重庆大学《概率论与数理统计Ⅰ》课程试卷.
概率论与数理统计
重庆交通大学继续教育学院2008--2009学年第一学期考试A 卷《概率论与数理统计(经管类)》课程考核形式:闭卷 考试需用时间:120分钟在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列各函数中,可作为某随机变量概率密度的是( ) A .⎩⎨⎧<<=其他,0;10,2)(x x x fB .⎪⎩⎪⎨⎧<<=其他,0;10,21)(x x fC .⎩⎨⎧-<<=其他,1;10,3)(2x x x fD .⎩⎨⎧<<-=其他,0;11,4)(3x x x f2.设随机变量X~N(1,4),5.0)0(,8413.0)1(=Φ=Φ,则事件{13X ≤≤}的概率为( ) A.0.1385 B.0.2413 C.0.2934 D.0.34133.则P{XY=0}=( ) A. 41 B.125 C.43 D.14.某种电子元件的使用寿命X (单位:小时)的概率密度为⎪⎩⎪⎨⎧<≥=,100,0;100,100)(2x x x x f 任取一只电子元件,则它的使用寿命在150小时以内的概率为( )A .41 B .31 C .21 D .325.设E (X ),E (Y ),D (X ),D (Y )及Cov(X,Y )均存在,则D (X-Y )=( ) A .D (X )+D (Y ) B .D (X )-D (Y ) C .D (X )+D (Y )-2Cov(X,Y ) D .D (X )-D (Y )+2Cov(X,Y )7.设随机变量X 服从参数为3的泊松分布,Y~B (8,31),且X ,Y 相互独立,则D (X-3Y-4)=( )A .-13B .15C .19D .238.已知D (X )=1,D (Y )=25,ρXY =0.4,则D (X-Y )=( )A .6B .22C .30D .46 9.设总体X 服从[0,2θ]上的均匀分布(θ>0),x 1, x 2, …, x n 是来自该总体的样本,x 为样本均值,则θ的矩估计θˆ=( ) C .2xD .x2110.设n 1X ,,X 为正态总体N(2,σμ)的样本,记∑=--=ni i x x n S 122)(11,则下列选项中正确的是( ) A.)1(~)1(222--n S n χσB.)(~)1(222n S n χσ-C.)1(~)1(22--n S n χD.)1(~22-n S χσ二、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。
重庆师范大学《概率论与数理统计》2020-2021学年期末试卷
重庆师范大学《概率论与数理统计》2020-2021学年第一学期期末试卷学号姓名年级专业成绩一、选择题(每小题3分,共15分):1.设随机变量X 的分布律为),2,1(}{ ===k b k X P kλ,则().(A)10<<λ,且11--=λb (B)10<<λ,且1-=λb (C)10<<λ,且11-=-λb (D)10<<λ,且11-+=λb 2.设随机变量X 的密度函数为xx Ae x f 22)(+-=,则().(A)πe(B)πe 1(C)πe 1(D)πe 23.设随机变量X 的概率密度和分布函数分别是)(xf 和)(x F ,且)()(x f x f -=,则对任意实数a ,有=-)(a F ().(A))(21a F -(B))(21a F +(C)1)(2-a F (D))(1a F -4.设相互独立的随机变量Y X ,具有同一分布,且都服从区间[0,1]上的均匀分布,则在区间或区域上服从均匀分布的随机变量是().(A)(Y X ,)(B)YX +(C)YX -(D)2X5.设)(1x F 与)(2x F 分别为随机变量1X 与2X 的分布函数,为使)()()(21x bF x aF x F -=是某随机变量的分布函数,在下列给定的各组数值中应取().(A)52,53-==b a (B)32,32==b a (C)23,21=-=b a (D)23,21-==b a二、填空题(每小题3分,共15分):1.二维随机变量(Y X ,)的联合分布律为:Y X121α0.22β0.3则α与β应满足的条件是,当Y X ,相互独立时,α=.2.二维随机变量(Y X ,)的联合密度为:])()[(212122221121),(σμσμσπσ-+--=y x e y x f ,则X的边缘概率密度为.3.连续型随机变量X 的概率密度为其它10,0,)(2<<⎩⎨⎧=x kx x f ,则常数=k .4.设)02.0,10(~2N X ,已知Φ(2.5)=0.9938,则=<≤}05.1095.9{X P .5.设Y X ,是相互独立的随机变量,),3(~),,2(~22σσ-N Y N X ,且95.0}7654.8|12{|=≤-+Y X P ,则σ=.三、计算题(3小题,共34分)1.(12分)随机变量X 的概率密度为⎪⎩⎪⎨⎧>≤=4||,04||,cos )(ππx x x A x f ,试求(1)系数A ;(2)X 的分布函数;(3)X 落在⎪⎭⎫⎝⎛6,0π内的概率.2.(10分)随机变量X 的概率密度为⎩⎨⎧≤>=-0,00)(,x x e x f x ;求2X Y =的概率密度.3.(12分)设Y X ,是两个相互独立的随机变量,其概率密度分别为:⎩⎨⎧≤≤=其它,010,1)(x x f x ⎩⎨⎧≤>=-0,00,)(y y e y f y Y 求随机变量Y X Z +=的概率密度函数.四、解答题(3小题,共36分)1.(12分)假设一设备开机后无故障工作的时间X 服从参数为5=θ的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2h 便关机,试求设备每次开机无故障工作的时间Y 的分布函数.2.(12分)随机变量X 和Y 均服从区间[0,1]上的均匀分布且相互独立.①写出二维随机变量(Y X ,)的边缘概率密度和联合概率密度.②求}23{≤+Y X P .3.(12分)已知随机变量Y X 与的分布律为:X -101P1/41/21/4且已知1}0{==XY P .(1)求(Y X ,)的联合分布律;(2)Y X 与是否相互独立?为什么?Y 01P1/21/2。
概率论与数理统计习题(含解答,答案)
概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。
若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。
2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。
3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。
4.1)()(==X D X E 。
若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。
5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。
7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。
8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。
9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。
10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。
但当增⼤置信⽔平时,则相应的置信区间长度总是。
⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。
设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。
三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。
概率论与数理统计期末试卷及答案(重庆大学)3
重庆大学《概率论与数理统计Ⅰ》课程试卷A 卷第1页共3页《概率论与数理统计Ⅰ》试卷评分标准及答案2016—2017学年第二学期开课学院:数统学院课程号:考试日期:2017.6.4.考试方式:考试时间:120分钟题号一二三四五六七八九十总分得分分位数:0.975 1.96u =,0.05(15) 1.753t =-,0.975(15) 2.131t =。
一、填空题(每空3分,共42分)1.设()()1,0.3P A B P A ==,()P B A =1。
2.学生做一道有4个选项的单项选择题时,如果他不知道问题的正确答案,就作随机猜测。
假设学生知道正确答案的概率为0.2,现从卷面上看题是答对了,试问学生确实知道正确答案的概率为:0.5。
3.某路口的显示屏由24块独立发光单元组成,每块发光单元的故障率为0.01,那么该发光显示屏正常显示的概率0.79or 240.99。
4.设连续型随机变量的密度函数为2, >100()0 , Ax f x xx ⎧⎪=⎨⎪≤⎩100则A =100,X 的分布函数()F x =0, x 1001001,100x x ≤⎧⎪⎨->⎪⎩,{1000}P X ≥=0.1。
5.设随机变量X 和Y 独立同分布,且2=3EX DX =,,则2(-)E X Y =6,根据切比雪夫不等式估计概率{|-|5}=P X Y ≥6/25。
6.设X 是样本容量为12且来自总体[]0,12X ~U 的样本均值,则2ES =_12_,2EX =37。
7.设128,,...,X X X 是来自总体(0,1)N 的样本,则822i i D X =⎛⎫=⎪⎝⎭∑14,常数a =3,统计量2212823()ii X X Y aX=+=∑~F (2,6)(注明分布)。
8.从正态总体N(3.4,36)中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n 至少为35。
《概率论与数理统计》习题及答案
概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
第二学期概率论与数理统计试卷 参考答案
重庆大学概率论与数理统计课程试卷A卷B卷2012 ~2013 学年 第 二 学期开课学院: 数统学院 课程号:10029830 考试日期:考试方式:开卷闭卷 其他 考试时间: 120分钟分位数:220.0050.975(39)20,(39)58.12χχ==,0.975 1.96u =,(2.68)0.9963,(1.79)0.9633Φ=Φ=,0.025(35) 2.0301t =一、填空题(每空3分,共42分)1.已知()0.3P A =,()0.4P B =,()0.5P AB =,则()P B A B ⋃= 0.25 。
2.从一副扑克牌(52张)中任取3张(不重复),则取出的3张牌中至少有2张花色相同的概率为 0.602 。
3.从1到9的9个整数中有放回地随机取3次,每次取一个数,则取出的3个数之积能被10整除的概率为 0.214 。
4.一个有5个选项的考题,其中只有一个选择是正确的。
假定应 考人知道正确答案的概率为p 。
如果他最后选对了,则他确实知道答案的概率为541pp +。
5.重复抛一颗骰子5次得到点数为6 的次数记为X ,则(3)P X >= 13/3888 。
6.设X 服从泊松分布,且(1)(2)P X P X ===,则(4)P X ==0.0902 。
7.设圆的直径X 服从区间(0,1)上的均匀分布,则圆的面积Y 的密度函数为1//4()0 ,Y y f y elseπ⎧<<⎪=⎨⎪⎩。
8.已知(,)(1,9;0,16;0.5) ,32X YX Y N Z -=+且,则Z 的密度函数21()36z Z f --(z )。
9.设总体2(,)X N μσ,其中2σ已知,从该总体中抽取容量为40n =的样本1,240,,X X X ,则()222110.5 1.453nii P X X n σσ=⎧⎫≤-≤⎨⎬⎩⎭∑= 0.97。
10.设1,210,,X X X 是来自总体2(0,)XN σ的样本,则Y =服从 t(8) 。
重庆大学数理统计试题答案版
涉及到的有关分位数:()()()()()()()()()()()()20.950.950.950.9750.9750.9752222220.9750.0250.0250.9750.950.97520.95 1.645,16 1.746,15 1.753,16 2.12,15 2.131,1628.851527.49,16 6.91,15 6.26,1 5.02,1 3.84,27.382 5.99u t t t t χχχχχχχχ=============一、设123,,X X X 是来自总体~(0,3)X N 的样本。
记()2332i 1111,32i i i X X S X X====-∑∑,试确定下列统计量的分布:(1)3113i i X =∑;(2)23119i i X =⎛⎫⎪⎝⎭∑;(3)()23113i i X X=-∑;(4X解:(1)由抽样分布定理,311~(0,1)3i i X X N ==∑(2)因311~(0,1)3i i X N =∑,故223321111~(1)39i i i i X X χ==⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∑∑(3)由抽样分布定理,()()()2223321131211~(2)3323i i i i S X X X X χ==-=⋅-=-∑∑(4)因()222~(0,1),~23X N S χ,X 与2S独立,故()~2X t 。
二、在某个电视节目的收视率调查中,随机调查了1000人,有633人收看了该节目,试根据调查结果,解答下列问题:(1)用矩估计法给出该节目收视率的估计量;(2)求出该节目收视率的最大似然估计量,并求出估计值;(3)判断该节目收视率的最大似然估计是否是无偏估计;(4)判断该节目收视率的最大似然估计是否是有效估计。
解:总体X 为调查任一人时是否收看,记为~(1,)X B p ,其中p 为收视率(1)因EX p =,而^E X X =,故收视率的矩估计量为^Xp =(2)总体X 的概率分布为()1()1,0,1xxf x p p x -=-=1111()(1)(1)(1)ln ()ln (1)ln(1)ln ()(1)01nniii ii i nx n x x x n X n n Xi L p p p pp p p L p nX p n X p d L p nX n X dp p p==---=∑∑=-=-=-=+---=-=-∏解得收视率p 的最大似然估计量为^Xp =现有一参量为1000的样本121000,,X X X ……,,且10001633ii X==∑则6330.6331000X ==,故收视率的极大似然估计值为0.633.(3)因E X p =,故^X p =是无偏估计(4)因()ln ()(1)1(1)d L p nX n X nX p dp p p p p -=-=---,又E X p=故收视率的最大似然估计X 是p 的有效估计。
概率论与数理统计试卷(计算)
题目部分,(卷面共有100题,845.0分,各大题标有题量和总分) 一、计算(43小题,共354.0分)(8分)[1]设随机变量ξ的分布函数为()2001 0xx F x e x -<⎧=⎨-≥⎩ (1)计算P{ξ≥2(2)计算P{- 3≤ξ<4}(3)求a,使得P{ξ≥a}=p{ξ<a}(8分)[2]从-1,0,1,2中随机地取出两个数字,设所取两个数字之和为ξ,求随机变量ξ的分布律和分布函数F(x)=P{ξ≤x} (13分)[3]设ξ,η相互独立,且都服从区间[0,a]上均匀分布,求ζ=η-ξ的分布函数和概率密度。
(5分)[4]在区间[0,a]上任意投掷一个质点,用ξ表示这个质点的坐标。
设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求ξ的分布函数,(a>0)(10分)[5]甲、乙两篮球运动员,投篮命中率分别为0.8和0.7,每人投篮3次,求两人进球相等的概率。
(6分)[6]一袋中有3只白球,2只黑球,3只红球,在其中任取2只球,以ξ表示取到白球的只数,以η表示取到黑球的只数,求E ξ及E η (3分)[7]设随机变量ξ服从(0- 1)分布,其分布律为P(ξ=1)=p ,P(ξ=0)=q ,(0<p<1,p+q=1)求E ξ,D(ξ)。
(12分)[8]设系统L 是由两个相互独立的子系统1L 和2L 以串联方式联接而成,1L 与2L 的寿命分别为ξ与η,其概率密度分别为()1000x e x x x ααϕ-⎧>=⎨≤⎩()2000y e y y y ββϕ-⎧>=⎨≤⎩其中α>0,β>0,α≠β,试求系统L 的寿命ζ的概率密度。
(10分)[9]设二维连续型随机变量(ξ,η)的联合概率密度为 (23) 0,0(,)0 0,0x y Ae x y x y x y ϕ-+⎧>>=⎨≤≤⎩试求(1)系数A 的值,(2)(ξ,η)落在三角形区域D={(x,y)|x ≥0,y ≥0,2x+3y ≤6}的概率,(3)(ξ,η)的联合分布函数。
概率论与数理统计试题与答案完整版
概率论与数理统计试题与答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】概率论与数理统计试题与答案(2012-2013-1)概率统计模拟题一一、填空题(本题满分18分,每题3分)1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。
2、设随机变量p)B(3,~Y p),B(2,~X ,若95)1(=≥X p ,则=≥)1(Y p 。
3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。
4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。
5、设)X ,,X ,(X n 21 为来自总体)10(2χ的样本,则统计量∑==n1i i X Y 服从分布。
6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度=L 。
(按下侧分位数)二、选择题(本题满分15分,每题3分)1、 若A 与自身独立,则( )(A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<<A P ; (D) 0)(=A P 或1)(=A P2、下列数列中,是概率分布的是( )(A) 4,3,2,1,0,15)(==x xx p ; (B) 3,2,1,0,65)(2=-=x x x p (C) 6,5,4,3,41)(==x x p ; (D) 5,4,3,2,1,251)(=+=x x x p 3、设),(~p n B X ,则有( )(A) np X E 2)12(=- (B) )1(4)12(p np X D -=-(C) 14)12(+=+np X E (D) 1)1(4)12(+-=+p np X D4、设随机变量),(~2σμN X ,则随着σ的增大,概率()σμ<-X P ( )。
(A)单调增大 (B)单调减小 (C)保持不变 (D)增减不定5、设),,,(21n X X X 是来自总体),(~2σμN X 的一个样本,X 与2S 分别为样本均值与样本方差,则下列结果错误..的是( )。
重庆大学数理统计试题(四套)
X (4)分析随机变量 S
24 的分布。
2
二 ( . 20 分) 设总体分布 X 的密度函数为 f x; c x 未知,求 (1)参数 的矩估计量 ˆ1 ; 1 ˆ ; (2)参数 g 的极大似然估计 g ˆ 无偏性,有效性和相合性。 (3)试分析 g
4
四、某公司的考勤员试图证实星期一的缺勤是其他四个工作日缺勤的两倍,已有三 月的缺勤记录如下表所示: 星期 缺勤数 给定显著水平 一 二 304 176 ,请用检验证实。 三 139 四 141 五 130
五、(20 分)合成纤维抽丝工段第一导丝盘的速度 y 对丝的质量是很重要的因素。如 由生产记录得相关数据 ( xi , yi ) ,i 1,2,...,10 , 今发现它与电流的周波 x 有密切的关系, 计算得到 x 49.61 , y 16.86 , l xx 1.989 , l xy 0.674 l yy 0.244 。 (1)求第一导丝盘的速度 y 与电流的周波 x 的经验回归直线方程; (2)在显著水平 0.05 下,检验 y 与 x 是否有显著的线性关系; (3)求 ,并求回归系数 1 的置信度为 95% 的置信区间。
六、设组观测数据(xi , yi )(i =1,2,…, n) 满足 yi =β0+β1(x- x ) +εi , 1 n εi ~ N (0,σ 2) (i =1,2,…, n)(其中 x= X i )且 ε1,ε2,…,εn 相互独立。 n 1 ˆ , ˆ; (1) 求系数 β0,β1 的最小二乘估计量
2 2 2 (1)当 n=17 时,求常数 k 使得 P( X Y 1 2 k S X SY 2S X ,Y ) 0.95
重庆大学《概率论与数理统计Ⅰ》课程试卷
重庆大学《概率论与数理统计Ⅰ》课程试卷2015—2016学年第一学期0.84130.950.9750.950.9751, 1.65, 1.96,t (4) 2.132,(4) 2.776u u u t =====一、 填空题(共42分)1.设P(A)=0.7,P(B)=0.5,P(A-B)=____________,(|)P B A =____________。
2.某学院在2014年招生的三个专业中,学生所占的比例分别为30%,45%,25%。
在2015年评选优异生的过程中,学院决定专业打通按综合成绩排序进行评选,其评选结果是三个专业占总人数的比例分别为0.04,0.045,0.031,则该学院评选的优异生的比例(概率)为:________________。
3.设连续性随机变量的分布函数为20,0(),011,1x F x Ax x x <⎧⎪=≤<⎨⎪≥⎩则A=____________,X的密度函数()f x =_________________,{0.5}__________P X <=。
4.设随机变量X的密度函数2(1)8()x X f x --=,则EX =___________,随机变量Y=2X-1的密度函数()_________Y f y =。
5.设2,2,1,4,(,)0.5,EX EY DX DY X Y ρ=-====则()_________D X Y +=,根据切比雪夫不等式估计概率{6}__________P X Y +≥。
6.设X 是样本容量为15且来自总体P(3)(泊松分布)的样本均值,则2___________E X =。
7.设128,,,X X X …是来自总体N(0,4)的样本,则常数C =________,统计量~_________Y =(注:确定分布),{||P X ≤=。
二、(10分)设一枚深水炸弹击沉一艘潜艇的概率为16,击伤的概率为13,未击中的概率为12,并设击伤潜艇两次也可导致其下沉,求施放3枚深水炸弹能击沉潜艇的概率。
2012-2013第二学期概率论与数理统计试卷 参考答案
重庆大学概率论与数理统计课程试卷2012 ~2013 学年 第 二 学期开课学院: 数统学院 课程号:10029830 考试日期:考试方式:考试时间: 120分钟分位数:220.0050.975(39)20,(39)58.12χχ==,0.975 1.96u =,(2.68)0.9963,(1.79)0.9633Φ=Φ=,0.025(35) 2.0301t =一、填空题(每空3分,共42分)1.已知()0.3P A =,()0.4P B =,()0.5P AB =,则()P B A B ⋃= 0.25 。
2.从一副扑克牌(52张)中任取3张(不重复),则取出的3张牌中至少有2张花色相同的概率为 0.602 。
3.从1到9的9个整数中有放回地随机取3次,每次取一个数,则取出的3个数之积能被10整除的概率为 0.214 。
4.一个有5个选项的考题,其中只有一个选择是正确的。
假定应 考人知道正确答案的概率为p 。
如果他最后选对了,则他确实知道答案的概率为541pp +。
5.重复抛一颗骰子5次得到点数为6 的次数记为X ,则(3)P X >= 13/3888 。
6.设X 服从泊松分布,且(1)(2)P X P X ===,则(4)P X ==0.0902 。
7.设圆的直径X 服从区间(0,1)上的均匀分布,则圆的面积Y 的密度函数为1//4()0 ,Y y f y elseπ⎧<<⎪=⎨⎪⎩。
8.已知(,)(1,9;0,16;0.5) ,32X Y X Y N Z -=+ 且,则Z 的密度函数21()36z Z f --(z )。
9.设总体2(,)X N μσ ,其中2σ已知,从该总体中抽取容量为40n = 的样本1,240,,X X X ,则()222110.5 1.453nii P X X n σσ=⎧⎫≤-≤⎨⎬⎩⎭∑= 0.97。
10.设1,210,,X X X 是来自总体2(0,)X N σ 的样本,则Y =服从 t(8) 。
概率统计课程试卷(06-07(2)B)
A卷B卷
开卷闭卷 (1,0.6),求分)设二维连续型随机变量封
线
密
五.(10分)有一繁忙的汽车站,每天有大量汽车通过,设每辆汽车在一天的某段时间内出事故的概率为。
假设在某天的该段时间内有1000辆汽车通过,求(1)出事故的次数不小于2的概率;(2)出事故的期望次数。
六.(10分)某计算机公司使用的现行系统,运行通每个程序的平均时间为45秒。
现在使用一个新系统运行9个程序,所需的计算时间(秒)分别是:30,37,42,35,36,40,47,48,
s=。
假设一个系45。
计算得:40
x=,236.5
统试通一个程序的时间服从正态分布,那么据此数据用假设检验方法推断新系统是否减少了
α=)。
现行系统试通一个程序的时间(0.05。
大学概率论与数理统计试题库及答案
<概率论>试题一、填空题1.设 A 、B 、C 是三个随机事件。
试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。
则P(B)A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为和,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅则A=______________7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<=13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。
(完整版)概率论与数理统计试题及答案.doc
2008- 2009 学年第1学期概率论与数理统计(46 学时 ) A一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)。
1、 A、 B 为两个随机事件,若P( AB)0 ,则( A) A、 B 一定是互不相容的;(B)AB一定是不可能事件;(C) AB 不一定是不可能事件;(D)P( A)0或 P(B)0 .Y 0 1 22、二维离散型随机变量( X ,Y)的分布律为X1 1/6 1/3 02 1/4 1/6 1/12F ( x, y) 为 ( X ,Y) 的联合分布函数,则F (1.5,1.5)等于(A)1/6 ;(B)1/2 ;(C)1/3 ;( D)1/4.3、 X、 Y 是两个随机变量,下列结果正确的是(A)若E( XY)EXEY ,则X、Y独立;(B)若 X、Y 不独立 , 则 X、Y 一定相关;(C)若 X、Y 相关, 则 X、Y 一定不独立;(D)若D(X Y) DX DY ,则X、Y独立.4、总体 X ~ N ( , 2 ), , 2均未知, X 1, X 2 ,L , X n 为来自 X 的一个简单样本,X 为样本 均值, S 2 为样本方差。
若 的置信度为 0.98的置信区间为 (X c S n , X c S n ) ,则常数 c 为( A )t 0.01 (n 1) ;( ) 0.01 (n) ;B t( C )t0.02(n 1) ;( )(n) .D t 0.025、随机变量 X 1, X 2 ,L , X n 独立且都服从 N (2,4)__1 n分布,则 XX i 服从n i1(A ) N (0,1) ;(B ) N (2,4 n) ;(C ) N (2 n, 4n) ;(D ) N(2, 4) .n二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)。
6、已知 A 、 B 为两个随机事件 ,若 P( A) 0.6, P( AB) 0.1,则 P( A | AB) =1.7、已知随机变量 X 服从区间 (0, 2) 上的均匀分布,则 E(2X) =( ).8、已知连续型随机变量 X 的概率密度函数为 f (x)2 x,0 x 1,则概率 P(| X | 1 2) =0,其它( ) .9、随机变量 X : b(3, 1 ), Y : b(3, 2 ) ,且 X ,Y 独立,则 D(X Y) =() .3310 、 已 知 随 机 变 量 X i , i 1,2,3 相互独立,且都服从 N(0,9)分布,若随机变量Y a( X 12X 22 X 32) :2(3) ,则常数 a =( ).三、解答题(本大题共 6 小题,每小题 10 分,共 60 分)。
学年第一学期重庆大学数理统计试题及参考答案
二 、( 26 分 ) 设 X1 , X 2 , … , X n 是 来 自 总 体 X ~ N(2, 2)( 0) 的 样 本 ,
P{X A} 0.95。(1)求参数 b (A 2)2 的矩估计量 bˆ1 ;(2)求参数 b 的最大似然估计 量 bˆ2 ,并评价 bˆ2 的无偏性、有效性、相合性;(3)求参数 b 的置信度是1 的置信区间。
f (x)
1
( x2)2
e 2 2
2
u ( x2)2 u02.95
e 0.95
2b 建立似然
2
n
( xi 2)2u02.95
函数
L(b)
(2
)
n 2
u0n.95b
n 2
e
i1
2b
ln L(b)
n 2
ln(2
)
n
ln
u0.95
n
ln
b
u2 0.95
~
2 (n 1)
;拒绝域
Ko
{u02.952S 2
u 2 2 1 0.95 2 63
或 u02.95S 2 2
u2 2 0.95 2) 63
三、(14 分)假设飞机上用的铝制加强杆有两种类型 A 与 B,它,它们的抗拉强度( kg / mm2 )
分别服从
N(A,
均值和样本方差:(1)求参数 c 满足 P{ X
S
c}
0.1;(2)求概率
P{
X12
X
2 3
X X
2 2 2 4
1} ;
概率论与数理统计考核试卷
1. ______
2. ______
3. ______
4. ______
5. ______
6. ______
7. ______
8. ______
9. ______
10. ______
11. ______
12. ______
13. ______
14. ______
15. ______
9. ABC
10. ABC
11. ABC
12. BD
13. AC
14. ABC
15. ABCD
16. ABC
17. AB
18. AD
19. ABCD
20. ABC
三、填空题
1. [0, 1]
2. ∫f(x)dx = 1
3.均方根
4. t检验
5.完全正相关
6.样本量
7. χ²分布
8.拒绝了正确的原假设
C.数据存在异常值
D. A、B和C
20.以下哪些是时间序列分析中常用的统计方法?()
A.移动平均
B.指数平滑
C.自相关函数
D. A、B和C
(以下为答题纸):
考生姓名:答题日期:得分:判卷人:
二、多选题(20×1.5分)
1. ______
2. ______
3. ______
4. ______
5. ______
16.以下哪个选项描述的是相关系数的性质?()
A.相关系数的取值范围为-1到1
B.相关系数表示两个随机变量之间的线性关系
C.相关系数可以为负值,表示负相关
D. A、B和C都是
17.在回归分析中,以下哪个选项表示解释变量与被解释变量之间的关系?()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆大学《概率论与数理统计Ⅰ》课程试卷
2015—2016学年第一学期
1、填空题(共42分)
1.设P(A)=0.7,P(B)=0.5,P(A-B)=____________,=____________。
2.某学院在2014年招生的三个专业中,学生所占的比例分别为30%,
45%,25%。
在2015年评选优异生的过程中,学院决定专业打通按综
合成绩排序进行评选,其评选结果是三个专业占总人数的比例分别
为0.04,0.045,0.031,则该学院评选的优异生的比例(概率)为:
________________。
3.设连续性随机变量的分布函数为则A=____________,X的密度函数
=_________________,。
4.设随机变量X的密度函数,则EX=___________,随机变量Y=2X-1
的密度函数。
5.设则,根据切比雪夫不等式估计概率。
6.设是样本容量为15且来自总体P(3)(泊松分布)的样本均值,则。
7.设是来自总体N(0,4)的样本,则常数C=________,统计量(注:确
定分布),。
二、(10分)设一枚深水炸弹击沉一艘潜艇的概率为,击伤的概率为,
未击中的概率为,并设击伤潜艇两次也可导致其下沉,求施放3枚深水
炸弹能击沉潜艇的概率。
三、(14分)设二维随机变量的联合密度函数为:
求:(1)求随机变量X的边缘分布密度函数;
2)协方差;
(3)随机变量的密度函数。
四、(10分)经计算,神州号飞船返回舱将降落到内蒙古草原一个半
径3公里的圆形区域。
地面搜索队员在圆心处待命,飞船一旦降落,将
按直线以最快速度到达进行救援。
假设飞船着陆点在这个圆形区域内
服从均匀分布,求搜索队到达着陆点所需路程的期望值。
五、(12分)设总体是来自总体X的样本,求
(1)参数的矩估计量和最大似然估计量;
(2)判断估计量是否是参数的无偏估计量。
六、(12分)据环保条例规定,在排放的工业废水中,某有害物质的含量不得超过0.5,假定该有害物质含量,现取5份水样,测得该有害物质含量分别为0.530,0.542,0.510,0.495,0.515。
求
(1)参数的置信度为95%的置信区间;
(2)能否据此抽样结果说明该有害物质含量超过规定标准。