解直角三角形及其应用PPT课件

合集下载

18、解直角三角形及其应用PPT课件

18、解直角三角形及其应用PPT课件

中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
6
已知条件 已知两直角边(a,b) 已知斜边和一条直角边(c,a)
图形
解法 c= a2+b2,由 tanA=ab求∠A,∠ B=90°-∠A b= c2-a2,由 sinA=ac求∠A,∠ B=90°-∠A
202X权威 · 预测
第一部分 教材同步复习
12
(2)∵∠ABE=90°,AB=6,sinA=45=BAEE, ∴设 BE=4x,则 AE=5x,得 AB=3x, ∴3x=6,得 x=2,∴BE=8,AE=10, ∴tanE=ABBE=68=CDDE=D4E, 解得,DE=136, ∴AD=AE-DE=10-136=134,即 AD 的长是134.
第一部分 教材同步复习
4
►知识点二 解直角三角形
1.解直角三角形的定义及依据 (1)定义:在直角三角形中,除直角外,由已知元素求未知元素的过程就是解直 角三角形; (2)依据:在 Rt△ABC 中,∠C=90°,∠A,∠B,∠C 所对的边分别为 a,b,c, 则①边角关系:sinA=ac,cosA=bc,tanA=ab;②三边之间的关系:a2+b2=c2;③锐 角之间的关系:∠A+∠B=∠C; 1 (3)面积公式:S△ABC=12ab=①__2_c_h_____.(h 为斜边 c 上的高)
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
11
【思路点拨】 本题考查解直角三角形.(1)要求BC的长,只要求出BE和CE的 长即可,由题意可以得到BE和CE的长,本题得以解决;(2)要求AD的长,只要求出 AE和DE的长即可,根据题意可以得到AE、DE的长,本题得以解决.

解直角三角形及其应用-课件ppt

解直角三角形及其应用-课件ppt
(1)若某坡面的坡角为 45,则坡度 i=1:1 ; (2)若某坡面的坡度为 1: 3 ,则坡角是 30 。
坡度
如图,拦水坝的横断面为梯形 ABCD ,根据图中的数据, 求坝顶宽 AD 和斜坡 AB 的长。
坡度
解:依题意,得 DE 1 。
EC 3
Q DE AF 6 m ,
EC 1(8 m) 。
角是_____1_பைடு நூலகம்___。
仰角、俯角
如图,某航天飞船在地球表面点 P的正上方 A处, 从A 处观测到地球上的最远点 Q,若QAP ,地球
半径为 R ,则航天飞船距离地球表面的最近距离 AP
是( B )
A. R
sin
C.
R +R
sin
B. R R
sin
D.
R R
cos
方向角
1.方向角是表示方向的角;以__正__北______和 ___正__南_____方向为基准,来描述物体所处的方向;
迎水坡坡角BAC 30 ,则 AB的长为 16m 。
坡度
3.(1)坡度 i 是指__竖__直__高__度__与__水__平__距__离__的比,
这个值与坡角的____正__切____值相等;
(2)坡度 i 一般写成 1:m 的形式,坡度 i 的值
越大,表明坡角越____大______,即坡越陡。 4.填空:
解直角三角形及其应用
仰角、俯角
如图,在进行高度测量时,视线与水平线所成的角 中,视线在水平线上方的是___仰__角_____,视线在水平线 下方的是___俯__角_____。
仰角、俯角
如图,C=DEB=90 ,FB P AC ,从 A 点看 D 点的仰角是____2__,从 B 点看 D 点的俯角是___F_B_D__, 从 A 点看 B 点的_____仰__角是____B_A_C___,从 D 点看 B 点的____仰____角是_____3___,从 B点看 A 点的___俯___

解直角三角形完整版PPT课件

解直角三角形完整版PPT课件

余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。

28.2.1解直角三角形课件(共16张PPT)

28.2.1解直角三角形课件(共16张PPT)
c b 20 34.9. sin B sin 35
A
c
b = 20
35°
B
aC
你还有其他方 法求出c吗?
【针对练】
如图,从点C测得树的顶角为33º,BC=20米,则树高AB= ________米(用计算器计算,结果精确到0.1米)
【解析】由tanC AB,得
BC
AB=BC·tanC=20×tan33°=13.0 【答案】13.0
C
6
B
AB 2AC 2 2.
合作探究 达成目标
【例2】如图,在Rt△ABC中,∠B=35°,b=20,解这
个直角三角形(精确到0.1)
【解析】A 90-B 90-35 55.
tan B b a
a b 20 28.6 tan B tan 35
sin B b c
B的邻边 斜边

a c
tan
A

A的对边 A的邻边

a b
tan
B

B的对边 B的邻边

b a
合作探究 达成目标
【例1】如图,在Rt△ABC中,∠C=90°,AC 2, BC 6
解这个直角三角形.
【解析】
tan A BC AC
6 2
3,
A
2
A 60.
B 90 A 30.
总结梳理 内化目标
1.解直角三角形的关键是找到与已知和未知相关 联的直角三角形,当图形中没有直角三角形时, 要通过作辅助线构造直角三角形(作某边上的高 是常用的辅助线).
2.一些解直角三角形的问题往往与其他知识联系 ,所以在复习时要形成知识结构,要把解直角三 角形作为一种工具,能在解决各种数学问题时合 理运用.

《解直角三角形及其应用》_课件

《解直角三角形及其应用》_课件

【获奖课件ppt】《解直角三角形及其 应用》 _课件1 -课件 分析下 载 【获奖课件ppt】《解直角三角形及其 应用》 _课件1 -课件 分析下 载
【获奖课件ppt】《解直角三角形及其 应用》 _课件1 -课件 分析下 载 【获奖课件ppt】《解直角三角形及其 应用》 _课件1 -课件 分析下 载
义务教育教科书(人教版)九年级数学下册
【获奖课件ppt】《解直角三角形及其 应用》 _课件1 -课件 分析下 载 【获奖课件ppt】《解直角三角形及其 应用》 _课件1 -课件 分析下 载
【获奖课件ppt】《解直角三角形及其 应用》 _课件1 -课件 分析下 载 【获奖课件ppt】《解直角三角形及其 应用》 _课件1 -课件 分析下 载
【Байду номын сангаас奖课件ppt】《解直角三角形及其 应用》 _课件1 -课件 分析下 载 【获奖课件ppt】《解直角三角形及其 应用》 _课件1 -课件 分析下 载
【获奖课件ppt】《解直角三角形及其 应用》 _课件1 -课件 分析下 载 【获奖课件ppt】《解直角三角形及其 应用》 _课件1 -课件 分析下 载
【获奖课件ppt】《解直角三角形及其 应用》 _课件1 -课件 分析下 载
结束语
学习知识要善于思考,思考,再思考。
【获奖课件ppt】《解直角三角形及其 应用》 _课件1 -课件 分析下 载
【获奖课件ppt】《解直角三角形及其 应用》 _课件1 -课件 分析下 载 【获奖课件ppt】《解直角三角形及其 应用》 _课件1 -课件 分析下 载
【获奖课件ppt】《解直角三角形及其 应用》 _课件1 -课件 分析下 载 【获奖课件ppt】《解直角三角形及其 应用》 _课件1 -课件 分析下 载

24. 解直角三角形及一般应用 PPT课件(华师大版)

24.  解直角三角形及一般应用 PPT课件(华师大版)


添设 辅助线解
解 直 角 三 角 形

直角 三角形
导引:在Rt△BCD中,求出BC与BD的长,再求出甲、乙所
用的时间,比较其大小即可知道谁先到达B处.
解:乙先到达B处.理由:由题意得∠BCD=55°,
∠BDC=90°,
∵tan∠BCD= BD , CD
∴BD=CD·tan∠BCD=40×tan 55°≈57.2(m),
CD
又cos∠BCD= ,
BC
【例3】〈浙江温州〉某海滨浴场东西走向的海岸线可近似看成直线l (如图).救生员甲在A处的瞭望台上视察海面情况,发现其正 北方向的B处有人发出求救信号.他立即沿AB方向径直前往 救援,同时通知正在海岸线上巡逻的救生员乙.乙立刻从C处 入海,径直向B处游去.甲在乙入海10 s后赶到海 岸线上的D处,再向B处游去.若CD=40 m,B在 C的北偏东35°方向上,甲、乙的游泳速度都是2 m/s.谁先到达B处?请说明理由.(参考数据:sin 55°≈0.82,cos 55°≈0.57,tan 55°≈1.43)
b
(3)利用∠B=90°-∠A求出∠B的度数.
1 (兰州)如图,△ABC中,∠B=90°,BC=2AB,则cos A =( )
A. 5 B. 1
2
Байду номын сангаас
2
C.2 5 5
D. 5 5
2 如图,四边形ABCD是梯形,AD∥BC,CA是∠BCD的 平分线,且AB⊥AC,AB=4,AD=6,则tan B=( )
【例1】在Rt△ABC中,a,b,c分别是∠A,∠B,∠C
的对边,∠C=90°,a=6,b= 2 3,解这个
直角三角形.
导引:先画出Rt△ABC,标注已知量,根据勾股定理 求出斜边长,然后根据正切的定义求出∠A的 度数,再利用∠B=90°-∠A求出∠B的度数.

解直角三角形的应用(19张ppt)课件

解直角三角形的应用(19张ppt)课件

选择合适的解法
根据实际情况选择合适的解法,如近似计算、 精确计算等。
注意单位统一
在实际应用中,要注意单位统一,避免计算 错误。
考虑多解情况
在某些情况下,解直角三角形可能存在多个 解,需要全面考虑。
06
练习与巩固
基础练习题
总结词
掌握基本概念和公式
直角三角形中的角度和边长关系
理解直角三角形中锐角、直角和钝角之间 的关系,以及边长与角度之间的勾股定理 。
利用三角函数定义求解
总结词
通过已知角度和邻边长度,求对边或 斜边长度。
详细描述
根据三角函数定义,已知一个锐角和它 所对的边,可以通过三角函数求出其他 两边。例如,已知∠A=30°和a=1,可 以通过三角函数sin(30°)求出对边b。
利用勾股定理求解
总结词
通过已知两边的长度,求第三边长度。
详细描述
向。
确定建筑物的角度
在建筑设计中,通过解直角三角形, 可以确定建筑物的角度和方向。
确定建筑物的长度
在建筑设计中,通过解直角三角形, 可以确定建筑物的长度和方向。
物理问题中的运用
确定物体的运动轨迹
在物理问题中,通过解直角三角形,可以确定物体的运动轨 迹和方向。
确定物体的受力情况
在物理问题中,通过解直角三角形,可以确定物体的受力情 况和方向。
04
实际应用案例
测高问题
01
02
03
测量山的高度
通过测量山脚和山顶的仰 角,利用解直角三角形的 知识,可以计算出山的高 度。
测量楼的高度
利用解直角三角形的知识, 通过测量楼底和楼顶的仰 角,可以计算出楼的高度。
测量树的高度
通过测量树底部和树顶部 的仰角,利用解直角三角 形的知识,可以计算出树 的高度。

新人教版九年级下册数学 28.2 解直角三角形及其应用参考课件(共30张PPT)

新人教版九年级下册数学 28.2 解直角三角形及其应用参考课件(共30张PPT)

2.如图,沿AC方向开山修路,为了加快施工进度,要在小山的 另一边同时施工,从AC上的一点B取∠ABD=140°,BD=520m, ∠d=50°,那么开挖点E离D多远正好能A,C,E使成一直线,(精 确到0.1m)?
例5.如图,一般海轮位于灯塔P的北偏东65°方向,距离灯 塔80海里的A处,它沿正南方向航行一段时间后,到达位于 灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距 离灯塔P有多远(结果取整数)?
问题 要想使人平安地攀上斜靠在墙面上的梯子的顶 端,梯子与地面所成的角α,一般要满足50°≤α≤75°. 现有一个长6m的梯子.问
(1)使用这个梯子最高可以平安攀上多高的墙(精确到0.1m)
对于问题(1),当梯子与地面成的角α为75°时,梯子顶 端与地面的距离是使用这个梯子所以攀到的最大高度.
问题(1)可以归结为:在Rt△ABC中,己知∠A=75°,斜边 AB=6,求∠A的对边BC的长.
(1)坡度α和β; (2)坝顶宽AD和斜坡AB的长(精确到0.1m)
利用解直角三角形的知识解决实际问题的一般过程是: (1)将实际问题抽象为数学问题(画出平面图形,转化为解直角 三角形问题); (2)根据条件的特点,适中选用锐角三角函数等去解直角三角形; (3)得到数学问题的答案; (4)得到实际问题的答案.
例3 2022年6月18日,“神舟〞九号载人航天飞船与“天宫〞 一号目标飞行器成功实现交会对接.“神舟〞九号与“天宫〞一 号的组合体当在离地球外表343km的圆形轨道上运行.如图,当组 合体运行到地球外表上P点的正上方时,从中能直接看到的地球 外表最远的点在什么位置?最远点与P点的距离是多少?(地球半 径约为6 400 km,π取3.142,结果取整数)?
解 : 如图在RtAPC中

九年级数学下册28.2 《解直角三角形及其应用》PPT课件

九年级数学下册28.2 《解直角三角形及其应用》PPT课件

解:设登到B处,视线BC在C点与地球相切,也就是 看C点,AB就是“楼”的高度,
在Rt△OCB中,∠O

AC OC

180

4.5 ,
OB

OC cos∠O

6370 cos 4.5
6389km,
∴ AB=OB-OA=6389-6370=19(km). 即这层楼至少要高19km,即1900m. 这是不存在 的.
例1 2012年6月18日,“神州”九号载人航天飞船与“天宫”一号
目标飞行器成功实现交会对接. “神州”九号与“天宫”一号的
组合体在离地球表面343km的圆形轨道上运行. 如图,当组
合体运行到离地球表面P点的正上方时,从中能直接看到的
地球表面最远的点在什么位置?最远点与P点的距离是多少
(地球半径约为6 400km,取3.142,结果取整数)?
个角), 其中∠C=90°.
B
(1) 三边之间的关系:a2+b2=__c_2__;
c a
(2) 锐角之间的关系: ∠A+∠B=__9_0_°_;
A
a
bC
b
(3) 边角之间的关系:sinA=__c___,cosA=__c___,
a
tanA=___b__.
讲授新课
一 已知两边解直角三角形
合作探究
在图中的Rt△ABC中,
三 已知一锐角三角函数值解直角三角形
例3 如图,在Rt△ABC 中,∠C=90°,cosA = 1,
3
BC = 5, 试求AB的长.
解: C 90,cos A 1, AC 1 . 3 AB 3
设 AB x, AC 1 x,
B

解直角三角形及其应用ppt课件

解直角三角形及其应用ppt课件

例1 在△ABC中,∠C为直角,∠A、∠B、∠C所
对的边分别为a、b、c,且b= 2 ,a= 6 ,解这 个三角形.
解:∵tanA=
a b
=____62___=
3
∴∠A=60°
∴∠B=__9_0_°__-_∠=A30°
∴AB=2AC=___2__2___
研读课文
解 知直 识角 点三 二角

例2 在Rt△ABC中, ∠B =35度,b=20,解这个
B
∴AC= 6
归纳小结
1、直角三角形ABC中,∠C=90°,a、b、c、 ∠A、∠B这五个元素间的等量关系:
(1)三边之间的关系:___a2_+_b_2_=_c_2__________
(2)两锐角之间的关系:_∠_A_+_∠_B=_9_0°__________ (3)边角之间的关系: ___si_n _A_ __A斜的_边_对_边_=_ac___co_s_A___A斜的_边_邻_边_=_bc___t_an_A___AA_的的_对邻_边边__=_ba_ 2、根据直角三角形的____2_个_____元素(至少有一 个边),可求出其余所有元素的过程,叫 __解__直__角__三__角__形_____. 3、学习反思:______________________________ ____________________________________。
强化训练
1、在Rt△ABC中, ∠C=90°,已知tanB= 5 ,则
2
cosA等于( D )
5
5
25
2
A. 2
B. 3
C. 5
D. 3
2、在Rt△ABC中,∠C=90°,a=35,c= 35 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
视线


线
仰角
俯角
水平线
视线
20
认识方位角
北 D E
45° 45°
西
C
O
F
B南
(1)正东,正南,正西,正北
射线OA OB OC OD H(2)西北方向:_射__线__O_E___
西南方向:_射__线__O_F____ 东
A
东南方向:_射__线__O_G____ G 东北方向:_射__线__O_H____
A
=
5 sin 30
=
5 1
=
10.
2
11
例2 在Rt△ABC中,∠C = 90°,a =15.60cm,
b=8.50cm,求c,∠A,∠B(长度精确到0.01cm), 角度精确到1′).
解: c a2+b2 15.602+8.502 17.77(cm).
由于
tan A =
a b
=
15.60 8.50
器测得一路灯电线杆底部B的俯角为15°,仪器高度 AD为1.5m.求这根电线杆与这座楼的距离BC(精确到 1m).
图4-26
25
解: 在Rt△ABC中,∠C = 90°,
AC=28.5+1.5=30(m),BAC =90 -15 =75
由于BC是∠BAC的对边,AC是邻边,
因此
tan 75 =
BC AC
21
认识方位角
北Leabharlann B 西70° 东O
60°
25°
C
A南
南偏西25°
射线OA
北偏西70° 射线OB
南偏东60° 射线OC
22
例3 如图4-25,一艘游船在离开码头A后,以和河
岸成 30°角的方向行驶了500m到达B处,求B处与河 岸的距离.
?
图4-25
23
解: 从点B作河岸线(看成直线段)的垂线,垂足为C,
14
3、(2010•常德中考)在△ABC中,∠C=90°,sinA= 4 5
则tanB为( B )
A. 4
B. 3
C. 3
3
4
5
D. 4 5
4.如图,已知Rt△ABC中,斜边BC上的高AD=4,
cosB= 4 ,则AC=______5______.
5
B
A DC
15
2、如图所示,一棵大树在一次强烈的地震中于离地面10米处折断倒下,树 顶落在离树根24米处.大树在折断之前高多少?
1.8353
,
因此 A 6125 .
从而 B 90 6125 2835.
12
练习
1. 在Rt△ABC中, C 90, B 45 ,b=3cm, 求∠A,a,c (精确到0.01cm). 答: A = 45 , a = 3 cm , c = 4.24cm .
13
2. 在Rt△ABC中,C 90, a=5.82cm,c=9.60cm, 求b,∠A ,∠B (角度精确到1′,长度精确到 0.01cm). 答: b, = 7.63 cm A = 37 19 , B = 52 41 .
A. 1 2
B.2
C. 5 5
D. 5 2
17
通过这节课,我们应当掌握: 1、掌握直角三角形的五个元素,已知两个元素(至少有个是边),能求出 其余三个元素; 2、能把数学问题转化成解直角三角形问题。
18
解直角三角形(二)
19
1.仰角与俯角的定义
在视线与水平线所成的角中规定: 视线在水平线上方的叫做仰角, 视线在水平线下方的叫做俯角。
在Rt△ABC中,∠C=90°,∠A=30°,AB=500m.
由于BC是∠A的对边,AB是斜边,因此
sin 30 =
BC AB
=
BC , 500
从而 BC =500 sin 30 250(m).
答:B处与河岸的距离约为250m.
A
C
?
B
24
例4 如图4-26,在高为28.5m的楼顶平台D处,用仪
不能. 因为此时的直角三角形 有无数多个.
10
例1 如图4-24,在Rt△ABC中,C 90, A 30 ,
a=5,求∠B,b,c.
解: B90 A 90 30 60.
又∵ ∴
tan B =
b a
,
b= a tan B
= 5 tan 60 = 5 3 .
图4-24

sin
A=
a c
,

c
=
a sin
(4)一个锐角40°,斜边长为3cm;
1个
(5)斜边长为4cm,一条直角边长为3cm. 1个
8
结论
在直角三角形中,除直角外的5个元素(3条边和2个 锐角),只要知道其中的2个元素(至少有一个是边),利 用上述关系式,就可以求出其余的3个未知元素,这叫 作解直角三角形.
9
动脑筋
如果知道的2个元素都是角,那么能求出直角三 角形的边吗?
图4-23
5
3. 直角三角形的边和锐角之间有什么关系?
sin
Α=
Α 的对边 斜边
.
cos
Α=
Α 的邻边 斜边
.
tan
Α=
Α 的对边 邻边
.
图4-23
6
做一做
根据下列每一组条件,能画出多少个直角三角形 (全等的直角三角形算一个)?
(1)一个锐角为 40°;
无数个
(2)一个锐角40°,它的邻边长为3cm;
本课节内容 4.3
解直角三角形及其应用
1
解直角三角形(一)
2
说一说
如图4-23,在直角三角形ABC中,∠C=90°, ∠A,∠B,∠C的对边分别记作a,b,c .
图4-23
3
1. 直角三角形的三边之间有什么关系?
a2+b2=c2(勾股定理)
图4-23
4
2. 直角三角形的锐角之间有什么关系?
∠A+∠B=90°.
答: AC = 2400 tan 60 = 4157(m ) .
解析:利用勾股定理可以求出折断倒 下部分的长度为:
102 242 26
26+10=36(米). 答:大树在折断之前高为36米.
16
1.如图,△ABC中,∠C=90°,AB=8,
B
cosA=
3 ,则AC的长是____6___ 4
C
A
2.(2010·常德中考)如图,在Rt△ABC中, 若AC=2BC,则sinA的值是( C )
=
BC 30
.
从而 BC =30tan 75 112(m).
答:这根电线杆与这座楼的距离约为112m.
图4-26
26
练习
如图4-27,一艘轮船航行到B处时,灯塔A在船 的北偏东 60的方向,轮船从B处向正东方向行驶 2400m到达C处,此时灯塔A在船的正北方向.求C处 与灯塔A的距离(精确到1m).
1个
(3)一个锐角40°,它的对边长为3cm;
1个
(4)一个锐角40°,斜边长为3cm;
1个
(5)斜边长为4cm,一条直角边长为3cm.
1个
7
做一做
从这些问题的结论,你猜想有什么规律? 这个猜想正确吗?
(1)一个锐角为 40°; 无数个
(2)一个锐角40°,它的邻边长为3cm; 1个
(3)一个锐角40°,它的对边长为3cm; 1个
相关文档
最新文档