
请问小明比小强大几岁?通过分析题目中的关系,我们可以得出答案为6岁。
4.空间能力题空间能力题是浦发银行在考察候选人几何思维能力时经常使用的题型。
这类题目要求候选人通过观察图形的形状、位置、方向等特征来进行分析和推理,从而回答问题。
示例题目:下图中,哪一个图形是原图的逆时针旋转90度得到的?A.![图形A](图片链接)B.![图形B](图片链接)C.![图形C](图片链接)D.![图形D](图片链接)候选人需要通过观察图形的特征来判断,正确答案为C。
5.综合能力题综合能力题是一种综合考察候选人多种认知能力的题型。
这类题目通常要求候选人具备分析问题、综合知识和解决问题的能力。
示例题目:有四个人排队参加比赛,他们的名字分别是:徐、李、赵、张。
赵排在张的前面,李排在张的后面,徐排在赵的后面。
请问,赵排在第几个位置?A.第一位B.第二位C.第三位D.第四位通过分析排队的条件,我们可以得出答案为C。
赵排在第三个位置。
6.总结浦发银行认知能力题型涵盖数字推理题、文字推理题、空间能力题和综合能力题等多个方面,考察候选人在逻辑思维、数学运算、语言理解和空间想象等方面的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
银行考试--十大数字推理规律备考规律一:等差数列及其变式【例题】7,11,15,()A 19B 20C 22D 25【答案】A选项【解析】这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间也满足此规律,那么在此基础上对未知的一项进行推理,即15+4=19,第四项应该是19,即答案为A。
(一)等差数列的变形一:【例题】7,11,16,22,()A.28B.29C.32D.33【答案】B选项【解析】这是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是6。
假设第五个与第四个数字之间的差值是X,我们发现数值之间的差值分别为4,5,6,X。
很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=7,则第五个数为22+7=29。
即答案为B 选项。
(二)等差数列的变形二:【例题】7,11,13,14,()A.15B.14.5C.16D.17【答案】B选项【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是2;第四个与第三个数字之间的差值是1。
假设第五个与第四个数字之间的差值是X。
我们发现数值之间的差值分别为4,2,1,X。
很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=0.5,则第五个数为14+0.5=14.5。
即答案为B选项。
(三)等差数列的变形三:【例题】7,11,6,12,()A.5B.4C.16D.15【答案】A选项【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是-5;第四个与第三个数字之间的差值是6。
假设第五个与第四个数字之间的差值是X。
我们发现数值之间的差值分别为4,-5,6,X。
很明显数值之间的差值形成了一个新的等差数列,但各项之间的正负号是不同,由此可以推出X=-7,则第五个数为12+(-7)=5。
即答案为A选项。
(三)等差数列的变形四:【例题】7,11,16,10,3,11,()A.20B.8C.18D.15【答案】A选项【解析】这也是最后一种典型的等差数列的变形,这是目前为止难度最大的一种变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是-6,第五个与第四个数字之间的差值是-7。
第六个与第五个数字之间的差值是8,假设第七个与第六个数字之间的差值是X。
总结一下我们发现数值之间的差值分别为4,5,-6,-7,8,X。
很明显数值之间的差值形成了一个新的等差数列,但各项之间每“相隔两项”的正负号是不同的,由此可以推出X=9,则第七个数为11+9=20。
即答案为A选项。
备考规律二:等比数列及其变式【例题】4,8,16,32,()项【解析】这是一个典型的等比数列,即“后面的数字”除以“前面数字”所得的值等于一个常数。
题中第二个数字为8,第一个数字为4,“后面的数字”是“前面数字”的2倍,观察得知第三个与第二个数字之间,第四和第三个数字之间,后项也是前项的2倍。
那么在此基础上,我们对未知的一项进行推理,即32×2=64,第五项应该是64。
(一)等比数列的变形一:【例题】4,8,24,96,()A.480B.168C.48D.120【答案】A选项【解析】这是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。
题中第二个数字为8,第一个数字为4,“后项”与“前项”的倍数为2,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为3;第四个与第三个数字之间“后项”与“前项”的倍数为4。
假设第五个与第四个数字之间“后项”与“前项”的倍数为X。
我们发现“倍数”分别为2,3,4,X。
很明显“倍数”之间形成了一个新的等差数列,由此可以推出X=5,则第五个数为96×5=480。
即答案为A选项。
(二)等比数列的变形二:【例题】4,8,32,256,()项【解析】这也是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。
题中第二个数字为8,第一个数字为4,“后项”与“前项”的倍数为2,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为4;第四个与第三个数字之间“后项”与“前项”的倍数为8。
假设第五个与第四个数字之间“后项”与“前项”的倍数为X。
我们发现“倍数”分别为2,4,8,X。
很明显“倍数”之间形成了一个新的等比数列,由此可以推出X=16,则第五个数为256×16=4096。
即答案为A 选项。
(三)等比数列的变形三:【例题】2,6,54,1428,()A.118098B.77112C.2856D.4284【答案】A选项【解析】这也是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。
题中第二个数字为6,第一个数字为2,“后项”与“前项”的倍数为3,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为9;第四个与第三个数字之间“后项”与“前项”的倍数为27。
假设第五个与第四个数字之间“后项”与“前项”的倍数为X我们发现“倍数”分别为3,9,27,X。
很明显“倍数”之间形成了一个新的平方数列,规律为3的一次方,3的二次方,3的三次方,则我们可以推出X为3的四次方即81,由此可以推出第五个数为1428×81=118098。
即答案为A选项。
(四)等比数列的变形四:【例题】2,-4,-12,48,()A.240B.-192C.96D.-240【答案】A选项【解析】这也是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。
题中第二个数字为-4,第一个数字为2,“后项”与“前项”的倍数为-2,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为3;第四个与第三个数字之间“后项”与“前项”的倍数为-4。
假设第五个与第四个数字之间“后项”与“前项”的倍数为X我们发现“倍数”分别为-2,3,-4,X。
很明显“倍数”之间形成了一个新的等差数列,但他们之间的正负号是交叉错位的,由此戴老师认为我们可以推出X=5,即第五个数为48×5=240,即答案为A选项。
备考规律三:求和相加式的数列规律点拨:在国考中经常看到有“第一项与第二项相加等于第三项”这种规律的数列,以下戴老师和大家一起来探讨该类型的数列【例题】56,63,119,182,()A.301B.245C.63D.364【答案】A选项于第三项”,我们看题目中的第一项是56,第二项是63,两者相加等于第三项119。
同理,第二项63与第三项119相加等于第182,则我们可以推敲第五项数字等于第三项119与第四项182相加的和,即第五项等于301,所以A选项正确。
备考规律四:求积相乘式的数列规律点拨:在国考及地方公考中也经常看到有“第一项与第二项相乘等于第三项”这种规律的数列,以下戴老师和大家一起来探讨该类型的数列【例题】3,6,18,108,()A.1944B.648C.648D.198【答案】A选项【解析】这是一个典型的求积相乘式的数列,即“第一项与第二项相加等于第三项”,我们看题目中的第一项是3,第二项是6,两者相乘等于第三项18。
同理,第二项6与第三项18相乘等于第108,则我们可以推敲第五项数字等于第三项18与第四项108相乘的积,即第五项等于1944,所以A选项正确。
备考规律五:求商相除式数列规律点拨:在国考及地方公考中也经常看到有“第一项除以第二项等于第三项”这种规律的数列,以下戴老师和大家一起来探讨该类型的数列【例题】800,40,20,2,()A.10B.2C.1D.4【答案】A选项三项”,我们看题目中的第一项是800,第二项是40,第一项除以第二项等于第三项20。
同理,第二项40除以第三项20等于第四项2,则我们可以推敲第五项数字等于第三项20除以第四项2,即第五项等于10,所以A选项正确。
备考规律六:立方数数列及其变式【例题】8,27,64,()A.125B.128C.68D.101【答案】A选项【解析】这是一个典型的“立方数”的数列,即第一项是2的立方,第二项是3的立方,第三项是4的立方,同理我们推出第四项应是5的立方。
所以A 选项正确。
(一)“立方数”数列的变形一:【例题】7,26,63,()A.124B.128C.125D.101【答案】A选项【解析】这是一个典型的“立方数”的数列,其规律是每一个立方数减去一个常数,即第一项是2的立方减去1,第二项是3的立方减去1,第三项是4的立方减去1,同理我们推出第四项应是5的立方减去1,即第五项等于124。
所以A选项正确。
题目规律的延伸:既然可以是“每一个立方数减去一个常数”,戴老师认为就一定可以演变成“每一个立方数加上一个常数”。
就上面那道题目而言,同样可以做一个变形:【例题变形】9,28,65,()A.126B.128C.125D.124【答案】A选项【解析】这就是一个典型的“立方数”的数列变形,其规律是每一个立方数加去一个常数,即第一项是2的立方加上1,第二项是3的立方加上1,第三项是4的立方加上1,同理我们推出第四项应是5的立方加上1,即第五项等于124。
所以A选项正确。
(二)“立方数”数列的变形二:【例题】9,29,67,()A.129B.128C.125D.126【答案】A选项【解析】这就是一个典型的“立方数”的数列变形,其规律是每一个立方数加去一个数值,,而这个数值本身就是有一定规律的。
即第一项是2的立方加上1,第二项是3的立方加上2,第三项是4的立方加上3,同理我们假设第四项应是5的立方加上X,我们看所加上的值所形成的规律是2,3,4,X,我们可以发现这是一个很明显的等差数列,即X=5,即第五项等于5的立方加上5,即第五项是129。
所以A选项正确。
备考规律七:求差相减式数列规律点拨:在国考中经常看到有“第一项减去第二项等于第三项”这种规律的数列,以下戴老师和大家一起来探讨该类型的数列【例题】8,5,3,2,1,()A.1B.0C.-1D.-2【答案】A选项【解析】这题与“求和相加式的数列”有点不同的是,这题属于相减形式,即“第一项减去第二项等于第三项”。