八年级上册全册全套试卷测试卷附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册全册全套试卷测试卷附答案

一、八年级数学三角形填空题(难)

1.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.

【答案】80

【解析】

【详解】

如图,根据角平分线的性质和平行线的性质,可知∠FMA=1

2

∠CPE=∠F+∠1,

∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.

故答案为80.

2.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC=_____.

【答案】115°.

【解析】

【分析】

根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出

∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.

【详解】

解;∵∠A=50°,

∴∠ABC+∠ACB=180°﹣50°=130°,

∵∠B和∠C的平分线交于点O,

∴∠OBC=1

2

∠ABC,∠OCB=

1

2

∠ACB,

∴∠OBC+∠OCB=1

2

×(∠ABC+∠ACB)=

1

2

×130°=65°,

∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,

故答案为:115°.

【点睛】

本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC+∠OCB 的度数.

3.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.

【答案】22

【解析】

【分析】

底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.

【详解】

试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.

②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.

故填22.

【点睛】

本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.

4.已知等腰三角形的两边长分别为3和5,则它的周长是____________

【答案】11或13

【解析】

【分析】

题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.

【详解】

解:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长

=3+3+5=11;

②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13.

故答案为:11或13.

【点睛】

本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.

5.如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠A=60°,则

∠BFC=______.

【答案】120【解析】

【分析】

根据角平分线的定义可得出∠CBF=1

2

∠ABC、∠BCF=

1

2

∠ACB,再根据内角和定理结合

∠A=60°即可求出∠BFC的度数.

【详解】

∵∠ABC、∠ACB的平分线BE、CD相交于点F,

∴∠CBF=1

2

∠ABC,∠BCF=

1

2

∠ACB.

∵∠A=60°,∴∠ABC+∠ACB=180°﹣∠A=120°,

∴∠BFC=180°﹣(∠CBF+BCF)=180°﹣1

2

(∠ABC+∠ACB)=120°.

故答案为120°.

【点睛】

本题考查了三角形内角和定理,根据角平分线的定义结合三角形内角和定理求出角的度数是解题的关键.

6.如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角,若∠A=100°,则

∠1+∠2+∠3+∠4= .

【答案】280°

【解析】

试题分析:先根据邻补角的定义得出与∠EAB相邻的外角∠5的度数,再根据多边形的外角和定理即可求解.

解:如图,∵∠EAB+∠5=180°,∠EAB=100°,

∴∠5=80°.

∵∠1+∠2+∠3+∠4+∠5=360°,

∴∠1+∠2+∠3+∠4=360﹣80°=280°

故答案为280°.

考点:多边形内角与外角.

二、八年级数学三角形选择题(难)

7.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()

A.1

3

B.

7

10

C.

3

5

D.

13

20

【答案】B

【解析】

【分析】

连接CP.设△CPE的面积是x,△CDP的面积是y.根据BD:DC=2:1,E为AC的中点,得△BDP的面积是2y,△APE的面积是x,进而得到△ABP的面积是4x.再根据△ABE的面积是

△BCE的面积相等,得4x+x=2y+x+y,解得y=4

3

x,再根据△ABC的面积是3即可求得x、y

的值,从而求解.

【详解】

连接CP,

设△CPE的面积是x,△CDP的面积是y.∵BD:DC=2:1,E为AC的中点,

∴△BDP的面积是2y,△APE的面积是x,∵BD:DC=2:1

相关文档
最新文档