《利用画树状图和列表计算概率》教案—第一课时
《用树状图或表格求概率》教案
一、教学目标1. 让学生理解概率的概念,掌握用树状图和表格求概率的方法。
2. 培养学生运用概率知识解决实际问题的能力。
3. 培养学生合作学习、探究学习的能力,提高学生的数学思维水平。
二、教学内容1. 概率的概念和性质2. 树状图求概率的方法3. 表格求概率的方法4. 实际问题中的应用三、教学重点与难点1. 重点:概率的概念和性质,树状图和表格求概率的方法。
2. 难点:用树状图和表格求复杂概率问题,以及实际问题中的应用。
四、教学方法1. 采用问题驱动的教学方法,引导学生自主探究、合作学习。
2. 利用多媒体课件辅助教学,生动形象地展示概率问题的解决过程。
3. 注重让学生经历“提出问题、建立模型、求解问题”的全过程,培养学生的数学素养。
五、教学过程1. 导入:通过简单的历史背景介绍,引出概率的概念。
2. 基本概念:介绍概率的基本性质,让学生理解概率的意义。
3. 树状图求概率:讲解树状图的画法,让学生通过树状图求解概率问题。
4. 表格求概率:讲解表格的填写方法,让学生通过表格求解概率问题。
5. 应用拓展:让学生解决实际问题,运用概率知识解决生活中的问题。
六、教学评估1. 课堂问答:通过提问检查学生对概率概念的理解和对树状图、表格求概率方法的掌握。
2. 练习题:布置练习题,让学生运用新学的知识解决实际问题,检验学生对知识的吸收和应用能力。
3. 小组讨论:评估学生在合作学习中的参与度和对问题的探究能力。
七、教学反思1. 教师反思:在课后对教学过程进行回顾,分析教学效果,针对学生的掌握情况调整教学策略。
2. 学生反馈:收集学生对教学内容、教学方法的反馈,了解学生的学习需求和困难,为改进教学提供依据。
八、教学拓展1. 概率游戏:设计有趣的概率游戏,让学生在游戏中进一步理解和掌握概率知识。
2. 课后探究项目:布置课后探究项目,让学生深入研究概率问题,培养学生的研究能力和创新意识。
九、教学资源1. 教材:选用权威、实用的概率教材,为学生提供系统的学习资料。
《用树状图或表格求概率》教案
《用树状图或表格求概率》教案第一章:概率的基本概念1.1 概率的定义解释概率是衡量事件发生可能性的数值,范围在0到1之间。
举例说明概率的应用,如抛硬币、掷骰子等。
1.2 样本空间和事件介绍样本空间是所有可能结果的集合,事件是样本空间的一个子集。
利用树状图展示样本空间和事件的关系。
第二章:树状图法求概率2.1 树状图的绘制讲解如何利用树状图表示事件的概率。
示范绘制树状图,展示单次试验和多次试验的树状图。
2.2 利用树状图求概率教授如何通过树状图计算概率。
练习计算简单事件的概率。
第三章:表格法求概率3.1 表格的绘制讲解如何利用表格表示事件的概率。
示范绘制表格,展示单次试验和多次试验的表格。
3.2 利用表格求概率教授如何通过表格计算概率。
练习计算简单事件的概率。
第四章:独立事件的概率4.1 独立事件的定义解释独立事件是指一个事件的发生不影响另一个事件的发生。
利用树状图和表格展示独立事件的概率计算。
4.2 利用树状图和表格求独立事件的概率教授如何通过树状图和表格计算独立事件的概率。
练习计算独立事件的概率。
第五章:条件概率5.1 条件概率的定义解释条件概率是在某一事件已发生的情况下,另一事件发生的概率。
利用树状图和表格展示条件概率的计算。
5.2 利用树状图和表格求条件概率教授如何通过树状图和表格计算条件概率。
练习计算条件概率。
第六章:组合与排列6.1 组合的定义解释组合是指从n个不同元素中取出m(m≤n)个元素的有序列的个数。
利用树状图和表格展示组合的计算。
6.2 排列的定义解释排列是指从n个不同元素中取出m(m≤n)个元素的所有可能的排列的个数。
利用树状图和表格展示排列的计算。
第七章:概率的加法规则7.1 概率的加法规则讲解当两个事件互斥时,可以使用概率的加法规则计算它们的概率。
利用树状图和表格展示概率的加法规则的计算。
7.2 应用概率的加法规则教授如何应用概率的加法规则解决实际问题。
练习计算互斥事件的概率。
6.7《利用画树状图和列表计算概率(1)》参考教案
6.7利用画树状图和列表计算概率(第1课时)一、教案背景1、面向学生:九年级.2、学科:数学.3、课时:1课时.4、学生课前准备:(1)四人为一小组,笔、练习本.(2)随机事件的概率计算 .二、教学课题1、用树状图计算简单随机事件的概率.2、用列表法计算简单随机事件的概率.三、教材分析教学内容:青岛版初中数学九年级下册第六章7节.内容分析:本节课属于统计与概率领域,通过学习有利于学生以随机的观点理解社会,形成科学的世界观和方法论.学情分析:初三学生虽有一定的分析能力,但在具体操作时,往往有漏解或重复的情况,本节重在培养学生的分析能力,使用列举法,不重不漏的列举出所有等可能的结果.教学目标:1、知识与技能方面:用列举法列出简单随机事件的所有可能结果;能通过列表、画树状图求简单随机事件的概率.2、过程与方法:用列表、画树状图的方法求概率.3、情感态度目标:让学生感受随机的数学思想,进一步认识随机现象 . 教学重难点:用列举法计算概率是难点,列举所有等可能的结果的方法是难点. 教学准备:课件教学方法:自主学习,合作探究,小组讨论,展示点评,精讲点拨.教学中采用自主学习,合作探究,小组讨论,展示点评,精讲点拨等,充分发挥学生的主体地位和老师的主导作用,通过学习培养学生的自主探索能力和分析能力.四、教学过程一、复习回顾,导入新课1.写出下列三种事件发生的概率及表示方法:①必然事件发生的概率为1.②不可能事件发生的概率为0.③若A为不确定事件 .2.等可能性事件的两个特征:①出现的结果有限多个;②各结果发生的可能性相等;如何求等可能性事件的概率-------画树状图和列表法二、自主学习请阅读课本P112-114,体会概率的求法.所有等可能性的结果共有4种:AA,AB,BA,BB.其中两人相遇的情况有2种,即AA,BB,所以,P(相遇)=2/4=1/2点拨:要想不重不漏的列出所有的可能情况,就用画树状图或列表的方法三、合作探究例1和例2(一)、例1学习方法:用投影把例1投在黑板上,学生读完题后,同桌左边的用树状图,右边的用列表的方法分别求出两张卡片上的数字之积为0的概率,然后小组合作,对自己小组的做题情况做一下交流,在投放正确的结果,每小组点评出现的问题.。
青岛版数学九年级下册6.7《利用画树状图和列表计算概率》教学设计1
青岛版数学九年级下册6.7《利用画树状图和列表计算概率》教学设计1一. 教材分析《利用画树状图和列表计算概率》是青岛版数学九年级下册第六章第七节的内容。
本节内容是在学生学习了概率的基本知识,以及画树状图法求等可能事件概率的基础上,进一步引导学生利用列表法计算概率,从而提高学生分析问题、解决问题的能力。
本节课的内容对于学生来说,既有新意又富有挑战性,需要学生具备一定的逻辑思维能力和创新意识。
二. 学情分析学生在学习本节课之前,已经掌握了概率的基本概念,以及利用画树状图法求等可能事件的概率。
他们对于画树状图法有一定的了解,并能够运用到实际问题中。
然而,学生在列出所有可能结果方面还存在一定的困难,对于列表法计算概率还比较陌生。
因此,在教学过程中,需要关注学生的这一学情,引导学生逐步掌握列表法计算概率的方法。
三. 教学目标1.知识与技能:使学生掌握利用列表法计算概率的方法,能够运用列表法解决实际问题。
2.过程与方法:通过小组合作、讨论交流,培养学生运用列表法分析问题、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:引导学生掌握利用列表法计算概率的方法。
2.难点:如何引导学生列出所有可能结果,并运用列表法计算概率。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解列表法计算概率的意义。
2.小组合作学习:学生进行小组讨论,共同探索列表法计算概率的方法。
3.引导发现法:教师引导学生发现问题,总结规律,培养学生独立思考的能力。
六. 教学准备1.教学课件:制作课件,展示相关的生活实例和问题。
2.练习题:准备一些相关的练习题,以便在课堂上进行操练和巩固。
3.教学素材:收集一些与生活相关的问题,作为教学素材。
七. 教学过程1.导入(5分钟)利用课件展示一个生活中的实例:抛硬币游戏。
抛硬币三次,每次正面朝上的概率是多少?让学生思考并回答问题。
用树状图或表格求概率 第一课时 教案
用树状图或表格求概率教学设计第1课时用树状图和表格求概率教材分析:学生在七年级已经认识了许多随机事件,研究了一些简单的随机事件发生的可能性(概率),并对一些现象作出了合理的解释,对一些游戏活动的公平性作出了自己的评判。
本节主要通过对第1课时所做试验进一步分析,体会两步试验中“两步”之间的相互独立性,进而认识两步试验所有可能出现的结果及每种结果出现的等可能性。
教学目标:【知识与技能】1.进一步理解当试验次数较大时试验频率稳定于概率.2.会借助树状图和列表法计算涉及两步试验的随机事件发生的概率.【过程与方法】合作探究,培养合作交流的意识和良好思维习惯.【情感态度与价值观】积极参与数学活动, 提高自身的数学交流水平,经历成功与失败,获得成功感,提高学习数学的兴趣.发展学生初步的辩证思维能力.教学重难点:【教学重点】会用画树状图或列表的方法计算简单随机事件发生的概率;【教学难点】1.能用画树状图或列表的方法不重不漏地列举事件发生的所有可能情况2.会用概率的相关知识解决实际问题.课前准备:多媒体教学过程:一、温故知新问题:小明、小凡和小颖都想去看周末电影,但只有一张电影票。
三人决定一起做游戏,谁获胜谁就去看电影。
游戏规则如下:连续抛掷两枚均匀的硬币,如果两枚正面朝上,则小明获胜;如果两枚反面朝上,则小颖获胜;如果一枚正面朝上、一枚反面朝上,小凡获胜。
你认为这个游戏公平吗?(如果不公平,猜猜谁获胜的可能性更大?)【设计意图】使学生再次体会“游戏对双方是否公平”,并由学生用自己的语言描述出“游戏公平吗”的含义是游戏的双方获胜的概率要相同。
同时,巧妙的利用一个“如果是你,你会设计一个什么游戏活动判断胜负?”的问题,引发学生的思考及参与的热情,如果学生说出“掷硬币”的方法,自然引出本节课的内容。
二、讲授新课活动内容:(1)每人抛掷硬币20次,并记录每次试验的结果,根据记录填写下面的表格:次、400次、500次……时出现各种结果的频率,填写下表,并绘制成相应的折现统计图。
九年级数学上册教案:用树状图或表格求概率
3.1 用树状图或表格求概率 第1课时 画树状图法和列表法用树状图和列表法计算涉及两步实验的随机事件发生的概率.(重点)阅读教材P60~61,完成下列问题:问题:甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5;从两个口袋中各随机取出1个小球.用列表法写出所有可能的结果.如果还有丙口袋中装有2个相同的小球,它们分别写有字母H 和I.从甲、乙、丙三个口袋中各随机取出1个小球.此时可以继续用列表法吗?你有没有更好的方法?与同学交流一下.当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法.当一次试验涉及三个因素时,列表法就不方便了,那么为不重不漏地列出所有可能的结果,我们该怎么办呢?活动1 小组讨论例 在抛掷硬币试验中,(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样? (2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?解:(1)可能出现正、反两种结果,它们发生的可能性相同. (2)可能出现正、反两种结果,它们发生的可能性相同.(3)可能出现正、反两种结果,发生的可能性相同,第一枚硬币反面朝上亦然.注意不重不漏地列出每一种可能发生的结果.活动2 跟踪训练1.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( ) A .0 B.13C.23D .12.“五·一”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家抽到同一景点的概率是( ) A.13 B.16C.19D.143.在x 2□2xy □y 2的□中,分别填上“+”或“-”,所得的代数式中,能构成完全平方式的概率是( )A .1 B.34C.12D.144.经过某十字路口的汽车,它可能继续直行,也可能左转或右转,如果这三种可能性大小相同,同向而行的三辆汽车都经过这个十字路口时,求下列事件的概率:(1)三辆车全部继续直行;(2)两辆车右转,一辆车左转.活动3 课堂小结本堂课你学到了哪些知识与方法?在运用时有哪些细节需要注意呢?【预习导学】1 23 (3,1) (3,2)4 (4,1) (4,2)5 (5,1) (5,2)【合作探究】活动2跟踪训练1.B 2.A 3.C 4.(1)127.(2)19.第2课时利用概率判断游戏的公平性1.进一步经历用树状图、列表法计算两步随机试验的概率.2.运用树状图法或列表法判断游戏的公平性.(重点)阅读教材P62~64,完成下列问题:自学反馈小明和小军两人一起做游戏.游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.如果你是游戏者,你会选择哪个数?活动1 小组讨论例小明、小颖和小凡做“石头、剪刀、布”的游戏,游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?解:因为小明和小颖每次出这三种手势的可能性相同,所以可以利用树状图列出所有可能出现的结果:总共有9种可能的结果,每种结果出现的可能性相同,其中,两人手势相同的结果有3种:(石头,石头)(剪刀,剪刀)(布,布).所以小凡获胜的概率为39=13;小明胜小颖的结果有3种:(石头,剪刀)(剪刀,布)(布,石头),所以小明获胜的概率为39=13; 小颖胜小明的结果也有3种:(剪刀,石头)(布,剪刀)(石头,布),所以小颖获胜的概率为39=13. 因此,这个游戏对三人是公平的. 活动2 跟踪训练1.在“石头、剪子、布”的游戏中(剪子赢布,布赢石头,石头赢剪子),当你出“剪子”时,对手胜你的概率是( ) A.12 B.13C.23D.142.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于( ) A.23 B.12C.13D .13.如图所示,甲、乙两人玩游戏,他们准备了1个可以自由转动的转盘和一个不透明的袋子.转盘被分成面积相等的三个扇形,并在每一个扇形内分别标上数字-1,-2,-3;袋子中装有除数字以外其他均相同的三个乒乓球,球上标有数字1,2,3.游戏规则:转动转盘,当转盘停止后,指针所指区域的数字与随机从袋中摸出乒乓球的数字之和为0时,甲获胜;其他情况乙获胜.(如果指针恰好指在分界线上,那么重转一次,直到指针指向某一区域为止)(1)用树状图或列表法求甲获胜的概率;(2)这个游戏规则对甲乙双方公平吗?请判断并说明理由.活动3 课堂小结1.一次试验中可能出现的结果是有限多个,各种结果发生的可能性是相等的.通常可用列表法和树状图法求得各种可能结果.2.一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,通常采用树状图法.【合作探究】活动2跟踪训练1.B 2.B3.(1)列表法:乒乓球数字转盘数字和-1 -2 -31 0 -1 -22 1 0 -13 2 1 0树状图:则甲获胜的概率为P(甲)=39=13;(2)不公平;乙获胜的可能性大.第3课时利用概率玩“配紫色”游戏借助于树状图、列表法计算随机事件的概率.提高在求概率时处理各种情况出现可能性不同时的能力.(重点)阅读教材P65~67,完成下列问题:自学反馈两个转盘进行“配紫色”游戏,配得紫色的概率是多少?解析:“配紫色”转盘游戏分两步试验,第一次有4种可能结果,第二次有3种可能结果,故可利用列表法或画树状图来计算配成紫色的概率.(红,红)(红,蓝)(红,白)(绿,红)(绿,蓝)(绿,白)(黄,红)(黄,蓝)(黄,白)(蓝,红)(蓝,蓝)(蓝,白)请将结果填在下面的表格中:第二个转盘第一个转盘红 蓝 白 红 绿 黄 蓝活动1 小组讨论例 一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其他都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球.求两次摸到的球的颜色能配成紫色的概率.解:把两个红球记为红1、红2;两个白球记为白1、白2.则列表格如下: 红1 红2 白1 白2 蓝 红1 (红1,红1) (红1,红2) (红1,白1) (红1,白2) (红1,蓝) 红2 (红2,红1) (红2,红2) (红2,白1) (红2,白2) (红2,蓝) 白1 (白1,红1) (白1,红2) (白1,白1) (白1,白2) (白1,蓝) 白2 (白2,红1) (白2,红2) (白2,白1) (白2,白2) (白2,蓝) 蓝(蓝,红1)(蓝,红2)(蓝,白1)(蓝,白2)(蓝,蓝)总共有25种结果,每种结果出现的可能性相同,而两次摸到的球的颜色能配成紫色的结果有4种:(红1,蓝),(红2,蓝),(蓝,红1),(蓝,红2),所以P(能配成紫色)=425.活动2 跟踪训练1.如图转动两个盘当指针分别指向红色和蓝色时称为配紫色成功.如图转动两个盘各一次配紫色成功的概率是( )A.14B.13C.15D.162.小明所在的学校准备在国庆节当天举办-个大型的联欢会,为此小明设计了如图所示的A ,B 两个转盘和同学们做“配紫色”(红、蓝可配成紫色)的游戏,试问使用这两个转盘可以配成紫色的概率是________.3.转动下面的两个转盘各一次,将所转到的数字相加,它们的和是奇数的概率是________.4.如图所示的两个转盘分别被均匀地分成3个和4个扇形,每个扇形上都标有一个实数.同时自由转动两个转盘,转盘停止后(若指针指在分格线上,则重转),两个指针都落在无理数上的概率是________.5.设计两个转盘进行“配紫色”游戏,使配得绿色的概率是16.(黄、蓝两色混合配成绿色)活动3 课堂小结1.用树状图和列表的方法求概率时应注意各种结果出现的可能性必须相同. 2.“配紫色”游戏体现了概率模型的思想,它启示我们:概率是对随机现象的一种数学描述,它可以帮助我们更好地认识随机现象,并对生活中的一些不确定情况作出自己的决策.【预习导学】 自学反馈(红,红) (红,蓝) (红,白) (绿,红) (绿,蓝) (绿,白) (黄,红) (黄,蓝) (黄,白) (蓝,红) (蓝,蓝) (蓝,白)【合作探究】 活动2 跟踪训练1.A 2.14 3.1325 4.165.如图.教学设计3.1 用树状图或表格求概率第三课时北师大版 | 九年级数学上 | 2018年10月 3.1.3《用树状图或表格求概率》教学设计一、教学目标:目标:经历利用树状图和列表法求概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯。
3.1用树状图或表格求概率+第1课时+课件-2024-2025学年北师大版数学九年级上册
课 [本课时认知逻辑]
堂
小
结 与 检
实际 试验 问题 操作
频率估 计概率
理论 分析
等可能事件
测
解决
计算 概率
应用
画树状 图法
列表法
课 [检测]
堂
小 1.一个布袋内装有1个红球和1个黄球,这些球除颜色不同外
结 与 检 测
其余都相同,随机摸出一个球记下颜色后放回搅匀,再随机
1
摸出一个球,则两次摸出的球都是黄球的概率是 4第二枚硬币可能出现哪些结果?它们发生的可能性是
与 否一样?
应
用 解:掷第二枚硬币可能出现正面朝上或反面朝上两种结果,它们
发生的可能性一样.
探 究
(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪
与 些结果?它们发生的可能性是否一样?如果第一枚硬币反面
应
用 朝上呢?
件发生的概率.
探 知 方法 究 频率估计概率的普遍性
与
应 当遇到较复杂的事件无法求得试验的理论概率时,我们可以 用 借用试验频率的稳定值估计事件发生的概率.
探
应用 用树状图或表格求某些事件发生的概率
究 与
例 现有甲、乙两个不透明的袋子,甲袋子里装有1个红球,1
应 个黄球;乙袋子里装有1个红球,1个白球,这些球除颜色外其
测 其中,甲、乙两人选择的检票通道恰好相同的结果有3种,
∴P(甲、乙两人选择的检票通道相同)=39 = 13.
谢 谢 观 看!
应
用 上”“一枚正面朝上、一枚反面朝上”这三个事件发生的概率
相同吗?先分组进行试验,然后累计各组的试验数据,分别计
算这三个事件发生的频数与频率,并由此估计这三个事件发
3.1第1课时用树状图或表格求概率(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与概率相关的实际问题,如掷骰子、抛硬币等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如抛硬币实验,让学生亲身体验概率的形成过程。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“概率在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.1第1课时用树状图或表格求概率(教案)
一、教学内容
本节课选自七年级《数学》下册第3章“概率初步”中的3.1节,教学内容主要包括以下两点:
1.理解树状图和表格在求解概率问题中的应用,掌握使用树状图或表格列举所有可能结果的方法;
2.通过树状图或表格,求解简单事件的概率,培养学生分析问题、解决问题的能力。
解决方法:设计具有实际背景的例题和习题,引导学生发现并提取概率信息,培养学生解决实际问题的能力。
(4)正确理解和运用概率公式。学生在计算概率时,可能会忘记或混淆概率公式,导致计算错误。
解决方法:在讲解和练习过程中,反复强调概率公式,让学生熟记并掌握其用法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《用树状图或表格求概率》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算可能性大小的情况?”比如,抛硬币正面朝上的概率是多少?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
6.7《用树状图或表格求概率》教案
《利用树状图或表格计算概率》教案教学目标1、理解每次实验的所有可能性(即概率)相同,和前次实验结果无关.2、会运用树状图和列表法计算简单事件发生的概率.3、经历试验、探讨过程,在活动中进一步发展学生合作交流的意识和能力.教学重点运用树状图和列表法计算事件发生的概率.教学难点树状图和列表法的运用方法.教学方法合作交流,共同探究.教学过程一、问题引入:(1)从黑桃1和2中摸一张牌,摸着几的可能性大?概率是多少?(2)加上红桃1和2,如果摸得黑桃为1,那么摸红桃数字为几的可能性大?如果摸得黑桃的数字为2呢?二、合作交流、构建知识:(一)思考交流:(3)同时从两组牌中各摸一张出来,共有几种可能性?每种可能性是否相同?概率分别是多少?(二)求概率我们可列出如下图示开始第一张牌数字:12第二张牌数字:1212可能出现的结果 (1,1)(1,2)(2,1)(2,2)像一颗横倒的树,我们叫它树状图.上面的问题还可以通过列表分析:(1,1)(1,2)(2,1)(2,2),而且每种结果出现的可能性相同,也就是说,每种结果出现的概率都是14.可见,利用树状图或表格,可以比较方便地求出某些事件发生的概率.(三)例题解析例1.A,B两个盒子里各装入分别写有数字0,1的两张卡片,分别从每个盒子中随机取出1张卡片,两张卡片上的数字之积为0的概率是多少?例2甲乙两只不透明的袋子里装有除颜色之外都相同的球,甲袋装有红、蓝、黄色球各一个,乙袋装有红、蓝色球各一个,从每个袋子里分别随机地摸出一个球,两个球恰为同色的概率是多少?例3同时掷两枚骰子,落定后,两枚骰子朝上一面的点数之和可能是哪些数?其中概率最大的是什么数?概率最小的是什么数?三、运用拓展(一)强化练习----口答1、小王夫妇第一胎生了女孩,如果政策允许生第二胎,那么他们第二胎生男孩和生女孩哪种可能性哪种大?生男孩的概率是多少?2、小明正在做扔硬币的试验,他已经扔了3次硬币,不巧的是这3次都是正面朝上.那么,你认为小明第4次扔硬币,出现正面朝上的可能性和反面朝上的可能性哪种大?概率分别是多少?3、福利彩票“3D”中奖的概率是1/1000,小丽的爸爸买了999次都没中奖,那么他下次买彩票中奖的概率是多少?(二)强化练习-----用树状图或表格求概率4、袋中有外观相同的红球和白球各一个,随机摸出一球记下颜色,放回摇匀后再随机摸出一球,则两次摸到球的颜色不相同的概率是多少?5、左边有两张卡片分别标着数字1和2,右边有三张卡片分别标着数字3、4和5.鹦鹉随机从左边叼一张卡片作十位数,再从右边叼一张卡片作个位数.那么鹦鹉叼出的数字恰好是2 3的概率是多少?6、王俊杰有两套运动衣,一套是黄衣服、黄裤子,另一套是红衣服、红裤子.他在漆黑。
《用树状图或表格求概率》教案
一、教学目标:1. 让学生理解概率的基本概念,掌握用树状图和表格求概率的方法。
2. 培养学生运用概率知识解决实际问题的能力。
3. 培养学生合作交流、思考问题的能力。
二、教学重点与难点:1. 教学重点:树状图和表格求概率的方法。
2. 教学难点:如何运用树状图和表格求复杂事件的概率。
三、教学准备:1. 教师准备:教学课件、树状图和表格示例、实际问题案例。
2. 学生准备:笔记本、彩笔。
四、教学过程:1. 导入新课:通过抛硬币、抽签等实例,引导学生理解概率的概念。
2. 讲解树状图求概率的方法:(1)介绍树状图的基本结构;(2)讲解如何通过树状图求解事件的概率;(3)举例演示树状图求概率的过程。
3. 讲解表格求概率的方法:(1)介绍表格的基本结构;(2)讲解如何通过表格求解事件的概率;(3)举例演示表格求概率的过程。
4. 练习环节:让学生独立完成练习题,巩固所学方法。
五、课后作业:(1)抛一枚硬币,求正面向上的概率;(2)抽取一副扑克牌,求抽到红桃的概率;(3)一个班级有30名学生,其中有18名女生,求随机挑选一名学生是女生的概率。
2. 结合生活实际,自主创作一个概率问题,并用树状图或表格求解。
六、教学拓展:1. 引导学生思考:在实际生活中,还有哪些事件可以用树状图或表格求解概率?2. 讨论:如何运用树状图和表格求解更复杂的事件概率?3. 举例:分析彩票中奖概率、体育比赛胜负概率等问题,引导学生运用树状图和表格进行求解。
七、课堂小结:2. 强调树状图和表格在解决实际问题中的重要性。
八、教学反思:1. 教师反思:本节课教学目标是否达成?学生掌握情况如何?2. 学生反馈:学生对树状图和表格求概率的方法是否理解?是否存在疑惑?九、章节练习:1. 选择题:A. 树状图B. 表格C. 抛硬币D. 猜谜语(2)在抛一枚硬币的实验中,正面向上的概率是____。
A. 0B. 1C. 0.5D. 100%2. 解答题:抽取一副扑克牌,求抽到红桃的概率;(2)一个班级有30名学生,其中有18名女生,求随机挑选一名学生是女生的概率。
九年级上册数学《用树状图或表格求概率》教案-北师版
3.1用树状图或列表求概率(第一课时)一、课标要求:(一)内容要求1.了解利用数据可以进行统计推断,发展建立数据分析观念;感受随机现象的特点。
2.能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率。
(二)数学思想方法(核心概念):本节课是简单的两步实验,可以通过计算得到它的概率,所渗透的数学思想是:转化、类比、在树状图中体会几何直观。
本节课的核心概念为:模型思想、数据分析观念、应用意识。
二、教材与学情分析(一)教材分析:本节课是九年级上册第三章《概率的进一步认识》第一节第一课时,通过七年级下册“概率初步”的学习,学生已经通过试验、统计等活动感受随机事件发生频率的稳定性即“当试验次数很大时,事件发生的频率稳定在相应概率的附近”;体会到概率是描述随机现象的数学模型。
学生已经获得概率的计算有两种方式:理论计算和试验估算。
本章第一节通过游戏活动,让学生经历猜测、试验、收集数据、分析数据等活动过程,然后学习计算这类事件发生概率的两种方法---画树状图和列表法。
本节共三课时,第一课时通过一个试验活动引出求概率的树状图和列表法,第二课时和第三课时分别选择不同的情境,让学生经历利用画树状图和列表法求出概率并解决问题的过程。
(二)学情分析:1.学习条件和起点能力分析学生已经认识到现实生活中存在大量的随机事件,初步感受到数据的随机性,并研究了一些简单随机事件发生的概率,对一些现象做出了合理的解释,对游戏活动的公平性可借助概率作出评判;学生已经感受到了频率的稳定性,能理解在大量重复试验的基础上,可用试验频率估计事件发生的概率。
2.学生在七年级已经通过试验、统计等活动感受随机事件发生的频率的稳定性即“当试验次数很大时,事件发生的频率稳定在相应概率的附近”,初步体会概率是描述随机现象的数学模型,实验的过程就是渗透“概率模型思想”的过程,通过之前的学习学生大脑中初步建立起了“概率是刻画现实世界随机事件发生可能性大小的重要模型”,具备了将实际问题转化为相应的概率模型的意识、模型化思维和应用意识。
用树状图或表格求概率获奖公开课教案
3.1用树状图或表格求概率第 1 课时用树状图或表格求概率由图中可知共有 6 种可能,而白衣、黑1裤只有 1 种可能,概率为;解法 2:将可能出现的结果列表以下:1.会用画树状图或列表的方法计算简单裤子上衣白色随机事件发生的概率;(重点)2.能用画树状图或列表的方法不重不漏米色地列举事件发生的全部可能状况,会用概率的有关知识解决实质问题 .(难点)黑裤只有蓝色黑色棕色(白,蓝)(白,黑)(白,棕)(米,蓝)(米,黑)(米,棕)由表可知共有 6 种可能,而白衣、11 种可能,概率为6.一、情形导入游戏:小明对小亮说:“我向空中抛 2 枚相同的一元硬币,假如落地后一正一反,算我赢,假如落地后两面相同,算你赢 .”结果小亮欣然答应,请问:你感觉这个游戏公正吗?二、合作研究研究点:用树状图或表格求概率【种类一】两步决定的概率问题明华出门游乐时带了2 件上衣(白色、米色)和 3 条裤子(蓝色、黑色、棕色),他随意取出一件上衣和一条裤子恰巧是白色和黑色的概率是多少?分析:可采纳画树状图或列表法把全部的状况都列举出来 .解:解法 1:画树状图以下图:方法总结:求某随机事件的概率,一般需要用画树状图或列表两种方法将所有可能发生结果一一列举出来,再求所关注的结果在全部结果中占的比值 .【种类二】两步以上决定的概率问题小可、子宣、欣怡三人在一同做游戏时,需要确立做游戏的先后次序,她们商定用“石头、剪子、布”的方式确立,那么在一个回合中,三个人都出“剪子”的概率是多少?解:用树状图剖析全部可能的结果,如图 .由树状图可知全部可能的结果有27 种,三人都出“剪子”的结果只有 1 种, 因此在一个回合中三个人都出“剪子”的概率为 271.方法总结: 当一次试验波及三个或更多的因素时, 为了不重不漏地列出全部可能的结果,往常采纳树状图 .【种类三】 有无放回试验一只箱子里共有3 个球,此中有 2个白球, 1 个红球,它们除了颜色外均相同 .( 1)从箱子中随意摸出一个球,不将它放回箱子,搅匀后再摸出一个球, 求两次摸出的球都是白球的概率;( 2)从箱子中随意摸出一个球,将它放回箱子, 搅匀后再摸出一个球,求两次摸出的球都是白球的概率 .分析: 题中( 1)( 2 )的差别在于第一次摸出的球能否放回了箱子.由题可知,第二次摸球时( 1 )的箱子中应减少第一次摸出 的那个球,那么还剩两个球能够摸,而( 2)的箱子中仍是有三个球能够摸 .因此,两个白球应当差别开来, 我们用 “ 白 1”“ 白 2”表示 .解:(1)列表以下:第一次序二次白 1 白 2白 1 ——(白 2,白 1)白 2 (白 1,白 2) ——红(白 1,红)(白 2,红)由上表可知,共有 6 种结果,且每种结果是等可能的, 此中两次摸出白球的结果有 2 种,因此 P (两次摸出的球都是白球) =2=1;63( 2)列表以下:第一次序二次白 1白 2白 1 (白 1,白 1) (白 2,白 1) 白 2 (白 1,白 2) (白 2,白 2) 红(白 1,红) (白 2,红)由上表可知,共有9 种结果,且每种结果是等可能的, 此中两次摸出白球的结 果有 4 种,因此 P (两次摸出的球都是白球) = 4 .9方法总结: 在试验中,常出现 “ 放回 ” 和 “ 不放回 ” 两种状况, 即能否重复进行的事件, 在求概率时要正确划分, 如利用列表法求概率时,不重复在列表中有空格, 重复在列表中则不会出现空格.三、板书设计画树状图法用树状图或表格求概率列表法经过与学生现实生活相联系的游戏为载体,培育学生成立概率模型的思想意识 . 在活动中进一步发展学生的合作沟通意识,提高学生对所研究问题的反省和拓展的能力,逐渐形成优秀的反省意识 . 鼓舞学生思想的多样性,发展学生的创新意识 . 别想一下造出海洋,一定先由小河川开始。
《用树状图或表格求概率》示范公开课教学设计【北师大版九年级数学上册】第1课时
第三章概率的进一步认识3.1 用树状图或表格求概率第 1 课时教学设计一、教学目标1.经历猜测、试验、收集试验数据、分析试验结果等活动过程,进一步体验数据的随机性,记录数学活动经验.2.通过试验进一步感受随机事件发生的频率的稳定性,理解事件发生频率与概率的关系,并能用试验频率估计事件发生的概率,加深对概率意义的理解.3.能运用画树状图和列表的方法计算一些简单事件的概率.4.能利用概率解决一些简单的实际问题,理解概率对日常生活和生产实践的指导作用,体会概率是描述随机现象的数学模型,发展应用意识.5.在试验和收集数据的活动过程中,发展合作交流的意识和发现问题、提出问题的能力.二、教学重点及难点重点:会用树状图和列表的方法计算随机事件发生的概率.难点:理解事件出现的等可能性,正确地分析出两步试验中出现的所有情况.三、教学用具多媒体课件.四、相关资源《掷一枚质地均匀的骰子》动画,《用列举法求概率——画树状图法》动画.五、教学过程【复习引入】问题(1)具有何种特点的试验称为古典概型?(2)对于古典概型的试验,如何求事件的概率?师生活动:教师利用多媒体出示问题,学生回答:(1)一次试验中,可能出现的结果有有限多个;各种结果发生的可能性相等.具有以上特点的试验称为古典概型.(2)对于古典概型的试验,我们可以从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.一般地,如果在一次试验中,有种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的种结果,那么事件A 发生的概率为. 设计意图:通过问答的方式,帮助学生回忆学过的知识,为本节课的学习准备好知识基础.【探究新知】列举法:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法.师生活动:教师讲授,学生聆听,掌握列举法的定义.设计意图:因为教材没有列举法的概念,通过教师讲授,使学生对列举法有初步的认识.小明、小颖和小凡都想去看周末电影,但只有一张电影票,三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.你认为这个游戏公平吗?做一做:连续掷两枚质地均匀的硬币,“两枚正面朝上”、“两枚反面朝上”、“一枚正面朝上,一枚反面朝上”这三个事件发生的概率相同吗?先分组进行试验,然后累计各组的试验数据,分别计算这三个事件复习的频数与频率,并由此估计这三个事件发生的概率.师生活动:教师出示问题,学生分组进行试验,交流数据并累计各组数据后再计算. 设计意图:通过实际问题中的游戏背景引入,激发学生的学习兴趣.由学生亲自动手进行试验,经历猜测、试验、收集试验数据、分析试验结果等活动过程,进一步体验数据的随机性.学生通过交流与合作,体会到与他人合作交流的重要性,发展学生合作交流的意识与能力.当试验次数越多,频率稳定,用频率估计事件发生的概率.议一议:在上面掷硬币的试验中,(1)掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?n m ()m P A n(2)掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?师生活动:教师出示问题,学生思考、讨论,教师分析、引导.教师分析:由于硬币质地均匀,因此掷第一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.本题中掷第一枚硬币和掷第二枚硬币是两个相互独立的事件.解:(1)掷第一枚硬币可能出现“正面朝上”和“反面朝上”两种结果;它们发生的可能性一样.(2)掷第二枚硬币也是可能出现“正面朝上”和“反面朝上”两种结果;它们发生的可能性一样.(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现“正面朝上”和“反面朝上”;它们发生的可能性相同;如果第一枚硬币反面朝上也一样.利用树状图或表格列出所有可能出现的结果:总共有4种结果,每种结果出现的可能性相同.其中,小明获胜的结果有1种:(正,正),所以小明获胜的概率是14;小颖获胜的结果有1种:(反,反),所以小颖获胜的概率也是14;小凡获胜的结果有2种:(正,反),(反,正),所以小凡获胜的概率是24.因此,这个游戏对三人是不公平的.归纳利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.思考利用画树状图和列表的方法求概率时应注意些什么?师生活动:教师出示问题,学生思考、讨论,教师找学生代表回答,最后师生共同得出答案.答:利用画树状图和列表的方法求概率时,应注意各种结果出现的可能性要相同.设计意图:通过这个问题,让学生知道利用树状图和列表的方法求概率时各种结果出现的可能性要相同.如果学生用其他的方法不重复、不遗漏地列出所有的结果,也应给予鼓励,但引导学生对不同列举方法进行比较,使学生体会画树状图、列表这两种方法的优越性.【典例精析】例小颖有两件上衣,分别为红色和白色,有两条裤子,分别为黑色和白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?解:画树状图得:共有4种等可能的结果,恰好是白色上衣和白色裤子的有1种情况,恰好是白色上衣和白色裤子的概率是:1 4 .设计意图:指导学生如何规范应用列表法解决概率问题.此外,对于本题,教师也可以让学生用画树状图法解答.【课堂练习】1.不透明的袋子中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为().A.19B.16C.13D.122.在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为().A.116B.18C.316D.143.小明对小红说:“我们来做一个游戏,我向空中扔3个硬币,如果它们落地后全是正面朝上,你就得10分,如果它们全是反面朝上,你也得10分,但是,如果它们落地时是其他情况,我就得5分,得分多者获胜,好不好?”小红说:“让我考虑一分钟,至少有两枚硬币必定情况相同,因为如果有两枚情况不同,则第三枚一定会与这两枚硬币之一情况相同.而如果两枚情况相同,则第三枚与其他两枚情况相同或情况不同的可能性一样.因此,3枚硬币情况完全相同或情况不完全相同的可能性是一样的.但是小明是用5分来赌它们的,这分明对我有利,好吧,小明,我和你做这个游戏!”请问:小红的推理正确吗?参考答案1.C.2.C.3.解:首先利用树状图列出3枚硬币落地时的所有可能结果:由图可知总共有(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)8种结果,每种结果出现的可能性都相等,其中3枚情况完全相同的概率是14,3枚情况不完全相同的概率是34.因为14×10<34×5,所以这个游戏规则不公平,对小明有利.小红的推理不正确.设计意图:让学生加深对所学知识的理解.六、课堂小结1.列举法的定义:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法.2.适合用列表法解决概率的情况:当一次试验涉及两个因素(例如掷两枚骰子),并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.我们不妨把两枚骰子分别记为第1枚和第2枚,这样就可以用方形表格列举出所有可能出现的结果.3.适合用画树状图法解决概率的情况:用树状图列举出的结果看起来一目了然,当事件要经过多次步骤(三步以上含三步)完成时,用这种“画树状图”的方法求事件的概率很有效.注意:利用画树状图和列表的方法求概率时,应注意各种结果出现的可能性要相同.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:帮助学生养成系统整理知识的学习习惯,加深认识,深化提高,形成学生自己的知识体系.七、板书设计3.1 用树状图或表格求概率(1)1.列举法的定义2.用树状图或表格求概率。
《用树状图或列表法求概率》优秀教案
课题1 用树状图或表格求概率教学目标教学知识点:学习用树状图和列表法计算涉及两步实验的随机事件发生的概率.能力训练要求:1.培养学生合作交流的意识和能力;2.提高学生对所研究问题的反思和拓广的能力,逐步形成良好的反思意识.情感与价值观要求:积极参与数学活动,经历成功与失败,获得成功感,提高学习数学的兴趣.重点用树状图和列表法计算涉及两步实验的随机事件发生的概率.难点正确地用列表法计算涉及两步实验的随机事件发生的概率.教学过程:一、创设问题,引入新课游戏:小明对小亮说:“我向空中抛2枚同样的—元硬币,如果落地后一正一反,你给我10元钱,如果落地后两面一样,我给你10元线.”结果小亮欣然答应,请问,你觉得这个游戏公平吗?分析得很好,当然,这只是个数学游戏.教师只是想用此介绍一些概率问题,而国家规定中小学生是不能参与购买彩票的,而赌博更是有百害而无一益的噢!下面我们再来看一个游戏.二、引入新课如果有两组牌,它们的牌面数字分别是1,2,3.那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少呢?小明的做法:总共有9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为93,即31.小颖的做法:通过列下表得到牌面数字和等于4的概率为51.牌面数字的可能值 2 3 4 5 6相应的概率 5151515151]小亮的做法:也用了列表的方法,可我得到牌面数字和等于4的概率为31.第一张牌的牌 面数字第二张 牌的牌面数1231 (1,1) (1,2) (1,3)2 (2,1) (2,2) (2,3) 3(3,1)(3,2)(3,3)你认为谁做得对?说说你的理由.小颖和小亮都用了列表法,而小颖的做法是错误的,小亮的做法是正确的.你认为用列表法求概率时要注意些什么?用列表法求概率时应注意各种情况出现的可能性务必相同.从小亮的表格中你还能获得哪些事件发生的概率呢?用列表的方法求出将两枚均匀的一元硬币抛出去,两个都是正面朝上的概率是多少?看一个常见的用两个转盘“配紫色”的游戏. 游戏者同时转动如下图中的两个转盘进行“配紫色”游戏,求游戏者获胜的概率.六、教学反思注意:在教学时要反复强调:在借助于树状图或表格求事件发生的概率时,应注意到各种情况出现的等可能性.以免学生忽略这个条件错误使用树状图或表格求事件发生的概率。
青岛版九年级数学下册《利用画树状图和列表计算概率(1)》优质教案1-新版
6.7利用画树状图和列表计算概率(1)教学目标知识目标:1、用所学的概率知识去解决某些现实问题,知道什么是树状图。
2、能运用树状图和列表法计算简单事件发生的概率,能用试验或模拟试验的方法,估计一些复杂的随机事件发生的概率。
能力目标:学会与人合作,进一步发展学生合作交流的意识和能力。
情感目标:形成解决问题的一些策略,体验解决问题的多样性,发展实践能力和创新精神。
教学重、难点:用所学的概率知识去解决某些现实问题,理解实验频率和理论概率的关系。
教学过程:(一)、情境引入:如图,甲、乙两地之间有A和B两条道路,小亮从甲地到乙地,大刚从乙地到甲地,二人同时出发.如果每人从A和B两条道路中都任选一条,那么他们途中相遇的概率是多少?(二)、自学探究:他们途中相遇,必须二人选择走同一条道路.对小亮来说,他从甲地出发,经道路A或B去乙地的可能性相同.如果他选定了走其中某条道路后,又有两种可能情况,即大刚从乙地出发经道路A或B去甲地,这两种情况选择的可能性也相同.把小亮走道路A或B的可能分别用两个箭头表示.当小亮走道路A或B时,大刚走道路A或B的可能也用两个箭头表示,得到下图.上图像一个棵横倒的树,我们叫它树状图(tree derivation).图中从左到右 每条路径各是一种可能结果,而且每种结果发生的可能性相等.观察图6-6,可 以看出所有等可能性的结果共有4种:AA ,AB ,BA ,BB .其中两人相遇的情况 有2种,即AA ,BB .由已学过的概率计算方法,可得P(相遇)=42 =21. 所以,他们途中相遇的概率是21. 在上面的问题中,小亮与大刚所处的地位是相同的,思考时也可将两人顺序 交换,通过下图列出所有等可能性的结果:上面的问题,还可以通过列表分析出所有等可能的结果:上表中的第1行表示小亮走道路A 或B 的两种可能,第1列则表示大刚走道 路A 或B 的两种可能,从而在表中列出了本题所有等可能的4种结果,即AA ,AB ,BA ,BB ,其中二人相遇的结果有2种.于是P(相遇)= 42 =21. 温馨提示:树状图或列表能帮助我们将所有等可能的结果直观地列举出来,既不重复也不会遗漏.(三)、典例分析:例、在A ,B 两个盒子里都装入写有数字0,1的两张卡片。
第1课时 用树状图或表格求概率教案精选教案3
第三章概率的进一步认识3.1 用树状图或表格求概率第1课时用树状图或表格求概率教学目标:知识与技能目标:学习用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策。
过程与方法目标:经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率。
渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。
情感与态度目标:通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯。
教学重点:习运用列表法或树形图法计算事件的概率。
教学难点:能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。
教学过程1.创设情景,发现新知例:同时掷两个质地均匀的骰子,计算下列事件的概率:(1) 两个骰子的点数相同;(2) 两个骰子的点数的和是9;(3) 至少有一个骰子的点数为2。
这个例题难度较大,事件可能出现的结果有36种。
若首先就拿这个例题给学生讲解,大多数学生理解起来会比较困难。
所以在这里,我将新课的引入方式改为了一个有实际背景的转盘游戏(前一课已有例2作基础)。
(1)创设情景引例:为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同)。
每次选择2名同学分别拨动A、B两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次)。
作为游戏者,你会选择哪个装置呢?并请说明理由。
14【设计意图】选用这个引例,是基于以下考虑:以贴近学生生活的联欢晚会为背景,创设转盘游戏引入,能在最短时间内激发学生的兴趣,引起学生高度的注意力,进入情境。
(2)学生分组讨论,探索交流在这个环节里,首先要求学生分组讨论,探索交流。
3.1.1 用树状图或表格求概率 教案 北师大版数学
3.1.1 用树状图或表格求概率教案
一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.
指出:我们通常利用树状图或表格列出所有可能出现的结果.
现在再来解决刚开始的问题:做一做:小明、小凡和小颖都想去看周末电影,但只有一张电影票.三人决定一起做连续抛掷两枚均匀的硬币游戏,谁获胜谁就去看电影.
小明:两枚正面朝上,我获胜
小颖:两枚反面朝上,我获胜
小凡:一枚正面朝上、一枚反面朝上,我获胜
你认为这个游戏公平吗?
解:连续掷两枚均匀的硬币总共有4种结果,每种结果出现的可能性相同.其中:
小明获胜的结果有1种:(正,正),所以小明获胜的概率
是1 4;
小颖获胜的结果有1种:(反,反),所以小颖获胜的概率
也是1 4;
小凡获胜的结果有2种:(正,反)(反,正),所以小凡获
胜的概率是21 42
;
因此,这个游戏对三人是不公平的.
归纳:利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.
一只箱子里面有3个球,其中2个白球,1个红球,他们1.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是( )
A. B.
C. D.
2. 一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中一次摸出2个球,2个球都是红球的可能性( )
A. B.
C.
D.
基础作业
21
41
6121
4161
树状图。
《用树状图或表格求概率》教案
《用树状图或表格求概率》教案第一章:概率的基本概念1.1 概率的定义解释概率是反映事件发生可能性大小的量。
强调概率的取值范围:0≤P(A)≤1。
1.2 必然事件和不可能事件必然事件的概率为1,不可能事件的概率为0。
举例说明。
第二章:树状图法求概率2.1 树状图的概念介绍树状图是一种图形化表示事件的方法。
强调树状图的优点:直观、清晰。
2.2 树状图法求概率步骤一:画出树状图。
步骤二:统计符合条件的结果数。
步骤三:计算概率。
第三章:列表法求概率3.1 列表法的概念介绍列表法是将所有可能的结果列出来,便于计算概率的方法。
强调列表法的优点:简单、直观。
3.2 列表法求概率步骤一:列出所有可能的结果。
步骤二:统计符合条件的结果数。
步骤三:计算概率。
第四章:独立事件的概率4.1 独立事件的定义解释独立事件是指在一次试验中,一个事件的发生不影响另一个事件的发生。
强调独立事件概率的乘法规则。
4.2 独立事件的概率计算步骤一:列出所有独立事件的组合。
步骤二:计算每个独立事件的概率。
步骤三:将各独立事件的概率相乘。
第五章:互斥事件的概率5.1 互斥事件的定义解释互斥事件是指在一次试验中,两个事件不可能发生。
强调互斥事件概率的加法规则。
5.2 互斥事件的概率计算步骤一:列出所有互斥事件的组合。
步骤二:计算每个互斥事件的概率。
步骤三:将各互斥事件的概率相加。
本教案通过讲解概率的基本概念,以及树状图法、列表法求概率,重点介绍了独立事件和互斥事件的概率计算方法。
希望对您的教学有所帮助!第六章:条件概率6.1 条件概率的定义解释条件概率是指在某一事件已经发生的条件下,另一事件发生的概率。
强调条件概率的取值范围:0≤P(B|A)≤1。
6.2 条件概率的计算步骤一:计算事件A的概率P(A)。
步骤二:计算事件A和事件B发生的概率P(AB)。
步骤三:计算条件概率P(B|A)=P(AB)/P(A)。
第七章:全概率公式7.1 全概率公式的概念介绍全概率公式是用来计算一个事件发生的总概率的公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《利用画树状图和列表计算概率》教案
教材分析
本课是青岛版九年级下册第六单元第7课,是探讨课。
本节课属于统计和概率领域,在学习本节课之前,学生已经学习了如何收集和整理数据、如何描述和处理数据,以及如何列出频数分布表和频数直方图,并且能用频数来估计概率,本节课将通过树状图和列表法来求随机事件的概率,通过学习有利于学生以随机的观点理解社会,形成科学的世界观和方法论,本课属于比较有难度水平。
《数学课程标准》中提出:学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题的能力,经历收集、整理、描述和分析数据的过程,观察、实验、归纳的方法,能作出合理的推断和预测的观念。
据此,本课教学目标可以包含:能运用画树状图或列表法计算简单事件发生的概率等方面。
本课教学可以采取收集整理法、合作探究法、练习巩固法等方法开展教学。
学生分析
本课的教学对象是15岁左右的学生,这个年龄阶段的学生已经具备对事物的认识和判断以及处理问题、自我管理的能力,具有自尊、好胜、求知和参与的愿望,有明显的成人感,开始对社会理解关心,有压力感、紧迫感,竞争意识增强,往往过高估计自己的特点。
九年级的学生通过之前的学习和生活实践,已经掌握如何收集和整理数据、如何描述和处理数据等方法,能够通过树状图和列表法来求随机事件的概率。
通过学习本课,学生可以获得在合作交流中获取知识的方法、观察、发现、归纳、概括的能力、理解特殊到一般再到特殊的认知规律观念的提升。
学生采用观察、分析、合作探究法等方法学习本课。
教学目标
知识与技能
1.在实际问题的情境下,正确判断事件发生的可能性;
2.理解列表法和画树状图的道理和步骤;
3.能运用画树状图或列表法计算简单事件发生的概率;
过程与方法
1.通过活动,帮助学生感受到数学与现实生活的联系;
2.提高用数学知识来解决实际问题的能力;
情感态度和价值观
1.在动手做和动脑想的过程中培养同学们的分析问题和解决问题的能力,形成数形结合的意识;
重点难点
教学重点
理解列表法和画树状图的道理和步骤。
教学难点
用画树状图或列表法计算简单事件发生的概率。
教学方法
教法
引导发现法、合作探究法、练习巩固法
学法
观察分析法,探究归纳法
课时安排
2课时
第2课时
课前准备
教师准备
1.课件、多媒体;
2.收集、整理树状图或列表法画法;
3.搜索、编辑本课中利于的素材(图片、视频、音频等);
4.批阅学生预习内容,总结共性问题,确定准确结论,重点查阅小组负责人的预习成果;
5.制作多媒体课件,有效衔接各教学环节;
学生准备
1.练习本;
2.阅读教材,找出关键内容,提出不解问题,完成导学;
教学过程
一、新课导入(时间2分钟)
教师:1.等可能性事件的两个特征;2.如何求等可能性事件的概率;
学生:1.(1)出现的结果有限多个;(2)各结果发生的可能性相等
2.树状图和列表法
教师板书课题:利用画树状图和列表计算概率
设计意图
通过呈现实验问题引起学生的注意,使学生注意和思维进入课程。
概率的计算方法对课程的内容具体,呈现作用明显,便于引导学生进入相关问题的思考。
课堂记录
二、衔接起步(时间3分钟)
1.概率
教师:用列表法和树状图法求概率有什么优点?
学生:小组回忆、讨论。
课堂记录
成果示范
利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果,从而较方便地求出某些事件发生的概率。
设计意图
通过概率问题的求法激发学生的兴趣,使学生的注意由无意注意向有意注意转化。
同时通过实验的方法求概论,为后续的探讨作好铺垫。
三、活动探究(时间20分钟)
1.例2.甲乙两只不透明的袋子里装有除颜色之外都相同的球,甲袋装有红、蓝、黄色球各一个,乙袋装有红、蓝色球各一个,从每个袋子里分别随机地摸出一个球,两个球恰为同色的概率是多少?
例3.同时掷两枚骰子,落定后,两枚骰子朝上一面的点数之和可能是哪些数?其中概率最大的是什么数?概率最小的是什么数?
教师:引导学生分析实验、观察: 学生:分析交流 课堂记录
成果示范
例2.解:共有6个等可能结果.同色的有两个
21
(63
P ∴=
=同色) 例3. 6 7 8 9 10
11 12 5 6 7 8 9 10
11 4
5
6
7
8
9
10
由图表看出,点数之和为7的情况最多,有6种,概率最大。
点数之和为2和12的情况最少,各1种,概率最小。
61(7366P =
=点数之和为) 1(236P =点数之和为) 1(1236P =点数之和为) 设计意图
让学生经历实验过程,培养学生合作交流的态度,得出用树状图和列表法来计算概率。
四、归纳概括(时间4分钟) 1.树状图和列表法来计算概率的选择
教师:想一想:计算概率时怎样优选用树状图或列表法? 学生:分组讨论,达到共识后回答。
课堂记录
成果示范
利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果,从而较方便地求出某些事件发生的概率。
当试验包含两步时,列表法比较方便,当然,此时也可以用树状图法,当试验在三步或三步以上时,用画树状图法方便。
设计意图
学生独立思考,然后小组讨论,说出结果,教师指导、点评,让学生充分理解用树状图和列表法概率计算方法。
五、运用巩固(时间6分钟)
1.某人有红、白、蓝三件衬衫和红、白、蓝三条长裤,该人任意拿一件衬衫和一条长裤,求正好是一套白色的概率_______。
2.一个袋子中装有2个红球和2个绿球,任意摸出一球,记录颜色放回,再任意摸出一球,记录颜色放回,请你估计两次都摸到红球的概率是________。
3.如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”小明设计了一个游戏:游戏者每次从袋中随机摸出一个球,并自由转动图中的转盘(转盘被分成相等的三个扇形)。
游戏规则是:如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏者获胜的概率。
1
3
2
4.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,当有三辆汽车经过这个十字路口时,求下列事件的概率:
(1)三辆车全部继续直行;
(2)两辆车向右转,一辆车向左转;
(3)至少有两辆车向左转。
5.用数字1,2,3,组成三位数,求其中恰有2个相同的数字的概率。
教师:进一步理解利用画树状图和列表计算概率。
学生: 利用画树状图和列表计算概率。
课堂记录
成果示范
1.解:
19 2.解:1
4
3.解:每次游戏时,所有可能出现的结果如下:
总共有6种结果,每种结果出现的可能性相同,而所摸球上的数字与转盘转出的数字之和为2的结果只有一种:(1,1),因此游戏者获胜的概率为
16
4.解:画树形图如下
共有27种行驶方向 1(1)(27
P =
全部继续直行) 31(2)(279
P ==两车右转,一车左转) 7(3)(27
P =
至少两车向左转)
5.解:
由树形图可以看出,所有可能的结果有27种,它们出现的可能性相等。
其中恰有2个数字相同的结果有18个。
182
(273
P =
=恰有两个数字相同) 设计意图
使学生对本节课所学知识进行自我检查。
六、感悟延伸(时间3分钟)
1.甲口袋中装有2个相同的小球,它们分别写有字母A 和B;乙口袋中装有3个相同的小球,它们分别写有字母C.D 和E;丙口袋中装有2个相同的小球,它们分别写有字母H 和I,从3个口袋中各随机地取出1个小球。
(1)取出的3个小球上,恰好有1个,2个和3个元音字母的概率分别是多少? (2)取出的3个小球上全是辅音字母的概率是多少?
教师:思考运用画树状图和列表计算概率解决实际问题。
学生:进一步讨论概率的应用。
课堂记录
成果示范
1.解:根据题意,我们可以画出如下的树状图
所以穿相同一双袜子的概率为
41 123
设计意图
先让学生独立思考,然后小组讨论,说出结果,教师指导、点评,这样可以让学生亲历思维过程,得出正确结论的印象更深刻。
七、总结启迪(时间2分钟)
教师:通过本节课的学习,你有哪些收获?你还有哪些困惑呢?与同学们交流一下。
板书设计
简单的概率计算
导入新课:
合作探究
运用画树状图和列表计算概率
例2
例3
设计意图
在教师的引导下,学生自主归纳,使学生对所学知识及时纳入学生的认知结构。
教学反思
本节课主要学习运用画树状图和列表计算概率,让学生能够正确地进行计算在备课时按照以学生参与为主,让学生在对与错之间加深对概率的理解的情况进行预设,在实际教学中出现没有正确地进行判断的情况,教学目标没有实现,可以采取选取典型的练习题的方法实现。