高三一轮复习《平面向量公式和基本方法》
平面向量知识点总结 高三数学一轮复习
![平面向量知识点总结 高三数学一轮复习](https://img.taocdn.com/s3/m/eb538bd5690203d8ce2f0066f5335a8103d26641.png)
知识点总结4 平面向量一.平面向量向量的线性运算向量运算加法减法数乘几何表示首尾相接 指向终点起点重合 指向对顶点起点重合 指向被减向量(1)|λa |=|λ||a |,(2)当λ>0时,λa 与a 方向相同;当λ<0时,λa 与a 方向相反; 当λ=0时,λa =0一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量, 即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →,特别地,一个封闭图形,首尾连接而成的向量和为零向量. 2.平面向量基本定理e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是平面内两个不共线向量,那么对这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1⃗⃗⃗ +λ2e 2⃗⃗⃗ . 我们把不共线的向量e 1⃗⃗⃗ ,e 2⃗⃗⃗ 叫做表示这一平面的一组基底. 3.“爪”子定理形式1:在△ABC 中,D 是BC 上的点,如果|BD |=m ,|DC |=n ,则AD ⃗⃗⃗⃗⃗ =n m+nAB⃗⃗⃗⃗⃗ +m m+nAC⃗⃗⃗⃗⃗ , 特别地,若D 为线段BC 的中点,则AD ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ . 形式2:在△ABC 中,D 是BC 上的点,且BD →=λBC →,则AD →=λAC →+(1-λ)AB →,特别地,若D 为线段BC 的中点,则AD ⃗⃗⃗⃗⃗ =12AB⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ . 二.平面向量的坐标运算1.平面向量的正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.2.向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2.3.向量加法、减法、数乘运算及向量的模:设坐标表示 a =(x 1,y 1),b⃗ =(x 2,y 2),则 a +b ⃗ =(x 1+x 2,y 1+y 2), a −b ⃗ =(x 1−x 2,y 1−y 2), λa =(λx 1,λy 1), |a |=x 21+y 21.三.平面向量的数量积 1.向量a 与b⃗ 的夹角 已知两个非零向量a 和b ⃗ .作OA =a ,OB ⃗⃗⃗⃗⃗ =b ⃗ ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b ⃗ 的夹角. 当θ=0°时,a 与b ⃗ 同向; 当θ=180°时,a 与b⃗ 反向. 如果a 与b ⃗ 的夹角是90°,我们说a 与b ⃗ 垂直,记作a ⊥b ⃗ . 2.平面向量的数量积(1)若a ,b ⃗ 为非零向量,夹角为θ,则a ∙b ⃗ =|a |∙|b ⃗ |cosθ. (2)设a =(x 1,y 1),b ⃗ =(x 2,y 2),则a ∙b ⃗ =x 1x 2+y 1y 2. 3.平面向量数量积的运算律 (1)a ∙b ⃗ =b ⃗ ∙a (交换律);(2)λa ∙b ⃗ =λ(a ∙b ⃗ )=a ∙(λb ⃗ ) (结合律); (3)(a +b ⃗ )∙c =a ∙c +b ⃗ ∙c (分配律). 4.平面向量数量积运算的常用公式 (1) (a +b ⃗ )∙(a −b ⃗ )=(a )2−(b⃗ )2. (2)(a +b ⃗ )2=(a )2+(b ⃗ )2+2a ∙b ⃗ =|a |2+|b ⃗ |2+2a ∙b ⃗ . (3)(a −b ⃗ )2=(a )2+(b ⃗ )2−2a ∙b ⃗ =|a |2+|b ⃗ |2−2a ∙b ⃗ . (4)极化恒等式:a ∙b ⃗ =14[(a +b ⃗ )2−(a −b ⃗ )2]; (平行四边形模式)a ∙b⃗ =14[|AC |2−|DB |2] 5.利用数量积求长度(1)若a =(x,y),则|a |=√(a )2=√a ∙a =√x 2+y 2.(2)若A (x 1,y 1),B (x 2,y 2),则:|AB |=√(x 2−x 1)2+(y 2−y 1)2.6.利用数量积求夹角:设a ,b ⃗ 为非零向量,若a =(x 1,y 1),b ⃗ =(x 2,y 2),θ为a ,b ⃗ 的夹角, 则cosθ=a⃗ ∙b ⃗ |a ⃗ ||b ⃗ |=1212√x 1+y 1∙√x 2+y 27.向量的投影向量a 在向量b ⃗ 上的投影为:|a |cosθ=a⃗ ∙b ⃗|b ⃗ |. 向量a 在向量b ⃗ 上的的投影向量为:|a |cosθ∙b ⃗|a ⃗ |=a ⃗ ∙b ⃗|b⃗ |∙b ⃗|b ⃗ |. 四.平面向量的平行与垂直1.两个非零向量平行、垂直的充要条件 若a =(x 1,y 1),b⃗ =(x 2,y 2),则 (1)a ∥b ⃗ ⇔a =λb ⃗ (b ⃗ ≠0⃗ )⇔x 1x 2=y 1y 2⇔x 1y 2-x 2y 1=0.(2)a ⊥b ⃗ ⇔a ·b ⃗ =0⇔x 1x 2+y 1y 2=0. (3)与a 同方向的单位向量为:a⃗ |a ⃗ |=√x 2+y2y)=(√x 2+y2√x 2+y 2),与a 共线的单位向量为:±a ⃗ |a ⃗ |=√x 2+y 2y)=√x 2+y 2√x 2+y 2).2.三点共线的充要条件的三种形式(1)A ,P ,B 三点共线⇔AP =λAB (λ≠0)(2)A ,P ,B 三点共线⇔OP =(1-t )·OA +t OB (O 为平面内异于A ,P ,B 的任一点,t ∈R )(3)A ,P ,B 三点共线⇔OP =x OA +y OB (O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1). 五.奔驰定理与三角形“四心”1.奔驰定理:如图,已知P 为ABC 内一点,则有0PBCPACPABSPA SPB SPC ++=.2.奔驰定理的推论及四心问题推论O 是ABC 内的一点,且0x OA y OB z OC ⋅+⋅+⋅=,则::::BOCCOAAOBS SSx y z =已知点O 在ABC 内部,有以下四个推论: ①若O 为ABC 的重心,则0OA OB OC ++=;①若O 为ABC 的外心,则sin 2sin 2sin 20A OA B OB C OC ⋅+⋅+⋅=;或OA OB OC == ①若O 为ABC 的内心,则0a OA b OB c OC ⋅+⋅+⋅=;备注:若O 为ABC 的内心,则sin sin sin 0A OA B OB C OC ⋅+⋅+⋅=也对.①若O 为ABC 的垂心,则tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,或OA OB OB OC OC OA ⋅=⋅=⋅。
2025年高考数学一轮复习-6.1-平面向量的概念及其线性运算【课件】
![2025年高考数学一轮复习-6.1-平面向量的概念及其线性运算【课件】](https://img.taocdn.com/s3/m/ff3535610a4c2e3f5727a5e9856a561252d321d0.png)
)
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】选B.由|a+b|=|a|-|b|及向量的减法法则,可得向量a与b平行且反向,
由a=λb可得向量a,b平行,因此“a=λb”是“|a+b|=|a|-|b|”的必要不充分条件.
5
5
8
4.(必修第二册P15练习T2·
度属中、低档.
必备知识·逐点夯实
知识梳理·归纳
1.平面向量的有关概念
名称
向量
零向量
单位向量
定义
备注
既有大小又有方向的量;
向量由方向和长度确定,
向量的大小称为向量的长度(模)
不受位置影响
长度为___的向量
0
任意
记作0,其方向是______的
1个
长度等于_____单位长度的向量
与非零向量a共线的单位向量
1或3
3.向量∥,其中是单位向量且 =2 ,则 =________.
【解析】因为∥,其中是单位向量且 =2 ,则=-,
①若=2,则 = − = −2 = =1;
②若=-2,则 = + 2 = 3 =3 =3,因此, =1或3.
含义.
4.了解平面向量的线性运算性质及其几何意义.
【核心素养】
直观想象、数学运算、逻辑推理.
【命题说明】
考向
考法
预测
高考命题常以共线向量基本定理与平面向量基本定理为载体考查向
量的加、减、数乘运算以及它们的几何意义,常以选择或填空题的
形式考查.
预计2025年高考仍会考查线性运算,题型以选择题、填空题为主,难
高三数学平面向量一轮复习
![高三数学平面向量一轮复习](https://img.taocdn.com/s3/m/28353cdc581b6bd97e19eab0.png)
第七章 平面向量1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念. 2.掌握向量的加法和减法的运算法则及运算律.3.掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件.4.了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.6.掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式.向量由于具有几何形式与代数形式的“双重身份”,使它成为中学数学知识的一个交汇点,成为多项内容的媒介. 主要考查:1.平面向量的性质和运算法则,共线定理、基本定理、平行四边形法则及三角形法则. 2.向量的坐标运算及应用.3.向量和其它数学知识的结合.如和三角函数、数列、曲线方程等及向量在物理中的应用. 4.正弦定理、余弦定理及利用三角公式进行恒等变形的能力.以化简、求值或判断三角形的形状为主.解三角形常常作为解题工具用于立体几何中的计算或证明.第1课时 向量的概念与几何运算1.向量的有关概念⑴ 既有 又有 的量叫向量.的向量叫零向量. 的向量,叫单位向量.⑵ 叫平行向量,也叫共线向量.规定零向量与任一向量 . ⑶ 且 的向量叫相等向量. 2.向量的加法与减法⑴ 求两个向量的和的运算,叫向量的加法.向量加法按 法则或 法则进行.加法满足 律和 律.⑵ 求两个向量差的运算,叫向量的减法.作法是将两向量的 重合,连结两向量的 ,方向指向 . 3.实数与向量的积⑴ 实数λ与向量a 的积是一个向量,记作λa .它的长度与方向规定如下: ① | λa |= .② 当λ>0时,λa 的方向与a 的方向 ; 当λ<0时,λa 的方向与a 的方向 ; 当λ=0时,λa . ⑵ λ(μa )= . (λ+μ)a = .λ(a +b )= .⑶ 共线定理:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ使得 . 4.⑴ 平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数1λ、2λ,使得 . ⑵ 设1e 、2e 是一组基底,a =2111e y e x +,b =2212e y e x +,则a 与b 共线的充要条件是 .例1.已知△ABC 中,D 为BC 的中点,E 为AD 的中点.设aAB =,bAC=,求BE .解:BE =AE -AB =41(AB +AC )-AB =-43a+41b变式训练1.如图所示,D 是△ABC 边AB 上的中点,则向量CD 等于( ) A .-BC +BA21 B .-BC -BA21C .BC -BA21 D .BC +BA21解:A例2. 已知向量2132e e a -=,2132e e b +=,2192e e c -=,其中1e 、2e 不共线,求实数λ、μ,使ba c μλ+=.解:c =λa +μb⇒21e -92e =(2λ+2μ)1e +(-3λ+3μ)2e ⇒2λ+2μ=2,且-3λ+3μ=-9⇒λ=2,且μ=-1变式训练2:已知平行四边形ABCD 的对角线相交于O 点,点P 为平面上任意一点,求证:POPD PC PB PA 4=+++证明 PA +PC =2PO ,PB +PD =2PO ⇒PA +PB +PC +PD =4PO例3. 已知ABCD 是一个梯形,AB 、CD 是梯形的两底边,且AB =2CD ,M 、N 分别是DC和AB 的中点,若aAB =,bAD=,试用a、b表示BC 和MN .解:连NC ,则b AD NC==ba CN AB CN MC MN -=+=+=4141;ab NB NC BC21-=-=变式训练3:如图所示,OADB 是以向量OA =a ,OB =b 为邻边的平行四边形,又BM =31BC,CN=31CD ,试用a 、b 表示OM ,ON ,MN .解:OM =61a+65b,ON =32a+32b,MN=21a-61b例4. 设a ,b 是两个不共线向量,若a 与b 起点相同,t ∈R ,t 为何值时,a ,t b ,31(a +b )三向量的终点在一条直线上? 解:设])(31[b a a b t a +-=-λ(λ∈R)化简整理得:0)31()132(=-+-b t a λλ∵不共线与b a ,∴⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=-=-2123030132t t λλλ故21=t时,)(31,,b a b t a +三向量的向量的终点在一直线上.变式训练4:已知,,,,OA a OB b OC c OD d OE e =====,设t R ∈,如果3,2,a c b d ==()e t a b =+,那么t 为何值时,,,C D E 三点在一条直线上?解:由题设知,23,(3)C D d c b a C E e c t a tb =-=-=-=-+,,,C D E 三点在一条 直线上的充要条件是存在实数k ,使得C E k C D =,即(3)32t a tb k a k b -+=-+, 整理得(33)(2)t k a k t b -+=-. ①若,a b 共线,则t 可为任意实数;②若,ab 不共线,则有33020t k t k -+=⎧⎨-=⎩,解之得,65t =.综上,,ab 共线时,则t 可为任意实数;,ab 不共线时,65t =.的证明.2.注意O 与O 的区别.零向量与任一向量平行.3.注意平行向量与平行线段的区别.用向量方法证明AB ∥CD ,需证AB ∥CD ,且AB 与CD 不共线.要证A 、B 、C 三点共线,则证AB ∥AC 即可.4.向量加法的三角形法则可以推广为多个向量求和的多边形法则,特点:首尾相接首尾连;向量减法的三角形法则特点:首首相接连终点.第2课时 平面向量的坐标运算1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i、j作为基底,对于一个向量a ,有且只有一对实数x 、y ,使得a =xi+yj.我们把(x 、y)叫做向量a 的直角坐标,记作 .并且|a |= .2.向量的坐标表示与起点为 的向量是一一对应的关系. 3.平面向量的坐标运算:若a =(x 1、y 1),b =(x 2、y 2),λ∈R ,则: a +b = a -b = λa =已知A(x 1、y 1),B(x 2、y 2),则AB = .4.两个向量a =(x 1、y 1)和b =(x 2、y 2)共线的充要条件是 . 例1.已知点A (2,3),B (-1,5),且AC =31AB,求点C 的坐标.解AC =31AB=(-1,32),OC =ACOA+=(1,311),即C(1, 311)变式训练1.若(2,8)O A =,(7,2)O B =-,则31A B = .解: (3,2)--提示:(9,6)AB O B O A =-=-- 例2. 已知向量a =(cos 2α,sin2α),b =(cos2β,sin 2β),|a -b |=552,求cos(α-β)的值.解:|a -b |=55222552=--⇒)cos(βα2cos 22552βα--⇒=55222552=--⇒)cos(βα⇒cos2βα-=53⇒cos(α-β)=257-变式训练2.已知a -2b =(-3,1),2a +b =(-1,2),求a +b .解a=(-1,1),b =(1,0),∴a +b =(0,1)例3. 已知向量a =(1, 2),b =(x, 1),1e =a +2b ,2e =2a -b ,且1e ∥2e ,求x . 解:1e =(1+2x ,4),2e =(2-x ,3),1e ∥2e ⇒3(1+2x)=4(2-x)⇒x =21变式训练3.设a =(ksinθ, 1),b =(2-cosθ, 1) (0 <θ<π),a ∥b ,求证:k≥3.证明: k =θθsin cos 2- ∴k -3=θπθsin )3cos(22--≥0 ∴k≥3例4. 在平行四边形ABCD 中,A(1,1),AB =(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .(1) 若AD =(3,5),求点C 的坐标; (2) 当|AB |=|AD |时,求点P 的轨迹. 解:(1)设点C 的坐标为(x 0,y 0),)5,1()5,9()0,6()5,3(00--==+=+=y x DB AD AC得x 0=10 y 0=6 即点C(10,6) (2) ∵ADAB=∴点D 的轨迹为(x -1)2+(y -1)2=36 (y ≠1)∵M 为AB 的中点∴P 分BD 的比为21设P(x ,y),由B(7,1) 则D(3x -14,3y -2) ∴点P 的轨迹方程为)1(4)1()5(22≠=-+-y y x变式训练4.在直角坐标系x 、y 中,已知点A(0,1)和点B(-3,4),若点C 在∠AOB 的平分线上,且|OC |=2,求OC 的坐标.解 已知A (0,1),B (-3,4) 设C (0,5), D (-3,9)则四边形OBDC 为菱形 ∴∠AOB 的角平分线是菱形OBDC 的对角线OD ∵2103==OCOD∴)5103,510(1032-==OD OC1.认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.2.由于向量有几何法和坐标法两种表示方法,所以我们应根据题目的特点去选择向量的表示方法,由于坐标运算方便,可操作性强,因此应优先选用向量的坐标运算.第3课时 平面向量的数量积1.两个向量的夹角:已知两个非零向量a 和b ,过O 点作OA =a ,OB =b ,则∠AOB =θ(0°≤θ≤180°) 叫做向量a 与b 的 .当θ=0°时,a 与b ;当θ=180°时,a 与b;如果a 与b 的夹角是90°,我们说a 与b 垂直,记作 .2.两个向量的数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,则数量 叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b = .规定零向量与任一向量的数量积为0.若a =(x 1, y 1),b =(x 2, y 2),则a ·b = . 3.向量的数量积的几何意义:|b |cosθ叫做向量b 在a 方向上的投影 (θ是向量a 与b 的夹角).a·b 的几何意义是,数量a ·b 等于 . 4.向量数量积的性质:设a 、b 都是非零向量,e 是单位向量,θ是a 与b 的夹角. ⑴ e ·a =a ·e = ⑵a⊥b⇔⑶ 当a 与b 同向时,a ·b = ;当a 与b 反向时,a ·b = . ⑷ cosθ= .⑸ |a ·b |≤ 5.向量数量积的运算律: ⑴a·b = ; ⑵ (λa )·b = =a ·(λb ) ⑶ (a +b )·c =例1. 已知|a |=4,|b |=5,且a 与b 的夹角为60°,求:(2a +3b )·(3a -2b ). 解:(2a +3b )(3a -2b )=-4变式训练1.已知|a |=3,|b |=4,|a +b |=5,求|2a -3b |的值. 解:56例2. 已知向量a =(sin θ,1),b =(1,cos θ),-22πθπ<<.(1) 若a ⊥b ,求θ;(2) 求|a +b |的最大值. 解:(1)若b a ⊥,则0cos sin =+θθ即1tan -=θ而)2,2(ππθ-∈,所以4πθ-=(2))4sin(223)cos (sin 23πθθθ++=++=+b a当4πθ=时,ba +的最大值为12+变式训练2:已知(cos ,sin )a αα=,(cos ,sin )b ββ=,其中0αβπ<<<.(1)求证:a b + 与a b -互相垂直;(2)若ka →+→b 与a k →-→b 的长度相等,求βα-的值(k 为非零的常数). 证明:222222()()(cos sin )(cos sin )0a b a b a b ααββ+⋅-=-=+-+=a b ∴+ 与a b -互相垂直(2)k a →+(cos cos ,sin sin )b k k αβαβ→=++,a k →-(cos cos ,sin sin )b k k αβαβ→=--,21k a b k →+=+21a kb k →-=+,=cos()0βα-=,2πβα-=例3. 已知O 是△ABC 所在平面内一点,且满足(OB -OC )·(OB +OC -2OA )=0,判断△ABC 是哪类三角形.解:设BC 的中点为D ,则(OCOB -)(OAOC OB2-+)=0⇒2BC ·AD =0⇒BC ⊥AD ⇒△ABC 是等腰三角形变式训练3:若(1,2),(2,3),(2,5)A B C -,则△ABC 的形状是 .解: 直角三角形.提示:(1,1),(3,3),0,AB AC AB AC AB AC ==-⋅=⊥ 例4. 已知向量m =(cosθ, sinθ)和n =(2-sinθ, cosθ) θ∈(π, 2π)且|n m +|=528,求cos(82πθ+)的值.解:n m +=(cos θ-sin θ+2, cos θ+sin θ)由已知(cos θ-sin θ+2)2+(cos θ+sin θ)2=25128化简:cos 257)4(=+πθ又cos225162)4cos(1)82(=++=+πθπθ∵θ∈(π, 2π) ∴cos 25162)4cos(1)82(=++=+παπθ<0 ∴cos 25162)4cos(1)82(=++=+παπθ=-54变式训练4.平面向量13(3,1),(,)22a b =-=,若存在不同时为0的实数k 和t ,使2(3)xa tb =+-,,y ka tb =-+且x y ⊥,试求函数关系式()k f t =.解:由13(3,1),(,22a b =-=得0,||2,||1a b a b ⋅===22222[(3)]()0,(3)(3)0a t b k a tb k a t a b k t a b t t b +-⋅-+=-+⋅--⋅+-=33311(3),()(3)44k t t f t t t =-=-角度等问题.因此充分挖掘题目所包含的几何意义,往往能得出巧妙的解法.2.注意a ·b 与ab 的区别.a ·b =0≠>a =0,或b =0. 3.应根据定义找两个向量的夹角。
高考平面向量知识点总结
![高考平面向量知识点总结](https://img.taocdn.com/s3/m/e622d0831b37f111f18583d049649b6648d709d8.png)
高考平面向量知识点总结高考平面向量的知识点总结如下:1. 平面向量的定义:平面上的向量是有大小和方向的有向线段,可以用有向线段的终点与起点之间的位移来表示。
2. 平面向量的表示:平面向量可以用坐标表示,形如AB→=(x2-x1, y2-y1)。
3. 平面向量的基本运算:a) 向量的加法:将两个向量的相应分量相加,得到一个新的向量。
b) 向量的减法:将两个向量的相应分量相减,得到一个新的向量。
c) 向量的数乘:将向量的每一个分量都乘以一个标量,得到一个新的向量。
d) 向量的数量积:将两个向量的相应分量相乘,再将这些乘积相加,得到一个标量。
e) 向量的模长:向量的模长等于对应坐标差的平方和的平方根。
4. 平面向量的运算规律:a) 加法的交换律:A+B=B+Ab) 加法的结合律:(A+B)+C = A+(B+C)c) 数乘的结合律:k(A+B) = kA+kBd) 数乘的分配律:(k+l)A = kA + lA5. 平面向量共线与平行:若向量a与向量b线性相关,则称向量a 与向量b共线;若向量a与向量b既共线又同向或反向,则称向量a与向量b平行。
6. 平面向量的数量积与夹角关系:a) 两个向量共线时,它们的数量积等于它们的模长的乘积。
b) 两个向量平行时,它们的数量积等于它们的模长的乘积乘以它们的夹角余弦值。
7. 平面向量的坐标表示与几何应用:a) 两个向量的坐标之间的关系:可以根据向量与坐标之间的关系,求解所有给出的向量的坐标。
b) 利用向量的坐标表示进行运算:可以通过向量的坐标表示来进行向量的加法、减法、数量积等运算。
c) 利用向量的几何应用:可以用向量的几何性质解决平面几何问题,如求线段的垂直平分线等。
这些是高考平面向量的基本知识点,掌握了这些知识点可以帮助理解和解决与平面向量相关的问题。
高中数学平面向量知识点总结
![高中数学平面向量知识点总结](https://img.taocdn.com/s3/m/6d42ef86b8f3f90f76c66137ee06eff9aef849c4.png)
高中数学平面向量知识点总结一、平面向量的基本概念1. 定义:平面向量是有大小和方向的量,可以用有序实数对表示。
2. 表示法:通常用小写字母加箭头表示,如 $\vec{a}$。
3. 相等:两个向量大小相等且方向相同时,这两个向量相等。
4. 零向量:大小为零的向量,没有特定方向。
二、平面向量的运算1. 加法:- 规则:平行四边形法则或三角形法则。
- 交换律:$\vec{a} + \vec{b} = \vec{b} + \vec{a}$。
- 结合律:$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$。
2. 减法:- 规则:与加法类似,但方向相反。
- 逆向量:$\vec{a} - \vec{a} = \vec{0}$。
3. 数乘:- 定义:向量与实数相乘。
- 规则:$k\vec{a} = \vec{a}$ 的长度变为 $|k|$ 倍,方向与$k$ 的符号一致。
- 分配律:$(k + l)\vec{a} = k\vec{a} + l\vec{a}$。
- 结合律:$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$。
三、平面向量的坐标表示1. 坐标表示:$\vec{a} = (x, y)$,其中 $x$ 和 $y$ 是向量在坐标轴上的分量。
2. 几何意义:$x$ 分量表示向量在 $x$ 轴上的长度,$y$ 分量表示向量在 $y$ 轴上的长度。
3. 坐标运算:- 加法:$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$。
- 减法:$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$。
- 数乘:$k(x, y) = (kx, ky)$。
四、平面向量的模与单位向量1. 模(长度):- 定义:向量从原点到其终点的距离。
平面向量知识点梳理高三
![平面向量知识点梳理高三](https://img.taocdn.com/s3/m/78a4806d3d1ec5da50e2524de518964bcf84d2bb.png)
平面向量知识点梳理高三平面向量是高中数学中的一个重要概念,它在几何、代数和物理等领域都有广泛的应用。
作为高三学生,我们需要对平面向量的相关知识点进行归纳和总结,以便更好地理解和掌握这一内容。
本文将对高三平面向量的知识点进行梳理,并以合适的格式进行阐述。
一、平面向量的定义和表示方法平面向量可以用有序数对表示,其中第一个数表示向量在x轴上的分量,第二个数表示向量在y轴上的分量。
假设有两个点A(x1, y1)和B(x2, y2),则向量AB的坐标表示为(x2-x1, y2-y1)。
当然,平面向量也可以用向量的模长和方向角来表示,其中模长表示向量的长度,方向角表示向量与x轴正方向之间的夹角。
二、平面向量的运算1. 向量的加法向量的加法遵循平行四边形法则,即将两个向量首尾相接形成一个平行四边形,那么这两个向量的和就是平行四边形的对角线向量。
2. 向量的数乘向量的数乘指的是将向量的每个分量都乘以一个实数,得到一个新的向量。
数乘可以改变向量的长度和方向,当实数为0时,结果向量为零向量。
3. 向量的减法向量的减法可以理解为将减数取相反数后与被减数相加,即A-B=A+(-B)。
4. 向量的数量积数量积是两个向量的乘积,结果是一个实数。
数量积的计算公式为:A·B = |A||B|cosθ,其中A、B表示向量的模长,θ表示两个向量的夹角。
5. 向量的向量积向量积是两个向量的叉乘,结果是一个向量。
向量积的计算公式为:A×B = |A||B|sinθn,其中A、B表示向量的模长,θ表示两个向量的夹角,n表示法向量。
三、平面向量的基本性质和定理1. 平行向量的性质如果两个向量的方向相同或相反,那么它们是平行向量;如果两个向量的模长成比例,那么它们是共线向量。
2. 平面向量的共线定理如果三个向量共线,那么这三个向量的行列式为0。
3. 平面向量的垂直定理如果两个非零向量的数量积为0,那么这两个向量是垂直的。
(完整版)高中平面向量公式及知识点默写
![(完整版)高中平面向量公式及知识点默写](https://img.taocdn.com/s3/m/a9af18637c1cfad6195fa7d8.png)
平面向量知识点及公式默写一,基本概念1,向量的概念: 。
2,向量的表示:。
3,向量的大小:(或称模)4,零向量:,记为 ,零向量方向是 。
5,单位向量:长度为 的向量称为单位向量,一般用e 、i 1=1=6,平行向量(也称共线向量):方向 向量称为平行向量,规定零向量与任意向量 。
若a 平行于b ,则表示为a ∥b 。
7,相等向量: 称为相等向量。
若a 与b 相等,记为a =b8,相反向量: 称为相反向量。
若a 与b 是相反向量,则表示为a =b -;向量BA AB -=二,几何运算1,向量加法:(1)平行四边形法则(起点相同),可理解为力的合成,如图所示:(2)三角形法则(首尾相接),可理解为:位移的合成,如图所示, =+BC AB(3)两个向量和仍是一个向量;(4)向量加法满足交换律、结合律:a b b a +=+,)()(c b a c b a ++=++ (5)加法几种情况(加法不等式):= << = 2,减法:(1)两向量起点相同,方向是从减数指向被减数,如图=-AC AB(2)两向量差依旧是一个向量;(3)减法本质是加法的逆运算:CB CA AB CB AC AB =+⇔=- 3,加法、减法联系:(1)加法和减法分别是平行四边行两条对角线,AC AD AB =+,DB AD AB =- (2=,则四边形ABCD 为矩形 4,实数与向量的积:(1)实数λ与向量a 的积依然是个向量,记作a λ,它的长度与方向判断如下: BAaCB A•aba babba +当0>λ时,a λ与a 方向 ;当0<λ时,a λ与a 方向 ;当0=λ时,=a λ当0=a 时,0=a λ;=(2)实数与向量相乘满足:=)(a μλ =+a )(μλ=+)(b a λ5,向量共线:(1)向量b 与非零向量a 共线的条件是:有且只有一个实数λ(2)如图,平面内C BA ,,使得0=++OC n OB m OA q ,且0=++q n m ,反之也成立。
高三一轮复习平面向量知识点整理
![高三一轮复习平面向量知识点整理](https://img.taocdn.com/s3/m/8b950455960590c69fc376a4.png)
平面向量知识点整理1、概念〔1〕向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. 〔2〕单位向量:长度等于1个单位的向量. 〔3〕平行向量〔共线向量〕:方向一样或相反的非零向量.零向量与任一向量平行.提醒:①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!〔因为有零向量)④三点A 、B 、C 共线 AC AB 、共线〔4〕相等向量:长度相等且方向一样的向量.〔5〕相反向量:长度相等方向相反的向量。
a 的相反向量是-a〔6〕向量表示:几何表示法AB ;字母a 表示;坐标表示:a =xi+yj =〔x,y〕. 〔7〕向量的模:设OA a =,那么有向线段OA 的长度叫做向量a 的长度或模,记作:||a .〔 222222||,||a x y a a x y =+==+。
〕〔8〕零向量:长度为0的向量。
a =O ⇔|a |=O .【例题】1.以下命题:〔1〕假设a b =,那么a b =。
〔2〕两个向量相等的充要条件是它们的起点一样,终点一样。
〔3〕假设AB DC =,那么ABCD 是平行四边形。
〔4〕假设ABCD 是平行四边形,那么AB DC =。
〔5〕假设,a b b c ==,那么a c =。
〔6〕假设//,//a b b c ,那么//a c 。
其中正确的选项是_______〔答:〔4〕〔5〕〕,a b 均为单位向量,它们的夹角为60,那么|3|a b +=_____〔答:13〕;2、向量加法运算:⑴三角形法那么的特点:首尾相连. ⑵平行四边形法那么的特点:共起点.baCBAa b C C -=A -AB =B⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++; ③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,那么()1212,a b x x y y +=++. 3、向量减法运算:⑴三角形法那么的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,那么()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,那么()1212,x x y y AB =--. 【例题】〔1〕①AB BC CD ++=___;②AB AD DC --=____;③()()AB CD AC BD ---=_____ 〔答:①AD ;②CB ;③0〕;〔2〕假设正方形ABCD 的边长为1,,,AB a BC b AC c ===,那么||a b c ++=_____〔答:〕;〔3〕作用在点(1,1)A 的三个力123(3,4),(2,5),(3,1)F F F ==-=,那么合力123F F F F =++的终点坐标是〔答:〔9,1〕〕4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向一样;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,那么()(),,a x y x y λλλλ==.【例题】〔1〕假设M 〔-3,-2〕,N 〔6,-1〕,且1MP MN 3--→--→=-,那么点P 的坐标为_______〔答:7(6,)3--〕;5、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,〔0b ≠〕22()(||||)a b a b ⇔⋅=。
2023年新高考数学一轮复习6-2 平面向量的基本定理及坐标表示(知识点讲解)解析版
![2023年新高考数学一轮复习6-2 平面向量的基本定理及坐标表示(知识点讲解)解析版](https://img.taocdn.com/s3/m/6d38b836bc64783e0912a21614791711cc7979e8.png)
专题6.2 平面向量的基本定理及坐标表示(知识点讲解)【知识框架】【核心素养】1.与向量线性运算相结合,考查平面向量基本定理、数量积、向量的夹角、模的计算,凸显数学运算、直观想象的核心素养.2.与向量的坐标表示相结合,考查向量的数量积、向量的夹角、模的计算,凸显数学运算的核心素养. 3.以平面图形为载体,考查向量数量积的应用,凸显数学运算、数学建模、直观想象的核心素养.【知识点展示】(一)平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. (二)平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a | (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.(三)平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中a ≠0,b ≠0,a ,b 共线⇔x 1y 2-x 2y 1=0. (四)平面向量数量积的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉. 结论 几何表示 坐标表示模 |a |=a ·a |a |=x 21+y 21数量积 a ·b =|a ||b |cos θ a ·b =x 1x 2+y 1y 2 夹角 cos θ=a ·b|a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22a ⊥ba ·b =0 x 1x 2+y 1y 2=0 |a ·b |与|a ||b |的关系|a ·b |≤|a ||b ||x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22设非零向量a =(x 1,y 1),b =(x 2,y 2).数量积 两个向量的数量积等于__它们对应坐标的乘积的和__,即a·b =__x 1x 2+y 1y 2__两个向量垂直a ⊥b ⇔__x 1x 2+y 1y 2=0__12211212(六)常用结论1.若a 与b 不共线,且λa +μb =0,则λ=μ=0.2.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22.3.已知△ABC 的重心为G ,若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则G ⎝⎛⎭⎫x 1+x 2+x 33,y 1+y 2+y 33【常考题型剖析】题型一:平面向量基本定理的应用例1.(2015·四川·高考真题(理))设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3,2BM MC DN NC ==,则AM NM ⋅=( )A .20B .15C .9D .6【答案】C 【解析】 【分析】根据图形得出3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+,AM NM ⋅ 2()AM AM AN AM AM AN =⋅-=-⋅,结合向量的数量积求解即可.【详解】因为四边形ABCD 为平行四边形,点M 、N 满足3,2BM MC DN NC ==,∴根据图形可得:3344AM AB BC AB AD =+=+, 2233AN AD DC AD AB =+=+,NM AM AN ∴=-,2()AM NM AM AM AN AM AM AN ⋅=⋅-=-⋅,22239216AM AB AB AD AD =+⋅+, 22233342AM AN AB AD AD AB ⋅=++⋅, 6,4AB AD ==, 22131239316AM NM AB AD ∴⋅=-=-=, 故选C.例2.(2017·天津·高考真题(文))在ABC 中,60A ∠=︒,3AB =,2AC =. 若2BD DC =,()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为______________.【答案】311【解析】 【详解】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+ ,则 122123()()3493433333311AD AE AB AC AC AB λλλλ⋅=+-=⨯+⨯-⨯-⨯=-⇒=.【总结提升】平面向量基本定理的实质及解题思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决. 题型二:平面向量的坐标运算例3.(2022·全国·高考真题(文))已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】先求得a b -,然后求得a b -. 【详解】因为()()()2,12,44,3a b -=--=-,所以245-=+=a b .故选:D例4.(2022·全国·高考真题)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( ) A .6- B .5- C .5 D .6【答案】C 【解析】 【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【详解】解:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =, 故选:C例5.(2018·全国·专题练习)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为( )A .3B .CD .2【答案】A【解析】 【详解】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径5r =C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+, 设12x z y =-+,即102x y z -+-=,点(),Px y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.例6.(2018·江苏·高考真题)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________. 【答案】3 【解析】 【详解】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭,由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-,因为0a >,所以 3.a = 【总结提升】平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量的加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.要注意点的坐标和向量的坐标之间的关系,一个向量的坐标等于向量终点的坐标减去始点的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 题型三:平面向量共线的坐标表示例7.(2021·全国·高考真题(文))已知向量()()2,5,,4a b λ==,若//a b ,则λ=_________.【答案】85【解析】 【分析】利用向量平行的充分必要条件得到关于λ的方程,解方程即可求得实数λ的值. 【详解】由题意结合向量平行的充分必要条件可得:2450λ⨯-⨯=, 解方程可得:85λ=.故答案为:85.例8.(2021·江苏·沛县教师发展中心高三阶段练习)已知()1,3A ,()2,2B -,()4,1C . (1)若AB CD =,求D 点的坐标;(2)设向量a AB =,b BC =,若ka b -与3a b +平行,求实数k 的值. 【答案】(1)4(5,)D - (2)13k =-【解析】 【分析】(1)根据题意设(,)D x y ,写出,C AB D 的坐标,根据向量相等的坐标关系求解;(2)直接根据向量共线的坐标公式求解即可. (1)设(,)D x y ,又因为()()()1,3,2,2,4,1A B C -, 所以=(1,5),(4,1)AB CD x y -=--, 因为=AB CD ,所以4115x y -=⎧⎨-=-⎩,得54x y =⎧⎨=-⎩,所以4(5,)D -. (2)由题意得,(1,5)a =-,(2,3)b =, 所以=(2,53)ka b k k ----,3(7,4)a b +=, 因为ka b -与3a b +平行,所以4(2)7(53)0k k ----=,解得13k =-.所以实数k 的值为13-.【总结提升】平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(2)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若1122()()a x y b x y =,,=,,则//a b 的充要条件是1221x y x y =”解题比较方便. 题型四:平面向量数量积的运算例9.【多选题】(2021·全国·高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP = B .12AP AP = C .312OA OP OP OP ⋅=⋅ D .123OA OP OP OP ⋅=⋅ 【答案】AC 【解析】 【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误. 【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP ==,2||(cos 1OP==,故12||||OP OP =,正确;B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以1||(cos 2|sin|2AP α===,同理2||(cos 2|sin|2AP β=,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC例10.(2019·天津·高考真题(文)) 在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A∠=︒ ,点E 在线段CB 的延长线上,且AEBE =,则BD AE ⋅=__________.【答案】1-. 【解析】 【分析】建立坐标系利用向量的坐标运算分别写出向量而求解. 【详解】建立如图所示的直角坐标系,则B ,5)2D . 因为AD∥BC ,30BAD ∠=︒,所以150CBA ∠=︒,因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BEy x=-,直线AE的斜率为y =.由y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-, 所以1)E -. 所以35(,)(3,1)122BD AE =-=-.例11.(2020·北京·高考真题)已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD =_________;PB PD ⋅=_________.【答案】 1-【解析】 【分析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立平面直角坐标系,求得点P 的坐标,利用平面向量数量积的坐标运算可求得PD 以及PB PD ⋅的值. 【详解】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+=, 则点()2,1P ,()2,1PD ∴=-,()0,1PB =-,因此,(PD =-()021(1)1PB PD ⋅=⨯-+⨯-=-.1-. 【总结提升】1.计算向量数量积的三种常用方法(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解. 2.总结提升:公式a·b =|a||b|cos<a ,b >与a·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.若题目中给出的是两向量的模与夹角,则可直接利用公式a·b =|a||b|cos<a ,b >求解;若已知两向量的坐标,则可选用公式a·b =x 1x 2+y 1y 2求解. 题型五:平面向量的模、夹角例12.(2022·四川省内江市第六中学模拟预测(理))已知向量()1,2a =,5a b ⋅=,8a b +=,则b =( ) A .6 B .5 C .8 D .7【答案】D 【解析】 【分析】先求出||a ,再将8a b +=两边平方,结合数量积的运算,即可求得答案. 【详解】由()1,2a =得:2||12a =+,由8a b +=得2222251064a b a a b b b +=+⋅+=++=, 即得249,||7b b ==,故选:D例13.(2018·浙江高考真题)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e·b+3=0,则|a −b|的最小值是( ) A .√3−1 B .√3+1 C .2 D .2−√3 【答案】A 【解析】设a =(x,y),e =(1,0),b =(m,n),则由⟨a,e ⟩=π3得a ⋅e =|a|⋅|e|cos π3,x =12√x 2+y 2,∴y =±√3x , 由b 2−4e ⋅b +3=0得m 2+n 2−4m +3=0,(m −2)2+n 2=1, 因此|a −b|的最小值为圆心(2,0)到直线y =±√3x 的距离2√32=√3减去半径1,为√3−1.选A.【思路点拨】先确定向量a,b 所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.例14.(2021·湖南·高考真题)已知向量(1,2)a =-,(3,1)b =-,则|2|a b +=___________【分析】利用向量模的坐标表示,即可求解.【详解】()21,3a b +=,所以2213a b +=+=例15.(2019·全国·高考真题(文))已知向量(2,2),(8,6)a b ==-,则cos ,a b =___________.【答案】【解析】【分析】根据向量夹角公式可求出结果.【详解】22826cos ,102a ba b a b ⨯-+⨯<>===-+.例16.(2017·山东·高考真题(理))已知1e ,2e 是互相12e - 与1e +λ2e 的夹角为60°,则实数λ的值是_ _.【解析】【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【详解】解:由题意,设1e =(1,0),2e =(0,1),12e -=1), 1e +λ2e =(1,λ);又夹角为60°,12e -)•(1e +λ2e )=λ=2cos60°,λ=解得λ=【总结提升】 1.求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系;(2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 提醒:〈a ,b 〉∈[0,π].2.平面向量模问题的类型及求解方法(1)求向量模的常用方法①若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.②若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.(2)求向量模的最值(范围)的方法①代数法:把所求的模表示成某个变量的函数,再用求最值的方法求解.②几何法(数形结合法):弄清所求的模表示的几何意义,结合动点表示的图形求解.题型六:两个向量垂直问题例17.(2016·全国·高考真题(理))已知向量()()1,3,2a m b ==-,,且()a b b +⊥,则m =( ) A .−8B .−6C .6D .8【答案】D【解析】【分析】由已知向量的坐标求出a b +的坐标,再由向量垂直的坐标运算得答案.【详解】∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-,又()a b b +⊥,∴3×4+(﹣2)×(m ﹣2)=0,解得m =8.故选D .例18.(2022·全国·高考真题(文))已知向量(,3),(1,1)a m b m ==+.若a b ⊥,则m =______________.【答案】34-##0.75- 【解析】【分析】直接由向量垂直的坐标表示求解即可.【详解】由题意知:3(1)0a b m m ⋅=++=,解得34m =-. 故答案为:34-. 例19.(2022·全国·高三专题练习)已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足()()20a c b c -⋅-=,则c 的最大值是_________.【解析】【分析】由题意可设,a b 的坐标,设(,)c x y =,利用()()20a c b c -⋅-=求得(,)c x y =的终点的轨迹方程,即可求得答案.【详解】因为,a b 是平面内两个互相垂直的单位向量,故不妨设(1,0),(0,1)a b ==,设(,)c x y =,由()()20a c b c -⋅-=得:(1,)(2,12)0x y x y --⋅--=,即2(1)(12)0x x y y ----=,即22115()()2416x y -+-=,则c 的终点在以11(,)24故c 的最大值为=例20.(2020·全国高考真题(理))已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【解析】 由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.. 【规律方法】1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值(涉及向量垂直问题为高频考点)根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.3.已知非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 与a ⊥b 的坐标表示如下:a ∥b ⇔x 1y 2=x 2y 1,即x 1y 2-x 2y 1=0;a ⊥b ⇔x 1x 2=-y 1y 2,即x 1x 2+y 1y 2=0.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.。
平面向量基本公式大全
![平面向量基本公式大全](https://img.taocdn.com/s3/m/c14560e685254b35eefdc8d376eeaeaad1f316d3.png)
平面向量基本公式大全平面向量是数学中的一个重要概念,用于描述两个方向和大小都有所限定的量。
平面向量有很多重要的基本公式,这些公式在数学和物理学中都有广泛的应用。
下面就来介绍一下平面向量的基本公式。
1、平面向量的模长公式平面向量的模长(也叫长度)是平面向量的重要特性之一,表示向量在平面上的长度。
平面向量的模长公式为:AB,=√(某2-某1)2+(y2-y1)2其中,A(某1,y1)和B(某2,y2)表示向量AB的起点和终点坐标。
2、平面向量的加法和减法公式平面向量的加法和减法公式是指两个向量相加或相减的规则。
其公式为:A+B=(A某+B某,Ay+By)A-B=(A某-B某,Ay-By)其中,A、B分别表示两个向量,A某、Ay、B某、By分别表示两个向量在某轴和y轴上的分量。
3、平面向量的数量积公式数量积是向量中另一个重要的特性,用于描述两个向量之间的夹角。
平面向量的数量积公式为:A·B=,A,B,cosθ其中,A、B分别表示两个向量,A,和,B,表示它们的模长,θ表示两个向量之间的夹角。
4、平面向量的叉积公式叉积也是向量中的一种运算,用于计算两个向量所在平面的法向量,常用于计算力矩和面积等。
平面向量的叉积公式为:A某B=,A,B,sinθ其中,A、B分别表示两个向量,A,和,B,表示它们的模长,θ表示两个向量之间的夹角。
5、平面向量的坐标表示对于向量AB,在平面直角坐标系中,可以用一个有序数组(某,y)表示其坐标。
例如A(1,2)和B(3,4),则向量AB可以表示为(2,2)。
6、平面向量的方向角公式平面向量的方向角指向量与正方向某轴之间的夹角,其公式为:θ=tan-1(y/某)其中,某、y分别表示向量的某轴和y轴分量。
7、平面向量的正交公式两个向量如果互相垂直,则称它们是正交的。
平面向量的正交公式为:A·B=0其中,A、B分别表示两个向量,·表示数量积运算。
总之,平面向量的基本公式是理解和应用平面向量的关键。
高中数学平面向量知识及注意事项
![高中数学平面向量知识及注意事项](https://img.taocdn.com/s3/m/5344b50e763231126edb1195.png)
高中数学平面向量知识及注意事项一、向量基础知识1、实数与向量的积的运算律:设λ、μ为实数,那么(1)结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b)=λa +λb .2、向量的数量积的运算律:(1) a ·b = b ·a(交换律);注:c b a c b a )()(∙≠∙(2)(λa )·b = λ(a ·b )=λa ·b = a ·(λb );(3)(a +b )·c = a ·c +b ·c .3、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e .不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底.4、投影:向量b 在向量a方向上的投影为|b |cos θ。
5、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ.6、a ·b 的几何意义:数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积.7、平面向量的坐标运算:(1)设a =11(,)x y ,b =22(,)x y ,则a +b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +.8、两向量的夹角公式:121222221122cos x x y y x y x y θ+=+⋅+(a=11(,)x y ,b =22(,)x y ).9、向量的模与平面两点间的距离公式:|a |22x y =+,A B d =||AB AB AB =⋅ 222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y ).10、两个非零向量的共线与垂直的充要条件:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ∥b ⇔b =λa12210x y x y ⇔-=.a ⊥b (a ≠0 )⇔a ·b=012120x x y y ⇔+=.11、三角形的重心坐标公式:△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC的重心的坐标是123123(,)33x x x y y y G ++++.G G GC 0A B++= 二、向量中需要注意的问题1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.2、几个概念:零向量、单位向量(与AB 共线的单位向量是||ABAB ± ,平行(共线)向量(无传递性,是因为有0 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(a 在b上的投影是cos ,a ba ab b⋅=<>=∈R).3、两非零向量....共线的充要条件://a b a b λ⇔= cos ,1a b ⇔<>=± 12210x y x y ⇔-=. 两个非零向量....垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=. 特别:零向量和任何向量共线和垂直. b a λ=是向量平行的充分不必要条件!4、三点A B C 、、共线⇔ AB AC 、共线;向量 PA PB PC、、中三终点A B C 、、共线⇔存在实数αβ、使得:PA PB PC αβ=+且1αβ+=.5、向量的数量积:22||()a a a a ==⋅ ,1212||||cos a b a b x x y y θ⋅==+,121222221122cos ||||x x y y a b a b x y x y θ+⋅==++ ,12122222||cos ,||x x y y a b a b a a b b x y +⋅=<>==+在上的投影. 注意:,a b <> 为锐角⇔0a b ⋅> 且 a b 、不同向;,a b <>为直角⇔0a b ⋅= 且 0a b ≠ 、; ,a b <> 为钝角⇔0a b ⋅< 且 a b 、不反向,0a b ⋅< 是,a b <> 为钝角的必要非充分条件.6、一个重要的不等式:||||||||||||a b a b a b -≤±≤+注意: a b 、同向或有0⇔||||||a b a b +=+ ≥||||||||a b a b -=- ; a b 、反向或有0 ⇔||||||a b a b -=+ ≥||||||||a b a b -=+; a b、不共线⇔||||||||||||a b a b a b -<±<+ .(这些和实数集中类似)7、中点坐标公式1212,22x x y y x y ++==,122MP MP MP P +=⇔为12PP 的中点.。
平面向量高考一轮总复习完整版(含全部知识点习题)
![平面向量高考一轮总复习完整版(含全部知识点习题)](https://img.taocdn.com/s3/m/bccbe06af121dd36a22d82c1.png)
第一课时 向量的基本概念及基本运算C【知识要点】1.向量的基本概念(1)定义:既有大小又有方向的量叫做向量;向量的大小叫做向量的模 (2)特定大小或关系的向量①零向量:模为0的向量,记作→0,其方向是任意的②单位向量:模为1个单位长度的向量 ③共线向量(平行向量):方向相同或相反的非零向量。
规定:零向量与任何向量共线 ④相等向量:模长相等且方向相同的向量⑤相反向量:模长相等但方向相反的向量。
规定:零向量的相反向量是它本身 2.向量的表示法①字母表示法:如小写字母a , b , c 等,或AB ,CD 等 ②几何表示法:用一条有向线段表示 ③代数表示法:即向量的坐标表示法1.向量的加法、减法(1)法则:平行四边形法则、三角形法则 (2)运算律:交换律、结合律 (3)几何意义:2.向量的数乘(实数与向量的积) (1)定义与法则:(2)运算律:交换律、结合律、分配律 1.共线定理:向量与非零向量共线的充要条件是:有且只有一个实数λ,使得λ=2.平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数221121,,e e a λλλλ+=使3.三点共线定理:平面上三点A 、B 、C 共线的充要条件是:存在实数βα,,使得βα+=,其中1=+βα ,O 为平面上任意一点4.①平面内有任意三点O 、A 、B ,若M 是线段AB 的中点,则()+=21②ABC ∆中,M 为BC 边的中点,G 为重心,则=++,=++ ③向量加法的多边形法则 【自主练习】1. 以下命题中,正确命题的序号是 (1=,则b a = (2)b a b a =则都是单位向量若,, (3)===则若,,(4)==则,//(5)若四边形ABCD 是平行四边形,则==,2.已知直线a y x =+与圆422=+y x 交于AB两点,且-=+。
其中O 为坐标原点,则实数a 的值为3.已知向量,53=-=+=,则= 4.已知()-=+-=+=3,82,5 ,则( ) A. 点A 、B 、D 共线 B. 点A 、B 、C 共线 C. 点B 、C 、D 共线 D. 点A 、C 、D 共线 【典例解析】例1.对于非零向量b a ,,“=+”是“//”的( )A. 充分非必要B. 必要不充分C. 充要条件D.既不充分也不必要知识突破:如图,四边形ABCD ,其中A. 与B. 与C. DB AC 与D. OB DO 与例2.如图所示,D 、E 是△ABC 中AB ,AC 边的中点, M 、N 分别是DE ,BC 的中点。
(完整版)高三一轮复习平面向量知识点整理.doc
![(完整版)高三一轮复习平面向量知识点整理.doc](https://img.taocdn.com/s3/m/25597cd9b84ae45c3a358c00.png)
平面向量知识点整理1、概念(1)向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.(2)单位向量:长度等于1个单位的向量.(3)平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有零向量 )④三点 A、 B、 C共线AB、AC 共线(4)相等向量:长度相等且方向相同的向量.(5)相反向量:长度相等方向相反的向量。
a 的相反向量是 -a(6)向量表示:几何表示法AB ;字母a表示;坐标表示:a=xi+yj=(x,y).uuur r uuur的长度叫做向量r r(7)向量的模:设OA a ,则有向线段OA a 的长度或模,记作:| a | .rx2 r 2 rx2 y2。
)( | a | y2 , a | a |2(8)零向量:长度为0 的向量。
a=O | a|=O.r r r r【例题】 1.下列命题:( 1)若a b ,则a b 。
(2)两个向量相等的充要条件是uuur uuur它们的起点相同,终点相同。
(3)若AB DC ,则 ABCD 是平行四边形。
(4)若uuur uuur r r r r r r r r r r ABCD 是平行四边形,则 AB DC 。
(5)若 a b,b c ,则 a c 。
(6)若 a // b,b// c ,r r则 a // c 。
其中正确的是_______r r uur r (答:(4)(5))2. 已知 a, b 均为单位向量,它们的夹角为60o,那么 | a 3b | =_____(答:13 );2、向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点.Crarbr r uuur uuur uuur a b C Cr rrrrr⑶三角形不等式:.⑷运算性质:①交换律: r r rr r r r r r r;a b ba ;②结合律: a bc a bc ③ r r r r r .a 0 0 a a⑸坐标运算:设 rrx 2 , y 2r rx 1 x 2 , y 1 y 2 .a x 1, y 1 , b,则 a b3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设 r r x 2 , y 2 ,则 r r x 1 x 2 , y 1 y 2 .a x 1, y 1 ,b a b设 、两点的坐标分别为x 1 , y 1 , x 2 , y 2 ,则 uuurx 1x 2 , y 1y 2 .【例题】uuur uuur uuuruuur uuur uuur;( 1) ① AB BC CD ___;② AB AD DCuuur uuur uuuruuur ruuur uuur _____③ ( AB CD ) ( AC BD) (答:① AD ;② CB ;③ 0 );uuur r uuur r uuur r r r r( 2)若正方形 ABCD 的边长为 1, AB a, BC b, AC c ,则 | a b c |=_____(答: 2 2 );( 3)已知作用在点uur uuruurA(1,1)的三个力 F 1 (3,4), F 2 (2, 5), F 3(3,1) ,则合力uruuruur uurF F 1F 2 F 3 的终点坐标是(答:(9,1))4、向量数乘运算:r ⑴实数r的积是一个向量的运算叫做向量的数乘,记作与向量 aa .① r r ; a a②当 0 时, r r 的方向相同;a 的方向与 a r当 0 时, r r 的方向相反;当r a 的方向与 a 0 时, a 0 .⑵运算律:① r r ;②r r r ;③ r r r r aa a a a ab ab .r x, y ,则 r x, y x, y .⑶坐标运算:设 a a【例题】( )若 ( -3 , ), ( , ),且 MP 1MN1 M -2 N 6 -1 3,则点 P 的坐标为 _______(答: ( 6,7) );r rrr35、向量共线定理 :向量,使a a 0 与b 共线,当且仅当有唯一一个实数 r rr x 1 , y 1r x 2 , y 2r r r r 2r r2。
高考平面向量知识点总结
![高考平面向量知识点总结](https://img.taocdn.com/s3/m/92ffa85bc4da50e2524de518964bcf84b9d52dbe.png)
高考平面向量知识点总结一、向量定义和表示方法在平面上,向量由大小和方向两部分组成。
通常使用箭头AB表示向量,其中A为向量的起点,B为终点。
向量的大小可以用模长表示,通常用符号 ||AB|| 表示,也可以用绝对值表示,即 |AB|。
二、向量的基本运算1. 向量的加法:向量的加法满足交换律和结合律,即:AB + BC = AC。
2. 向量的减法:向量的减法可以通过向量的加法来表示,即:AB – BC = AB + (-BC)。
3. 向量的数量积:向量的数量积也称为点积,表示为 AB · BC,结果是一个实数。
计算方式为:AB · BC = |AB| × |BC| × cosθ,其中θ为 AB 和 BC 的夹角。
4. 向量的夹角:两个非零向量的夹角的余弦值可以通过向量的数量积来计算。
5. 向量的共线性判定:如果两个向量的夹角为 0°或者 180°,则称这两个向量共线。
6. 向量的平行判定:如果两个非零向量的夹角为 0°或者 180°,则称这两个向量平行。
三、平面向量的性质和定理1. 平行四边形定理:平行四边形的对角线互相平分。
2. 矩形的对角线性质:矩形的对角线相等且互相垂直。
3. 平面向量组线性相关的判定:如果存在不全为零的实数 k1、k2、…、kn,使得 a1 + a2 + … + an = 0,则称向量组 A = {a1, a2, …, an} 线性相关。
4. 平面向量组线性无关的判定:如果向量组 A = {a1, a2, …, an}线性相关的充分必要条件是不存在不全为零的实数k1、k2、…、kn,使得 k1a1 + k2a2 + … + knan = 0。
四、平面向量的坐标表示和计算平面向量可以用坐标表示,通常用大写字母表示向量,如 A(x1, y1) 和 B(x2, y2)。
平面向量的坐标表示可以进行加法、减法和数量积等运算。
平面向量 高三 一轮复习(完整版)
![平面向量 高三 一轮复习(完整版)](https://img.taocdn.com/s3/m/14957a02a2161479171128be.png)
题记:向量由于具有几何形式与代数形式的“双重身份”,使它成为高中数学知识的一个交汇点,成为多项内容的媒介.一、平面向量的概念及其线性运算 【例1】判断下列命题的真假:1、有向线段就是向量,向量就是有向线段;2、非零向量a 与非零向量b 平行,则a 与b 的方向相同或相反;3、向量AB →与向量CD →共线,则A 、B 、C 、D 四点共线; 4、若向量a 与b 同向,且|a |>|b |,则a >b ;5、若向量|a |=|b |,则a 与b 的长度相等且方向相同或相反;6、对于任意向量|a |=|b |,且a 与b 的方向相同,则a =b ;7、由于零向量0方向不确定,故0不能与任意向量平行;8、起点不同,但方向相同且模相等的几个向量是相等向量;9、向量与的长度相等;10、两个相等向量若起点相同,则终点必相同; 11、只有零向量的模等于0; 12、共线的单位向量都相等; 13、向量与是两平行向量;14、与任一向量都平行的向量为向量; 15、若AB =DC ,则A 、B 、C 、D 四点构成平行四边形;16、设O 是正三角形ABC 的中心,则向量AB 的长度是OA 长度的3倍;17、在坐标平面上,以坐标原点O 为起点的单位向量的终点P 的轨迹是单位圆; 18、凡模相等且平行的两向量均相等;19、与共线的等价条件可以是存在一个实数λ,使=λ或=λ;20、设,,是任意的非零平面向量且互不共线,则a b a b +>+21、下列命题中:其中正确的是_____________① →→→→→→→⋅-⋅=-⋅c a b a c b a )(;② →→→→→→⋅⋅=⋅⋅c b a c b a )()(;③ 2()a b →→-2||a →=22||||||a b b →→→-⋅+; ④ 若0=⋅→→b a ,则0=→a 或0=→b ;⑤若,a b c b ⋅=⋅ 则a c =⑥22a a = ;⑦2a b ba a⋅=; ⑧222()a b a b ⋅=⋅ ; ⑨222()2a b a a b b -=-⋅+二、平面向量平行定理(共线定理)(1)若//(0)a b b ≠⇒(2)若a b λ=共线定理作用(1) (2)【例2】设两个非零向量a 与b不共线,(1)若,28,3().AB a b BC a b CD a b =+=+=-求证:A..B.D 三点共线;(2) 试确定实数k,使ka b + 和a kb +共线。
2023届高三数学一轮复习专题 平面向量的表示、三点共线研究 讲义 (解析版)
![2023届高三数学一轮复习专题 平面向量的表示、三点共线研究 讲义 (解析版)](https://img.taocdn.com/s3/m/6e4fa41882c4bb4cf7ec4afe04a1b0717ed5b35c.png)
高三第一轮复习专题 平面向量表示、三点共线研究 一、平面向量基本定理:设12,e e 是同一平面内两个不共线向量,a 是这一平面内的任一向量。
在平面内任取一点O ,作12,,OA e OB e OC a ===,过C 作OB 的平行线,交直线OA 于M ;过C 作OA 的平行线,交直线OB 于N 。
因OM 与OA 共线,则存在实数1λ,使得:11OM e λ=;因ON 与OB 共线,则存在实数2λ,使得:22ON e λ=; OC OM ON =+1122a e e λλ∴=+也即,任一向量a 都可表示成1122e e λλ+的形式。
平面向量基本定理:若12,e e 是同一平面内的两个不共线向量,则对于这个平面内的任意向量a ,有且只有一对实数12,λλ,使得:1122a e e λλ∴=+。
(也可称为a 用12,e e 表示出来)不共线向量12,e e 称为表示这一平面内所有向量的一组基底,12,e e 称为基向量。
例1。
ABCD 两条对角线交于O ,AB a =,AD b =,用a 、b 表示OA 、OB 、OC 、OD 。
2e2ea解:AC AB AD a b =+=+,DB AB AD a b =-=-O ABCD 为两条对角线的交点()1122OA AC a b ∴=-=-+,()1122OC AC a b ==+()1122OB DB a b ==-, ()1122OD DB a b =-=--。
故在一个图形中,任意两个不共线向量都可以作为一组基底,其余向量都可用这一组基向量表示出来。
在具体问题中,基向量的选择十分重要,它决定了是否容易表示。
二、向量的表示:★★★★★在研究向量间关系时,常先取两个基向量作为一组基底,其余向量用这两个基向量表示出来,这样能够更清晰地找出所研究向量间的关系。
1.,其余向量用这两个基向量表示出来。
例。
在ABC 中,2BD DC =,设,AB a AC b ==,用,a b 表示AD 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四部分:平面向量公式和基本方法
平面向量是高一所学内容,这是一个比较有特点的知识,其在物理的“力的分解”上也有所涉及,高中数学
对于平面向量的考察形式主要有两方面:1)向量知识、公式相关题型的考察;2)结合三角函数出题或者出现在解析几何的条件中。
1、平面向量相关主要知识点
1)单位向量:长度为1的向量。
若e 是单位向量,则||1e =|
|a a 同向的单位向量。
零向量:长度为0的向量。
记作:0。
【0方向是任意的,且与任意向量平行】。
相等向量:长度和方向都相同的向量。
平行向量(共线向量):方向相同或相反的向量。
相反向量:长度相等,方向相反的向量。
AB BA =-。
2)向量的加减法:
三角形法则
AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数)
()()()12122211,,,,,y y x x AB y x B y x A --=⇒
平行四边形法则:
以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。
(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那
条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量
(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段
就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点
当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法
的三角形法则可推广至多个向量相加:
3)共线(平行)定理://a b a b λ=⇔。
当0λ>时,a b 与同向;当0λ<时,a b 与反向。
4)向量的模:若(,)a x y =,则2||a x y =+2
2||a a =,2||()a b a b +=+
5)设()()2211,,,y x b y x a ==则:
数量积与夹角公式:||||cos a b a b θ⋅=⋅2121y y x x +=; cos ||||
a b
a b θ⋅=
⋅
这儿要注意“夹角”的定义!
b 在a 上的投影为||cos b θ,它是一个实数,但不一定大于0
平行与垂直://a b a b λ⇔=22()(||||)a b a b ⇔⋅=1212x y y x ⇔-=0
0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=
6)向量夹角为锐角:不共线且且b a b a ,,01cos ,0cos >⋅⇔≠>θθ;
向量夹角为钝角:不共线且且b a b a ,,01cos ,0cos <⋅⇔-≠<θθ。
7)C B A y x OC y OB x OA ,,1,⇒=++=共线。
8)⇒=++0QC QB QA Q 是三角形ABC 的重心(重心分中线的两段比值是2:1)。
9)P PA PC PC PB PB PA ⇒⋅=⋅=⋅是三角形ABC 的垂心。
10)P AC AC
AB AB
AP ⇒+
)|
|||//(
在角A 的平分线上。
11)AD AB AD AB -=+说明AB ⊥AD
2、主要题型
1、普通直接套公式的题目比较简单,只要公式记对记全就可以了,不过也有需要注意的地方: 已知三角形ABC 的边AB=3,AC=4,BC=5,则BC AB ⋅=
2、平面向量基本定理:向量加减法法则的应用。
主要是图形类题目中会用到,题中会出现一些特殊的分点,利用“三角形法则”“平行四边形法则”进行拆分、合并,简单的考察是用已知向量去表示要求的向量,不过这类题一旦难,就需要能在多补的表示中方向清楚,不至于到最后绕不出来。
例1、如图,四边形OABC 是以向量b OB a OA ==,为边的平行四边形,又,3
1
,31CD CM BO BN ==
试 用b a ,表示向量MN ON OM ,,;
例2、设D 、E 、F 分别是ABC ∆的边BC 、CA 、AB 上的点,且AB AF 21=
BC BD 3
1
=,CA CE 4
1
=
,若记m AB =,n CA =,试用m ,n 表示DE 、EF 、FD 。
3、求数量积:
常规有三个方法:(1)||||cos a b a b θ⋅=⋅;(2)2121y y x x b a +=⋅;(3)用已知向量去表示要求的 向量;
一般这类题分为两类:坐标题和图形题。
如果已知条件是坐标,那么就直接用相关坐标公式去解题。
如果是图形题,那么就要考虑是用“建系”坐标解题,还是使用普通向量公式了。
相对来说,这两个方法 各有各的优劣,前者计算量相偏大,后者相对比较难推导。
不过,如果遇到特殊图形题,或者可以假设成 特殊图形的话,坐标法相对会好一些。
但是,如果思维已经养成倾向性,那么可以遵循自己的喜好,建议 两种方法都要会。
1)比较基础的题
(1)若向量→a 、→b 满足|→a |=1,|→b |=2,且→a 与→b 的夹角为π3
,则|→a +2→
b | .
(2)已知非零向量a ,b 满足|a |=|a +b |=1,a 与b 夹角为120°,则向量b 的模为 . 1
(3)已知向量a ,b 的夹角为45°,且1||=a ,10|2|=-b a ,则||b = .23
2)图形类问题
例、如图,在矩形ABCD
中,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若2AB AF =, 则AE BF 的值是 .
B
A
C
D
例、如图,在ABC ∆中,120,2,1,BAC AB AC D ∠=︒==是边BC 上一点,2,DC BD =AD BC = .83
-
例、如图, 在等腰三角形ABC 中, 底边2=BC , DC AD =, 1
2
AE EB =, 若1
2
BD AC ⋅=-, 则AB CE ⋅= .
例3、在△ABC 中,若AB =1,AC 3,||||AB AC BC +=,则||
BA BC BC ⋅= .
例4、在菱形ABCD 中,23AB =,23
B π
∠=,3BC BE =,3DA DF =,则EF AC ⋅= .
例5、如图,在等腰三角形ABC 中,已知F E A AC AB ,,120,1︒===分别是边AC AB ,上的点,且,,AC n AF AB m AE ==其中),1,0(,∈n m 若BC EF ,的中点分别为,,N M 且,14=+n m MN 的最小值是 .
A
B
M
N
E
F
例6、在ABC ∆中,AB=1,AC=2,O 为ABC ∆外接圆圆心,则=⋅BC AO
变式:在ABC ∆中,AB=1,AC=2,O 为ABC ∆外接圆圆心,M 为BC 中点,则=⋅AM AO
例7、如图,两块斜边长相等的直角三角板拼在一起,若AC y AB x AD +=,则 x = ,y =
例8、已知平面向量,αβ()0≠≠,ααβ满足β
=1,且α与β-α的夹角为120°,则α的取值范围
是 .
例9、如图所示,△ABC 中,已知P 为线段AB 上的一点,OP=x OA+y OB 。
(1)若BP=PA ,求x ,y 的值;
(2)若BP=3PA ,OA =4,OB =2,且OA 与OB 的夹角为60°时,求OP AB 的值
4、向量的夹角
例1、设)3,(x a =,)1,2(-=b ,若a 与b 的夹角为钝角,则x 的取值范围是 __ ____。
例2、已知向量a 、b 不共线,且||||b a =,则b a +与b a -的夹角为 __________。
例3、已知OP =)1,2(,OA =)7,1( ,OB =)1,5(,设M 是直线OP 上一点,O 是坐标原点 ⑴求使MB MA •取最小值时的OM ; ⑵对(1)中的点M ,求AMB ∠的余弦值。
5、较难题
例1、若点O 是△ABC 所在平面内一点,满足30OA OB OC ++=,则ABO
ABC
S S ∆∆的值是 .1:5
例2、在ABC ∆中,过中线AD 中点E 任作一直线分别交AB ,AC 于M ,N 两点,设AM xAB =,
AN y AC =(0xy ≠),则4x y +的最小值是 .9
4
3、与其他知识相结合
(1)一般会出现在三角函数的条件中,比如:“已知()b a x f x x b x x a ⋅=-==),cos ,sin 2(),cos ,(sin ”或者“b a b
a ⊥//”然后求值,这块主要就是涉及平面向量的坐标相关公式,难度一般的。
(2)有时候会出现在解析几何的条件中,比如“FB AF 2=”,也会出现“平行, 垂直”“锐角”“钝角”按内容,用平面向量去解决; 还有就是用平面向量去解决“垂直”要比用“斜率”要好,起码不用涉及存不存在。
这个在后面的三角和解析几何中会有相关题目。