层次分析法 简单案例分析

合集下载

层次分析法经典案例

层次分析法经典案例

层次分析法经典案例层次分析法(Analytic Hierarchy Process, AHP)是一种常用的多准则决策方法,被广泛应用于企业管理、工程项目评估、市场调研等领域。

本文将通过一个经典案例,介绍层次分析法的基本原理和应用过程。

一、案例背景某企业计划购买新设备,以提升生产效率和质量。

然而,在众多可选设备中,如何选择最适合企业发展的设备成为了业主面临的难题。

为了解决这一问题,业主决定应用层次分析法进行设备选择。

二、层次分析法基本原理层次分析法基于一个重要思想,即将复杂的决策问题拆解为具有层次结构的多个因素,并通过层次化的比较和综合分析,最终得出决策结果。

1. 构建层次结构首先,我们需要将决策问题划分为不同的层次,并构建层次结构。

在这个案例中,可以将设备选择问题划分为三个层次:目标层、准则层和备选方案层。

目标层代表企业的最终目标,即实现高效生产;准则层包括影响设备选择的各种准则,如设备价格、性能指标、售后服务等;备选方案层包括具体的设备选项。

2. 建立判断矩阵接下来,我们需要对不同层次的因素进行两两比较,建立判断矩阵。

通过专家主观判断,给出两个因素之间的相对重要性,采用1-9的尺度,其中1代表两者具有相同重要性,9代表一个因素相对于另一个因素极端重要。

比如,在准则层中,设备性能指标对设备价格的重要性为6。

3. 计算权重向量利用判断矩阵,我们可以计算出每个层次的权重向量。

通过对判断矩阵进行归一化处理,可获得各因素的权重。

权重向量表示了各因素对当前决策的贡献程度,可作为后续分析的依据。

例如,计算准则层中各因素的权重向量。

4. 一致性检验为了保证判断矩阵的合理性,我们需要进行一致性检验。

通过计算一致性指标和一致性比率,评估判断矩阵是否存在较大的一致性问题。

若一致性比率超过一定阈值,需要检查和修正判断矩阵。

5. 优先级排序最后,结合各层次的权重,我们可以进行优先级排序,得出对不同备选方案的排序结果。

根据排序结果,我们可以选择最合适的备选方案。

经典层次分析法分析及实例教程

经典层次分析法分析及实例教程

当CR 0.1 时,认为层次总排序通过一致性检验。到
此,根据最下层(决策层)的层次总排序做出最后决策。
层次分析法的基本步骤归纳如下
1.建立层次结构模型 该结构图包括目标层,准则层,方案层。
2.构造成对比较矩阵 从第二层开始用成对比较矩阵和1~9尺度。
3.计算单排序权向量并做一致性检验 对每个成对比较矩阵计算最大特征值及其对应的特征向量, 利用一致性指标、随机一致性指标和一致性比率做一致性 检验。若检验通过,特征向量(归一化后)即为权向量; 若不通过,需要重新构造成对比较矩阵。
一般分为三层,最上面为目标层,最下面为方案层,中 间是准则层或指标层。 例1 的层次结构模型
买钢笔
目标层
质颜价外实 量色格形用
准则层
可供选择的笔
方案层
例2 层次结构模型
选择 旅游地










苏州、杭州、 桂林
目标层Z 准则层A 方案层B
若上层的每个因素都支配着下一层的所有因素,或被下一层所 有因素影响,称为完全层次结构,否则称为不完全层次结构。
A 4 7
2 3
1 3
1 5
2
1
1
1
1
3
1
1
3 5
1 2 5
B1
1 2
1
2
1 5
1 2
1
1
B2
3
1 3 1
1 18 3
8 3 1
1 1 3
B3
1 1
1 1
3
3 3 1
1 3 4
B4
1 3
1
1

层次分析法及案例分析

层次分析法及案例分析
CR
31
目录 1、问题提出 2、层次分析法的定义 3、层次分析法解决问题的思路 4、案例分享
32
案例分享
1、确定评估项目:****类型供应商甄选
2、建立评比指标以及层次结构:
序号 1 2
3
关键指标 价格指标 质量指标
交货指标
指标分解 产品价格 提供赠品数量 货物质量 ISO质量体系
执行 交货的及时性
30
4.计算总排序权向量并做一致性检验 计算最下层对最上层总排序的权向量。
利用总排序一致性比率
C Ra a1 1C R1 1 IIa a2 2C R2 2II a am m C Rm m II
CR0.1
进行检验。若通过,则可按照总排序权向量表示的结果进行决策,否则需要重新考虑模型或重新构 造那些一致性比率 较大的成对比较矩阵。
CR CI 0.1 时,认为
A
RI
的不一致程度在容许范围之内,有满意的一致性,通过一致性检验。可用其归一化特征向量作 为权向量,否则要重新构造成对比较矩阵A,对 aij 加以调整。
一致性检验:利用一致性指标和一致性比率<0.1
及随机一致性指标的数值表,对
进行检验的过程。
A
24
“选择旅游地”中准则层对目标的权 向量及一致性检验

方案层
可供选择的单位P1’ P2 , Pn
14
例2. 选择旅游地 目标层
如何在3个目的地中按照景色、费用、居住条件等因素选择. O(选择旅游地)
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
方案层
P1 桂林
P2 黄山
P3 北戴河
15

层次分析法分析(AHP)及实例教程

层次分析法分析(AHP)及实例教程
02
设定评价标准
根据问题背景和目标,设定合理的评价标准,如 成本、效益、风险等。
识别关键因素和指标
关键因素识别
分析影响决策目标的关键因素,如市 场需求、技术水平、资源条件等。
指标选取
针对每个关键因素,选取具体的评价 指标,如市场份额、创新能力、资源 利用率等。
构建递阶层次结构图
目标层
准则层
将决策目标作为最高层, 表示解决问题的总体目标。
层次分析法分析 (AHP)及实例教程
目录
• 层次分析法(AHP)概述 • 构建层次结构模型 • 构造判断矩阵与权重计算 • 实例教程:以某企业投资决策为例 • AHP优缺点及改进方向 • 总结与展望
01
层次分析法(AHP)概述
AHP定义与发展历程
定义
层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性与定量相结合的、系统化、 层次化的分析方法。它通过将复杂问题分解为若干层次和因素,对各因素进行两两比较,构造 判断矩阵,进而计算各因素的权重,为决策问题提供定量依据。
对计算得到的权重进行一致性检 验,确保结果的合理性和准确性。
一致性检验与调整策略
一致性检验方法
通过计算一致性指标CI和随机一 致性指标RI,判断判断矩阵的一 致性。
调整策略
当判断矩阵不满足一致性要求时, 需要对判断矩阵进行调整,包括 调整元素值、重新构造判断矩阵 等方法,直至满足一致性要求。
注意事项
针对缺点提出改进措施
1 2
提高数据质量和数量
通过改进数据采集和处理方法,提高数据的质量 和数量,减少数据不准确和不完整对决策结果的 影响。
引入客观标准
在构建判断矩阵时,可以引入客观标准和量化指 标,减少主观判断对决策结果的影响。

层次分析法具体应用及实例

层次分析法具体应用及实例

层次分析法步骤与实例1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序.2 次分析法的步骤:3 以一个具体案例进行说明:【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。

除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。

【案例分析】市政工程项目进行决策:建立递阶层次结构在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。

为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。

但问题绝不这么简单。

通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。

假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。

根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。

很明显,这两个方案于所有准则都相关。

将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。

同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。

代表不同层次,同一层次从左到右用1、2、3、4。

代表不同因素。

这样构成的递阶层次结构如下图。

目标层A 准则层B准则层C措施层D图1 递阶层次结构示意图2.构造判断矩阵(成对比较阵)并赋值根据递阶层次结构就能很容易地构造判断矩阵。

层次分析法及案例分析

层次分析法及案例分析

w1
w1
w2
令a w / w
成对比较
A
w1
w1 w2
w1
wn
w2 w2
w2
wn
ij
i
j
满足 aij a jk aik , i, j, k 1,2,, n
的正互反阵A称一致阵。
wn
w1
wn
wn
w2
wn
一致阵 • A的秩为1,A的唯一非零特征根为n
Aw nw
性质 • 非零特征根n所对应的特征向量归一化后可作为权向量
B1 : a1b11 a2b12 amb1m B2 : a1b21 a2b22 amb2m
Bn : a1bn1 a2bn2 ambnm
A B
A1, A2 ,, Am a1, a2 ,, am
B层的层次 总排序
m
B1
b11 b12
b1m
a jb1 j b1
j 1
B2
b21 b22
b2m
.
9
1、问题提出 2、层次分析法的定义 3、层次分析法解决问题的思路 4、案例分享
.
10
层次分析法根据问题的性质和要达到的总目标,将问 题分解为不同的组成因素,并按照因素间的相互关联影响 以及隶属关系将因素按不同层次聚集组合,形成一个多层 次的分析结构模型,从而最终使问题归结为最低层(供决策 的方案、措施等)相对于最高层(总目标)的相对重要权值的 确定或相对优劣次序的排定。
执行 交货的及时性
交货的准确率
序号 关键指标
4
服务指标
指标分解 技术支持 投诉处理 售后服务
人员素质
注册资本
5
硬件资质 厂房、机器设备

层次分析法具体应用及实例

层次分析法具体应用及实例

层次分析法步骤与实例1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序.2 次分析法的步骤:3 以一个具体案例进行说明:【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。

除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。

【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。

为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。

但问题绝不这么简单。

通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。

假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。

根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。

很明显,这两个方案于所有准则都相关。

将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。

同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D 。

代表不同层次,同一层次从左到右用1、2、3、4。

代表不同因素。

这样构成的递阶层次结构如下图。

目标层A准则层B准则层C措施层D图1 递阶层次结构示意图2.构造判断矩阵(成对比较阵)并赋值根据递阶层次结构就能很容易地构造判断矩阵。

层次分析法步骤及案例分析

层次分析法步骤及案例分析

层次分析法步骤及案例分析层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于解决决策问题的定性与定量相结合的方法。

该方法通过建立分层结构模型,对各个因素进行比较和权重分配,从而帮助决策者做出较为科学的决策。

本文将介绍层次分析法的步骤,并通过一个实际案例进行分析。

一、层次分析法的步骤层次分析法的步骤主要包括问题定义、建立层次结构模型、构建判断矩阵、计算权重和一致性检验等。

下面将详细介绍每个步骤。

1. 问题定义在使用层次分析法前,首先需要明确要解决的问题。

通过明确问题的目标和约束条件,可以确定出适合使用层次分析法的决策问题。

2. 建立层次结构模型在问题定义的基础上,需要建立层次结构模型,将整个问题分解为若干层次,并确定各个层次之间的关系。

通常,层次结构包括目标层、准则层和方案层。

目标层表示要达到的最终目标,准则层表示实现目标所需的评价因素,方案层表示可供选择的备选方案。

3. 构建判断矩阵构建判断矩阵是层次分析法的核心步骤。

判断矩阵用于比较和评价不同层次的因素,确定它们之间的重要性。

通过专家判断或问卷调查等方式,将各个因素两两进行比较,并赋予相应的重要性权值。

根据专家判断或调查结果,可以构建出一个全排列的判断矩阵。

4. 计算权重通过计算判断矩阵,可以获取各个因素的权重值。

常用的计算方法包括特征向量法、层次递推法和最大特征值法等。

根据计算结果,可以得到每个因素的相对权重值,从而进行比较和排序。

5. 一致性检验为了确保判断矩阵的一致性,需要进行一致性检验。

一致性指标主要包括一致性比率和一致性指数。

一致性比率用于评估判断矩阵的不一致程度,一致性指数用于判断判断矩阵是否满足一致性要求。

如果一致性比率超过一定阈值,表明判断矩阵存在较大的不一致性,需要重新调整判断矩阵。

二、案例分析为了更好地理解层次分析法的应用,下面以选择旅游目的地为例进行案例分析。

假设你准备进行一次旅行,有三个备选目的地:A、B和C。

层次分析法具体应用及实例

层次分析法具体应用及实例

层次分析法步骤与实例1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序.2 次分析法的步骤:3 以一个具体案例进行说明:【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。

除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。

【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。

为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。

但问题绝不这么简单。

通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。

假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。

根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。

很明显,这两个方案于所有准则都相关。

将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。

同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D 。

代表不同层次,同一层次从左到右用1、2、3、4。

代表不同因素。

这样构成的递阶层次结构如下图。

目标层A准则层B准则层C措施层D图1 递阶层次结构示意图2.构造判断矩阵(成对比较阵)并赋值根据递阶层次结构就能很容易地构造判断矩阵。

层次分析法经典案例

层次分析法经典案例

层次分析法经典案例篇一:层次分析法步骤层次分析法实例与步骤结合一个具体例子,说明层次分析法的基本步骤和要点。

【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。

除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。

1.建立递阶层次结构应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。

AHP要求的递阶层次结构一般由以下三个层次组成:? 目标层(最高层):指问题的预定目标;? 准则层(中间层):指影响目标实现的准则;? 措施层(最低层):指促使目标实现的措施;通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。

然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。

在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。

最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递page1阶层次结构的最下面(最低层)。

明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。

层次分析法案例与步骤

层次分析法案例与步骤

层次分析法实例与步骤下面结合一个具体例子,说明层次分析法的基本步骤和要点。

【案例】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。

除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。

1. 建立递阶层次结构应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。

AHP要求的递阶层次结构一般由以下三个层次组成:●目标层(最高层):指问题的预定目标;●准则层(中间层):指影响目标实现的准则;●措施层(最低层):指促使目标实现的措施;通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。

然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。

在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。

最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。

明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。

【案例分析】市政工程项目进行决策:建立递阶层次结构在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二.层次分析法的基本原理
• 先分解后综合 • 整理和综合人们的主观判断,使定性分析与定量分析有机 结合,实现定量化决策。 • 首先将所要分析的问题层次化,根据问题的性质和要达到 的总目标,将问题分解成不同的组成因素,按照因素间的 相互关系及隶属关系,将因素按不同层次聚集组合,形成 一个多层分析结构模型,最终归结为最低层(方案、措施、 指标等)相对于最高层(总目标)相对重要程度的权值或 相对优劣次序的问题。
三.层次分析法的基本步骤与我的案例
• (1) 建立层次结构模型; • (2)构造判断矩阵; • (3)层次单排序; • (4)一致性检验; • (5)层次总排序。
(1)建立层次结构模型
• • 实例:人们在日常生活中经常会遇到多目标决策问题, 例如去哪吃午饭。 目标层Z 就餐的地方

准则层C C1 便利
C2选择多
C3便宜
• • •
方案层P P1 一餐
P2 二餐
P3 农贸
选择吃饭地方的层次结构
• 通过相互比较确定各准则对于目标的权重,即构造判断矩 阵。在层次分析法中,为使矩阵中的各要素的重要性能够 进行定量显示,引进了矩阵判断标度(1~9标度法): 标度 含义
表示两个元素相比,具有同样的重要性
表示两个元素相比,前者比后者稍重要
相对于便宜C3-P判断矩阵
C2
P1
P1
1
P2
1/4
P3
1/8
P2
P3
4
8
1
3
1/3
1
• 计算得:λmax=3.002 CI=λmax-n/n-1=0.001 CR=CI/RI=0.001<0.1 表明该判断矩阵通过一致性检验,具有满意一致性
权重 P1 层次总排序 = P2 P3
0.633 0.633 0.260 0.106
3 1 1/3
5 3 1
计算得:λmax=3.039 CI=λmax-n/n-1=0.0195 CR=CI/RI=0.037 表明该判断矩阵通过一致性检验,具有满意一致性
相对于选择多 C2-P判断矩阵
C2
P1
P1
1
P2
1/4
P3
1/8
P2
P3
4
8
1
3
1/3
1
• 计算得:λmax=3.018 CI=λmax-n/n-1=0.009 CR=CI/RI=0.018<0.1 表明该判断矩阵通过一致性检验,具有满意一致性
(2)构造判断矩阵
1 3 5 7 9 2, 4, 6, 8
aji=1/aij
表示两个元素相比,前者比后者明显重要
表示两个元素相比,前者比后者极其重要 表示两个元素相比,来讲的比较结果(重要性),aii=1
A-C判断矩阵
A
C1
C1
1
C2
5
层次分析法
• Analytic Hierarchy Process(AHP) • 1、层次分析法的简介 • 2、层次分析法的基本原理 • 3、层次分析法的基本步骤与我的案例分析 宁波大学 海运学院
一.层次分析法的简介
• 层次分析法(Analytic Hierarchy Process,简称AHP) 是将与决策总是有关的元素分解成目标、准则、方案等层 次,在此基础之上进行定性和定量分析的决策方法。 • 该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年 代初,在为美国国防部研究“根据各个工业部门对国家福 利的贡献大小而进行电力分配”课题时,应用网络系统理 论和多目标综合评价方法,提出的一种层次权重决策分析 方法。 • 层次分析法的特点是在对复杂的决策问题的本质、影响因 素及其内在关系等进行深入分析的基础上,利用较少的定 量信息使决策的思维过程数学化,从而为多目标、多准则 或无结构特性的复杂决策问题提供简便的决策方法。尤其 适用于对决策结果难于直接准确计算的场合。
C3
3
C2
C3
1/5
1/3
1
3
1/3
1
• 计算得:λmax=3.039 CI=λmax-n/n-1=0.0195 CR=CI/RI=0.037<0.1 表明该判断矩阵通过一致性检验,具有满意一致性
构造所有相对于不同准则的方案层判断矩阵
相对与便宜 C1-P判断矩阵
C1
P1
P2
P3
P1 P2 P3
1 1/3 1/5
0.106 0.074 0.257 0.699
0.260 0.236 0.682 0.082
层次总排序权值 :P1:0.470, P2:0.370, P3:0.160 经过计算得:P1一餐 权值为:0.470,P2二餐 权值为: 0.370 P3农贸 权值为:0.160 决策结果:吃饭首选地是一餐,其次是二餐,再次是农 贸。
相关文档
最新文档