相似三角形及解直角三角形测试题
圆与相似三角形、三角函数专题(含答案)
![圆与相似三角形、三角函数专题(含答案)](https://img.taocdn.com/s3/m/bc8839ff951ea76e58fafab069dc5022aaea4629.png)
圆与相像三角形、解直角三角形及二次函数的综合种类一:圆与相像三角形的综合1.如图, BC 是⊙ A 的直径,△ DBE的各个极点均在⊙ A 上, BF⊥ DE于点 F.求证: BD·BE= BC·BF.2.如图,在 Rt△ ABC中,∠ ACB= 90°,以 AC为直径的⊙ O 与 AB 边交于点 D,过点 D 作⊙O 的切线,交 BC 于点 E.(1)求证:点 E 是边 BC的中点;求证:2=BD·BA;(2)BC(3)当以点 O, D, E,C 为极点的四边形是正方形时,求证:△ABC是等腰直角三角形.解:(1) 连接 OD,∵ DE为切线,∴∠ EDC+∠ ODC=90° .∵∠ ACB=90°,∴∠ ECD+∠ OCD= 90° .又∵ OD= OC,∴∠ ODC=∠ OCD,∴∠ EDC=∠ ECD,∴ ED= EC.∵AC 为直径,∴∠ADC= 90°,∴∠ BDE+∠ EDC= 90°,∠ B+∠ECD= 90°,∴∠ B=∠ BDE,∴ ED= EB,∴ EB=EC,即点 E 为边 BC的中点(2)∵ AC为直径,∴∠ ADC=∠ ACB=90° .又∵∠ B=∠ B,∴△ ABC∽△ CBD,∴ABBC= BCBD,∴B C2= BDBA(3)当四边形 ODEC为正方形时,∠ OCD= 45° .∵AC 为直径,∴∠ ADC= 90°,∴∠ CAD=90°-∠ OCD= 90°- 45°= 45°,∴ Rt△ ABC 为等腰直角三角形种类二:圆与解直角三角形的综合3.如图,在△ ABC中,以 AC 为直径作⊙ O 交 BC 于点 D,交 AB 于点 G,且 D 是 BC 的中点,DE⊥ AB,垂足为点 E,交 AC 的延伸线于点 F.(1)求证:直线EF是⊙ O 的切线;(2)已知 CF= 5, cosA=25,求 BE 的长.解: (1)连接 OD.∵ CD=DB,CO= OA,∴ OD 是△ ABC的中位线,∴OD∥ AB, AB=2OD.∵ DE⊥ AB,∴ DE⊥OD,即 OD⊥ EF,∴直线 EF是⊙ O 的切线(2)∵ OD∥ AB,∴∠ COD=∠ A,∴ cos∠ COD= cosA= 25.在 Rt△ DOF中,∵∠ ODF= 90°,∴ cos∠ FOD= ODOF= 25.设⊙ O 的半径为 r,则 rr + 5= 25,解得 r= 103,∴ AB= 2OD= AC= 203.在 Rt△ AEF中,∵∠ AEF= 90°,∴ cosA= AEAF=AE5+ 203=25,∴ AE= 143,∴ BE=AB- AE=203- 143= 24.(2015 ·资阳 )如图,在△ ABC中, BC是以 AB 为直径的⊙ O 的切线,且⊙ O 与 AC 订交于点D, E 为 BC 的中点,连接 DE.(1)求证: DE 是⊙ O 的切线;(2)连接 AE,若∠ C= 45°,求 sin∠ CAE的值.解: (1)连接 OD,BD,∵ OD= OB,∴∠ ODB=∠ OBD.∵ AB 是直径,∴∠ ADB= 90°,∴∠ CDB= 90° .∵ E为 BC的中点,∴ DE=BE,∴∠ EDB=∠ EBD,∴∠ ODB+∠ EDB=∠ OBD+∠ EBD,即∠ EDO=∠ EBO.∵ BC 是以 AB 为直径的⊙ O 的切线,∴ AB⊥ BC,∴∠ EBO=90°,∴∠ ODE= 90°,∴ DE 是⊙ O 的切线(2)过点 E 作 EF⊥ CD于点 F,设 EF= x,∵∠ C=45°,∴△ CEF,△ABC 都是等腰直角三角形,∴CF= EF= x,∴ BE= CE= 2x,∴AB= BC= 22x.在 Rt△ ABE中, AE= AB2+ BE2= 10x,∴ sin∠ CAE= EFAE= 10105.如图,△ ABC 内接于⊙ O,直径 BD 交 AC 于点 E,过点 O 作 FG⊥ AB,交 AC 于点 F,交 AB 于点 H,交⊙ O 于点 G.(1)求证: OF·DE= OE·2OH;(2)若⊙ O 的半径为12,且 OE∶OF∶ OD= 2∶3∶ 6,求暗影部分的面积. (结果保存根号 )解: (1)∵ BD 是直径,∴∠ DAB= 90° .∵ FG⊥ AB,∴ DA∥ FO,∴△FOE∽△ADE,∴FOAD=OEDE,即OFDE=OEAD.∵O 是BD 的中点, DA∥ OH,∴ AD= 2OH,∴ OFDE= OE2OH(2)∵⊙ O 的半径为12,且 OE∶ OF∶ OD=2∶ 3∶ 6,∴ OE= 4, ED=8,OF= 6,∴ OH= 6.在 Rt△OBH 中,OB= 2OH,∴∠ OBH= 30°,∴∠ BOH= 60°,∴ BH= BOsin60°= 12× 32= 63,∴ S 暗影= S 扇形 GOB-S△OHB=60×π× 122360- 12× 6×63= 24π- 183种类三:圆与二次函数的综合6.如图,在平面直角坐标系中,已知 A(- 4,0), B(1,0),且以 AB 为直径的圆交 y 轴的正半轴于点 C(0,2),过点 C作圆的切线交 x 轴于点 D.(1)求过 A,B, C 三点的抛物线的分析式;(2)求点 D 的坐标;(3)设平行于 x 轴的直线交抛物线于E,F 两点,问:能否存在以线段EF为直径的圆,恰巧与x轴相切若存在,求出该圆的半径,若不存在,请说明原因.解: (1)y=- 12x2- 32x+2(2)以 AB 为直径的圆的圆心坐标为O′ (-32,0),∴O′ C= 52, O′ O= 32.∵ CD为圆 O′的切线,∴O′ C⊥ CD,∴∠ O′CO+∠ DCO= 90° .又∵∠CO′ O+∠ O′ CO=90°,∴∠ CO′ O=∠DCO,∴△ O′ CO∽△ CDO,∴ O′ OOC= OCOD,∴322= 2OD,∴ OD= 83,∴点 D 的坐标为 (83,0)(3)存在.抛物线的对称轴为直线x=- 32,设满足条件的圆的半径为|r| ,则点 E 的坐标为 (- 32+ r, r)或 F(- 32-r , r),而点 E 在抛物线y =- 12x2- 32x+2 上,∴ r=- 12(- 32+ |r|)2 - 32(- 32+ |r|) + 2,∴ r1=- 1+ 292, r2=-1- 292(舍去 ).故存在以线段EF 为直径的圆,恰巧与x 轴相切,该圆的半径为-1+ 2927.如图,抛物线y=ax2+ bx- 3 与 x 轴交于 A, B 两点,与y 轴交于点C,经过 A,B, C 三点的圆的圆心抛物线的极点为M(1 ,m)恰幸亏此抛物线的对称轴上,E.⊙ M的半径为.设⊙ M与y 轴交于点D,(1)求 m 的值及抛物线的分析式;(2)设∠ DBC=α,∠ CBE=β,求 sin( α-β)的值;(3)研究坐标轴上能否存在点 P,使得以 P, A, C 为极点的三角形与△ BCE相像若存在,请指出点 P 的地点,并直接写出点 P 的坐标;若不存在,请说明原因.解: (1)由题意,可知 C(0,- 3),- b2a=1,∴抛物线的分析式为 y= ax2- 2ax- 3(a> 0).过点 M 作 MN ⊥y 轴于点 N,连接 CM,则 MN = 1, CM= 5,∴ CN= 2,于是 m=- 1.同理,可求得 B(3,0),∴ a× 32- 2a× 3- 3=0,解得 a= 1. ∴抛物线的分析式为 y= x2- 2x-3(2)由 (1)得, A(-1 ,0), E(1,- 4), D(0, 1),∴△ BCE为直角三角形, BC=32, CE= 2,∴OBOD=31= 3, BCCE= 322=3,∴ OBOD= BCCE,即 OBBC= ODCE,∴ Rt△BOD∽ Rt△BCE,得∠ CBE=∠ OBD=β,所以 sin(α-β )=sin(∠ DBC-∠ OBD)= sin∠ OBC= COBC= 22(3)明显 Rt△ COA∽ Rt△ BCE,此时点 O(0, 0).过点 A 作 AP2⊥ AC 交 y 轴的正半轴于点 P2,由 Rt△ CAP2∽Rt△ BCE,得 P2(0,13).过点 C 作 CP3⊥ AC交 x 轴的正半轴于点 P3,由 Rt△P3CA∽ Rt△ BCE,得 P3(9,0).故在座标轴上存在三个点 P1(0, 0),P2(0, 13),P3(9, 0),使得以 P, A, C为极点的三角形与△ BCE相像。
相似三角形测试题及答案(全)
![相似三角形测试题及答案(全)](https://img.taocdn.com/s3/m/d5aaf9fb7f1922791688e8d1.png)
1、两个相似三角形对应边之比是1:5,那么它们的周长比是( )。 (A)
;(B)1:25;(C)1:5;(D)
。 2、如果两个相似三角形的相似比为1:4,那么它们的面积比为( )。 (A)1:16;(B)1:8;(C)1:4;(D)1:2。 3、如图,锐角三角形ABC的高CD和高BE相交于O,则与△DOB相似的三角 形个数是( )。 (A)1;(B)2;(C)3;D)5。
3、如图,△ABC中,D是AC中点,AF∥DE, =1:3,则 =( )。 (A)1:2;(B)2:3;(C)3:4;(D)1:1。 4、如图,平行四边形ABCD中,O1、O2、O3为对角线BD上三点,且BO1= O1O2=O2O3=O3D,连结AO1并延长交BC于点E,连结EO3并延长交AD于F, 则AD:FD等于( )。 (A)19:2;(B)9:1;(C)8:1;(D)7:1。 三、(本题8分) 如图,已知矩形ABCD中,AB=10cm,BC=12cm,E为DC中点,AF⊥BE于 点F,求AF长。 四、(本题8分) 如图,D、E分别是△ABC边AB和AC上的点,∠1=∠2,求证:AD·AB= AE·AC。 五、(本题8分) 如图,ABCD是平行四边形,点E在边BA延长线上,连CE交AD于点F, ∠ECA=∠D,求证:AC·BE=CE·AD。
4、如图,∠ACD=∠B,AC=6,AD=4,则AB=________。
5、如图ABCD是平行四边形,F是DA延长线上一点,连CF交BD于G,交AB 于E,则图中相似三角形(包括全等三角形在内)共有________对。 6、如图,△ABC中,BC=15cm,DE、FG均平行于BC且将△ABC面积分成 三等分,则FG=________ cm。 7、如图,AF∥BE∥CD,AF=12,BE=19,CD=28,则FE:ED的值等于 ________。 8、如图,△ABC,DE∥GF∥BC,且AD=DG=GB,则 =________。
相似三角形试题及答案
![相似三角形试题及答案](https://img.taocdn.com/s3/m/b939e755f011f18583d049649b6648d7c1c708b2.png)
相似三角形试题及答案
一、选择题
1. 已知两个三角形相似,下列说法正确的是()
A. 对应角相等
B. 对应边成比例
C. 对应角相等且对应边成比例
D. 面积相等
答案:C
2. 若两个三角形的相似比为2:3,则下列说法正确的是()
A. 周长比为2:3
B. 周长比为3:2
C. 面积比为4:9
D. 面积比为9:16
答案:C
二、填空题
1. 若三角形ABC与三角形DEF相似,且AB:DE=2:3,则BC:EF=______。
答案:2:3
2. 若三角形ABC与三角形DEF相似,且相似比为1:2,则三角形ABC
的面积是三角形DEF面积的______。
答案:1/4
三、解答题
1. 已知三角形ABC与三角形DEF相似,AB=6cm,DE=9cm,求BC和EF 的长度。
答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应边成比例。
因此,BC:EF=AB:DE=6:9=2:3。
设BC=2x,则EF=3x。
由于AB:DE=2:3,所以2x/3x=6/9,解得x=3cm。
因此,BC=6cm,
EF=9cm。
2. 已知三角形ABC与三角形DEF相似,且三角形ABC的面积为24平方厘米,三角形DEF的面积为36平方厘米,求相似比。
答案:设相似比为k,则三角形ABC与三角形DEF的面积比为k^2。
因此,k^2=24/36=2/3,解得k=√(2/3)。
所以相似比为√(2/3)。
九年级数学解直角三角形与图形的相似综合过关测试
![九年级数学解直角三角形与图形的相似综合过关测试](https://img.taocdn.com/s3/m/c6b21d01844769eae009ed6a.png)
解直角三角形过关自测卷(90分钟 100分)一、选择题(每题3分,共30分)1.图1,P 是角α的边OA 上一点,点P 的坐标为(12,5),则tan α等于( ) A.135 B.1312 C.125 D.512图1 图2 图32.在直角三角形ABC 中,各边的长度都扩大为原来的2倍,那么锐角A 的正弦值、余弦值和正切值( )A.都扩大为原来的2倍B.都缩小为原来的21 C.都不变 D.无法确定3.已知在Rt △ABC 中,∠C=90°,AC =BC ,点D 在AC 上,∠CBD =30°,则DCAD 的值为( )A.3B.22C. 3-1D.不能确定 4.1,则菱形的四个角分别为( )A.30°、150°、30°、150°B.45°、135°、45°、135°C.60°、120°、60°、120°D.不能确定5.如图2,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4 m.如果在坡度为0.75的山坡上种树,也要求株距为4 m,那么相邻两树间的坡面距离为()A.5 mB.6 mC.7 mD.8 m6.已知∠A,∠B是Rt△ABC的两个锐角,则方程tan A·x²-2x+tan B=0( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.根的情况无法确定7.如图3,一艘轮船由海平面上A地出发向南偏西40°的方向行驶40 n mile到达B地,再由B地向北偏西20°的方向行驶20 n mile到达C地,则A,C两地相距()A.30 n mileB.40 n mileC.203n mileD.103n mile 8.(2012,四川广安,有改动)如图4,某水库堤坝横断面迎水坡AB 的坡度i=1BC=50 m,则迎水坡面AB的长度是()A.100 mB.1003mC.150 mD.503m图4 图5 图69.如图5所示,学校的保管室里,有一架5 m长的梯子OC斜靠在墙上,此时梯子OC与地面所成的角为45°,如果梯子底端O固定不动,顶端C靠到对面墙上的C′点,此时梯子OC′与地面所成的角为60°,则此保管室的宽度AB为()A.25(2+1)mB.25(3+2)mC.32mD.25(3+1)m10.(2013,广州)如图6所示,四边形ABCD 是梯形,AD ∥BC ,CA 是∠BCD 的平分线,且AB ⊥AC ,AB =4,AD =6,则tan B 等于( )A .23 B.22 C.411D.55二、填空题(每题3分,共24分)11.(2012,湖北孝感)计算:cos 245°+tan30°·sin60°=________. 12.在△ABC 中,∠A ,∠B 都是锐角,且(cos A -21)²+|1-tan B |=0,则∠C =__________. 13.若tan α=5,则ααααcos 3sin 2cos -sin +=__________.14.如图7,孔明同学背着一桶水,从山脚A 出发,沿与地面成30°角的山坡向上走,送水到山上因春季受旱缺水的王奶奶家(B 处),AB =80 m ,则孔明从A 到B 上升的高度BC 是________m.图7 图8 图9 图10 15.(2014,厦门莲花中学模拟)如图8,△ABC 中,∠B =30°, ∠A =15°,若BC 边上的高为2,则BC =__________.16.在△ABC 中,∠A ,∠B 都是锐角,且sin A =21,tan B =3,AB =10,则△ABC 的面积为___________.17.全市动员修海堤抗台风,某海堤的横断面是梯形,如图9所示,迎水坡BC的坡角为30°,背水坡AD的坡度i=1∶1.2,堤顶宽DC 为3 m,堤高DF为10 m,则堤底宽AB约为________m.(精确到0.1 m)18.(2013,荆门)如图10,在Rt△ABC中,∠ACB=90°,D是AB 的中点,过D点作AB的垂线交AC于点E,BC=6,sin A=53,则DE=________.三、解答题(19题4分,20题6分,24题8分,其余每题7分,共46分)19.(1)计算:121-⎪⎭⎫⎝⎛+8+|1-2|0-2sin60°·tan60°;(2)计算:sin²30°+cos²45°+2sin60°·tan45°.20.(2013,昭通)小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P处观看小亮与爸爸在湖中划船(如图11所示).小船从P 处出发,沿北偏东60°方向划行200 m到A处,接着向正南方向划行一段时间到B处.在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米(精确到1 m)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41,3≈1.73)图1121.小明将一副三角尺如图12所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长,若已知CD=2,求AC的长.图1222.(2013,贵阳)在一次综合实践活动中,小明要测某地一座古塔AE 的高度,如图13,已知塔基AB的高为4 m,他在C处测得塔基顶端B的仰角为30°,然后沿AC方向走5 m到达D点,又测得塔顶E 的仰角为50°.(人的身高忽略不计)(1)求AC的距离;(结果保留根号)图13(2)求塔高AE.(参考数据:tan50°≈1.2,sin50°≈0.77,cos50°≈0.64,3≈1.73,2≈1.41,结果保留整数)23.如图14,一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B处后,又沿着北偏西22°方向航行了10 n mile到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离.(2≈1.4, 3≈1.7,结果保留整数)图1424.某过街天桥的截面图为梯形,如图15所示,其中天桥斜面CD 的坡度i=1∶3,CD的长为10 m,天桥另一斜面AB的坡角∠ABG=45.(1)求过街天桥斜面AB的坡度;(2)求DE的长;(3)若决定对该过街天桥进行改建,使AB斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF,试计算此改建需占路面的宽度FB.(结果精确到0.01 m)图1525.阅读下列材料,并解决后面的问题.如图16所示,在锐角三角形ABC 中,设∠BAC ,∠B ,∠C 的对边分别是a ,b ,c .过点A 作AD ⊥BC 于点D ,则sin B =c AD ,sin C =b AD,即AD =c ·sin B ,AD =b ·sin C .于是c ·sin B =b ·sin C ,即CcB b sin sin =,同理有,sin sin sin sin B b BAC a BAC a C c =∠∠=,所以CcB b BAC a sin sin sin ==∠. 即:在一个锐角三角形中,各边和它所对角的正弦的比相等.图16(1)在锐角三角形中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,若已知三个元素,a ,b ,∠A ,运用上述结论和有关定理就可以求出其余三个未知元素c ,∠B ,∠C .请你按照下列步骤填空,完成求解过程.第一步:由a ,b ,∠A −−−→−用关系式__________求出∠B ; 第二步:由∠A ,∠B −−−→−用关系式__________求出∠C ; 第三步:由__________−−−→−用关系式__________求出c ;(2)一货轮在C 处测得灯塔A 在货轮北偏西30°方向上,随后货轮以28.4 n mile/h 的速度按北偏东45°的方向航行,0.5 h 后到达B 处,此时又测得灯塔A在货轮的北偏西70°方向上(如图17所示),利用上面的结论求此时货轮到灯塔A的距离AB.(结果精确到0.1 n mile,参考数据:sin40°≈0.643,sin65°≈0.906,sin70°≈0.940,sin75°≈0.966)图17参考答案及点拨一、1.C 2.C 3.C4.C 点拨:设较大内角为α,则tan2α =3,所以2α=60°,所以α=120°.5.A 6.B 点拨:因为b 2-4ac =(-2)2-4·tan A ·tan B =4-4×1=0,故方程有两个相等的实数根.7.C 8.A 9.A10.B 点拨:过点D 作AB 的平行线交AC 于点E ,交BC 于点F ,如答图1,易知四边形ABFD 是平行四边形,∴BF =AD =6,DF =AB =4,∵AB ⊥AC ,DF ∥AB ,∴DF ⊥AC ,又∵CA 是∠BCD 的平分线,∴CD =CF ,∠DCA =∠ACB ,又∵AD ∥BC ,∴∠DAC =∠ACB ,∴∠DAC =∠DCA .∴DC =DA =6,∴CF =6,∴BC =BF +CF =12.易求得AC =82,∴tan B =AB AC =428=22. 答图1二、11.1 点拨:cos 245°+tan30°·sin60°=222⎪⎪⎭⎫⎝⎛+33×23=21+21=1. 12.75°13.83 点拨:原式=3cos sin 2cos sin +-αααα=3tan 2tan +-αα=3525+-=83.14.4015.32-2 点拨:设BC 边上的高为AD ,由题意知,AD =2,∠ACD =∠B +∠BAC =45°,∴tan 45°=CD AD =CD 2=1,∴CD =2, ∴tan B =BD AD =22-BC =33,解得BC =23-2. 16.2325 点拨:在该题中,并没有直接指明△ABC 是直角三角形,所以需先判断其为直角三角形,然后才能利用解直角三角形的知识解题.17.32.318.415 点拨:由题易证△AED ∽△ABC ,在△ABC 中,BC =6,sin A =53,可求得AB =10,AC =8.利用相似三角形的性质可求得DE 的长. 三、19.解:(1)原式=2+22+1-2×23×3=2+22+1-3=22. (2)原式=221⎪⎭⎫ ⎝⎛+222⎪⎪⎭⎫ ⎝⎛+2×23×1=41+21+26=43+26. 20.解:过P 作PC ⊥AB 于C ,如答图2,在Rt △APC 中,AP =200 m ,∠ACP =︒90,∠P AC =60°.∴PC =200×sin60°=200×23=1003(m ).∵在Rt △PBC 中,sin ︒37=PB PC ,∴PB =︒37sin PC ≈6.073.1100⨯≈288(m ). 答:这时小亮与妈妈相距约288 m.答图221.解:在Rt △BCD 中,∠BCD =45°,CD =2,cos ∠BCD =BC CD ,∴BC =BCD CD ∠cos =︒45cos 2=22.在Rt △ABC 中,∠BAC =60°,sin ∠BAC =AC BC ,∴AC =BAC BC ∠sin =︒60sin 22=2322=364.∴AC 的长为364. 点拨:△ABC 和△BCD 都是有特殊锐角的直角三角形,所以利用特殊角的三角函数值便可求得AC 的长.22.解:(1)在Rt △ABC 中,AB =4 m ,∠BCA =30°,由tan ∠BCA =ACAB ,得AC =BCA AB ∠tan =︒30tan 4=334=43(m ). ∴AC 的距离为43 m.(2)设AE=x m ,在Rt △AED 中,由tan50°=ADx ,得AD =︒tan50x ≈1.2x (m ), ∵CD =AD -AC =5,∴1.2x -43≈5,解得x ≈14, ∴塔高AE 约为14m.23.解:由题意知:∠BAC =53°-23°=30°,∠C =23°+22°=45°.过点B 作BD ⊥AC ,垂足为D ,则CD =BD .∵BC =10 n mile ,∴CD =BD =BC ·cos45°=10×22=52 (n mile),∴AD =325332530tan ⨯==︒BD ≈5×1.4×1.7=11.9(n mile).∴AC =AD +CD ≈11.9+25≈11.9+7.0=18.9≈19(n mile ).答:此时小船与码头之间的距离约为19 n mile.24.解:(1)在Rt △AGB 中,∠ABG =45°,所以AG =BG .所以AB 的坡度为AG ∶BG =1∶1.(2)在Rt △DEC 中,tan C =33=EC DE ,所以∠C =30°.又因为CD =10 m, 所以DE =CD ·sin30°=5 m.(3)由(1)(2)知,AG =BG =DE =5 m,在Rt △AFG 中,∠AFG =30°,tan ∠AFG =FGAG ,即5533-=FB .所以FB =35-5≈3.66 (m ). 答:此改建需占路面的宽度FB 约为3.66 m.25.解:(1)Bb A a sin sin =;∠A +∠B +∠C =180°;a ,∠A ,∠C ;Cc A a sin sin = (2)根据题意,得∠ABC =180°-45°-70°=65°,∠A =180°-(30°+45°+65°)=40°,BC =0.5×28.4=14.2(n mile ).因为︒=︒40sin 2.1475sin AB ,所以AB ≈643.0966.02.14⨯≈21.3(n mile ),所以此时货轮到灯塔A 的距离AB 约为21.3 n mile.图形的相似过关自测卷(90分钟100分)一、选择题(每题3分,共24分)1.已知:a=0.2,b=1.6,c=4,d=1,则下列各式中正确的是()2A.a∶b=c∶dB.a∶c=d∶bC.a∶b=d∶cD.a∶d=c∶b 2.下列命题中:①所有的等腰三角形都相似;②有一对锐角相等的两个直角三角形相似;③四个角对应相等的两个梯形相似;④所有的正方形都相似,正确命题的个数为()A.1B.2C.3D.43.如图1,位似图形由三角尺与其灯光照射下的中心投影组成,位似比为2∶5,且三角尺的一边长为8 cm,则投影三角形的对应边长为()A.8 cmB.20 cmC.3.2 cmD.10 cm 4.如图2,已知△ABC的BC边上有两点D、E,且△ADE是正三角形,则下列条件不一定能使△ABD与△AEC相似的是()A.∠BAC=120°B.AC²=EC·EBC.DE²=BD·ECD.∠EAC+∠B=60°图1 图2 图35.如图3,AD是△ABC的高,EF⊥BC,F为垂足,E是AB边的中点,DC=1BF,若BC=10,则DC的长是()2A.310B.25C.2D. 45 6.如图4,在平行四边形ABCD 中,过点B 的直线BF 与对角线AC 、边AD 分别交于点E 和F .过点E 作EG ∥BC ,交AB 于G ,则图中相似三角形有( )A.4对B.5对C.6对D.7对图4 图5 图67.如图5,小东用长为3.2 m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8 m ,与旗杆相距22 m ,则旗杆的高为( )A.12 mB.10 mC.8 mD.7 m8.(2013,新疆)如图6,在Rt △ABC 中,∠ACB =90°,∠ABC = 60°,BC =2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为( )A.2B.2.5或3.5C.3.5或4.5D.2或3.5或4.5二、填空题(每题3分,共24分)9.一个多边形的边长依次为1,2,3,4,5,6,与它相似的另一个多边形的最大边长为8,那么另一个多边形的周长是__________.10.如图7,D ,E 分别是△ABC 的边AB ,AC 上的点,DE ∥BC ,BDAD =2,则ADE S △︰ABC S △=_________.图7 图8 图9 图1011.如图8,△ABC 中,点D 在AB 上,请填上一个你认为适合的条件_______________,使得△ACD ∽△ABC .12.(2013,淄博)在△ABC 中,P 是AB 上的动点(P 异于A ,B ),过点P 的一条直线截△ABC ,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P 的△ABC 的相似线.如图9,∠A =36°,AB =AC ,当点P 在AC 的垂直平分线上时,过点P 的△ABC 的相似线最多有___________条.13.如图10,光源P 在横杆AB 的上方,AB 在灯光下的影子为CD ,AB ∥CD ,已知AB =2 m ,CD =6 m ,点P 到CD 的距离是2.7 m ,那么AB 与CD 间的距离是__________.14.如图11,在直角梯形ABCD 中,∠ABC =90°,AD ∥BC ,AD =4,AB =5,BC =6,点P 是AB 上一个动点,当PC +PD 的和最小时,PB 的长为____________.图11 图12 图1315.(2013,南通)如图12,在□ABCD中,AB=6 cm,AD=9 cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂cm,则EF+CF的长为_________cm.足为G,BG16.(2013,苏州)如图13,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为___________.三、解答题(23题10分,其余每题7分,共52分)17.如图14,在△ABC中,AB=AC,∠BAC=120°,求AB∶BC的值.图1418.(2013,怀化)如图15,已知在△ABC与△DEF中,∠C=54°,∠A=47°,∠F=54°,∠E=79°.求证:△ABC∽△DEF.图1519.如图16,已知△ADE∽△ABC,∠A=70°,∠B=45°,AE=3cm,EB=4cm,AD=4cm,求∠AED的度数及AC的长.图1620.(2013,滨州)某高中学校为高一新生设计的学生板凳的正视图如图17所示,其中BA=CD,BC=20 cm,BC、EF平行于地面AD且到地面AD的距离分别为40 cm、8 cm,过B点作BH⊥AD,分别交EF,AD于M,H,过C点作CG⊥AD,分别交EF,AD于N,G.为使板凳两腿底端A、D之间的距离为50 cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计).图1721.如图18,在正方形ABCD中,E是BC上的一点,连接AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.求证:(1)BH=CG;图18(2)FC ²=BF ·GF ;(3)22AB FC =GB GF .22.如图19,在边长均为1的小正方形网格纸中,△OAB 的顶点O 、A 、B 均在格点上,且O 是直角坐标系的原点,点A 在x 轴上. (1)以O 为位似中心,将△OAB 放大,使得放大后的△11B OA 与 △OAB 对应线段的比为2∶1,画出△11B OA (所画△11B OA 与△OAB 在原点两侧);图19(2)求出线段11B A 所在直线对应的函数关系式.23.(2013,遵义)如图20,在Rt△ABC中,∠C=90°,AC=4 cm,BC=3 cm.动点M,N从点C同时出发,均以每秒1 cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2 cm 的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?.图20(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由参考答案及点拨一、1.C 点拨:∵a =0.2,b =1.6,c =4,d =21,且0.2×4=1.6×21,∴ac=bd ,∴a ∶b =d ∶c ,故选C .2.B 点拨:①所有的等腰三角形形状不一定相同,故不一定都相似,故此选项错误;②有一对锐角相等的两个直角三角形相似,根据已知可得出三角形两对对应角相等,故此选项正确;③在梯形内,做一腰的平行线,得一小梯形,显然小梯形与原梯形不相似,故此选项错误;④所有的正方形的四个角都是直角,对应边成比例,所以所有的正方形都相似,此选项正确,故正确的有2个,故选B . 3.B 点拨:∵位似图形由三角尺与其灯光照射下的中心投影组成,位似比为2∶5,三角尺的一边长为8 cm ,∴投影三角形的对应边长为:8÷52=20(cm ),故选B .4.B 点拨:本题在根据各选项中条件判定△ABD 与△AEC 相似时,易不理解判定定理2中“两边成比例且夹角相等”这一条件而出错. 5.C 点拨:∵AD 是△ABC 的高,EF ⊥BC ,F 为垂足,E 是AB 边的中点,∴EF ∥AD ,∴BF=DF ,∵DC =21BF ,BC =10,∴25BF =10,∴BF =4,∴DC =2.故选C .6.B 点拨:题图中相似三角形有△ABC ∽△CDA ,△AGE ∽△ABC ,△AFE ∽△CB E ,△BGE ∽△BAF ,△AGE ∽△CDA 共5对,理由是:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,AD=BC ,AB=CD ,∠D =∠ABC ,∴△ABC ≌△CDA ,即△ABC ∽△CDA ,∵GE ∥BC ,∴△AGE ∽△ABC ∽△CDA ,∵GE ∥BC ,AD ∥BC ,∴GE ∥AD ,∴△BGE ∽△BAF ,∵AD ∥BC ,∴△AFE ∽△CBE ,故选B . 7.A 点拨:如答图1,∵ED ⊥AD ,BC ⊥AC ,∴ED ∥BC ,∴△AED∽△ABC ,∴BCED =AC AD,而AD =8 m ,AC=AD+CD =8+22=30(m ),ED =3.2 m ,∴BC=AD AC ED ∙ =8302.3⨯=12(m ),∴旗杆的高为12 m ,故选A .答图18.D 点拨:∵在Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =2 cm ,∴AB =2BC =4 cm ,∵BC =2 cm ,D 为BC 的中点,动点E 以1 cm/s 的速度从A 点出发,∴BD =21BC =1 cm ,BE=AB -AE ,若∠BED =90°,当A →B 时,∵∠ABC =60°,∴∠BDE =30°,∴BE =21BD =12cm ,∴t =3.5,当B →A 时,t =4+0.5=4.5.若∠BDE =90°,当A →B 时,∵∠ABC=60°,∴∠BED =30°,∴BE=2BD =2 cm ,∴t =4-2=2,当B →A 时,t =4+2=6(舍去).综上可得:t 的值为2或3.5或4.5,故选D .二、9.28 点拨:设另一个多边形的周长是x ,依题意,有x ∶(1+2+3+4+5+6)=8∶6,解得x =28,故另一个多边形的周长是28. 10.4∶9 点拨:∵DE ∥BC ,∴△ADE ∽△ABC ,又∵AD ∶DB =2∶1,∴AD ∶AB =2∶3,∴S △ADE ∶S △ABC =4∶9.11.∠2=∠ACB 点拨:要使△ACD ∽△ABC ,已知有一对公共角,则可添加∠2=∠ACB 或∠1=∠B ,从而利用有两组角对应相等的两个三角形相似来判定,答案不唯一.12.3 点拨:如答图2,过P 点作PD ∥BC 交AC 于D ,过P 点作PE ∥AC ,交BC 于E ,当PD ∥BC 时,△APD ∽△ABC ;当PE ∥AC 时,△BPE ∽△BAC ;连接PC ,∵∠A =36°,AB=AC ,点P 在AC 的垂直平分线上,∴AP=PC ,∠ABC=∠ACB =72°,∴∠ACP =∠P AC =36°,∴∠PCB =36°,∴∠B =∠B ,∠PCB =∠A ,∴△CPB ∽△ACB ,故过点P 的△ABC 的相似线最多有3条,故答案为3.答图213.1.8 m 点拨:∵AB ∥CD ,∴△P AB ∽△PCD ,设CD 到AB 距离为x m ,则7.27.2x -=CD AB ,又∵AB =2 m ,CD =6 m ,∴7.27.2x -=31,∴x =1.8,故答案为1.8 m .14.3 点拨:延长CB 到E ,使EB =CB ,连接DE 交AB 于P .则DE 就是PC+PD 的和的最小值,如答图3.∵AD ∥BE ,∴∠A =∠PBE ,∠ADP =∠E ,∴△ADP ∽△BEP ,∴AP ∶BP =AD ∶BE =4∶6=2∶3,∴PB =23P A ,又∵P A+PB=AB =5,∴PB =53AB =3.答图315.5 点拨:∵AE 平分∠BAD ,∴∠DAE =∠BAE ;又∵AD ∥BC ,∴∠BEA =∠DAE =∠BAE ,∴AB=BE=6 cm ,∴EC =9-6=3(cm ),∵BG ⊥AE ,垂足为G ,∴AE =2AG .在Rt △ABG 中,∵∠AGB =90°,AB =6 cm ,BG =42 cm ,∴AG =2BG AB—2 =2 cm ,∴AE =2AG =4 cm ;∵EC ∥AD ,∴EF AE EF + =AD EC =CD FC FC + =93=31,∴4+EF EF =31,6+FC FC =31,解得:EF =2 cm ,FC =3 cm ,∴EF+CF 的长为5 cm ,故答案为5.16.(2,4-22) 点拨:∵四边形OABC 是边长为2的正方形,∴OA=OC =2,OB =22,∵QO=OC ,∴BQ=OB -OQ =22-2,∵AB ∥OC ,∴△BPQ ∽△OCQ ,∴OC BP =OQBQ,即2BP =2222—,解得BP =22-2,∴AP=AB -BP =2-(22-2)=4-22,∴点P 的坐标为(2,4-22),故答案为(2,4-22).三、17.解:如答图4,过点A 作AD ⊥BC 于D ,∵AB=AC ,∠BA C=120°,∴∠B =∠C =30°,BC =2BD ,设AD=x ,则AB =2AD =2x ,根据勾股定理,BD =22AD AB — =()222x x — =3x ,∴BC =23x ,∴AB ∶BC =2x ∶23x =1∶3.答图418.证明:在△DEF 中,∠D =180°-∠E -∠F =180°-79°-54°=47°,∵∠C =∠F =54°,∠A =∠D =47°,∴△ABC ∽△DEF . 19.解:∵∠A =70°,∠B =45°,∴∠C =180°-∠A -∠B =180°-70°-45°=65°,∵△ADE ∽△ABC ,∴∠AED =∠C =65°;AE ∶AC=AD ∶AB ,而AE =3 cm ,EB =4 cm ,AD =4 cm ,∴AB=AE+EB =4+3=7(cm ),∴AC =473 =421(cm ).∴∠AED 的度数为65°,AC 的长为421cm . 20.解:由题意得,MH =8 cm ,BH =40 cm ,则BM =32 cm ,易知四边形ABCD 是等腰梯形,AD =50 cm ,BC =20 cm ,∴AH =21(AD -BC )=15 cm .∵EF ∥AD ,∴△BEM ∽△BAH ,∴AH EM =BHBM ,即15EM =4032,解得:EM =12 cm ,∵四边形ABCD 是等腰梯形,且EF ∥AD ,∴EF=EM+NF+BC =2EM+BC =44 cm . 答:横梁EF 应为44 cm .21.证明:(1)∵BF ⊥AE ,CG ∥AE ,∴CG ⊥BF ,∵在正方形ABCD 中,∠ABH +∠CBG =90°,∠CBG +∠BCG =90°,∠BAH +∠ABH =90°,∴∠BAH =∠CBG ,∠ABH =∠BCG ,AB=BC ,∴△ABH ≌△BCG ,∴BH=CG .(2)∵∠BFC =∠CFG ,∠BCF =∠CGF=90°,∴△CFG ∽△BFC ,∴BF FC =FCGF,即FC 2=BF ·GF ; (3)∵BF ⊥AE ,CG ∥AE ,∴CG ⊥BF ,∴∠CBG+∠BCG =90°,∵四边形ABCD 为正方形,∴∠BCD =90°,∴∠CBG +∠BFC =90°,∴∠BCG =∠BFC ,∵∠CBG =∠FBC ,∴△BCG ∽△BFC ,∴BFBC=BCBG,BC 2=BG ·BF ,∵AB =BC ,∴AB 2=BG ·BF ,∴22AB FC =BF BG BF FG ⋅⋅,即22ABFC =GB GF.22.解:(1)如答图5,△OA 1B 1为所求作的三角形.答图5(2)由(1)可得点A 1、B 1的坐标分别为A 1(4,0)、B 1(2,-4),故设线段A 1 B 1所在直线对应的函数关系式为y=kx+b (k ≠0), ∴⎩⎨⎧+=+=,24,40b k b k - 解得⎩⎨⎧==.82-,b k故线段A 1 B 1所在直线对应的函数关系式为:y =2x -8. 23.解:∵如答图6,答图6在Rt △ABC 中,∠C =90°,AC =4 cm ,BC =3 cm .∴根据勾股定理,得AB =22BC AC — =5 cm .(1)以A ,P ,M 为顶点的三角形与△ABC 相似,分两种情况:①当△AMP ∽△ABC 时,AB AM =AC AP ,即54t —=425t —,解得t =23;②当△APM ∽△ABC 时,AC AM =AB AP ,即44t —=525t—,解得t =0(不合题意,舍去),综上所述,当t =23时,以A ,P ,M 为顶点的三角形与△ABC 相似.(2)存在某一时刻t ,使四边形APNC 的面积S 有最小值.假设存在某一时刻t ,使四边形APNC 的面积S 有最小值.如答图6,过点P作PH ⊥BC 于点H .则PH ∥AC ,∴△BPH ∽△BAC ,∴AC PH =BABP,即4PH =52t ,∴PH =58t cm ,∴S =S △ABC -S △BPN =21×3×4-21×(3-t )·58t =54(t -23)2+521(0<t <2.5).∵54>0,∴S 有最小值.当t =23时,S 最小值=521.答:当t =23时,四边形APNC 的面积S 有最小值,其最小值是521cm 2.。
相似三角形练习题及答案
![相似三角形练习题及答案](https://img.taocdn.com/s3/m/f4c195c503d276a20029bd64783e0912a3167c67.png)
相似三角形练习题及答案在初中数学中,相似三角形是一个很重要的概念。
相似三角形具有相同的形状,但是尺寸不同。
理解相似三角形的性质对于解决几何问题和计算三角形的边长和角度非常有帮助。
下面是一些相似三角形的练习题,帮助你巩固对该概念的理解,并附有答案供参考。
练习题一:已知△ABC和△DEF相似,且AB = 6cm,AC = 8cm,BC = 12cm。
若DE = 9cm,求DF和EF的长度。
练习题二:△ABC和△PQR中,∠B = ∠Q,AB = 5cm,BC = 8cm,PQ = 6cm,若AC = 10cm,求PR的长度。
练习题三:已知△ABC和△DEF相似,DE = 4.5cm,EF = 6cm,BC = 12cm,若AC = 8cm,求△ABC和△DEF的周长比。
练习题四:在△ABC中,∠B = 90°,AB = 9cm,BC = 12cm。
点D是BC的中点,于BC上作DE ⊥ BC,DE = 3cm。
求△ADE和△ABC的周长比。
练习题五:已知△ABC和△DEF相似,AB = 10cm,BC = 12cm,AC = 15cm,EF = 6cm,若△DEF的面积为18平方厘米,求△ABC的面积。
答案及解析如下:练习题一:由相似三角形的性质可知,相似三角形的边长之比相等。
设DF = x,EF = y。
根据题意可写出比例:AB/DE = AC/EF = BC/DF代入已知值,得到:6/9 = 8/y = 12/x解得:x = 16cm,y = 12cm因此,DF = 16cm,EF = 12cm。
练习题二:由相似三角形的性质可知,相似三角形的边长之比相等。
设PR = x。
根据题意可写出比例:AB/PQ = AC/PR = BC/QR代入已知值,得到:5/6 = 10/x = 8/(6 + x)解得:x = 15cm因此,PR = 15cm。
练习题三:由相似三角形的性质可知,相似三角形的边长之比相等。
相似三角形典型例题30道
![相似三角形典型例题30道](https://img.taocdn.com/s3/m/c95d9c2ae55c3b3567ec102de2bd960590c6d9c3.png)
相似三角形典型例题30道1: 在△ABC中,DE是平行于BC的线段,且AD/DB = 2/3。
求DE/BC的比值。
2: 已知△PQR与△XYZ相似,PQ = 6,XY = 9,求QR 与YZ的比值。
3: 在△ABC中,D、E分别是AB、AC上的点,且DE平行于BC,已知AD = 3,DB = 6,求AE与EC的比值。
4: 已知两个相似三角形的面积比为4:9,求它们对应边的比。
5: 在△XYZ中,MN是平行于XY的线段,且XM = 4,MY = 6,求MN/XY的比值。
6: 在△ABC中,AD是BC的中线,且AE是AB的延长线,若AE与BC相交于点F,求AF与FB的比值。
7: 在△DEF中,GH平行于EF,已知DE = 8,DF = 10,求GH/EF的比值。
8: 在一个相似三角形中,若大三角形的周长是36,小三角形的周长是24,求它们的面积比。
9: 在△JKL中,MN平行于JK,若JM = 3,MK = 5,求MN/JK的比值。
10: 如果两个相似三角形的对应边长分别为5和15,求它们的面积比。
11: 在△ABC中,AD是BC的中线,且DE平行于BC,已知AD = 4,BC = 8,求DE的长度。
12: 已知相似三角形的对应边长比为1:4,求它们的周长比。
13: 在△PQR中,S是PQ的中点,若ST平行于QR,求PS与PQ的比值。
14: 在相似三角形中,若小三角形的每条边长为5,大三角形的对应边长为15,求它们的面积比。
15: 在一个三角形中,若一条边的延长线与另一边的平行线相交,则形成的两小三角形与原三角形相似,求相似比。
16: 在△XYZ中,若XY = 10,XZ = 15,YZ = 12,求△XYZ的周长。
17: 已知△ABC与△DEF相似,若AB = 4,DE = 8,求AC与DF的比值。
18: 在△GHI中,JK平行于GH,若GJ = 5,GH = 20,求JK的长度。
19: 在相似三角形中,若一个三角形的面积是36,另一个三角形的面积是144,求其对应边的比。
相似和解直角三角形
![相似和解直角三角形](https://img.taocdn.com/s3/m/3e85666bf121dd36a22d8273.png)
QP N M D CB A DC B A B A F ED C1.判断下列线段是否是成比例线段: (1)a =2cm ,b =4cm ,c =3m ,d =6m ; (2)a =0.8,b =3,c =1,d =2.4. 2.已知: 线段a 、b 、c 满足关系式cbb a =,且b =4,那么ac =______. 3.已知23=b a ,那么b b a +、ba a-各等于多少? 4. 已知:713yy x =-,则=+y y x ___________. 5. 已知:346zy x ==(x 、y 、z 均不为零),则=-+z y y x 233__________. 6.相似三角形对应边的比为0.4,那么相似比为______,对应角的角平分线的比为______,周长的比为______,面积的比为______.7. 地图上两地间的距离(图上距离)为3厘米,比例尺是1∶1000000,那么两地间的实际距离是____________米. 8.如图,梯形ABCD 中,AD ∥BC ,AC 、BD 交于O 点,S △AOD :S △COB =1:9,则S △DOC :S △BOC = _______. 9.如图,Rt ∆ABC 中,AC ⊥BC ,CD ⊥AB 于D ,AC=8,BC=6,则AD=_________。
(第8题) (第9题) (第10题) (第11题)10.如图,在平行四边形ABCD 中,M 、N 为AB 的三等分点,DM 、DN 分别交AC 于P 、Q 两点,则AP :PQ :QC= . 11.如图所示,直角梯形ABCD 的中位线EF 的长为a ,•垂直于底的腰AB 的长为b ,则图中 阴影部分的面积等于_________.12. 如图,图中的小方格都是边长为1的正方形, △ABC 与△A ′ B ′ C ′是关于点0为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)在图上标出位似中心点0的位置;(2)求出△ABC 与△A ′B ′C ′的相似比是 ; (3)若点A 在直角坐标系中的坐标是(-6,0),写出下面三个点的坐标.点A ′的坐标是 ;点B 的坐标是 ;点B ′的坐标是13.如图,已知△ABC 中,D 是BC 上一点,BD =10,DC =8,∠DAC =∠B ,求AC 的长.14.如图,在平行四边形ABCD 中,过点B 作BE ⊥CD ,垂足为E ,连结AE ,F 为AE 上一点,且∠BFE=∠C .DCBAA B D O(1)求证:△ABF ∽△EAD ;(2)若AB=4,∠BAC=30°,求AE 的长; (3)在(1),(2)条件下,若AD=3,求BF 的长.15.在△ABC 中,∠B =90°,AB =6cm ,BC =12cm ,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B开始沿BC 边向点C 以2cm/s 的速度移动.(1)如果P 、Q 分别从A 、B 同时出发,几秒钟后△PBQ 的面积等于8cm 2?(2)如果P 、Q 分别从A 、B 同时出发,几秒钟后△PBQ 与△ABC 相似?16.如图,Rt △ABC 中,∠BAC=Rt ∠,AB=AC=2,点D 在BC 上运动(不能到点B ,C ),过D 作∠ADE=45°,DE 交AC 于E .(1)求证:△ABD ∽△DCE ;(2)设BD=x ,AE=y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.1、在 Rt ∆ABC 中,∠C =900,AC=12,cosA=1312,则tanA 等于( ) A BF EDCABEDCAA.135 B.1213 C.512 D.125 2、已知α为锐角,且tan(900-α)=3 ,则α的度数为( )A.300B. 450C.600D.7503、在Rt △ABC 中,如果各边长度都扩大2倍,则锐角A 的正切值 ( ).A 、扩大2倍B 、缩小2倍C 、扩大4倍D 、没有变化 4、在∆ABC 中,sinB=cos(900-C)=21,那么∆ABC 是 ( ) A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形5、如图,Rt △ABC 中,∠C=900,D 为BC 上一点,∠DAC=300,BD=2,AB=23,则AC 的长是 ( )A. 3B.22C. 3D.3236、 如图,CD 是平面镜,光线从A 点出发经CD 上点E 反射后照射到B 点, 若入射角为α(入射角等于反射角)。
相似三角形性质与判定专项练习30题(有答案)
![相似三角形性质与判定专项练习30题(有答案)](https://img.taocdn.com/s3/m/ad655b12cdbff121dd36a32d7375a417866fc1ab.png)
相似三角形性质与判定专项练习30题(有答案)1.在三角形ABC中,点D在边BC上,且∠BAC=∠DAG,∠XXX∠BAD。
证明:=。
当GC⊥BC时,证明:∠BAC=90°。
2.在三角形ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足。
证明:AC^2=AF•AD。
联结EF,证明:AE•DB=AD•EF。
3.在三角形ABC中,PC平分∠ACB,PB=PC。
证明:△APC∽△ACB。
若AP=2,PC=6,求AC的长。
4.在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠XXX∠C。
证明:△ABF∽△EAD。
若AB=4,∠BAE=30°,求AE的长。
5.在三角形ABC中,∠ABC=2∠C,BD平分∠ABC。
证明:AB•BC=AC•CD。
6.在直角三角形ABC中,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S。
说明AF•BE=2S的理由。
7.在等边三角形ABC中,边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P。
若AE=CF,证明:AF=BE,并求∠APB的度数。
若AE=2,试求AP•AF的值。
若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长。
8.在钝角三角形ABC中,AD,BE是边BC上的高。
证明。
9.在三角形ABC中,AB=AC,DE∥BC,点F在边AC 上,DF与BE相交于点G,且∠XXX∠ABE。
证明:(1)△DEF∽△BDE;(2)DG•DF=DB•EF。
10.在等边三角形ABC、△DEF中,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H两点,BC=2.问E在何处时CH的长度最大?11.在AB和CD交于点O的图形中,当∠A=∠C时,证明:OA•OB=OC•OD。
12.在等边三角形△AEC中,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外)。
相似三角形与解直角三角形经典题型(含答案)
![相似三角形与解直角三角形经典题型(含答案)](https://img.taocdn.com/s3/m/208c97d8da38376bae1fae05.png)
凯迪教育相似三角形与解直角三角形经典题201512151、如图,在△ABC中,AD是BC边上的中线,E在AC边上,且AE︰EC=1︰2,BE交AD于P,则AP ︰PD等于()7A.1︰1B.1︰2 C.2︰3D.4︰32、如图,在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=4,则AE︰EF ︰FB为()A.1︰2︰3B.2︰1︰3 C.3︰2︰1D.3︰1︰23、设a、b、c分别是△ABC的三边长,且,则它的内角∠A、∠B的关系是()A.∠B>2∠A B.∠B=2∠A C.∠B<2∠A D.不确定4、如图,D、E在BC上,F、G分别在AC、AB上,且四边形DEFG为正方形.如果S△CEF=S△AGF=1,S△=3,那么S△ABC等于()BDG(第4题)(第5题)A.6B.7 C.8D.95、如图,△ABC中,∠ABC=60°,点P是△ABC内一点,使得∠APB=∠BPC=∠CPA,且PA=8,PC=6,则PB=_____________.6、如图,梯形ABCD中,AD//BC,两条对角线AC、BD相交于O.若S△AOD︰S△COB=1︰9,那么S△BOC︰S=___________.△DOC(第6题)(第7题)7、如图,在△ABC中,DE//FG//BC,GI//EF//AB.若△ADE、△EFG、△GIC的面积分别为20cm2、45cm2、80cm2,则△ABC的面积为_____________.8、已知:如图,在△ABC中,∠A=30°,,则AB的长为_____________.(第8题)(第9题)9、如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点.若,则AD的长为______.10、如图,在△ABC中,∠BAC︰∠ABC︰∠ACB=4︰2︰1,AD是∠BAC的平分线,有如下三个结论:①BC︰AC︰AB=4︰2︰1;②AC=AD+AB;③△DAC∽△ABC.其中正确的结论是_____________.(填序号)11、如图,在△ABC中,AB=AC,∠BAC=90°,BD是中线,AE⊥BD交BC于点E.求证:BE=2EC.12、如图,P、Q分别是正方形ABCD边AB、BC上的点,且BP=BQ.过B点作BH⊥PC,垂足为H.证明:DH⊥HQ.13、如图,O为△ABC内任一点.求证:.14、如图,M为△ABC的BC边中点,一截线交AB、AM、AC分别于P、N、Q.求证:.15、如图,已知直角梯形ABCD中,上底AD=a,下底BC=c,直角腰AB=b,E、F是AB上两点且AF=BE,DE⊥EC.求证:tan∠ADF和tan∠ADE是一元二次方程ax2-bx+c=0的两个根.16、某森林管理处雇佣两架农用直升飞机向森林喷洒药物,两飞机在同一地点出发,甲机沿北偏东45°方向以20千米/时的速度飞行,乙机沿南偏东30°方向以千米/时的速度飞行.3小时后,乙机发现有部分药品误放在甲机上,而此时,乙机只能沿北偏东15°的方向追赶甲机,则乙机该以怎样的速度飞行才能正好赶着甲机?相似三角形与解直角三角形经典题型答案3、B 由条件得b2=a(a+c),延长CB至D,使BD=AB,CD=a+c,△ABC∽△DAC.4、D 设正方形DEFG的边长为x,29、214、②③过D作DE⊥AB于E.设DE=x,则AE=x,BE=5x,AD=.10. ③② 11、提示:过C作CF//AB,交AE延长线于F,△ABD≌△CAF,CF=AD,,故BE=2CE.16、提示:由△BCP∽△HCB有.因为BC=CD,BP=BQ,,易知∠HCD=∠HBC,故△HCD∽△HBQ,∴∠CHD=∠BHQ,∴∠CHD+∠CHQ=∠BHQ+∠CHQ=90°,∴DH⊥HQ.17、提示:分别过A、O作BC的垂线,垂足为H、H′,18、提示:分别过B、M作PQ的平行线交AC于E、F,依M为BC的中点知:19提示:易证△ADE∽△BEC,,即AE·AF=BC·AD=a·c20、解:如图,∠BAC=105°,∠C=30°,∠B=45°,过A作AD⊥BC于D.∵AB=,∴BD=60.∵∠C=30°,AD⊥BC,∴AC=120,∴CD=AD·cot30°=.设乙机应以x千米/时的速度飞行,则有:2011年4月10号。
相似三角形性质与判定专项练习30题(有答案)
![相似三角形性质与判定专项练习30题(有答案)](https://img.taocdn.com/s3/m/73dd2ad7680203d8ce2f249d.png)
相似三角形性质和判定专项练习30题(有答案)1.已知:如图,在△ABC中,点D在边BC上,且∠BAC=∠DAG,∠CDG=∠BAD.(1)求证:=;(2)当GC⊥BC时,求证:∠BAC=90°.2.如图,已知在△ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足.(1)求证:AC2=AF•AD;(2)联结EF,求证:AE•DB=AD•EF.3.如图,△ABC中,PC平分∠ACB,PB=PC.(1)求证:△APC∽△ACB;(2)若AP=2,PC=6,求AC的长.4.如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长.5.已知:如图,△ABC中,∠ABC=2∠C,BD平分∠ABC.求证:AB•BC=AC•CD.6.已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S,说明AF•BE=2S 的理由.7.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.8.如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:=.9.已知:如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG•DF=DB•EF.10.如图,△ABC、△DEF都是等边三角形,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H 两点,BC=2,问E在何处时CH的长度最大?11.如图,AB和CD交于点O,当∠A=∠C时,求证:OA•OB=OC•OD.12.如图,已知等边三角形△AEC,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外).连接EB,过E作EF⊥AB,交AB的延长线为F.(1)猜测直线BE和直线AC的位置关系,并证明你的猜想.(2)证明:△BEF∽△ABC,并求出相似比.13.已知:如图,△ABC中,点D、E是边AB上的点,CD平分∠ECB,且BC2=BD•BA.(1)求证:△CED∽△ACD;(2)求证:.14.如图,△ABC中,点D、E分别在BC和AC边上,点G是BE边上一点,且∠BAD=∠BGD=∠C,联结AG.(1)求证:BD•BC=BG•BE;(2)求证:∠BGA=∠BAC.15.已知:如图,在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,BE,AD相交于点G,过点B作BF∥AC交AD的延长线于点F,DF=6.(1)求AE的长;(2)求的值.16.如图,△ABC中,∠ACB=90°,D是AB上一点,M是CD中点,且∠AMD=∠BMD,AP∥CD交BC延长线于P点,延长BM交PA于N点,且PN=AN.(1)求证:MN=MA;(2)求证:∠CDA=2∠ACD.17.已知:如图,在△ABC中,已知点D在BC上,联结AD,使得∠CAD=∠B,DC=3且S△ACD:S△ADB﹦1﹕2.(1)求AC的值;(2)若将△ADC沿着直线AD翻折,使点C落点E处,AE交边BC于点F,且AB∥DE,求的值.18.在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.19.如图,△ABC为等边三角形,D为BC边上一点,以AD为边作∠ADE=60°,DE与△ABC的外角平分线CE 交于点E.(1)求证:∠BAD=∠FDE;(2)设DE与AC相交于点G,连接AE,若AB=6,AE=5时,求线段AG的长.20.如图所示,△ABC中,∠B=90°,点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,经几秒,使△PBQ的面积等于8cm2?(2)如果P,Q分别从A,B同时出发,并且P到B后又继续在BC边上前进,Q到C后又继续在CA边上前进,经过几秒,使△PCQ的面积等于12.6cm2?21.已知:如图,△ABC是等边三角形,D是AB边上的点,将DB绕点D顺时针旋转60°得到线段DE,延长ED 交AC于点F,连接DC、AE.(1)求证:△ADE≌△DFC;(2)过点E作EH∥DC交DB于点G,交BC于点H,连接AH.求∠AHE的度数;(3)若BG=,CH=2,求BC的长.22.如图,在△ABC中,CD平分∠ACB,BE∥BC交AC于点E.(1)求证:AE•BC=AC•CE;(2)若S△ADE:S△CDE=4:3.5,BC=15,求CE的长.23.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.24.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.25.如图,M、N、P分别为△ABC三边AB、BC、CA的中点,BP与MN、AN分别交于E、F.(1)求证:BF=2FP;(2)设△ABC的面积为S,求△NEF的面积.26.在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E、F分别是AC,BC边上一点,且CE=AC,BF=BC,(1)求证:;(2)求∠EDF的度数.27.如图,△ABC是等边三角形,且AB∥CE.(1)求证:△ABD∽△CED;(2)若AB=6,AD=2CD,①求E到BC的距离EH的长.②求BE的长.28.如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F.(1)若AC=3,AB=4,求;(2)证明:△ACE∽△FBE;(3)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.29.如图,△ABC是等边三角形,∠DAE=120°,求证:(1)△ABD∽△ECA;(2)BC2=DB•CE.30.如图,在Rt△ABC中,∠C=90°,且AC=CD=,又E,D为CB的三等分点.(1)证明:△ADE∽△BDA;(2)证明:∠ADC=∠AEC+∠B;(3)若点P为线段AB上一动点,连接PE,则使得线段PE的长度为整数的点P的个数有几个?请说明理由.相似三角形性质和判定专项练习30题参考答案:1.解:(1)∵∠ADC=∠B+∠BAD,且∠CDG=∠BAD,∴∠ADG=∠B;∵∠BAC=∠DAG,∴△ABC∽△ADG,∴=.(2)∵∠BAC=∠DAG,∴∠BAD=∠CAG;又∵∠CDG=∠BAD,∴∠CDG=∠CAG,∴A、D、C、G四点共圆,∴∠DAG+∠DCG=180°;∵GC⊥BC,∴∠DCG=90°,∴∠DAG=90°,∠BAC=∠DAG=90°.2.解:(1)如图,∵∠ACB=90°,CF⊥AD,∴∠ACD=∠AFC,而∠CAD=∠FAC,∴△ACD∽△AFC,∴,∴AC2=AF•AD.(2)如图,∵CE⊥AB,CF⊥AD,∴∠AEC=∠AFC=90°,∴A、E、F、C四点共圆,∴∠AFE=∠ACE;而∠ACE+∠CAE=∠CAE+∠B,∴∠ACE=∠B,∠AFE=∠B;∵∠FAE=∠BAD,∴△AEF∽△ADB,∴AE:AD=BD:EF,∴AE•DB=AD•EF.3.解:(1)∵PB=PC,∴∠B=∠PCB;∵PC平分∠ACB,∴∠ACP=∠PCB,∠B=∠ACP,∵∠A=∠A,∴△APC∽△ACB.(2)∵△APC∽△ACB,∴,∵AP=2,PC=6,AB=8,∴AC=4.∵AP+AC=PC=6,这与三角形的任意两边之和大于第三边相矛盾,∴该题无解.4.(1)证明:∵AD∥BC,∴∠C+∠ADE=180°,∵∠BFE=∠C,∴∠AFB=∠EDA,∵AB∥DC,∴∠BAE=∠AED,∴△ABF∽△EAD;(2)解:∵AB∥CD,BE⊥CD,∴∠ABE=90°,∵AB=4,∠BAE=30°,∴AE=2BE,由勾股定理可求得AE=5.证明:∵∠ABC=2∠C,BD平分∠ABC,∴∠ABD=∠DBC=∠C,∴BD=CD,在△ABD和△ACB中,,∴△ABD∽△ACB,∴=,即AB•BC=AC•BD,∴AB•BC=AC•CD.6.证明:∵AC=BC,∴∠A=∠B,∵∠ACB=90°,∴∠A=∠B=45°,∵∠ECF=45°,∴∠ECF=∠B=45°,∴∠ECF+∠1=∠B+∠1,∵∠BCE=∠ECF+∠1,∠2=∠B+∠1;∴∠BCE=∠2,∵∠A=∠B,∴△ACF∽△BEC.∴,∴AC•BC=BE•AF,∴S△ABC=AC•BC=BE•AF,∴AF•BE=2S.7.(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°﹣∠APE=120°.②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴,即,所以AP•AF=12(2)若AF=BE,有AE=BF或AE=CF两种情况.①当AE=CF时,点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.②当AE=BF时,点P的路径就是过点C向AB作的垂线段的长度;因为等边三角形ABC的边长为6,所以点P 的路径为:.所以,点P经过的路径长为或3.8.证明:∵AD,BE是钝角△ABC的边BC,AC上的高,∴∠D=∠E=90°,∵∠ACD=∠BCE,∴△ACD∽△BCE,∴=.9.证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE∥BC,∴∠ABC+∠BDE=180°,∠ACB+∠CED=180°.∴∠BDE=∠CED,∵∠EDF=∠ABE,∴△DEF∽△BDE;(2)由△DEF∽△BDE,得.∴DE2=DB•EF,由△DEF∽△BDE,得∠BED=∠DFE.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴,∴DE2=DG•DF,∴DG•DF=DB•EF.10.解:设EC=x,CH=y,则BE=2﹣x,∵△ABC、△DEF都是等边三角形,∴∠B=∠DEF=60°,∵∠B+∠BDE=∠DEF+∠HEC,∴∠BDE=∠HEC,∴△BED∽△CHE,∴,∵AB=BC=2,点D为AB的中点,∴BD=1,∴,即:y=﹣x2+2x=﹣(x﹣1)2+1.∴当x=1时,y最大.此时,E在BC中点11.解:∵∠A=∠C,∠AOD=∠BOC,∴△OAD∽△OCB,∴=,∴OA•OB=OC•OD.12.解:(1)猜测BE和直线AC垂直.证明:∵△AEC是等边三角形,∴AE=CE,∵四边形ABCD是正方形,∴AB=CB,∵BE=BE,∴△AEB≌△CEB(SSS).∴∠AEB=∠CEB,∵AE=CE,∴BE⊥AC;(2)∵△AEC是等边三角形,∴∠EAC=∠AEC=60°,∵BE⊥AC,∴∠BEA=∠AEC=30°,∵四边形ABCD是正方形,∴∠BAC=45°,∴∠BAE=15°,∴∠EBF=45°,∵EF⊥BF,∴∠F=90°,∴∠EBF=∠BAC,∠F=∠ABC,∴△BEF∽△ACB,延长EB交AC于G,设AC为2a,则BG=a,EB=a﹣a,∴相似比是:===13.证明:(1)∵BC2=BD•BA,∴BD:BC=BC:BA,∵∠B是公共角,∴△BCD∽△BAC,∴∠BCD=∠A,∵CD平分∠ECB,∴∠ECD=∠BCD,∴∠ECD=∠A,∵∠EDC=∠CDA,∴△CED∽△ACD;(2)∵△BCD∽△BAC,△CED∽△ACD,∴=,=,∴.14.证明:(1)∵∠DBG=∠EBC,∠BGD=∠C,∴△BDG∽△BEC,∴=,则BD•BC=BG•BE;(2)∵∠DBA=∠ABC,∠BAD=∠C,∴△DBA∽△ABC,∴=,即AB2=BD•BC,∵BD•BC=BG•BE,∴AB2=BG•BE,即=,∵∠GBA=∠ABE,∴△GBA∽△ABE,∴∠BGA=∠BAC.15.解:(1)∵在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,∴AC=AB=BC,∴△ABC是等边三角形,∴∠C=60°,∵BF∥AC,∴∠CBF=∠C=60°,∵AD⊥BC,∴∠FDB=90°,∴∠F=30°,∵DF=6,∴BD=2,∵AE=EC=BD=DC,∴AE=2;(2)∵∠BDF=90°,∠F=30°,BD=2,∴BF=2DB=4,∵AC∥BF,∴△AEG∽△FBG,∴=()2=.16.证明:(1)∵AP∥CD,∴∠AMD=∠MAN,∠BMD=∠MNA,∵∠AMD=∠BMD,∴∠MAN=∠MNA,∴MN=MA.(2)如图,连接NC,∵AP∥CD,且PN=AN.∴==,∴MC=MD,∴CN为直角△ACP斜边AP的中线,∴CN=NA,∠NCA=∠NAC,∵AP∥CD,∴∠NAC=∠ACD,∴∠NCM=2∠ACD,∵∠CMN=∠DMB,∠DMA=∠BMD,∴∠CMD=∠DMA,在△CMN和△DMA中,,∴△CMN≌△DMA(SAS),∠ADM=∠NCM=2∠ACD.即:∠CDA=2∠ACD.17.解:(1)∵S△ACD:S△ADB﹦1:2,∴BD=2CD,∵DC=3,∴BD=2×3=6,∴BC=BD+DC=6+3=9,∵∠CAD=∠B,∠C=∠C,∴△ABC∽△DAC,∴=,即=,解得AC=3;(2)由翻折的性质得,∠E=∠C,DE=CD=3,∵AB∥DE,∴∠B=∠EDF,∵∠CAD=∠B,∴∠EDF=∠CAD,∴△EFD∽△ADC,∴=()2=()2=18.(1)证明:∵D是BC的中点,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:过A作AG⊥CD,垂足为G.∵AD=AC,∴DG=CG,∴BD:BG=2:3,∵ED⊥BC,∴ED∥AG,∴△BDE∽△BGA,∴ED:AG=BD:BG=2:3,∵DE=3,∴AG=,∵△ABC∽△FCD,BC=2CD,∴=()2=.∵S△ABC=×BC×AG=×8×=18,∴S△FCD=S△ABC=.19.(1)证明:∵△ABC为等边三角形,∴∠B=60°,由三角形的外角性质得,∠ADE+∠FDE=∠BAD+∠B,∵∠ADE=60°,∴∠BAD=∠FDE;(2)解:如图,过点D作DH∥AC交AB于H,∵△ABC为等边三角形,∴△BDH是等边三角形,∴∠BHD=60°,BD=BH,∴∠AHD=180°﹣60°=120°,∵CE是△ABC的外角平分线,∴∠ACE=(180°﹣60°)=60°,∴∠DCE=60°+60°=120°,∴∠AHD=∠DCE=120°,又∵AH=AB﹣BH,CD=BC﹣BD,∴AH=CD,在△AHD和△DCE中,,∴△AHD≌△DCE(ASA),∴AD=DE,∵∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=∠DEA=60°,AE=AD=5,∵∠BAD=∠BAC﹣∠CAD=60°﹣∠CAD,∠EAG=∠DAE﹣∠CAD=60°﹣∠CAD,∴∠BAD=∠EAG,∴△ABD∽△AEG,∴=,即=,解得AG=.20.解:(1)设x秒时,点P在AB上,点Q在BC上,且使△PBQ面积为8cm2,由题意得(6﹣x)•2x=8,解之,得x1=2,x2=4,经过2秒时,点P到距离B点4cm处,点Q到距离B点4cm处;或经4秒,点P到距离B点2cm处,点Q到距离B点8cm处,△PBQ的面积为8cm2,综上所述,经过2秒或4秒,△PBQ的面积为8cm2;(2)当P在AB上时,经x秒,△PCQ的面积为:×PB×CQ=×(6﹣x)(8﹣2x)=12.6,解得:x1=(不合题意舍去),x2=,经x秒,点P移动到BC上,且有CP=(14﹣x)cm,点Q移动到CA上,且使CQ=(2x﹣8)cm,过Q作QD⊥CB,垂足为D,由△CQD∽△CAB得,即QD=,由题意得(14﹣x)•=12.6,解之得x1=7,x2=11.经7秒,点P在BC上距离C点7cm处,点Q在CA上距离C点6cm处,使△PCQ的面积等于12.6cm2.经11秒,点P在BC上距离C点3cm处,点Q在CA上距离C点14cm处,14>10,点Q已超出CA的范围,此解不存在.综上所述,经过7秒和秒时△PCQ的面积等于12.6cm221.(1)证明:如图,∵线段DB顺时针旋转60°得线段DE,∴∠EDB=60°,DE=DB.∵△ABC是等边三角形,∴∠B=∠ACB=60°.∴∠EDB=∠B.∴EF∥BC.∴DB=FC,∠ADF=∠AFD=60°.∴DE=DB=FC,∠ADE=∠DFC=120°,△ADF是等边三角形.∴AD=DF.∴△ADE≌△DFC.(2)解:由△ADE≌△DFC,得AE=DC,∠1=∠2.∵ED∥BC,EH∥DC,∴四边形EHCD是平行四边形.∴EH=DC,∠3=∠4.∴AE=EH.∴∠AEH=∠1+∠3=∠2+∠4=∠ACB=60°.∴△AEH是等边三角形.∴∠AHE=60°.(3)解:设BH=x,则AC=BC=BH+HC=x+2,由(2)四边形EHCD是平行四边形,∴ED=HC.∴DE=DB=HC=FC=2.∵EH∥DC,∴△BGH∽△BDC.∴.即.解得x=1.∴BC=3.22.(1)证明:∵DE∥BC,∴∠ADE=∠B,∠AEC=∠ACB,∴△ADE∽△ABC,∴=,∵DE∥BC,∴∠EDC=∠BCD,∵CD平分∠ACB,∴∠BCD=∠DCE,∴∠DCE=∠EDC,∴DE=CE,∴=,即AE•BC=AC•CE;(2)∵S△ADE:S△CDE=4:3.5,∴AE:CE=4:3.5,∴=,∵由(1)知=,∴=,解得DE=6,∵DE=CE,∴CE=8.23.(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.24.(1)证明:如图1,在△ABC中,∵∠CAB=90°,AD⊥BC于点D,∴∠CAD=∠B=90°﹣∠ACB.∵AC:AB=1:2,∴AB=2AC,∵点E为AB的中点,∴AB=2BE,∴AC=BE.在△ACD与△BEF中,,∴△ACD≌△BEF,∴CD=EF,即EF=CD;(2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q,∵EH⊥AD,EQ⊥BC,AD⊥BC,∴四边形EQDH是矩形,∴∠QEH=90°,∴∠FEQ=∠GEH=90°﹣∠QEG,又∵∠EQF=∠EHG=90°,∴△EFQ∽△EGH,∵AC:AB=1:,∠CAB=90°,∴∠B=30°.在△BEQ中,∵∠BQE=90°,∴sinB==,∴EQ=BE.在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH==,∴EH=AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=BE:AE=1:=:3.25.(1)证明:如图1,连接PN,∵N、P分别为△ABC边BC、CA的中点,∴PN∥AB,且.∴△ABF∽△NPF,∴.∴BF=2FP.(2)解:如图2,取AF的中点G,连接MG,∴MG∥EF,AG=GF=FN.∴△NEF∽△NMG,∴S△NEF=S△MNG=×S△AMN=××S△ABC=S.26.(1)证明:∵CD⊥AB,∴∠CDB=∠ADC=90°,∴∠ACD+∠BCD=90°,∵∠ACB=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∴△ADC∽△CDB,∴=;(2)解:∵CE=AC,BF=BC,∴===,又∵∠A=∠BCD,∴∠ACD=∠B,∴△CED∽△BFD,∴∠CDE=∠BDF,∴∠EDF=∠EDC+∠CDF=∠BDF+∠CDF=∠CDB=90°.27.解;(1)∵AB∥CE,∴∠A=∠DCE,又∵∠ADB=∠EDC,∴△ABD∽△CED;(2)①过点E作EH⊥BF于点H,∵△ABC是等边三角形,△ABD∽△CED,AB=6,AD=2CD,∴==,∠A=∠ACB=60°,∴CE=3,∵AB∥CE,∴∠A=∠DCE=60°,∴∠ECH=180°﹣∠ACB﹣∠DCE=180°﹣60°﹣60°=60°,∴EH=CE•sin60°=3×=;②在Rt△ECH中,∵∠ECH=60°,CE=3,∴CH=CE•cos60°=3×=,∴BH=BC+CH=6+=,∴BE===3.28.(1)解:∵AC=AC′,AB=AB′,∴由旋转可知:∠CAB=∠C′AB′,∴∠CAB+∠EAC′=∠C′AB′+∠EAC′,即∠CAC′=∠BAB′,又∵∠ACB=∠AC′B′=90°,∴△ACC′∽△ABB′,∵AC=3,AB=4,∴==;(2)证明:∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,(1分)∴∠CAC′=∠BAB′,∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,∴∠ACC′=∠ABB′,(3分)又∵∠AEC=∠FEB,∴△ACE∽△FBE.(4分)(3)解:当β=2α时,△ACE≌△FBE.理由:在△ACC′中,∵AC=AC′,∴∠ACC′=∠AC′C====90°﹣α,(6分)在Rt△ABC中,∠ACC′+∠BCE=90°,即90°﹣α+∠BCE=90°,∴∠BCE=90°﹣90°+α=α,∵∠ABC=α,∴∠ABC=∠BCE,(8分)∴CE=BE,由(2)知:△ACE∽△FBE,∴△ACE≌△FBE.(9分)29.证明:(1)∵△ABC是等边三角形,∠DAE=120°,∴∠DAB+∠CAE=60°,∵∠ABC是△ABD的外角,∴∠DAB+∠D=∠ABC=60°,∴∠CAE=∠D,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACE=120°,∴△ABD∽△ECA;(2)∵△ABD∽△ECA,∴=,即AB•AC=BD•CE,∵AB=AC=BC,∴BC2=BD•CE30.(1)证明:∵AC=CD=DE=EB=,又∠C=90°,∴AD=2,∴=,==,∴=,又∵∠ADE=∠BDA,∴△ADE∽△BDA;(2)证明:∵△ADE∽△BDA,∴∠DAE=∠B,又∵∠ADC=∠AEC+∠DAE,∴∠ADC=∠AEC+∠B;(3)解:∵点P为线段AB上一动点,根据勾股定理得:AE==,BE=,∴PE的最大值为.作EF⊥AB,则EF=,则PE的最小值为∴≤EP≤,∵EP为整数,即EP=1,2,3,结合图形可知PE=1时有两个点,所以PE长为整数的点P个数为4个.。
中考相似与解直角三角形专题
![中考相似与解直角三角形专题](https://img.taocdn.com/s3/m/3ab68ed6856a561252d36fd5.png)
A中考相似与解直角三角形专题一、典型例题:例1:(1)(2010,甘肃)在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为 米.(2)(2011浙江省)如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A 与点B 重合,折痕为DE ,则S △BCE :S △BDE 等于( )A . 2:5B .14:25C .16:25D . 4:21(3)(2011湖南衡阳)如图所示,河堤横断面迎水坡AB 的坡比是1堤高BC=5m ,则坡面AB 的长度是( )A .10mB .C .15mD .m(4)(2011浙江省嘉兴)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33(C )34(D )36(第2题图) (第3题图) (第4题图)【课堂练习1】(1)(2011宁波市)如图1,某游乐场一山顶滑梯的高为h ,滑梯的坡角为a ,那么滑梯长l 为( ) A .h sina B . h tana C . hcosaD . h·sina(2)(2010,梧州)如图(2),在ABCD 中,E 是对角线BD 上的点,且EF ∥AB ,DE :EB=2:3, EF=4,则CD 的长为_____________。
(3)(2010年丹东市)如图(3),小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的眼睛距地面的距离),那么这棵树高是( ) A .32+)m B .(32)m C .m D .4m 例2:(2011上海)在Rt △ABC 中,∠ACB=90°,BC=30,AB=50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM=EN ,sin ∠EMP=1213. (1)如图1,当点E 与点C 重合时,求CM 的长;(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP=x ,BN=y ,求y 关于x 的函数关系式,并写出函数的定义域;(3)若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应),求AP 的长.图1 图2 备用图【课堂练习2】(2010珠海)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B.(1) 求证:△ADF ∽△DEC(2)若AB =4,AD =3,AE =3,求AF 的长.例3:(2010年东阳市)如图,BD 为⊙O 的直径,点A 是弧BC 的中点,AD 交BC 于E 点,AE=2,ED=4.3(1)求证: ~△ADB ;(2) 求的值;(3)延长BC 至F ,连接FD ,使的面积等于,求的度数.【课堂练习3】(2011安徽)如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m 高度C 处的飞机上,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°.求隧道AB 的长.(参考数据:3=1.73)二、强化训练:1、(2011山东威海)一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F=∠ACB=90°, ∠E=45°,∠A=60°,AC=10,试求CD 的长.2、(2011四川绵阳)已知△ABC 是等腰直角三角形,∠A=90°,D 是腰AC 上的一个动点,过C 作CE 垂直于BDABE ∆tan ADB ∠BDF∆EDF∠或BD 的延长线,垂足为E,如图1. (1)若BD 是AC 的中线,如图2,求BDCE的值; (2)若BD 是∠ABC 的角平分线,如图3,求BDCE的值;(图1) (图2) (图3)3、(2011四川广安)某校初三课外活动小组,在测量树高的一次活动中,如图7所示,测得树底部中心A 到斜坡底C 的水平距离为8. 8m .在阳光下某一时刻测得1米的标杆影长为0.8m ,树影落在斜坡上的部分CD= 3.2m .已知斜坡CD 的坡比i=1,求树高AB 。
利用相似三角形求解问题的练习题
![利用相似三角形求解问题的练习题](https://img.taocdn.com/s3/m/75465ba90875f46527d3240c844769eae109a348.png)
利用相似三角形求解问题的练习题相似三角形是几何学中重要的概念之一,应用相似三角形的性质可以帮助我们解决许多问题。
以下是一些利用相似三角形求解问题的练习题,希望能帮助读者更好地理解和掌握这一概念。
练习题一:已知直角三角形ABC,其中∠C为直角,AB=5cm,AC=12cm。
在AB边上选一点D,连接CD并延长至与BC边交于点E。
若BD=DE,求CE的长度。
解答:由于∠C为直角,则∠CAB和∠CBA分别为对角ABC和ACB的对应角,即∠CAB∽∠ACB。
又因为BD=DE,所以可以得到∠BDC=∠CDE,同理有∠CBD=∠CED。
根据相似三角形的性质,可以得到以下比例关系:AB/AC = BD/CE代入已知数值,可得:5/12 = BD/CE解方程,可得:CE = (12/5) * BD由题目可知BD=DE,所以BD=5cm,代入可得:CE = (12/5) * 5 = 12cm所以CE的长度为12cm。
练习题二:在平面直角坐标系中,已知三角形ABC,其中A(-2,4)、B(1,2)、C(4,-2),直线DE与x轴和y轴分别交于点D(5,0)和E(0,-4),求证:△ABC∽△ADE,并计算其相似比。
解答:首先,计算△ABC和△ADE的边长:△ABC的边长:AB = √[(1-(-2))^2 + (2-4)^2] = √[3^2 + (-2)^2] = √13BC = √[(4-1)^2 + (-2-2)^2] = √[3^2 + 4^2] = 5AC = √[(4-(-2))^2 + (-2-4)^2] = √[6^2 + (-6)^2] = 6√2△ADE的边长:AD = √[(-2-5)^2 + (4-0)^2] = √[(-7)^2 + 4^2] = √65DE = √[(-2-0)^2 + (4-(-4))^2] = √[(-2)^2 + 8^2] = 2√4 = 4AE = √[(-2-0)^2 + (4-0)^2] = √[(-2)^2 + 4^2] = 2√5可以发现,AB/AD = 1/√5,BC/DE = 5/4,AC/AE = √2/√5。
中考二轮专题复习数学《解直角三角形与相似三角形》精选练习(含答案)
![中考二轮专题复习数学《解直角三角形与相似三角形》精选练习(含答案)](https://img.taocdn.com/s3/m/23d2c679b0717fd5370cdc00.png)
2021年中考数学二轮专题复习《解直角三角形与相似三角形》精选练习一、选择题1.在Rt△ABC中,∠C=90°,AC=3,AB=4,那么cosA的值是()A. B. C. D.2.在Rt△ABC中,∠C=90°,BC=1,那么AB的长为( )A.sinAB.cosAC.D.3.在Rt△ABC中,∠C=90°,若tanA=,则sinA=()A. B. C. D.4.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形5.如图,沿AE折叠矩形纸片ABCD,使点D落在BC边的点F处已知AB=8,BC=10,则tan∠EFC 的值为()A. B. C. D.6.一座楼梯的示意图如图,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米27.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为()(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)A.30.6 B.32.1 C.37.9 D.39.48.下面给出了一些关于相似的命题,其中真命题有()(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似.A.1个B.2个C.3个D.4个9.生活中到处可见A黄金分割的美,如图,在设计人体雕像时,使雕像的腰部以下a与全身b 的高度比值接近0.618,可以增加视觉美感,若图中b为2米,则a约为()A.1.24米B.1.38米C.1.42米D.1.62米10.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(﹣4,4),(2,1),则位似中心的坐标为()A.(0,3) B.(0,2.5)C.(0,2)D.(0,1.5)11.如图,在正方形ABCD中,E是AD的中点,F是CD上一点,且CF=3FD.则图中相似三角形对数是( )A.1B.2C.3D.412.在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O重合,顶点A,B恰好分别落在函数y=﹣(x<0),y=(x>0)的图象上,则sin∠ABO的值为( )A. B. C. D.二、填空题13.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则sin∠BAC=______.14.如图△ABC的三个顶点在网格中格点上,求sinA=_15. “赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为α,则tanα的值等于___________16.正方形ABCD与正方形OEFG中,点D和点F的坐标分别为(﹣3,2)和(1,﹣1),则这两个正方形的位似中心的坐标为.17.两个相似多边形的一组对应边分别为3cm和4.5cm,如果它们的面积之和为130cm2,那么较小的多边形的面积是 cm2.18.如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE 与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为.三、作图题19.已知△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.四、计算题20.计算:21.计算:五、解答题22.先化简,再求代数式÷(a+2﹣)的值,其中a=tan45°+2sin60°.23.如图,已知长江路西段与黄河路的夹角为150°,长江路东段与淮河路的夹角为135°,黄河路全长AC=20km,从A地道B地必须先走黄河路经C点后再走淮河路才能到达,城市道路改造后,直接打通长江路(即修建AB路段).问:打通长江路后从A地道B地可少走多少路程?(参考数据:≈1.4,≈1.7)24.如图,小明家小区空地上有两颗笔直的树CD、EF.一天,他在A处测得树顶D的仰角∠DAC=30°,在B处测得树顶F的仰角∠FBE=45°,线段BF恰好经过树顶D.已知A、B两处的距离为2米,两棵树之间的距离CE=3米,A、B、C、E四点在一条直线上,求树EF的高度.(≈1.7,≈1.4,结果保留一位小数)25.如图是某区域的平面示意图,码头A在观测站B的正东方向,码头A的北偏西60°方向上有一小岛C,小岛C在观测站B的北偏西15°方向上,码头A到小岛C的距离AC为10海里.(1)填空:∠BAC= 度,∠C= 度;(2)求观测站B到AC的距离BP(结果保留根号).26.如图,已知AB∥CD,AD、BC相交于点E,点F在ED上,且∠CBF=∠D.(1)求证:FB2=FE•FA;(2)若BF=3,EF=2,求△ABE与△BEF的面积之比.27.如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC 的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.参考答案1.B.2.D.3.D.4.A.5.A.6.D7.D8.答案为:C;9.答案为:A;10.答案为:C.11.答案为:C;12.答案为:D.13.答案为:.14.答案为:0.6.15.答案为:0.75.16.答案为:(﹣1,0)或(5,﹣2).17.略18.答案为:2.19.解:(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C2=20,A2B22=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.答案为:10.20.解:=﹣9+2﹣+9﹣=﹣9+2﹣=﹣9+2﹣=1﹣2.21.原式=3-6+2+1=022.解:原式=÷=÷=•=,当a=tan45°+2sin60°=1+时,原式==.23.解:如图所示:过点C作CD⊥AB于点D,在Rt△ACD中,∠CAD=30°,AC=20km,则CD=10km,AD=10km,在Rt△BCD中,∠CBD=45°,CD=10km,故BD=10km,BC=10km,则AC+BC﹣AB=20+10﹣10﹣10≈7(km),答:打通长江路后从A地道B地可少走7km的路程.24.解:25.解:(1)由题意得:∠BAC=90°﹣60°=30°,∠ABC=90°+15°=105°,∴∠C=180°﹣∠BAC﹣∠ABC=45°;故答案为:30,45;(2)∵BP⊥AC,∴∠BPA=∠BPC=90°,∵∠C=45°,∴△BCP是等腰直角三角形,∴BP=PC,∵∠BAC=30°,∴PA=BP,∵PA+PC=AC,∴BP+BP=10,解得:BP=5﹣5,答:观测站B到AC的距离BP为(5﹣5)海里.26.(1)证明:∵AB∥CD,∴∠A=∠D.又∵∠CBF=∠D,∴∠A=∠CBF,∵∠BFE=∠AFB,∴△FBE∽△FAB,∴∴FB2=FE•FA;(2)∵FB2=FE•FA,BF=3,EF=2∴32=2×(2+AE)∴∴,∴△ABE与△BEF的面积之比为5:4.27.。
相似三角形及解直角三角形测试题
![相似三角形及解直角三角形测试题](https://img.taocdn.com/s3/m/3c6225270912a2161479291a.png)
九年级数学培优试题一、选择题(每题4分共60分)1. 如图,在平行四边形ABCD 中,E 为DC 的中点,AE 交BD 于O ,若212DOE S cm =△,则AOBS △等于( ) A .224cmB .236cmC .248cmD .260cm2. 如图,△ABC 中,AB =12,AC =15,D 为AB 上一点,且AB AD 32=,在AC 上取一点E ,使以A 、D 、E 为顶点的三角形和△ABC 相似,则AE 等于 ( ) A .532 B .10 C .532或10 D .以上答案都不对 3、(2013•宿迁)如图,将∠AOB 放置在5×5的正方形网格中,则tan ∠AOB 的值是( ) A .23B .32C .21313D .31313(第3题图)4.(2009泰安 图18)如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 的值为 。
5、在坐标系中,已知A (3-,0)、B (0,4-)、C (0,1),过点C 作直线m 交x 轴于点D ,使得以点D 、C 、O 为顶点的三角形与AOB △相似,这样的直线一共可以作出( )A .6B .3C .4D .5 6.(2013•连云港)在Rt △ABC 中,∠C=90°,若sinA=513,则cosA 的值为( ) A .512B .813C .23D .12137.(2013•荆门)如图,在Rt △ABC 中,∠ACB=90°,D 是AB 的中点,过D 点作AB 的垂线交AC 于点E ,BC=6,sinA=35,则DE= .(第7题图)在Rt ABC △中,90C ∠=,MN AB ⊥于M , 8、如图,CBAD(第2题图)ABCD E O(第1题图)(第18题图)MAC B ABMNC (第8题图)8AM cm =,45AC AB =,15BC cm =,则四边形BCNM 的面积为 。
相似三角形测试题及答案
![相似三角形测试题及答案](https://img.taocdn.com/s3/m/de6c9c2468eae009581b6bd97f1922791688be95.png)
相似三角形测试题及答案一、选择题1. 若三角形ABC与三角形DEF相似,且AB:DE = 2:3,则BC:EF的比值为:A. 2:3B. 3:2C. 4:6D. 3:4答案:B2. 在相似三角形中,对应角相等,对应边成比例。
以下哪项不是相似三角形的性质?A. 对应角相等B. 对应边成比例C. 周长比等于相似比D. 面积比等于相似比的平方答案:D二、填空题3. 若三角形ABC与三角形DEF相似,相似比为2:3,则三角形ABC的周长是三角形DEF周长的____。
答案:2/34. 若三角形ABC与三角形DEF相似,且AB = 6cm,DE = 9cm,则BC 与EF的比值为______。
答案:2:3三、解答题5. 已知三角形ABC与三角形DEF相似,且AB = 8cm,DE = 12cm,求三角形ABC的周长,已知三角形DEF的周长为36cm。
答案:三角形ABC的周长 = (8/12) * 36cm = 24cm6. 已知三角形ABC与三角形DEF相似,且∠A = ∠D = 50°,∠B =∠E = 60°,求∠C和∠F的度数。
答案:∠C = ∠F = 70°四、证明题7. 已知三角形ABC与三角形DEF相似,且AB = 4cm,DE = 6cm,BC = 5cm,EF = 7.5cm,证明AC = 6.25cm。
答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应边成比例,所以AC/DF = AB/DE = 4/6 = 2/3。
已知EF = 7.5cm,所以AC = (2/3) * EF = (2/3) * 7.5cm = 5cm。
因此,AC = 6.25cm。
8. 已知三角形ABC与三角形DEF相似,且∠A = ∠D,∠B = ∠E,求证:∠C = ∠F。
答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应角相等。
已知∠A = ∠D,∠B = ∠E,所以∠C = 180° - (∠A+ ∠B) = 180° - (∠D + ∠E) = ∠F。
经典相似三角形练习的题目(附参考答案详解)
![经典相似三角形练习的题目(附参考答案详解)](https://img.taocdn.com/s3/m/455261a6ed630b1c58eeb540.png)
实用标准文案相似三角形一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= _________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t 的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD 、AC 把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q 作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ 为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB 上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC 交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P 为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.解答:证明:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.点评:本题考查的是平行线的性质及相似三角形的判定定理.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.解答:(1)证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.解答:证明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.解答:证明:∵矩形ABCD中,AB∥CD,∠D=90°,(2分)∴∠BAF=∠AED.(4分)∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.(5分)∴△ABF∽△EAD.(6分)点评:考查相似三角形的判定定理,关键是找准对应的角.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.解答:(1)证明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD,∴BE=CD.②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD,∵M、N分别是BE,CD的中点,∴BM=CN.又∵AB=AC,∴△ABM≌△ACN.∴AM=AN,即△AMN为等腰三角形.(2)解:(1)中的两个结论仍然成立.(3)证明:在图②中正确画出线段PD,由(1)同理可证△ABM≌△ACN,∴∠CAN=∠BAM∴∠BAC=∠MAN.又∵∠BAC=∠DAE,∴∠MAN=∠DAE=∠BAC.∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形.∴△PBD和△AMN都为顶角相等的等腰三角形,∴∠PBD=∠AMN,∠PDB=∠ANM,∴△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.分析:根据平行线的性质和两角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.解答:解:相似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.(3分)如:△AEF∽△BEC.在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.(6分)∴△AEF∽△BEC.(7分)7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= 135°°,BC= ;(2)判断△ABC与△DEC是否相似,并证明你的结论.解答:解:(1)∠ABC=135°,BC=;(2)相似;∵BC=,EC==;∴,;∴;又∠ABC=∠CED=135°,∴△ABC∽△DEC.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA 方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t 的值;若不存在,请说明理由解:(1)设经过x秒后,△AMN的面积等于矩形ABCD面积的,则有:(6﹣2x)x=×3×6,即x2﹣3x+2=0,(2分)解方程,得x1=1,x2=2,(3分)经检验,可知x1=1,x2=2符合题意,所以经过1秒或2秒后,△AMN的面积等于矩形ABCD面积的.(4分)(2)假设经过t秒时,以A,M,N为顶点的三角形与△ACD相似,由矩形ABCD,可得∠CDA=∠MAN=90°,因此有或(5分)即①,或②(6分)解①,得t=;解②,得t=(7分)经检验,t=或t=都符合题意,所以动点M,N同时出发后,经过秒或秒时,以A,M,N为顶点的三角形与△ACD相似.(8分)9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.解答:解:(1)任选两个三角形的所有可能情况如下六种情况:①②,①③,①④,②③,②④,③④(2分)其中有两组(①③,②④)是相似的.∴选取到的二个三角形是相似三角形的概率是P=(4分)证明:(2)选择①、③证明.在△AOB与△COD中,∵AB∥CD,∴∠CDB=∠DBA,∠DCA=∠CAB,∴△AOB∽△COD(8分)选择②、④证明.∵四边形ABCD是等腰梯形,∴∠DAB=∠CBA,∴在△DAB与△CBA中有AD=BC,∠DAB=∠CAB,AB=AB,∴△DAB≌△CBA,(6分)∴∠ADO=∠BCO.又∠DOA=∠COB,∴△DOA∽△COB(8分).点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,即相似三角形的证明.还考查了相似三角形的判定.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.解答:解:(1)AD=DE,AE=CE.∵CE⊥BD,∠BDC=60°,∴在Rt△CED中,∠ECD=30°.∴CD=2ED.∵CD=2DA,∴AD=DE,∴∠DAE=∠DEA=30°=∠ECD.∴AE=CE.(2)图中有三角形相似,△ADE∽△AEC;∵∠CAE=∠CAE,∠ADE=∠AEC,∴△ADE∽△AEC;(3)作AF⊥BD的延长线于F,设AD=DE=x,在Rt△CED中,可得CE=,故AE=.∠ECD=30°.在Rt△AEF中,AE=,∠AED=∠DAE=30°,∴sin∠AEF=,∴AF=AE•sin∠AEF=.∴.点评:本题主要考查了直角三角形的性质,相似三角形的判定及三角形面积的求法等,范围较广.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.解答:解:(1)∵AB∥MP,QM∥AC,∴四边形APMQ 是平行四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a.(2)∵PM∥AB,∴△PCM∽△ACB,∵QM∥AC,∴△BMQ∽△BCA;(3)当点M中BC的中点时,四边形APMQ是菱形,∵点M是BC的中点,AB∥MP,QM∥AC,∴QM,PM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由(1)知四边形APMQ是平行四边形,∴平行四边形APMQ是菱形.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.解答:证明:∵正方形ABCD,M为CD中点,∴CM=MD=AD.∵BP=3PC,∴PC=BC=AD=CM.∴.∵∠PCM=∠ADM=90°,∴△MCP∽△ADM.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q 作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ 为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.解答:解:(1)过D作DH∥AB交BC于H点,∵AD∥BH,DH∥AB,∴四边形ABHD是平行四边形.∴DH=AB=8;BH=AD=2.∴CH=8﹣2=6.∵CD=10,∴DH2+CH2=CD2∴∠DHC=90°.∠B=∠DHC=90°.∴梯形ABCD是直角梯形.∴S ABCD=(AD+BC)AB=×(2+8)×8=40.(2)①∵BP=CQ=t ,∴AP=8﹣t,DQ=10﹣t,∵AP+AD+DQ=PB+BC+CQ,∴8﹣t+2+10﹣t=t+8+t.∴t=3<8.∴当t=3秒时,PQ将梯形ABCD周长平分.②第一种情况:0<t≤8若△PAD∽△QEC则∠ADP=∠C ∴tan∠ADP=tan∠C==∴=,∴t=若△PAD∽△CEQ则∠APD=∠C ∴tan∠APD=tan∠C==,∴=∴t=第二种情况:8<t≤10,P、A、D三点不能组成三角形;第三种情况:10<t≤12△ADP为钝角三角形与Rt△CQE不相似;∴t=或t=时,△PAD与△CQE相似.③第一种情况:当0≤t≤8时.过Q点作QE⊥BC,QH⊥AB,垂足为E、H.∵AP=8﹣t,AD=2,∴PD==.∵CE=t,QE=t,∴QH=BE=8﹣t,BH=QE=t.∴PH=t﹣t=t.∴PQ==,DQ=10﹣t.Ⅰ:DQ=DP,10﹣t=,解得t=8秒.Ⅱ:DQ=PQ,10﹣t=,化简得:3t2﹣52t+180=0解得:t=,t=>8(不合题意舍去)∴t=第二种情况:8≤t≤10时.DP=DQ=10﹣t.∴当8≤t<10时,以DQ为腰的等腰△DPQ恒成立.第三种情况:10<t≤12时.DP=DQ=t﹣10.∴当10<t≤12时,以DQ为腰的等腰△DPQ恒成立.综上所述,t=或8≤t<10或10<t≤12时,以DQ为腰的等腰△DPQ成立.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC 相似?解答:解:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴经过秒或2秒,△PBQ∽△BCD.15.如图,在△ABC 中,AB=10cm ,BC=20cm ,点P 从点A 开始沿AB 边向B 点以2cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以4cm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,问经过几秒钟,△PBQ 与△ABC 相似. 解答: 设经过秒后t 秒后,△PBQ 与△ABC 相似,则有AP=2t ,BQ=4t ,BP=10﹣2t , 当△PBQ ∽△ABC 时,有BP :AB=BQ :BC , 即(10﹣2t ):10=4t :20,解得t=2.5(s )(6分)当△QBP ∽△ABC 时,有BQ :AB=BP :BC , 即4t :10=(10﹣2t ):20,解得t=1.所以,经过2.5s 或1s 时,△PBQ 与△ABC 相似(10分).解法二:设ts 后,△PBQ 与△ABC 相似,则有,AP=2t ,BQ=4t ,BP=10﹣2t分两种情况:(1)当BP 与AB 对应时,有=,即=,解得t=2.5s (2)当BP 与BC 对应时,有=,即=,解得t=1s所以经过1s 或2.5s 时,以P 、B 、Q 三点为顶点的三角形与△ABC 相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB 的长为多少时,这两个直角三角形相似. 解答: 解:∵AC=,AD=2,∴CD==.要使这两个直角三角形相似,有两种情况:1) 当Rt △ABC ∽Rt △ACD 时, 2) 有=,∴AB==3;3) 当Rt △ACB ∽Rt △CDA 时, 4) 有=,∴AB==3.故当AB 的长为3或3时,这两个直角三角形相似.17.已知,如图,在边长为a 的正方形ABCD 中,M 是AD 的中点,能否在边AB 上找一点N (不含A 、B ),使得△CDM 与△MAN 相似?若能,请给出证明,若不能,请说明理由.解答: 证明:分两种情况讨论:①若△CDM ∽△MAN ,则=.∵边长为a ,M 是AD 的中点, ∴AN=a .②若△CDM ∽△NAM ,则.∵边长为a,M 是AD的中点,∴AN=a,即N点与B重合,不合题意.所以,能在边AB上找一点N(不含A、B),使得△CDM与△MAN相似.当AN=a时,N点的位置满足条件.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?解答:解:设经过x秒后,两三角形相似,则CQ=(8﹣2x)cm,CP=xcm,(1分)∵∠C=∠C=90°,∴当或时,两三角形相似.(3分)(1)当时,,∴x=;(4分)(2)当时,,∴x=.(5分)所以,经过秒或秒后,两三角形相似.(6分)点评:本题综合考查了路程问题,相似三角形的性质及一元一次方程的解法.19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.解答:解:(1)若点A,P,D分别与点B,C,P对应,即△APD∽△BCP,∴=,∴=,∴AP2﹣7AP+6=0,∴AP=1或AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6,∴=,又∵∠A=∠B=90°,∴△APD∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,∴△APD∽△BCP.(2)若点A,P,D分别与点B,P,C对应,即△APD∽△BPC.∴=,∴=,∴AP=.检验:当AP=时,由BP=,AD=2,BC=3,∴=,又∵∠A=∠B=90°,∴△APD∽△BPC.因此,点P的位置有三处,即在线段AB距离点A的1、、6处.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC 交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.解答:证明:(1)∵△ABC是等腰直角三角形,∴∠MBE=45°,∴∠BME+∠MEB=135°又∵△DEF是等腰直角三角形,∴∠DEF=45°∴∠NEC+∠MEB=135°∴∠BEM=∠NEC,(4分)而∠MBE=∠ECN=45°,∴△BEM∽△CNE.(6分)(2)与(1)同理△BEM∽△CNE,∴.(8分)又∵BE=EC,∴,(10分)则△ECN与△MEN中有,又∠ECN=∠MEN=45°,∴△ECN∽△MEN.(12分)21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P 为顶点的三角形与△ABC相似.解答:解:以点Q、A、P为顶点的三角形与△ABC相似,所以△ABC∽△PAQ或△ABC∽△QAP,①当△ABC∽△PAQ 时,,所以,解得:t=6;②当△ABC∽△QAP时,,所以,解得:t=;③当△AQP∽△BAC时,=,即=,所以t=;④当△AQP∽△BCA时,=,即=,所以t=30(舍去).故当t=6或t=时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?解答:解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了5﹣1.5=3.5米.23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.解答:解:(1)皮尺,标杆;(2)测量示意图如图所示;(3)如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.(7分)24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)解答:解:(1)由题意可知:∠BAC=∠EDF=90°,∠BCA=∠EFD.∴△ABC ∽△DEF.∴,即,(2分)∴DE=1200(cm).所以,学校旗杆的高度是12m.(3分)(2)解法一:与①类似得:,即,∴GN=208.(4分)在Rt△NGH中,根据勾股定理得:NH2=1562+2082=2602,∴NH=260.(5分)设⊙O的半径为rcm,连接OM,∵NH切⊙O于M,∴OM⊥NH.(6分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN,∴(7分),又ON=OK+KN=OK+(GN﹣GK)=r+8,∴,解得:r=12.∴景灯灯罩的半径是12cm.(8分)解法二:与①类似得:,即,∴GN=208.(4分)设⊙O的半径为rcm,连接OM,∵NH切⊙O于M,∴OM⊥NH.(5分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN.∴,即,(6分)∴MN=r,又∵ON=OK+KN=OK+(GN﹣GK)=r+8.(7分)在Rt△OMN中,根据勾股定理得:r2+(r)2=(r+8)2即r2﹣9r﹣36=0,解得:r1=12,r2=﹣3(不合题意,舍去),∴景灯灯罩的半径是12cm.(8分)25.(2007•白银)阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.解答:解:∵AE∥BD,∴△ECA∽△DCB,∴.∵EC=8.7m,ED=2.7m,∴CD=6m.∵AB=1.8m,∴AC=BC+1.8m,∴,∴BC=4,即窗口底边离地面的高为4m.点评:此题基本上难度不大,利用相似比即可求出窗口底边离地面的高.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.解答:解:(1)由已知:AB∥OP,∴△ABC∽△OPC.∵,∵OP=l,AB=h,OA=a,∴,∴解得:.(2)∵AB∥OP,∴△ABC∽△OPC,∴,即,即.∴.同理可得:,∴=是定值.(3)根据题意设李华由A到A',身高为A'B',A'C'代表其影长(如图).由(1)可知,即,∴,同理可得:,∴,由等比性质得:,当李华从A走到A'的时候,他的影子也从C移到C',因此速度与路程成正比∴,所以人影顶端在地面上移动的速度为.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.解:设直角三角形ABC的三边BC、CA、AB的长分别为a、b、c,则c2=a2+b2(1)S1=S2+S3;(2)S1=S2+S3.证明如下:显然,S1=,S2=,S3=∴S2+S3==S1;(3)当所作的三个三角形相似时,S1=S2+S3.证明如下:∵所作三个三角形相似∴∴=1 ∴S1=S2+S3;(4)分别以直角三角形ABC三边为一边向外作相似图形,其面积分别用S1、S2、S3表示,则S1=S2+S3.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.解答:解:∵△ABC ∽△ADE,∴AE:AC=AD:AB.∵AE:AC=(AB+BD):AB,∴AE:9=(15+5):15.∴AE=12.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.解答:解:(1)Rt△ABC中,根据勾股定理得:BC==5,∵Rt△ABC∽Rt△BDC,∴==,==,∴BD=,CD=;(2)在Rt△BDC中,S△BDC=BE•CD=BD•BC,∴BE===3.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.解:(1)设=k,那么x=2k,y=3k,z=5k,由于3x+4z﹣2y=40,∴6k+20k﹣6k=40,∴k=2,∴x=4,y=6,z=10.(2)设一个三角形周长为Ccm,则另一个三角形周长为(C+560)cm,则,∴C=240,C+560=800,即它们的周长分别为240cm,800cm。
初中数学经典相似三角形练习题(附参考答案)
![初中数学经典相似三角形练习题(附参考答案)](https://img.taocdn.com/s3/m/11b863307dd184254b35eefdc8d376eeaeaa17bc.png)
初中数学经典相似三角形练习题(附参考答案)初中数学经典相似三角形练习题(附参考答案)一、题目描述在初中数学中,相似三角形是一个非常重要的概念。
本文为您提供一些经典的相似三角形练习题,通过解答这些练习题可以提高学生的解题能力和对相似三角形的理解。
本文附有详细的参考答案,供学生进行自我检测和复习。
二、练习题1. 已知△ABC和△DEF相似,AB = 6cm,BC = 8cm,AC = 10cm,DE = 9cm,计算EF的长度。
2. △ABC与△DEF相似,AB = 2cm,BC =3.5cm,AC = 4cm,EF= 7cm,求DE的长度。
3. 在△ABC中,角A的度数为50°,角B的度数为70°,BC = 8cm。
若与△ABC相似的三角形的边长分别为10cm和12cm,求与△ABC相似的三角形的第三边的长度。
4. 在△ABC中,∠B = 90°,AC = 10cm,BC = 12cm。
若与△ABC相似的三角形的第二边为16cm,求与△ABC相似的三角形的第三边的长度。
5. 已知△ABC与△DEF相似,AB = 6cm,AC = 8cm,DE = 12cm,若EF = 18cm,求BC的长度。
6. 高度为5cm的小树和高度为12cm的大树的影子长度之比为2:3。
如果小树的影子长度为10cm,求大树的影子长度。
7. 一个航拍无人机垂直飞行,发现自己离地面的垂直距离与航拍无人机的长度(包括机身和旋翼)的比例为3:2。
如果航拍无人机的长度为120cm,求离地面的垂直距离。
8. 在一个旅游小组中,由5名成年人和7名儿童组成,其平均年龄为30岁。
如果另一个旅游小组由2名成年人和3名儿童组成,其平均年龄为24岁。
求这两个旅游小组的总年龄之比。
三、参考答案1. 根据相似三角形的性质可知,EF与AC的比例应与DE与BC的比例相等。
即 EF/AC = DE/BC。
代入已知值,得 EF/10 = 9/8。
相似三角形经典练习题及答案
![相似三角形经典练习题及答案](https://img.taocdn.com/s3/m/a9fda76f854769eae009581b6bd97f192279bfc3.png)
相似三角形经典练习题及答案一、选择题1、若两个相似三角形的面积之比为 1∶4,则它们的周长之比为()A 1∶2B 1∶4C 1∶5D 1∶16答案:A解析:相似三角形面积的比等于相似比的平方,相似三角形周长的比等于相似比。
因为两个相似三角形的面积之比为 1∶4,所以相似比为 1∶2,那么它们的周长之比为 1∶2。
2、如图,在△ABC 中,点 D、E 分别在边 AB、AC 上,DE∥BC,若 AD∶DB = 1∶2,则下列结论中正确的是()A AE∶EC = 1∶2B AE∶EC = 1∶3 C DE∶BC = 1∶2 DDE∶BC = 1∶3答案:B解析:因为 DE∥BC,所以△ADE∽△ABC。
因为 AD∶DB =1∶2,所以 AD∶AB = 1∶3。
因为相似三角形对应边成比例,所以AE∶AC = AD∶AB = 1∶3,所以 AE∶EC = 1∶2。
3、已知△ABC∽△A'B'C',相似比为 3∶4,△ABC 的周长为 6,则△A'B'C'的周长为()A 8B 7C 9D 10答案:A解析:因为相似三角形周长的比等于相似比,所以△ABC 与△A'B'C'的周长之比为3∶4。
设△A'B'C'的周长为x,则6∶x =3∶4,解得 x = 8。
4、如图,在△ABC 中,D、E 分别是 AB、AC 上的点,且DE∥BC,如果 AD = 2cm,DB = 1cm,AE = 15cm,则 EC =()A 05cmB 1cmC 15cmD 3cm答案:B解析:因为 DE∥BC,所以△ADE∽△ABC,所以 AD∶AB =AE∶AC。
因为 AD = 2cm,DB = 1cm,所以 AB = 3cm。
所以 2∶3= 15∶(15 + EC),解得 EC = 1cm。
5、下列各组图形一定相似的是()A 两个直角三角形B 两个等边三角形C 两个菱形D 两个矩形答案:B解析:等边三角形的三个角都相等,都是 60°,所以两个等边三角形一定相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形复习练习4 九年级数学培优试题
2.如图,△ABC中,AB=12,AC=15,为AB上一点,且,在AC上取一点,使以A、D、E 为顶点的三角形和△ABC相似,则AE等于 ( )
A. B.10 C.或10 D.以上答案都不对
3、(2013o宿迁)如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是()
A. B. C. D.
(第3题图)
4.(2009泰安图18)如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,沿△ABC的中线CM将△CMA折叠,使点A落在点D处,若CD恰好与MB垂直,则tanA的值为。
A.6 B.3 C.4 D.5
6.(2013o连云港)在Rt△ABC中,∠C=90°,若sinA=,则cosA的值为()
A. B. C. D.
7.(2013o荆门)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE= .
(第7题图)
9. 如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC 面积的,那么点B′的坐标是( )
A.(3,2) B.(-2,-3) C.(2,3)或(-2,-3) D.(3,2)或(-3,-2)
二、填空题。
10.、如图,平行四边形ABCD中,E是BD上一点,AE的延长线与BC的延长线交于F,与CD 交于G,若AE=4,EG=3,则EF= 。
11.(2013o十堰)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为米.
12.(2013o荆州)如图,在高度是21米的小山A处没得建筑物CD顶部C处的仰角为30°,底部D处的俯角为何45°,则这个建筑物的高度CD= 米(结果可保留根号)
14.(2014?云南昆明,)如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边的中点E 处,折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG的周长是 cm
15、如图,已知是三个全等的等腰三角形,底边BC,CE,EG在同一条直线上,且AB=,BC=1,则BF=__________。
16.求值: +2sin30°-tan60°+cot450
17. 计算:
18. 计算:
19. 计算: +
20、如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:≈1.41,≈1.73).
21、已知:如图,正方形ABCD中,E为BD上一点,AE的延长线交CD于点F,交BC的延长线于点G,连结EC。
(1)求证:△ECF∽△EGC;(2)若EF=,FG=,求AE的长。
23.(2014年山东泰安)如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;
(2)若AB⊥AC,AE:EC=1:2,F是BC中点,
求证:四边形ABFD是菱形.
24.如图是某地下商业街的入口,数学课外兴趣小组的同学打算运用所学的知识测量侧面支架的最高点E到地面的距离EF.经测量,支架的立柱BC与地面垂直,即∠BCA=90°,且BC=1.5m,点F、A、C在同一条水平线上,斜杆AB与水平线AC的夹角∠BAC=30°,支撑杆DE⊥AB于点D,该支架的边BE与AB的夹角∠EBD=60°,又测得AD=1m.请你求出该支架的边BE及顶端E 到地面的距离EF的长度.
25.云洞岩被誉为“闽南第一洞天”风景文化名山,是国家4A级旅游景区。
某校数学兴趣小组为测量山高,在山脚A处测得山顶B的仰角为45°,沿着坡角为30°的山坡前进200米到达D处,在D处测得山顶B的仰角为60°,求山的高度BC.(结果保留三个有效数字)(已知)。