七年级下册数学思维专项训练题(共10套)
2018七年级数学思维训练1至12(含答案)
2018七年级数学思维训练1⾄12(含答案)2018年七年级数学思维训练1⼀.选择题1.a --是()(A )正数(B )负数(C )⾮正数(D )⾮负数 2.如图,在下⾯的数轴上表⽰数(—2)—(—5)的点是()(A )M (B )N . (C )P. (D )Q.3.49914991+-----的值的负倒数是()(A )314. (B )133-(C )1. (D )—14.)9187()8176()7165()6154()5143(+++++++++)10198(-+ ()(A )0. (B )5.65. (C )6.05 (D )5.85 5.22)34(34?--?-等于()(A )0 (B )72 (C )—180 (D )108 6.x 的54与31的差是()(A )x x 3154- (B )3154-x (C ))31(54-x (D )345+x7.n 是整数,那么被3整除并且商恰为n 的那个数是()(A )3n (B )3+n (C )n 3 (D )3n 8.如果2:3:=y x 并且273=+y x ,则y x ,中较⼩的是(A )3 (B )6(C )9(D )129.20°⾓的余⾓的141等于()(A ) )731( (B ) )7311( (C ))767( (D )5°10.7)71()7(71?-÷-?等于()(A )1 (B )49 (C )—7 (D )7⼆、A 组填空题11.绝对值⽐2⼤并且⽐6⼩的整数共有__________________个。
12.在⼀次英语考试中,某⼋位同学的成绩分别是93,99,89,91,87.81,100,95,则他们的平均分数是__________________。
13.||||2014-2015|-2016|-2017|-2018|=__________________。
14.数:-1.1,-1.01,-1.001,-1.0101,-1.00101中最⼤的⼀个数与最⼩的⼀个数的⽐值是__________。
七年级下册数学思维拓展训练(每周一练)
卖出,该同学实际盈利为( )
A.400 元
B.382 元
C.340 元
D.370 元
二、填空题(每小题 4 分,共 24 分)
7.关于 x,y 的二元一次方程组
,求 =_____, =_______.
8. 如果 4x-5y=0,且 x≠0,那么
的值是_____,则 10 人无法安排;若每间住 3 人,则有 10 间无人住,这 批宿舍有_______间.
4
为 20 元的比票价为 10 元的多______张.
1
三、解答题 13.解方程组(每小题 5 分,共 20 分)
①
②
③
④
14. (6 分)已知方程组
与
有相同的解,求 m、n 的值。
2
15. (8 分)小明在拼图时,发现 8 个一样大小的⻓方形, 恰好可以拼成一个大的⻓方形如图(1);小红看⻅了, 说:“我也来试一试.”结果小红拼成了如图(2)那样 的正方形,中间还留下了一个洞,恰好是边⻓为 5mm 的小正方形,则每个小⻓方形的面积是多少?.
16.(8 分)某生产⻋间共有 36 名工人,已知每名工人每小时可以生产螺丝帽 50 个,或者生 产螺丝钉 20 个,已知一个螺丝钉要配两个螺丝帽,则如何安排人员才能使所生产的螺 丝帽与螺丝钉正好配套.
3
17.(10 分)数轴上点 A 对应的数为 a,点 B 对应的数为 b,点 A 在负半轴,且|a|=3, b 是最小的正整数. (Ⅰ )直接写出线段 AB 的⻓; (Ⅱ )若点 C 在数轴上对应的数为 x,且 x 是方程 2x+1=3x﹣4 的根,在数轴上是否存 在点 P 使 PA+PB= BC+AB,若存在,求出点 P 对应的数,若不存在,说明理由. (Ⅲ)如图,若 Q 是 B 点右侧一点,QA 的中点为 M,N 为 QB 的四等分点且靠近于 Q 点,当 Q 在 B 的右侧运动时,有两个结论:① QM+ BN 的值不变,②QM﹣ BN 的值不变,其中只有一个结论正确,请你判断正确的结论,并求出其值.
七年级下数学思维训练试卷
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √16B. √-16C. √-1D. √02. 若a、b是方程x^2-5x+6=0的两个根,则a+b的值是()A. 5B. 6C. 4D. 73. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是()A. (2,-3)B. (-2,3)C. (2,-3)D. (-2,-3)4. 下列各式中,正确的是()A. |x|=-xB. |x|=xC. |x|≥0D. |x|≤05. 下列函数中,是反比例函数的是()A. y=2x+3B. y=x^2C. y=2/xD. y=√x6. 若m、n是方程x^2-3x+2=0的两个根,则m^2+n^2的值是()A. 4B. 6C. 7D. 87. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数是()A. 75°B. 90°C. 105°D. 120°8. 若a、b、c、d为等差数列,且a+c=b+d,则下列选项中一定成立的是()A. a=dB. b=cC. a+c=2bD. a+d=2c9. 下列各数中,无理数是()A. √4B. √9C. √-4D. √-910. 若函数y=kx+b的图象经过点(1,2),则k+b的值是()A. 3B. 1C. 0D. -1二、填空题(每题5分,共20分)11. 若方程x^2-4x+3=0的两个根是m和n,则m+n的值是______。
12. 在△ABC中,∠A=45°,∠B=90°,则∠C的度数是______。
13. 若函数y=2x-3的图象经过点(0,y),则y的值是______。
14. 在等差数列{an}中,若a1=2,公差d=3,则第10项an的值是______。
15. 若等比数列{bn}中,b1=4,公比q=2,则第5项bn的值是______。
三、解答题(每题10分,共30分)16. 解方程:2x^2-5x+3=0。
七年级数学思维训练(共10套)5(2)
七年级数学思维训练(共10套)(第一套)班级______________ 姓名_____________一、选择题:1.a 为任意自然数,包括a 在内的三个连续的自然数,可以表示为 ( )A .a -2,a -1,aB .a -3,a -2,a -1C .a ,a +1,a +2D .不同于A 、B 、C 的形式二、计算题:(动动脑筋,可能会有简便的解题方法!)1.____________________56875=⨯2.____________2006200420022000...12108642=+-+-+-+-+-3.__________________8567785667855678=+++4.()()__________888...6428002...888488868888=++++-++++5.______________125.01712517125625.05.0171251753=⨯-⨯+⨯+ 6.______________12346123451234512345=÷ 7._________________31313131=-+-8._______________99163135115131=++++9._____________20042004...200432004220041=++++10._____________90197218561742163015201412136121=++++++++ 三、应用与创新:1.有一高楼,每上一层需要3分钟,每下一层需要1分30秒。
小贤于下午6时15分开始从最底层不断地向上走,到了最顶层后便立即往下走,中途没有停留,他在7时36分返回最底层。
这座高楼共有多少层?2.回答下列各题:(1)用1、2、3、4、5、6、7、8可组成多少个没有重复数字的五位数?(2)在15个连续自然数中最多有多少个质数?最少有多少个质数?(3)以下是一个数列,第一项是1,第二项是4,以后每一项是前两项相乘的积。
七年级奥数思维训练50题
七年级奥数思维训练50题1. 一个数p 为质数,并且p+10,p+14也是质数,p 是多少?除此之外还有别的数吗?2. 证明:大于12的整数都可以表示成两个合数之和。
3. 请同时取出六个连续的正整数,使它们满足:6个数中任取2个、3个、4个、5个、6个数之和都是合数,并简述理由。
4. 已知x 、y 、z 为整数,且11|(7x +2y −5z)。
求证:11|(3x −7y +12z)。
5. 已知定理:“若三个大于3的质数a 、b 、c 满足关系式2a+5b=c ,则a+b+c 是整数n 的倍数”。
问上述定理中的整数n 的最大可能值是多少?说明你的理由。
6. 已知六位数N 的前三位组成的数与后三位组成的数之和能被111整除。
求证:111|N 。
7. 若a 、b 、c 为整数,且|a −b |19+|c −a |99=1试求|c −a|+|a −b|+|b −cl 的值。
8. 海边有一堆苹果,第一只猴子拿走15,扔掉一个;第二只猴子又拿走剩下的15,扔掉一个;第三只猴子又拿走剩下的15,再扔掉一个。
试用代数式表示所说的意思及剩下的苹果数。
9. 父亲和儿子在100米的跑道上进行赛跑,已知儿子跑5步的时间父亲能跑6步,儿子跑7步的距离与父亲跑4步的距离相等.现在儿子站在100米的中点处,父亲站在100米跑道的起点处同时起跑.问父亲能否在100米的终点处超过儿子?并说明理由。
10. 一个负有理数a 在数轴上的位置为A ,那么在数轴上与A 相距d个单位(d>0)的点中,与原点距离最远的点所对应的数是多少?11.某城镇沿环形路上依次排列有五所小学:A1、A2、A3、A4、A5,它们顺次有电脑15台、7台、11台、3台、14台,为使各校的电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最少?并求出电脑的最少总台数。
12.张三、李四和王五三人各有若干两金子,要求互相赠送。
先由张三给李四和王五,所给的金子数等于李四、王五原来各有的,依相同的方式再由李四给张三和王五现有金子数,后由王五给张三和李四现有金子数,互送后每人恰好有64两,问原来三人各有金子多少两?13.培育学校初一7班计划用班会费的66元钱,同时购买平价分别为3元、2元、1元的甲、乙、丙三种笔记本,奖励成绩好的同学,已知购买乙种笔记本的本数比购买甲种笔记本的本数多2本,而购买甲种笔记本的本数不少于10本,且购甲种笔记本的费用不超过总费用的一半,若购买的甲、乙、丙三种笔记本恰好用了66元,问可有几种购买方案,每种方案中购买的甲、乙、丙三种笔记本各多少本?14.有五位小朋友,他们是小明,小红,小华,小青,小琪,他们分别有苹果15个,7个,11个,3个,14个,现要使每位小朋友的苹果数相等,各调几个给邻友:小明给小红,小红给小华,小华给小青,小青给小琪,小琪给小明,若甲给乙一2个,即为乙给甲2个,要使移动的总数最小,应作怎样安排?15.某人从家到商店买东西,三分之一的路程骑自行车,三分之二的路程步行;返回时,三分之一的时间骑自行车,三分之二的时间步行,已知骑车速度为12千米/小时,步行速度为3千米/小时,且去时比返回时所用时间多3小时,那么家到商店的距离是多少千米?16.某人沿着向上移动的自动扶梯从顶朝下走到底用了7分30秒,而他沿着自动扶梯从底朝上走到顶只用了1分钟30秒,那么此人不走,乘着扶梯从底到顶需要用几分钟?又若停电,此人沿扶梯从底走到顶需几分钟(假定此人上、下扶梯的行走速度相同)。
2023 年第四届超常(数学)思维与创新能力测评 初一年级 数学真题
2023年第四届超常(数学)思维与创新能力测评 初一年级考试时间:100分钟满分:150分考试说明:(1)本试卷包括30道不定项选择题(可能有几个选项正确),每小题5分.(2)每道题的分值按正确选项的个数平均分配,但是如有错选,则该题不得分.1.将所给木块旋转,能得到下列哪个选项().A. B. C. D. E.2.循环小数1.451(即1.451 515 151…)等于(). A. 459290B.463310C.469320D. 479330E.4873403.已知a =2023x +2022,b =2023x +2021,c =2023x +2020,则a 2+b 2+c 2−ab −bc −ca 的值为( ).A.3 B.59 C.2020 D.2023 E.40394.在下图中,每一个正三角形的边长都是中间那个正六边形边长的两倍,那么正六边形的面积占六个正三角形面积总和的( ).A.16B.112C.14D.34E.235.以下不能沿着虚线折成一个立方体是().A. B. C. D. E.6.在下图中填入数,使得任意3个连续方框中的数之和为2023.则最左边方框中填入的数是应该是( ).A.1187.已知202009=102000∙409∙2n,则n的值为().A.1991B.2000C.2009D.4018E.50008.如图,某城有一组十分奇怪的限速规定:在离城1km处有一个120km/h的标牌,在离城12km处有一个60km/h的标牌,在离城13km处有一个40km/h的标牌,在离城14km处有一个30km/h的标牌,在离城15km处有一个24km/h的标牌,在离城16km处有一个20km/h的标牌,如果你从120km/h的标牌处出发一直以限定时速行驶,那么需要()才能到达该城.A.30sB.1min13.5sC.1min42sD.2min27sE.3min9.如图所示,三个正方形以顶点相连接在一起,图中已给出若干角的度数,则x的值是().A.41B.42C.43D.44E.4610.一辆自行车的链条在具有48个齿的前链齿轮上运行,通常经过具有18个齿的后轮轴的链齿轮.当后链齿轮每旋转一整圈时,踏板转过的角度是().A.135°B.360°C.960°D.120°E.6712°11.如图,一个立方体的八个角都被切去,形成一些三角形面.将该图形的所有24个角都用对角线连起来,这些对角线中穿过图形内部的共有()条.A.84B.108C.120D.142E.24012.把一个三位数首位前和末位后添写上1,这样得到的五位数比原来的三位数增加14789.则原来三位数的三个数字之和是().A.10B.9C.8D.7E.613. Ⅰ号混合液由柠檬汁、油和醋以1:2:3的比例配成,Ⅱ号混合液由同样三种液体以3:4:5的比例配成,将两种混合液倒在一起后,新的混合液的比例不可能是().A.2:5:8B.4:5:6C.3:5:7D.5:6:7E.7:9:1114.如图所示的网球场中有()个长方形.A.19B.29C.23D.30E.3115.已知|x−1|+|x−2|=1,则x的值().A.只能为1B.只能为2C.可能为任何实数 D.为满足1≤x≤2的一切实数E.以上都不对16.下图是一张城市的道路平面图,除了一条短对角线外,道路全是东西向或南北向的.由于一条路的修补而不可能从点X通过.从P到Q的所有可能走的路线中,有些路线是最短的.则这样的最短路线有()条.A.4B.7C.9D.14E.1617.甲、乙一起工作,甲每工作1天休息2天,乙每工作1天休息3天.已知第一天他们都在工作,最后一天乙肯定在工作.甲、乙同时休息时间比同时工作时间多128天.则他们从第一天到最后一天经过了()天.A.180B.308C.309D.312E.50018.要使关于x的方程ax−1=x+a无解,则a=().A.-1B.0C.1D.2E.以上都不对19.小刚和月月搭乘某航空公司的飞机从A地飞往B地,但因为他们的行李超出了航空公司规定的重量,所以要求他们支付附加费.航空公司收费方法是对超出规定的重量每千克收取相同的费用.小刚付了60元,月月付了100元.他们一共有52kg的行李,如果小刚自己带着两人的全部行李走,他将必须付340元.每人最多可带(不需要付附加费的)行李()kg.A.20B.15C.12D.18E.3020.一个4×4的反幻方是指将数1~16填入4×4方格表内,使得每行、每列、每条对角线上的数之和,经排序后恰好形成十个连续的正整数.如图是一个尚未完成的反幻方,则星号“*”所在方格内应填入().A.1B.2C.15D.16E.以上都不对21.某学校新建5个教室,平均每班减少6人.如果再建5个教室,那么平均每班又减少4人.假设学生总数保持不变,这个学校可能有()名学生.A.560B.600C.650D.720E.80022.在一个2023边形(可以是凹多边形)的内角中,锐角至多有()个.A.2023B.672C.944D.1345E.134923.在一列数1,2,3,…,10000中,有()个数恰好包含两个相邻的数字9.例如:993,1992和9929就是这样的数,而9295或1999则不是.A.270B.271C.280D.123E.26124.从1970年起小红开始收集日历且以后每年都这样做,直到以后每一年至少可用一本已经收集到的日历来代用时为止.则必须收集日历的最后年份是()年.A.1983B.1984C.1997D.2023E.以上都不对25.100个正整数之和为101101,则它们的最大公约数的最大可能值是().A.101B.1100C.1001D.2002E.1001026.如图所示,你有一些白色的1×12×1瓦片.当用这些瓦片以紧贴邻边的方式来覆盖一个3×1的矩形时,共可以设计出4种颜色方案(WWW,BWW,WBW,WWB).那么如果用这些瓦片来覆盖一个10×1的矩形,将可以设计出()种颜色方案.A.47B.89C.155D.286E.30027.已知A,B,C,D,E,F,G,H,I是9个互不相同的非零数字,满足:A除以B余C,D除以E余F,G除以H余I,那么ABC+DEF+GHI的结果是().A.1368B.1458C.1188D.2547E.195328.令s为真分数,即s<t,且为最简分数.若t的值为2到9,s,t为正整数,则符合条件的不同的真t分数有().A.26B.27C.28D.30E.3629.有27个同样大小的小正方体,每个小正方体的六个面上写着一个相同的数,且恰为1~27,用这27个小正方体拼成如图所示的大正方体.请根据如图所示的数据以及下面所给出的条件推断,从六个方向都看不见的小正方体的面上所写的数是().①数9,13和16在同一条直线上.②数22在9和6之间.③17紧挨着5和13,但与9不相邻.④14紧挨着24和27.⑤数20在14的上面.A.22B.20C.17D.9E.530.一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的10倍,则切割成的小正方体中,棱长为1的小正方体的个数可能为3().A.15B.24C.42D.56E.60。
最新七年级下册数学思维专项训练题(共10套)
七年级下册数学思维题(共10套)思维训练题(一)班级______________ 姓名_____________一、选择题:1.a 为任意自然数,包括a 在内的三个连续的自然数,可以表示为 ( )A .a -2,a -1,aB .a -3,a -2,a -1C .a ,a +1,a +2D .不同于A 、B 、C 的形式二、计算题:(动动脑筋,可能会有简便的解题方法!)1.____________________56875=⨯2.____________2006200420022000...12108642=+-+-+-+-+-3.__________________8567785667855678=+++4.()()__________888...6428002...888488868888=++++-++++5.______________125.01712517125625.05.0171251753=⨯-⨯+⨯+ 6.______________12346123451234512345=÷ 7._________________31313131=-+-8._______________99163135115131=++++9._____________20042004...200432004220041=++++10._____________90197218561742163015201412136121=++++++++三、应用与创新:1.有一高楼,每上一层需要3分钟,每下一层需要1分30秒。
小贤于下午6时15分开始从最底层不断地向上走,到了最顶层后便立即往下走,中途没有停留,他在7时36分返回最底层。
这座高楼共有多少层?2.回答下列各题:(1)用1、2、3、4、5、6、7、8可组成多少个没有重复数字的五位数?(2)在15个连续自然数中最多有多少个质数?最少有多少个质数?(3)以下是一个数列,第一项是1,第二项是4,以后每一项是前两项相乘的积。
七年级(下)数学思维拓展训练试题附答案
图4 七(下)数学思维拓展训练时间:45分钟 分值:100分一、选择题(每小题5分,共25分)1.若n 为正整数,且x 2n =3,则(3x 3n )2-4(x 2)2n 的值为( ) (A )207 (B )36 (C )45 (D )217 2.一个长方形的长是2x 厘米,宽比长的一半少4厘米,若将长方形的长和宽都增加3厘米,则该长方形的面积增加为( )(A)9 (B )2x 2+x -3 (C )-7x -3 (D )9x -3 3.若(x-5)·A= x 2+x+B ,则( )(A )A=x+6,B=-30 (B )A=x -6,B=30 (C )A=x+4,B=-20 (D )A=x -4,B=204.已知6141319,27,81===c b a ,则a ,b ,c 大小关系是( )(A )a>c>b (B )a>b>c (C )a<b<c (D )b>c>a5.如图1,直线MN//PQ ,OA ⊥OB ,∠BOQ=30︒.若以点O 为旋转中心,将射线OA 顺时针旋转60︒后,这时图中30︒的角的个数是 ( )(A) 4个 (B) 3个 (C) 2个 (D) 1个二、填空题(每小题5分,共25分)6.用如图2所示的正方形和长方形卡片若干张,拼成一个边长为a+b 的正方形,需要B 类卡片_______张.7.如图3,AB ∥CD ,M 、N 分别在AB ,CD 上,P 为两平行线间一点,那么∠1+∠2+∠3= ︒.8.如图4,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若∠ADE =125︒, 则∠DBC= ︒.9.三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 . 10. 数学家发明了一个魔术盒,当任意数对()b a ,进入其中时,会得到一个新的数:图1O N M A B P Qa b图2 3 2 C P D 1B N A M 图3()()21--b a .现将数对()1,m 放入其中得到数n ,再将数对()m n ,放入其中后,如果最后得到的数是 .(结果要化简) 三、解答题(每小题10分,共50分)11.计算:(1+2+3+…+2013)(2+3+4+…+2012)-(1+2+3+…+2012) (2+3+4+…+2013).12.图5是按一定规律排列的方程组集合和它解的集合的对应关系图,若方程组集合中的方程组自左至右依次记作方程组1、方程组2、方程组3、……方程组n . (1)将方程组1的解填入图中;(2)请依据方程组和它的解变化的规律,将方程组n 和它的解直接填入集合图中; (3)若方程组⎩⎨⎧-=+1my x y x 的解是⎨⎧=10x ,求m 的值,并判断该方程组是否符合(2)中的规律?13.如图6,已知两组直线分别互相平行. (1)若∠1=115º,求∠2,∠3的度数;(2)题(1)中隐含着一个规律,请你根据(1)的结果进行归纳,试用文字表述出来; (3)利用(2)中的结论解答:如果两个角的两边分别平行,其中一个角是另一个角的2倍,求这两个角的大小.方程组图514.下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y.原式=(y+2) (y +6)+4 ①=y2+8y+16 ②=( y+4)2 ③=(x2-4x+4)2 ④回答下列问题:(1)该同学②到③运用了因式分解的_______.(A)提取公因式(B)平方差公式(C)两数和的完全平方公式(D)两数差的完全平方公式(2)该同学因式分解的结果是否彻底?________(填“彻底”或“不彻底”);若不彻底,请直接写出因式分解的最后结果_________.(3)请模仿以上方法对多项式(x2-2x)(x2-2x+2)+1进行因式分解.15.如下几个图形是五角星和它的变形.(1)图7中是一个五角星,则∠A+∠B+∠C+∠D+∠E= º.(2)图7中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?如图8,说明你的结论的正确性.(3)把图8中的点C向上移到BD上时,五个角的和(即∠CAD+∠B+∠ACE +∠D+∠E)有参考答案 1~5.ADABA6.27.3608.559. 510x y =⎧⎨=⎩ 10. -m 2+2m11.设1+2+3+…+2012=a ,2+3+4+…+2012=b ,则a= b+1.(1+2+3+…+2013)(2+3+4+…+2012)-(1+2+3+…+2012) (2+3+4+…+2013)= (a+2013)b -a(b+2013)=ab+2013b -ab -2013a=2013b -2013a=2013b -2013(b+1)= 2013b -2013 b -2013=-2013.12.(1)直接消元可求出⎩⎨⎧==01y x ;(2)观察第一个方程都是x+y=1,第二个方程x 前面的系数都是1,而y 前面的系数应是-n ,常数项应是n 2,这样第二个方程应是x -ny= n 2,所以第n 个方程组为⎩⎨⎧=-=+21n ny x y x .其解的规律是x 从1开始依次增1,y 从0开始依次减1,这样第n 个方程组的解为⎩⎨⎧-==n y n x 1;(3)把⎩⎨⎧-==9y 10x 代入方程x -my=16,得m=32.显然不符合(2)中的规律.13.(1)因为两组直线分别互相平行,所以由平行线的性质可得∠2=∠1=115º,∠3+∠2=180º,则∠3=180º-115º=65º;(2)如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补;(3)设其中的一个角为xº,则另一个角为2xº.因为xº+2xº=180º,所以x=60º.故这两个角分别为60º和120º. 14.(1)C(2)不彻底,( x -2)4(3)设x 2-2x=y .原式=y (y +2)+1= y 2+2y+1=( y+1)2=(x 2-2x+1)2=( x -1)4 . 15.(1)180º.(2)无变化.因为∠BAC=∠C+∠E ,∠EAD=∠B+∠D ,所以∠CAD+∠B+∠C+∠D+∠E=∠BAC+∠CAD+∠EAD=180º.(3)无变化.因为∠ACB=∠CAD+∠D ,∠ECD=∠B+∠E ,所以∠CAD+∠B+∠ACE +∠D+∠E=∠ACB+∠ACE+∠ECD=180º.。
七年级数学逻辑思维
一、活跃思维1、鸡兔同笼,上数共有35个头,下有94只脚,鸡,兔各有几只?2、七只小羊捉迷藏,已经找到了三只,还有几只没有找到?3、3个人3天喝3瓶水,9个人9天喝几瓶水?二、逻辑思维题目1、有两根不均匀分布的香,香烧完的时间是一个小时,你能用什么方法来确定一段15分钟的时间?2、一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。
请问三个女儿的年龄分别是多少?为什么?(提示:年龄太小的小孩的头发是黄色的)。
3、有个人去买葱,问葱多少钱一斤,卖葱的人说1块钱1斤,这是100斤,要完100元,买葱的人又问,葱白跟葱绿分开卖不,卖葱的人说卖,葱白7毛、葱绿3毛,买葱的人都买下了,称了称葱白50斤,葱绿50斤,最后一算葱白50×7 = 35元,葱绿50×3 = 15元,35+15 = 50元,买葱的人给了卖葱的人50元就走了。
而卖葱的人却纳闷了,为什么明明要卖100元的葱,而那个买葱的人为什么50元就买走了呢?4、有3个人去投宿,一晚30元。
三个人每人掏了10元凑够30元交给了老板,后来老板说今天优惠只要25元就够了,拿出5元命令服务生退还给他们,服务生偷偷藏起了2元,然后,把剩下的3元钱分给了那三个人,每人分到1元。
这样,一开始每人掏了10元,现在又退回1元,也就是10 – 1 = 9,每人只花了9元钱,3个人每人9元,3 × 9 = 27元 + 服务生藏起的2元 = 29元,还有一元钱去了哪里???此题在新西兰面试的时候曾引起巨大反响。
有谁知道答案呢?5、按照图中数字的排列规则问号处应该是什么数字?三、数学之美1、数字黑洞6174任意一个四位数,把他的四个数字按由大到小的顺序重新排列成一个四位数,再减去它的反序数,得到的数,重复上述变换,如此进行下去,只要四个数字不全相同,则最多进行7次上述变换,就会出现四位数6174。
七年级脑力测试题及答案
七年级脑力测试题及答案1. 问题:请计算以下数学表达式的值:\(3x + 5 = 20\),其中 \(x\) 是一个未知数。
答案:首先,将等式两边同时减去5,得到 \(3x = 15\)。
然后,将等式两边同时除以3,得到 \(x = 5\)。
2. 问题:如果一个圆的直径是10厘米,那么它的周长是多少?答案:圆的周长公式是 \(C = \pi d\),其中 \(C\) 是周长,\(d\)是直径。
将直径 \(d = 10\) 厘米代入公式,得到 \(C = \pi \times 10\) 厘米。
如果取 \(\pi\) 的近似值为3.14,那么周长 \(C\approx 3.14 \times 10 = 31.4\) 厘米。
3. 问题:在英语中,“apple”是什么意思?答案:在英语中,“apple”指的是苹果。
4. 问题:请列举三个与“水”有关的成语。
答案:三个与“水”有关的成语分别是:水到渠成、水落石出、水滴石穿。
5. 问题:在科学中,光的传播速度是多少?答案:在科学中,光在真空中的传播速度是 \(299,792,458\) 米/秒。
6. 问题:请解释什么是“惯性”。
答案:惯性是物体保持其静止状态或匀速直线运动状态的性质,除非受到外力的作用。
7. 问题:请列举三个可以减少空气污染的方法。
答案:三个可以减少空气污染的方法包括:使用公共交通工具、减少化石燃料的使用、植树造林。
8. 问题:请计算以下几何图形的面积:一个长为8厘米,宽为5厘米的矩形。
答案:矩形的面积可以通过公式 \(A = l \times w\) 计算,其中\(A\) 是面积,\(l\) 是长度,\(w\) 是宽度。
将长度 \(l = 8\) 厘米和宽度 \(w = 5\) 厘米代入公式,得到面积 \(A = 8 \times 5 = 40\) 平方厘米。
9. 问题:在化学中,水的化学式是什么?答案:在化学中,水的化学式是 \(H_2O\)。
2023希望杯七年级数学思维训练100题(含答案)
2023希望数学——7年级培训80题1.计算:1111 13355720212023________.2.已知202120212021202220222022202320232023 20202020+2020202120212021202220222022 a b c,,,则abc ________.3.123499910001001(1)1(1)1(1)1(1)的值是________.4.设11112018201920202050M,则1M的整数部分是________.5.计算:4444444444 1032422324343244632458324 432416324283244032452324=________.6.已知5555284110133144□,其中□里的数字是________.7.哪些连续正整数之和为1000?试求出所有的解.8.2023减去它的12,再减去余下的13,再减去余下的14,以此类推,一直到最后减去余下的11000,最后的结果为________.9.n个正数的乘积的n次方根称为这n个数的几何平均数.喜羊羊写了4个数,这4个数的几何平均数是2048;美羊羊也写了4个数,这4个数的几何平均数是8.那么,喜羊羊和美羊羊写的这8个数的几何平均数是________.10.有下列三个命题:(1)若α,β是不相等的无理数,则αβ + α – β是无理数;(2)若α,β是不相等的无理数,则是无理数;(3)若α,β 是无理数.其中正确的命题个数是________.11. 如果a ,b ,c 是三个任意整数,那么2a b ,2a c ,2b c ( ). A. 都不是整数B. 至少有两个整数C. 至少有一个整数D. 都是整数12. 有理数m ,n 在数轴上的位置如图所示,在m n ,m n ,n m ,m n 中正数的个数是________.13. 如果实数a ,b ,c 在数轴上的位置如图所示,那么代数式||||a b b c 可以化简为( ).A. 2c – aB. 2a – 2bC. –aD. a14. 把4个不同的整数两两相加得到6个和,并且这6个和是5个互不相同的数:23,26,29,32和35.那么这4个整数中最大的是________.15. 从1~26这26个整数中取出两个数,选出的两个数相乘所得的积正好是剩余的24个数之和.选出的两个数分别是________和________.16. 已知a – b = 4,ab + c 2 + 4 = 0,则a + b = ________.17. 已知a 、b 、c 是实数,且13ab a b ,17bc b c ,112ac a c ,则ac bc ab abc =________.18. 已知 | x | + x + y =5,x + | y |-y = 10,则 x + y 的值是________.19.________.20. 222 − 4有________个不同的质因数.21. 已知x 是实数,则(x 2-4x +3)(x 2+4x +3)的最小值是________.22. 若实数a ,b ,c 满足等式36b ,96b c ,则c 可能取的最大值为________.23. 已知x ,y 是非负整数,且满足4(2)34x y ,那么满足条件的x + y 的最大值是________.24. 若正整数x ,y ,z 满足11145x y z ,则xyz 的最大值是________.25. 231x x x 的最小值是________.26. 满足24x y y 的整数对(x ,y )有________个.27. 设a 是整数,关于x 的方程12x a 只有三个不同的整数解,求这三个解.28. 若a 为整数,则关于x 的方程(a – 1) x = a + 1的所有整数解的和是________.29. 已知x 与y 使得x + y ,x – y ,xy ,x y四个数中的三个相等,则这样的数对(x ,y )有________对.30. 若关于x ,y 的二元一次方程组 132kx y b k x y 有无穷多组解,则22k b 的值为________.31. 若[x ]表示不超过x 的最大整数,且满足方程3x + 5[x ] – 49 = 0,则3x +1=________.32. 如果关于x 的不等式组9080x a x b 的整数解仅有1,2,3,那么整数a ,b 组成的有序数对(a ,b )共有________对.33. 如果关于x 的不等式组100x x a无解,则a 的取值范围是________.34. 在1~100的自然数中与10互质的自然数共有________个.35. 已知三个质数a ,b ,c 满足133a b c ab bc ac ,则abc =________.36.已知三位数abc能被5整除,但不能被6和7整除;三位数cba能被6整除,但不能被5和7整除;三位数cab能被7整除,但不能被5和6整除,则abc =________.37.九位数ABCABCBBB能被1~17中的任意整数整除,且A,B,C是不同的数字,则九位数ABCABCBBB是________.38.乘积376×733的个位数字是________.39.四位数aabb是一个整数的平方,aabb=________.p 的不同正因数的个数不超过10,则满足题意的p 40.已知p是质数,且271的个数是________.41.如图所示有4种类型的几何体,每个几何体都是由4个单位正方体组成.选出8个同类型的几何体,把它们组合成一个2×4×4的长方体.可以完成组合的几何体有________种类型.42.已知圆环内直径为a厘米,外直径为b厘米,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为________厘米.43.设有一个边长为1的正三角形,记作A1(如图1),将A1的每条边三等分,以中间的线段为一边向形外作正三角形,去掉中间的线段后所得到的图形记作A2(如图2);将A2的每条边三等分,并重复上述过程,所得到的图形记作A3(如图3);再将A3的每条边三等分,并重复上述过程,所得到的图形记作A4,那么A4的周长是________.图1 图2 图344. 如图所示,AOB 是一条直线,若1:2:3:41:2:4:5 ,则2 的余角是________度.45. 如图,AB //CD ,那么∠1 –∠2 +∠3 –∠4 +∠5 =________度.46. 如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( ).A .450°B .540°C .630°D .720°47.从一个凸n边形的纸板上剪下一个三角形,剩余的是一个内角和为2160°的多边形,则n最大是________.48.一个凸n边形的内角和小于1998°,那么n的最大值是________.49.如果一个凸多边形的内角和等于外角和的3倍,那么这个多边形的边数是().A.4B.6C.8D.10E.1250.如图所示,在△ABC中,AC=7,BC=4,D为AB中点,E为AC边上一点,且1902AED C,则CE =________.51.在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么△ABC的面积是________.52.△ABC中,∠A为最小角,∠B为最大角,且2∠B = 5∠A,若∠B的最大值为m°,∠B的最小值为n°,则m + n =________.53.如图,在锐角△ABC中,高线CD,BE相交于点F,若∠A=55°,则∠BFC的度数是________度.54.如图,PQ=PR=QS,线段PR与QS相互垂直,则∠PRQ与∠PSQ度数之和是________度.55.在平行四边形ABCD中,AD = 2AB,点M是AD的中点,CE⊥AB于E.如果∠CEM = 40°,那么∠DME的值是().A.150° B.140° C.135° D.130°56.若长方形内有一点P,点P到各边的距离从小到大依次为1,2,5,6则长方形面积最小为________.57.如图所示的4×5的方格图中,过格点P的直线与方格图上、下边界相交形成的直角梯形ABCD(其中AB<CD)的面积最大是________.58. 如图,CD 是Rt △ABC 斜边AB 上的高,∠BAC 的平分线AE 交CD 于H ,交∠BCD 的平分线CF 于G .求证:HF ∥BC .59. 由8个相同的小正方体搭成的一个几何体,俯视图如下,那么这个几何体的左视图一定不是( ).60. 若n 个人完成一项工程需要m 天,则(m +n )个人完成这项工程需要( )天. A.nm mnB.m nm nC.m nmnD.2mnm n61. 一个商人用m 元(m 为正整数)买来了n 台(n 为质数)电视机,其中有两台以成本的一半价钱卖给某个慈善机构,其余的电视机在商店出售,每台盈利500元,结果该商人获得利润为5500元,则n 的最小值是________.62. 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是________%. (注:100% 销售价进价利润率进价)63. 小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的最大值是________.64. 图书馆内,在标有号码1,2,3,4的书架上分别有书120,135,142,167本.若干天后,每个书架上都各被借出a 本书,又过了若干天,四个书架又分别被借出0,b ,c ,d 本书,并且四个书架上余下同样本数的书. 若b ,c ,d ≥1,b +c +d =a ,则两次借出书后,1号书架剩有________本书.65.五个不同的数,两两之和依次等于3,4,5,6,7,8,11,12,13,15 则这五个数的平均数是________.66.王明在早晨六点至七点之间外出晨练,锻炼时长不超过一小时,出门和回家的时候,时针与分针的夹角都是110°.则王明晨练的时间为________分钟.67.某人骑车沿直线旅行,先前进了a千米,休息了一段时间,又原路返回b千米(b﹤a),再前进c千米,则此人离起点的距离S与时间t的关系示意图是().68.某届运动会的十一天的比赛中,醒狮队拿了16块金牌,其中每天至少拿一枚金牌,则醒狮队拿金牌的不同的情况可能有________种.(假设金牌都是一样的)69.将正方形的每条边8等分,再以这些分点为顶点(不包括正方形的顶点),可以得到不同的三角形的个数是________.70.口袋中装有20个只有颜色不同其他都相同的球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么这样取法有________种.71.将若干红黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放________个球.72.在{1000,1001,1002,…,2000}中有________对相邻的数满足下列条件:每对中的两数相加时不需要进位.73.试求所有满足如下性质的四元实数组(a,b,c,d):组中的任一数都等于其余三个数中某两个数的乘积.(注:四元实数组中的数相同,顺序不同,算作同一组)74.将三位数A各个数位上的数字重新排列,得出的所有数的算术平均值等于A.这样的三位数A共有________个.75.如图,6个人围成一圈做传球游戏,每个人接到球后传给和他不相邻的某一人(如:A接到球后可以传给C、D或E),开始时,球在A的手中,若球被传递三次后又回到A,此种情况出现的概率是________.76.如图,△ABC中,D、E分别是边BC、AC的中点,从这8个图形△ABD、△ACD、△ABE、△BCE、△GAB、△GAE、△GBD、四边形CEGD中任取2个图形,取出的2个图形面积相等的概率是________.77.按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x的取值范围是________.78.如图是一个正方体的平面展开图,若该正方体相对的两个面上的代数式的值相等,则x – y – z的值是________.79. 设)(n f 为正整数n (十进制)的各数位上的数字的平方之和,如14321)123(222 f .记)()(1n f n f ,))(()(1n f f n f k k ,k =1,2,3……,则2016(2016)f 的值是________.80. 有16枚棋子,都是一面黑色,另一面白色,放在4×4的正方形网格里.最初,所有棋子都是黑面朝上.规定:每次操作,将一个2×2正方形中的4枚棋子都正反面翻转一次.那么,要得到如图所示的排列,至少需要经过________次操作.2023希望数学——7年级培训80题答案1.计算:1111 13355720212023________.答案:1011 20232.已知202120212021202220222022202320232023 20202020+2020202120212021202220222022 a b c,,,则abc ________.答案:13.123499910001001(1)1(1)1(1)1(1)的值是________.答案:–14.设11112018201920202050M,则1M的整数部分是________.答案:615.计算:4444444444 1032422324343244632458324 432416324283244032452324=________.答案:3736.已知5555284110133144□,其中□里的数字是________.答案:77.哪些连续正整数之和为1000?试求出所有的解.答案:198+199+200+201+202;55+56+...+70;28+29+ (52)8. 2023减去它的12,再减去余下的13,再减去余下的14,以此类推,一直到最后减去余下的11000,最后的结果为________.答案:202310009. n 个正数的乘积的n 次方根称为这n 个数的几何平均数.喜羊羊写了4个数,这4个数的几何平均数是2048;美羊羊也写了4个数,这4个数的几何平均数是8.那么,喜羊羊和美羊羊写的这8个数的几何平均数是________. 答案:12810. 有下列三个命题:(1)若α,β是不相等的无理数,则αβ + α – β是无理数; (2)若α,β是不相等的无理数,则是无理数;(3)若α,β 是无理数. 其中正确的命题个数是________. 答案:011. 如果a ,b ,c 是三个任意整数,那么2a b ,2a c ,2b c( ). A. 都不是整数B. 至少有两个整数C. 至少有一个整数D. 都是整数答案:C12. 有理数m ,n 在数轴上的位置如图所示,在m n ,m n ,n m ,m n 中正数的个数是________.答案:213. 如果实数a ,b ,c 在数轴上的位置如图所示,那么代数式||||a b b c 可以化简为( ).A. 2c – aB. 2a – 2bC. –aD. a答案:C14. 把4个不同的整数两两相加得到6个和,并且这6个和是5个互不相同的数:23,26,29,32和35.那么这4个整数中最大的是________. 答案:1915. 从1~26这26个整数中取出两个数,选出的两个数相乘所得的积正好是剩余的24个数之和.选出的两个数分别是________和________. 答案:15,2116. 已知a – b = 4,ab + c 2 + 4 = 0,则a + b = ________.答案:017. 已知a 、b 、c 是实数,且13ab a b ,17bc b c ,112ac a c ,则acbc ab abc=________.答案:11118. 已知 | x | + x + y =5,x + | y |-y = 10,则 x + y 的值是________.答案:119.________.答案:20. 222 − 4有________个不同的质因数.答案:621. 已知x 是实数,则(x 2-4x +3)(x 2+4x +3)的最小值是________.答案:–1622. 若实数a ,b ,c 满足等式36b ,96b c ,则c 可能取的最大值为________. 答案:223. 已知x ,y 是非负整数,且满足4(2)34x y ,那么满足条件的x + y 的最大值是________. 答案:424. 若正整数x ,y ,z 满足11145x y z,则xyz 的最大值是________. 答案:16025. 231x x x 的最小值是________.答案:526. 满足24x y y 的整数对(x ,y )有________个.答案:627. 设a 是整数,关于x 的方程12x a 只有三个不同的整数解,求这三个解.答案:–3,1,528. 若a 为整数,则关于x 的方程(a – 1) x = a + 1的所有整数解的和是________.答案:429. 已知x 与y 使得x + y ,x – y ,xy ,x y四个数中的三个相等,则这样的数对(x ,y )有________对. 答案:230. 若关于x ,y 的二元一次方程组 132kx y bk x y 有无穷多组解,则22k b 的值为________. 答案:531. 若[x ]表示不超过x 的最大整数,且满足方程3x + 5[x ] – 49 = 0,则3x +1=________. 答案:2032. 如果关于x 的不等式组9080x a x b的整数解仅有1,2,3,那么整数a ,b 组成的有序数对(a ,b )共有________对. 答案:7233. 如果关于x 的不等式组100x x a无解,则a 的取值范围是________.答案:1a34. 在1~100的自然数中与10互质的自然数共有________个.答案:4035. 已知三个质数a ,b ,c 满足133a b c ab bc ac ,则abc =________.答案:15436. 已知三位数abc 能被5整除,但不能被6和7整除;三位数cba 能被6整除,但不能被5和7整除;三位数cab 能被7整除,但不能被5和6整除,则abc =________. 答案:67537. 九位数ABCABCBBB 能被1~17中的任意整数整除,且A ,B ,C 是不同的数字,则九位数ABCABCBBB 是________. 答案:30630600038. 乘积376 ×733 的个位数字是________.答案:739. 四位数aabb 是一个整数的平方,aabb =________.答案:774440. 已知p 是质数,且271p 的不同正因数的个数不超过10,则满足题意的p的个数是________. 答案:241. 如图所示有4种类型的几何体,每个几何体都是由4个单位正方体组成.选出8个同类型的几何体,把它们组合成一个2×4×4的长方体.可以完成组合的几何体有________种类型.答案:442. 已知圆环内直径为a 厘米,外直径为b 厘米,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为________厘米. 答案:49a +b43. 设有一个边长为1的正三角形,记作A 1(如图1),将A 1的每条边三等分,以中间的线段为一边向形外作正三角形,去掉中间的线段后所得到的图形记作A 2(如图2);将A 2的每条边三等分,并重复上述过程,所得到的图形记作A 3(如图3);再将A 3的每条边三等分,并重复上述过程,所得到的图形记作A 4,那么A 4的周长是________.图1 图2 图3答案:64944. 如图所示,AOB 是一条直线,若1:2:3:41:2:4:5 ,则2 的余角是________度.答案:6045.如图,AB//CD,那么∠1 –∠2 +∠3 –∠4 +∠5 =________度.答案:046.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=().A.450° B.540° C.630° D.720°答案:B47.从一个凸n边形的纸板上剪下一个三角形,剩余的是一个内角和为2160°的多边形,则n最大是________.答案:1548.一个凸n边形的内角和小于1998°,那么n的最大值是________.答案:1349.如果一个凸多边形的内角和等于外角和的3倍,那么这个多边形的边数是().A.4B.6C.8D.10E.12答案:C50.如图所示,在△ABC中,AC=7,BC=4,D为AB中点,E为AC边上一点,且1902AED C,则CE =________.答案:5.551.在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么△ABC的面积是________.答案:1652.△ABC中,∠A为最小角,∠B为最大角,且2∠B = 5∠A,若∠B的最大值为m°,∠B的最小值为n°,则m + n =________.答案:17553.如图,在锐角△ABC中,高线CD,BE相交于点F,若∠A=55°,则∠BFC的度数是________度.答案:12554.如图,PQ=PR=QS,线段PR与QS相互垂直,则∠PRQ与∠PSQ度数之和是________度.答案:13555.在平行四边形ABCD中,AD = 2AB,点M是AD的中点,CE⊥AB于E.如果∠CEM = 40°,那么∠DME的值是().A.150° B.140° C.135° D.130°答案:A56.若长方形内有一点P,点P到各边的距离从小到大依次为1,2,5,6则长方形面积最小为________.答案:3357.如图所示的4×5的方格图中,过格点P的直线与方格图上、下边界相交形成的直角梯形ABCD(其中AB<CD)的面积最大是________.答案:1258.如图,CD是Rt△ABC斜边AB上的高,∠BAC的平分线AE交CD于H,交∠BCD的平分线CF于G.求证:HF∥BC.答案:证明:由∠DCB=90°-∠B=∠BAC,知∠HCG=12∠DCB=12∠BAC=∠HAD.而∠CHG=∠AHD,从而∠CGH=180°-(∠HCG+∠CHG)=180°-(∠HAD+∠AHD)=90°,知AG⊥CG,即AG⊥CF.此时,∠FCA =90°-∠GAC=90°-∠GAF=∠CF A,故AC=AF,即点A在CF的垂直平分线AG上.又H在AG上,则HC=HF,即知∠HFC=∠FCH=∠FCB,故HF∥BC.59.由8个相同的小正方体搭成的一个几何体,俯视图如下,那么这个几何体的左视图一定不是().答案:C60. 若n 个人完成一项工程需要m 天,则(m +n )个人完成这项工程需要( )天. A.nm mnB.m nm nC.m nmnD.2mnm n答案:A61. 一个商人用m 元(m 为正整数)买来了n 台(n 为质数)电视机,其中有两台以成本的一半价钱卖给某个慈善机构,其余的电视机在商店出售,每台盈利500元,结果该商人获得利润为5500元,则n 的最小值是________. 答案:1762. 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是________%. (注:100% 销售价进价利润率进价)答案:1763. 小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱将是你的n倍”;小玲对小倩说:“你若给我n元,我的钱数将是你的2倍”,其中n为正整数,则n的最大值是________.答案:864.图书馆内,在标有号码1,2,3,4的书架上分别有书120,135,142,167本.若干天后,每个书架上都各被借出a本书,又过了若干天,四个书架又分别被借出0,b,c,d本书,并且四个书架上余下同样本数的书.若b,c,d≥1,b+c+d=a,则两次借出书后,1号书架剩有________本书.答案:3665.五个不同的数,两两之和依次等于3,4,5,6,7,8,11,12,13,15 则这五个数的平均数是________.答案:4.266.王明在早晨六点至七点之间外出晨练,锻炼时长不超过一小时,出门和回家的时候,时针与分针的夹角都是110°.则王明晨练的时间为________分钟.答案:4067.某人骑车沿直线旅行,先前进了a千米,休息了一段时间,又原路返回b千米(b﹤a),再前进c千米,则此人离起点的距离S与时间t的关系示意图是().答案:C68.某届运动会的十一天的比赛中,醒狮队拿了16块金牌,其中每天至少拿一枚金牌,则醒狮队拿金牌的不同的情况可能有________种.(假设金牌都是一样的)答案:300369.将正方形的每条边8等分,再以这些分点为顶点(不包括正方形的顶点),可以得到不同的三角形的个数是________.答案:313670.口袋中装有20个只有颜色不同其他都相同的球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么这样取法有________种.答案:1671.将若干红黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放________个球.答案:1572.在{1000,1001,1002,…,2000}中有________对相邻的数满足下列条件:每对中的两数相加时不需要进位.答案:15673.试求所有满足如下性质的四元实数组(a,b,c,d):组中的任一数都等于其余三个数中某两个数的乘积.(注:四元实数组中的数相同,顺序不同,算作同一组)答案:(0,0,0,0),(1,1,1,1),(-1,-1,1,1),(-1,-1,-1,1)74.将三位数A各个数位上的数字重新排列,得出的所有数的算术平均值等于A.这样的三位数A共有________个.答案:1575.如图,6个人围成一圈做传球游戏,每个人接到球后传给和他不相邻的某一人(如:A接到球后可以传给C、D或E),开始时,球在A的手中,若球被传递三次后又回到A,此种情况出现的概率是________.答案:2 2776.如图,△ABC中,D、E分别是边BC、AC的中点,从这8个图形△ABD、△ACD、△ABE、△BCE、△GAB、△GAE、△GBD、四边形CEGD中任取2个图形,取出的2个图形面积相等的概率是________.答案:2 777.按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x的取值范围是________.答案:7<x ≤1978. 如图是一个正方体的平面展开图,若该正方体相对的两个面上的代数式的值相等,则x – y – z 的值是________.答案:379. 设)(n f 为正整数n (十进制)的各数位上的数字的平方之和,如14321)123(222 f .记)()(1n f n f ,))(()(1n f f n f k k ,k =1,2,3……,则2016(2016)f 的值是________. 答案:14580. 有16枚棋子,都是一面黑色,另一面白色,放在4×4的正方形网格里.最初,所有棋子都是黑面朝上.规定:每次操作,将一个2×2正方形中的4枚棋子都正反面翻转一次.那么,要得到如图所示的排列,至少需要经过________次操作.答案:6。
七年级(下)数学思维拓展训练试题附答案
图4七(下)数学思维拓展训练时间:45分钟 分值:100分一、选择题(每小题5分,共25分)1.若n 为正整数,且x 2n =3,则(3x 3n )2-4(x 2)2n 的值为( )(A )207 (B )36 (C )45 (D )2172.一个长方形的长是2x 厘米,宽比长的一半少4厘米,若将长方形的长和宽都增加3厘米,则该长方形的面积增加为( )(A)9 (B )2x 2+x -3 (C )-7x -3 (D )9x -33.若(x-5)·A= x 2+x+B ,则( )(A )A=x+6,B=-30 (B )A=x -6,B=30(C )A=x+4,B=-20 (D )A=x -4,B=204.已知6141319,27,81===c b a ,则a ,b ,c 大小关系是( )(A )a>c>b (B )a>b>c (C )a<b<c (D )b>c>a5.如图1,直线MN//PQ ,OA ⊥OB ,∠BOQ=30︒.若以点O 为旋转中心,将射线OA 顺时针旋转60︒后,这时图中30︒的角的个数是 ( )(A) 4个 (B) 3个 (C) 2个 (D) 1个二、填空题(每小题5分,共25分)6.用如图2所示的正方形和长方形卡片若干张,拼成一个边长为a+b 的正方形,需要B 类卡片_______张.7.如图3,AB ∥CD ,M 、N 分别在AB ,CD 上,P 为两平行线间一点,那么∠1+∠2+∠3= ︒.8.如图4,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若∠ADE =125︒, 则∠DBC= ︒.9.三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 .10. 数学家发明了一个魔术盒,当任意数对()b a ,进入其中时,会得到一个新的数:图1 O N M A B P Q aa ab A 类 B 类 C 类 图2()()21--b a .现将数对()1,m 放入其中得到数n ,再将数对()m n ,放入其中后,如果最后得到的数是 .(结果要化简)三、解答题(每小题10分,共50分)11.计算:(1+2+3+…+2013)(2+3+4+…+2012)-(1+2+3+…+2012) (2+3+4+…+2013).12.图5是按一定规律排列的方程组集合和它解的集合的对应关系图,若方程组集合中的方程组自左至右依次记作方程组1、方程组2、方程组3、……方程组n .(1)将方程组1的解填入图中;(2)请依据方程组和它的解变化的规律,将方程组n 和它的解直接填入集合图中;(3)若方程组⎩⎨⎧-=+1my x y x 的解是⎨⎧=10x ,求m 的值,并判断该方程组是否符合(2)中的规律?13.如图6,已知两组直线分别互相平行.(1)若∠1=115º,求∠2,∠3的度数;(2)题(1)中隐含着一个规律,请你根据(1)的结果进行归纳,试用文字表述出来;(3)利用(2)中的结论解答:如果两个角的两边分别平行,其中一个角是另一个角的2倍,求这两个角的大小.方程组图514.下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y.原式=(y+2) (y +6)+4 ①=y2+8y+16 ②=( y+4)2 ③=(x2-4x+4)2 ④回答下列问题:(1)该同学②到③运用了因式分解的_______.(A)提取公因式(B)平方差公式(C)两数和的完全平方公式(D)两数差的完全平方公式(2)该同学因式分解的结果是否彻底?________(填“彻底”或“不彻底”);若不彻底,请直接写出因式分解的最后结果_________.(3)请模仿以上方法对多项式(x2-2x)(x2-2x+2)+1进行因式分解.15.如下几个图形是五角星和它的变形.(1)图7中是一个五角星,则∠A+∠B+∠C+∠D+∠E= º.(2)图7中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?如图8,说明你的结论的正确性.(3)把图8中的点C向上移到BD上时,五个角的和(即∠CAD+∠B+∠ACE +∠D+∠E)参考答案1~5.ADABA6.27.3608.559. 510x y =⎧⎨=⎩ 10. -m 2+2m 11.设1+2+3+…+2012=a ,2+3+4+…+2012=b ,则a= b+1.(1+2+3+…+2013)(2+3+4+…+2012)-(1+2+3+…+2012) (2+3+4+…+2013)= (a+2013)b -a(b+2013)=ab+2013b -ab -2013a=2013b -2013a=2013b -2013(b+1)= 2013b -2013 b -2013=-2013.12.(1)直接消元可求出⎩⎨⎧==01y x ;(2)观察第一个方程都是x+y=1,第二个方程x 前面的系数都是1,而y 前面的系数应是-n ,常数项应是n 2,这样第二个方程应是x -ny= n 2,所以第n 个方程组为⎩⎨⎧=-=+21n ny x y x .其解的规律是x 从1开始依次增1,y 从0开始依次减1,这样第n 个方程组的解为⎩⎨⎧-==n y n x 1;(3)把⎩⎨⎧-==9y 10x 代入方程x -my=16,得m=32.显然不符合(2)中的规律.13.(1)因为两组直线分别互相平行,所以由平行线的性质可得∠2=∠1=115º,∠3+∠2=180º,则∠3=180º-115º=65º;(2)如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补;(3)设其中的一个角为xº,则另一个角为2xº.因为xº+2xº=180º,所以x=60º.故这两个角分别为60º和120º.14.(1)C(2)不彻底,( x -2)4(3)设x 2-2x=y .原式=y (y +2)+1= y 2+2y+1=( y+1)2=(x 2-2x+1)2=( x -1)4 .15.(1)180º.(2)无变化.因为∠BAC=∠C+∠E ,∠EAD=∠B+∠D ,所以∠CAD+∠B+∠C+∠D+∠E=∠BAC+∠CAD+∠EAD=180º.(3)无变化.因为∠ACB=∠CAD+∠D ,∠ECD=∠B+∠E ,所以∠CAD+∠B+∠ACE +∠D+∠E=∠ACB+∠ACE+∠ECD=180º.。
人教版七年级下册数学思维专项训练题(无答案)(共10套)
七年级下册数学思维专项训练题(共10套)思维训练题(一)班级______________ 姓名_____________ 一、选择题:1.a 为任意自然数,包括a 在内的三个连续的自然数,可以表示为 ( )A .a -2,a -1,aB .a -3,a -2,a -1C .a ,a +1,a +2D .不同于A 、B 、C 的形式二、计算题:(动动脑筋,可能会有简便的解题方法!)1.____________________56875=⨯2.____________2006200420022000...12108642=+-+-+-+-+- 3.__________________8567785667855678=+++4.()()__________888...6428002...888488868888=++++-++++5.______________125.01712517125625.05.0171251753=⨯-⨯+⨯+ 6.______________12346123451234512345=÷7._________________31313131=-+-8._______________99163135115131=++++ 9._____________20042004...200432004220041=++++10._____________90197218561742163015201412136121=++++++++三、应用与创新:1.有一高楼,每上一层需要3分钟,每下一层需要1分30秒。
小贤于下午6时15分开始从最底层不断地向上走,到了最顶层后便立即往下走,中途没有停留,他在7时36分返回最底层。
这座高楼共有多少层?2.回答下列各题:(1)用1、2、3、4、5、6、7、8可组成多少个没有重复数字的五位数?(2)在15个连续自然数中最多有多少个质数?最少有多少个质数?(3)以下是一个数列,第一项是1,第二项是4,以后每一项是前两项相乘的积。
七年级数学思维训练题
七年级数学思维训练题
以下是一些适合七年级学生的数学思维训练题:
1. 小明和小红同时从甲、乙两地出发相向而行,小明每分钟走60米,小红每分钟走75米,相遇时,小明比小红少走25米,求小明和小红的行程时间各是多少?甲、乙两地的路程有多少米?
2. 甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而跑,乙跑4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需多少分钟.
3. 小王每天晚上10:00睡觉,早上7:00起床,他每天睡多少时.
4. 教室里8盏灯,全部亮着,现在关掉了6盏灯,教室里还有多少盏灯.
5. 小芳晚上9:00睡觉,早上7:00起床,她每天睡多少时.
6. 一列火车上午8:00从甲地开往乙地,晚上11:00到达乙地,火车每小时行75千米,甲乙两地相距多少千米?
7. 小芳从家到学校,每分钟走60米,15分钟就能到学校.如果每分钟走75米,可以提前几分钟到学校?
8. 小刚每天晚上10:00睡觉,早上8:00起床,他每天睡多少时.
9. 小东每天晚上11:00睡觉,早上8:00起床,他每天睡多少时.
10. 一列火车上午9:30从甲地开往乙地,下午4:30到达乙地,火车每小时行75千米,甲乙两地相距多少千米?
这些题目旨在训练学生的数学思维能力和解决实际问题的能力。
【初中数学】人教版七年级下册思维特训(二十) 方案问题与二元一次方程(组)(练习题)
人教版七年级下册思维特训(二十)方案问题与二元一次方程(组)(355)1.某企业在“蜀南竹海”收购毛竹,如果直接销售,每吨可获利100元;如果进行粗加工,每天可加工8吨,每吨可获利800元;如果对毛竹进行精加工,每天可加工1吨,每吨可获利4000元.由于受条件限制,每天只能采用一种方式加工,要求在一月内(30天)将这批毛竹93吨全部销售完毕.为此企业厂长召集职工开会,让职工讨论如何加工销售更合算.甲说:将毛竹全部进行粗加工后销售;乙说:30天都进行精加工,未加工的毛竹直接销售.丙说:30天中可用几天进行粗加工,再用几天进行精加工后销售.那么厂长应按照哪位说的方案做,获利最大?2.某体育彩票经销商计划用45 000元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A、B、C三种不同价格的彩票,进价分别是A彩票每张 1.5元,B彩票每张2元,C彩票每张 2.5元.(1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案;(2)若销售A型彩票一张获得手续费0.2元,B型彩票一张获得手续费0.3元,C型彩票一张获得手续费0.5元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进A、B、C三种彩票20扎,请你设计进票方案.3.小明家需要用钢管做防盗窗,按设计要求,其中需要长为0.8m,2.5m且粗细相同的钢管分别为100根、32根,并要求这些用料不能是焊接而成的.现钢材市场的这种规格的钢管每根为6m.(1)那么一根6m长的钢管有哪些裁剪方法呢?请填写在下面(余料作废):方法①:当只裁剪长为0.8m的用料时,最多可剪根;方法②:当先剪下1根2.5m的用料时,余下部分最多能剪0.8m长的用料根;方法③:当先剪下2根2.5m的用料时,余下部分最多能剪0.8m长的用料根(2)分别用(1)中的方法②和方法③各裁剪多少根6m长的钢管,才能刚好得到所需要的相应数量的材料?(3)试探究:除(2)中的方案外,在(1)中还有哪两种方法联合,所需要6m长的钢管与(2)中的根数相同?4.某商场计划拨款9万元从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售时获利最多,你选择哪种进货方案?(3)若商场准备用9万元同时购进三种不同型号的电视机共50台,请你设计进货方案5.某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,制成酸奶销售,每吨可获利润1200元,制成奶片销售,每吨可获利润2000元.该厂的生产能力如下:如制成酸奶,每天可加工3吨,制成奶片,每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温限制,这批牛奶需在4天内全部销售或加工完毕.由此该厂设计了两种方案:方案一:尽可能多的制成奶片,其余鲜奶直接销售;方案二:一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?6.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力如下:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受季节条件的限制,该公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此该公司研制了三种加工方案.方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,没有来得及加工的蔬菜在市场上全部直接销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成.你认为选择哪种方案获利最多,为什么?参考答案1.【答案】:解:①如果将毛竹全部进行粗加工后销售,那么可以获利93×800= 74400(元);②30天都进行精加工,可加工的数量为30吨,获利30×4000=120000(元),未加工的毛竹63吨直接销售可获利63×100=6300(元),因此共获利120000+6300=126300(元);③设x天粗加工,y天精加工,则{x+y=30,8x+y=93,解得{x=9,y=21,所以9天粗加工的数量为9×8=72(吨),可获利72×800=57600(元),21天精加工的数量为21吨,可获利21×4000=84000(元),因此共获利141600元,因为141600>126300>74400.所以采用丙的方案获利最大2(1)【答案】设经销商从体彩中心购进A种彩票x张,B种彩票y张,C种彩票z张,只购进A种彩票和B种彩票,依题意可列方程组\(\left\{ \begin{array}{l}{x+y=1000\times20 } \\ {1.5x+2y=45000} \end{array} \right.\).解得x<0,所以无解.只购进A种彩票和C种彩票,依题意可列方程组\(\left\{\begin{array}{l}{x+z=1000\times20 } \\ {1.5x+2.5z=45000} \end{array} \right.\).∴\(\left\{ \begin{array}{l}{x=5000 } \\ {z=15000} \end{array}\right.\).只购进B种彩票和C种彩票,依题意可列方程组\(\left\{ \begin{array}{l}{y+z=1000\times20 }\\{2y+2.5z=45000}\en d{array} \right.\).∴\(\left\{ \begin{array}{l}{y=10000 } \\ {z=10000} \end{array} \right.\).综上所述,若经销商同时购进不同型号的彩票,共有两种方案可行,即A种彩票5扎,C种彩票15扎或B种彩票与C种彩票各10扎.【解析】:分三种情况列方程组进行分析即可.(2)【答案】若购进A种彩票5扎,C种彩票15扎,销售完后获手续费为0.2×5000+0.5×15000=8500(元);若购进B种彩票与C种彩票各10扎,销售完后获手续费为0.3×10000+0.5×10000=8000(元).∴为使销售完时获得手续费最多选择的方案为A种彩票5扎,C种彩票15扎. 【解析】:根据上一问分别求出每一种情况的手续费,然后进行比较,可以得出结果.(3)【答案】若经销商准备用45000元同时购进A、B、C三种彩票20扎.设购进A种彩票x扎,B种彩票y扎,C种彩票z扎.则\(\left\{ \begin{array}{l}{x+y+z=20 } \\{1.5\times1000x+2\times1000y+2.5\times1000z=45000} \end{array}\right.\).∴\(\left\{ \begin{array}{l}{y=-2x+10 } \\ {z=x+10} \end{array}\right.\).∵x、y都是正数,∴1≤x<5.又∵x为整数,∴共有4种进票方案.A种1扎,B种8扎,C种11扎,或A种2扎,B种6扎,C种12扎,或A种3扎,B种4扎,C种13扎,或A种4扎,B种2扎,C种14扎.【解析】:根据题意列方程组,用含有同一个未知数的代数式去表示另外的两个未知数,然后根据三个未知数的实际意义得到取值范围,进而确定进票方案.3(1)【答案】7;4;1【解析】:①6÷0.8=712,因此当只裁剪长为0.8m的用料时,最多可剪7根.②(6−2.5)÷0.8=438,因此当先剪下1根2.5m的用料时,余下部分最多能剪0.8m长的用料4根.③(6−2.5×2)÷0.8=114,因此当先剪下2根2.5m的用料时,余下部分最多能剪0.8m 长的用料1根(2)【答案】设用方法②裁剪x根,用方法③裁剪y根6m长的钢管.由题意,得{x+2y=32,4x+y=100,解得{x=24,y=4.答:用方法②裁剪24根,用方法③裁剪4根6m长的钢管,才能刚好得到所需要的相应数量的材料(3)【答案】设用方法①裁剪m根,用方法③裁剪n根6m长的钢管.由题意,得{7m+n=100,2n=32,解得{m=12,n=16,∴m+n=28.∵(2)中x+y=24+4=28,∴m+n=x+y,符合题目要求.设用方法①裁剪a根,用方法②裁剪b根6m长的钢管.由题意,得{7a+4b=100,b=32,解得{a=−4,b=32,无意义.∴方法①与方法③联合,所需要6m长的钢管与(2)中的根数相同4(1)【答案】解:分以下三种情况:①若购进甲种电视机和乙种电视机,则{x+y=50,1500x+2100y=90000,解得{x=25,y=25.②若购进乙种电视机和丙种电视机,则{y+z=50,2100y+2500z=90000,解得{y=87.5,z=−37.5.(不合题意,舍去此方案) ③若购进甲种电视机和丙种电视机,则{x+z=50,1500x+2500z=90000,解得{x=35,z=15.综上所述,有以下两种方案成立:①甲、乙两种型号的电视机各购25台;②甲种型号的电视机购35台,丙种型号的电视机购15台(2)【答案】方案①获利:25×150+25×200=8750(元);方案②获利:35×150+15×250=9000(元).所以为使销售时获利最多,应选择第②种进货方案,即甲种型号的电视机购35台,丙种型号的电视机购15台(3)【答案】由题意,得z=50−x−y.则1500x+2100y+2500(50−x−y)=90000,化简整理,得5x+2y=175.又因为0<x<50,0<y<50,0<z<50,且x,y,z均为整数,所以上述二元一次方程只有四组解:{x=27,y=20,{x=29,y=15,{x=31,y=10,{x=33,y=5.对应的z值分别为3,6,9,12.因此,有四种进货方案:①购进甲种电视机27台,乙种电视机20台,丙种电视机3台;②购进甲种电视机29台,乙种电视机15台,丙种电视机6台;③购进甲种电视机31台,乙种电视机10台,丙种电视机9台;④购进甲种电视机33台,乙种电视机5台,丙种电视机12台5.【答案】:解:方案一获利:4×2000+5×500=10500(元). 方案二:设x 吨制成奶片,y 吨制成酸奶,则{x +y =9,x 1+y 3=4, 所以{x =1.5,y =7.5.利润为1.5×2000+7.5×1200=12000元>10500元. 所以选择方案二获利最多6.【答案】:解: 选择方案三获利最多. 理由如下:方案一获利为4500×140=630000(元).方案二获利为7500×(6×15)+1000×(140−6×15) =675000+50000=725000(元).方案三:设x 天进行粗加工,y 天进行精加工. 由题意,得{x +y =15,16x +6y =140, 解得{x =5,y =10.所以方案三获利为7500×6×10+4500×16×5=810000(元). 由于810000>725000>630000,所以选择方案三获利最多. 答:选择方案三获利最多。
初一数学思维测试题及答案
初一数学思维测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于它本身,那么这个数可能是:A. 1B. -1C. 0D. A和C3. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 非负数D. 非正数4. 以下哪个表达式的结果不是整数?A. \( \frac{7}{2} \)B. \( 5 - 3 \)C. \( 4 \div 2 \)D.\( 3 + 4 \)5. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 2二、填空题(每题2分,共10分)6. 一个数的平方是16,这个数可能是______。
7. 如果\( a \)和\( b \)互为相反数,那么\( a + b = _______ \)。
8. 一个数的绝对值等于4,这个数可能是______。
9. 一个数的立方等于它自身,这个数可能是______。
10. 如果\( x \)是最小的正整数,那么\( x + 1 \)是______。
三、解答题(每题5分,共20分)11. 已知一个数的立方是-27,求这个数。
12. 一个数的平方加上8等于这个数本身,求这个数。
13. 一个数的绝对值是它自己,这个数可能是哪些?14. 如果\( x \)是最小的正整数,\( y \)是最大的负整数,求\( x- y \)。
四、应用题(每题10分,共30分)15. 一个班级有40名学生,其中一半是男生。
如果班级平均成绩是85分,求男生的平均成绩。
16. 一个长方形的长是宽的两倍,面积是48平方厘米。
求长方形的长和宽。
17. 一个数列的前三项是1, 3, 6,每一项都是前一项的两倍。
求第10项的值。
五、结束语通过以上初一数学思维测试题的练习,同学们可以检验自己的数学基础知识和逻辑思维能力。
希望这些题目能够帮助大家更好地理解和掌握数学概念,提高解题技巧。
数学是一门需要不断练习和思考的学科,希望同学们能够保持好奇心和探索精神,不断挑战自己,享受数学带来的乐趣。
七下与幂运算有关的数学思维训练题
七下与幂运算有关的数学思维训练题哎呀,这道题目可真是让人头疼啊!不过没关系,我们一起来聊聊幂运算吧。
我们要知道什么是幂运算。
幂运算就是指一个数的某个次方,比如说2的3次方就是2乘以2再乘以2,结果是8。
那么,你知道如何快速计算幂运算吗?
其实很简单,我们可以用指数法则来帮助我们快速计算幂运算。
指数法则是指:a 的b次方等于a乘以a乘以...乘以a(共b个a)。
比如说,2的3次方就是2乘以2再乘以2,结果是8。
这个法则可以帮助我们快速计算很多复杂的幂运算。
除了指数法则之外,还有一个很重要的概念叫做“幂的性质”。
幂的性质有很多种,其中最常用的有三种:
1. 任何非零数的0次方都等于1。
比如说,2的0次方就是1,因为没有任何数可以被自己整除一次得到2。
2. 一个数的偶数次方等于它本身的平方。
比如说,2的4次方就是16,因为2乘以2再乘以2再乘以2等于16。
3. 一个数的奇数次方等于它本身的倒数的平方。
比如说,3的5次方就是729,因为3乘以3再乘以3再乘以3再乘以3等于729。
这些幂的性质可以帮助我们更好地理解和记忆幂运算。
当然啦,还有很多其他的幂运算技巧和方法,但是只要掌握了基本的方法和概念,就可以轻松应对各种复杂的幂运算问题啦!
好了,今天的数学思维训练就到这里啦。
希望大家能够在以后的学习中更加努力、认真地对待每一个知识点哦!记得要多练习、多思考、多总结,这样才能真正掌握好数学知识呢!加油!。
忠县中学数学七年级思维训练试题(含答案)下载
忠县中学数学七年级思维训练试题(含答案)下载第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.2的相反数是A. -2 B.2 C.1/2 D.-1/22.若三角形的三边长分别为3,4,x,则x的值可能是()A.1 B.6 C.7 D.103.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣B.0 C.D.﹣14.冬季的一天,室内温度是8℃,室外温度是﹣2℃,则室内外温度相差()A.4℃B.6℃C.10℃ D.16℃5.若|a|=7,|b|=5,a+b>0,那么a-b的值是( ) A.2或12 B.2或-12 C.-2或-12 D.-2或126.延长线段AB到C,下列说法正确的是()A.点C在线段AB上B.点C在直线AB上C.点C不在直线AB上D.点C在直线BA的延长线上7.如图,在下列四个几何体中,它的三视图(主视图、左视图、俯视图)不完全相同的是…………………………………………………………………………………( )①正方体②圆柱③圆锥④球A.①②B.②③C.①④D.②④8.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为……………………………………………………………………………()A. 2a-3b B . 4a-8b C. 2a-4b D. 4a-10b9.下列计算中,正确的是( )A.﹣2(a+b)=﹣2a+b B.﹣2(a+b)=﹣2a﹣b2C.﹣2(a+b)=﹣2a﹣2b D.﹣2(a+b)=﹣2a+2b10.已知a是正数,b是负数,且|b|>|a|,用数轴上的点来表示a、b,则下列正确的是()第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.我国现采用国际通用的公历纪年法,如果我们把公元2013年记作+2013年,那么,处于公元前500年的春秋战国时期可表示为__________.12.绝对值小于8.9的所有整数的积是_________.13.我们知道:式子||x-3的几何意义是数轴上表示数x的点与表示数3的点之间的距离,则式子||x-2+||x+1的最小值为.14.在下表中,我们把第i行第j列的数记为a i,j(其中i,j都是不大于5的正整数),对于表中的每个数a i,j,规定如下:当i≥j时,a i,j=1;当i<j时,a i,j=0.例如:当i=2,j=1时,a i,j=a2,1=1.则a1,1•a i,1+a1,2•a i,2+a1,3•a i,3+a1,4•a i,4+a1,5•a i,5= .15.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步,不断往返的程序运动.设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,x n表示第n(第8题)秒时机器人在数轴上的位置所对应的数.则下列结论:(1)x3=3;(2)x8=4;(3)x105<x104;(4)x2013<x2014中,正确结论的个数是_______________.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算(1)÷(﹣+)(2)﹣14﹣(1﹣0.5)÷(﹣)×[﹣1﹣(﹣3)2](3)﹣[2m﹣3(m﹣n+1)].17.化简①x2+5y-4x2-3y-1 ②-(2a-3b)-(4a-5b)18.已知:A=2a2+3ab-2a-1,B=-a2+ab+1(1)当a=-1,b=2时,求4A-(3A-2B)的值;(2)若(1)中的代数式的值与a的取值无关,求b的值.19.直线上有两点A,B,再在该直线上取点C,使BC=AB,D是AC的中点,若BD=6cm,求线段AB的长.20.情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需元,购买12 根跳绳需元.小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.21.(12分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标(达标包括A级和B级)?图①图②22.上海股民杨先生上星期五交易结束时买进某公司股票1000股,每股50元,下表为本周内每日该股的涨跌情况(星期六、日股市休市)。
2021重庆秀山土家族苗族自治县数学七年级思维训练试题(含答案)
2021重庆秀山土家族苗族自治县数学七年级思维训练试题(含答案)第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.-7的相反数是()A.7 B.1/7 C.-1/7 D.-72.下列运算正确的是()A.x2+x2=x4B.3x3y2﹣2x3y2=1C.4x2y3+5x3y2=9x5y5D.5x2y4﹣3x2y4=2x2y43.在数轴上与-3的距离等于4的点表示的数是().A.1B.-7C.1或-7D.无数个4.数据1600万用科学记数法表示为()A.1.6×108B.1.6×107C.16×102D.1.6×1065.如图,数轴上的点A和点B分别表示数a与数b,下列结论中正确的是……………………………()A.a>b B.|a|>|b|C.-a<b D. a+b<06.在△ABC中,已知AB=AC=4cm,BC=6cm,D是BC的中点,以D为圆心作一个半径为3cm的圆,则下列说法正确的是…………………………………………………………()A. 点A在⊙D外B. 点B在⊙D内C. 点C在⊙D 上D. 无法确定7.如图,数轴上每相邻两点之间相距1个单位长度,点A对应的数为a,B对应的数为b,且b -2a=7,那么数轴上原点的位置在…………………………………………()A.点A B .点B C.点C D.点D8.一个数的平方是49, 这个数是( )A.7B.-7C.+7或—7D.+9或—99.把-1,0,1,2,3这五个数,填入下列方框中,使行、列三个数的和相等,其中错误的是()⑴1+8=?1+8+16=?⑵ ⑶ 1+8+16+24=?……10.如图,AC 、BD 相交于点O ,∠1= ∠2,∠3= ∠4,则图中有( )对全等三角形。
A 、1B 、2C 、3D 、4第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11. -1/7的相反数是_______;-8/9的倒数是 .12.如果a -b =3,ab =-1,则代数式3ab -a +b -2的值是_________.13.我们知道:式子||x -3的几何意义是数轴上表示数x 的点与表示数3的点之间的距离,则式子||x -2+||x +1的最小值为 .14.在数轴上,点A 表示整数a 、在原点的左侧,点B 表示整数b 、在原点的右侧, 若||a -b =2013,且AO =2BO ,则a +b 的值是 .15、观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+ (136)三、解答题 (本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(20分)计算与求值:(1) 312 +(-12 )-(-13 )+223 (2) (23 -14 -38 +524 )×484ABC D1 2 3O第10题(3)-18÷(-3)2+5×(-12)3-(-15) ÷517.化简①x2+5y-4x2-3y-1 ②-(2a-3b)-(4a-5b)18.先化简,再求值:已知5x y 2-[x2 y-2( 3xy 2-x2 y )]-4 x2y,其中x、y满足(x-2)2 +∣y+1∣=0.19.如图,某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000 名学生中,随机抽取了若干名学生进行调查,了解学生最喜欢的一种球类运动,每人只能在这五种球类运动中选择一种.调查结果统计如下:球类名称乒乓球排球羽毛球足球篮球人数 a 12 36 18 b解答下列问题:(1)本次调查中的样本容量是;a= ,b= ;(3)试估计上述1000 名学生中最喜欢羽毛球运动的人数.20.如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合(提示:圆的周长C=2r)(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是_________;(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2, -1, -5, +4, +3, -2①第几次滚动后,Q点距离原点最近?第几次滚动后,Q点距离原点最远?②当圆片结束运动时,Q点运动的路程共有多少?此时点Q所表示的数是多少?Q21.某单位在五月份准备组织部分员工到青岛旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为1000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有( >10 )人,则甲旅行社的费用为元,乙旅行社的费用为元;(用含的代数式表示,并化简。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册数学思维专项训练题(共10套)思维训练题(一)班级______________ 姓名_____________ 一、选择题:1.a 为任意自然数,包括a 在内的三个连续的自然数,可以表示为 ( )A .a -2,a -1,aB .a -3,a -2,a -1C .a ,a +1,a +2D .不同于A 、B 、C 的形式二、计算题:(动动脑筋,可能会有简便的解题方法!)1.____________________56875=⨯2.____________2006200420022000...12108642=+-+-+-+-+- 3.__________________8567785667855678=+++4.()()__________888...6428002...888488868888=++++-++++5.______________125.01712517125625.05.0171251753=⨯-⨯+⨯+ 6.______________12346123451234512345=÷7._________________31313131=-+-8._______________99163135115131=++++ 9._____________20042004...200432004220041=++++10._____________90197218561742163015201412136121=++++++++三、应用与创新:1.有一高楼,每上一层需要3分钟,每下一层需要1分30秒。
小贤于下午6时15分开始从最底层不断地向上走,到了最顶层后便立即往下走,中途没有停留,他在7时36分返回最底层。
这座高楼共有多少层?2.回答下列各题:(1)用1、2、3、4、5、6、7、8可组成多少个没有重复数字的五位数?(2)在15个连续自然数中最多有多少个质数?最少有多少个质数?(3)以下是一个数列,第一项是1,第二项是4,以后每一项是前两项相乘的积。
求第2004项被7除的余数。
项数 第1项 第2项 第3项 第4项 第5项 (2004)数字 1 4 4 16 64 …… ?思维训练题(二)班级______________ 姓名_____________一、填空题:1.已知4个矿泉水的空瓶可换矿泉水一瓶,现有15个矿泉水空瓶,若不交钱,最多可换_____________瓶矿泉水喝。
2.有A 、B 、C 、三种不同的树苗若干,现要将它们植在如图所示的四个正方形空地中,要求:相邻的两棵不能相同,而对角的两棵可以相同,问共有多少种不同的植法?___________3.乘火车从A 站出发,沿途出发经过3个车站方可到达B 站,那么在A 、B 两站之间共需要安排_________种不同的车票。
4.若分数m1的分子加上a ,则它的分母上应加__________才能保证分数的值不变。
二、计算题:1.()()()b a b a b a 88...22++++++2.100 (6421)...642142121+++++++++++3.56511...161111161611⨯++⨯+⨯+⨯4.30152412189126631510128966432⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯三、应用与创新:1.某办事处由A、B、C、D、E、F六人轮流值夜班,规定轮班次序是A→B→C→D →E→F→A→B……,在2005年的第一个星期里,元月1日恰是星期六,由A值班,问2005年9月1日是谁值日?2.1898年6月9日英国强迫清政府签约将香港975.1平方公里土地租借给英国99年,1997年7月1日香港回归祖国,中国人民终于洗刷了百年耻辱,已知1997年7月1日是星期二,那么1898年6月9日是星期几?(注:公历纪年,凡年份是4的倍数但不是100的倍数的那年为闰年,年约为400的倍数的那么也为闰年,闰年的二月有29天,平年的二月有28天。
)3.一次考试有若干考生,顺序编号为1、2、3……,考试那天有一人缺考,剩下考生的编号和为2005,求考生人数以及缺考的学生的编号。
思维训练题(三)班级_______________ 姓名_______________一、填空题:1.若b = a+5,b = c+10,则a、c的关系是________________。
2.如果一个自然数a与另一个自然数b的商恰好是其中一个数,那么b =______________,或者满足条件____________________________。
3.若|a-1| = 1-a,那么a的取值条件是______________________。
4.若|a+b| = |a|+|b|,那么a、b应满足的条件是____________________。
5.a、b、c在数轴的位置如图所示,则化简:|a|-|a+b|+|c-b|+|a+c|的结果是________________。
a b 0 c 6.若|x-2|+|y+1| = 0,则x = ______________,y = ______________。
二、化简:1.若x <-2,试化简:|x+2|+|x-1|2.若x <-3,化简:|3+|2-|1+x|||三、解方程:1.|2x-1| = 3 2.|2x-5| = |x-1|四、应用与创新:1.仿照下面的运算例:(x+2)(y+3)= x·(y+2)+2(y+3)(乘法对加法的分配律)= x·y+2x+2y+6 (乘法的分配律、交换律)(1)(a+21)(a-9)=(2)(a+b)2 =(3)(a+b+c)2 =2.圆周上有m 个红点,n 个蓝点,(m ≠n ),当中相邻两点皆红色的有a 组,当中相邻两点为蓝色的有b 组,试说明m +b = n +a 这个等式是成立的。
3.在1、2、3、……、2005这2005个数的前面任意添加一个正号或负号,组成一个算式,能否使最后的结果为0,如能,写出其表达式;如不能,请说明理由。
思维训练题(四)班级______________ 姓名_____________一、判断:①a m ·a n = a m +n (m 、n 是正整数,a 是有理数)( ) ②(a ·b )n = a n ·b n ( ) ③(a m )n = a mn ( )④a m ÷a n = a m -n (其中m>n ,a ≠0)( ) ⑤bd bcad bd bc bd ad d c b a ±=±=±( )⑥bcad c d b a d c b a =⨯=÷( ) ⑦a +b 一定大于a -b ( ) ⑧任何数的平方都是正数( )⑨x 的倒数是x1( )⑩54与45-互为负倒数( ) 二、计算:1.⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛--71112787431 2.555261231221⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-3.(-0.2)6·5006-(-1.25)3·(8000)3 4.20001999513135⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛5.(-0.125)15×(215)36.已知2a -b = 4,求2(b -2a )3 -(b -2a )2+2(2a -b )+1的值。
三、应用与创新:1.将一个正整数分成若干个连续整数的和。
例:①15 = 3×5 15 = 4+5+6或 15 = 1+2+3+4+5 ②10 = 5×210 = 1+2+3+4③8 = 2×2×2(无奇因数)8不能拆分成若干个连续整数之和试将下列各整数进行拆分:①2005 ②2008 ③642.1000以内既不能被5整除,也不能被7整除的自然数共有多少个?3.试说明在数12008的两个0之间无论添多少个3,所得的数总可以被19整除。
思维训练题(五)班级______________ 姓名_____________ 一、判断:1.52 = 5×2 …………………………………………………………………… ( ) 2.54 = 45 ………………………………………………………………………… ( ) 3.(5ab )2 =10a 2b 2 ……………………………………………………………… ( ) 4.32x 5y 5 =(2xy )5 …………………………………………………………… ( ) 5.(2+3)2 = 22+32 …………………………………………………………… ( ) 6.(a +b )(a -b )= a 2-b 2 …………………………………………………… ( ) 7.(a +b )2 = a 2+2ab +b 2 ………………………………………………………( ) 8.由3x = 2y 可得23y x ………………………………………………………( )二、计算:1.100·10n ·10n -1 2.a 2·a 4·a 6·…·a 1023.(-32)n+1÷16×(-2)2(n是奇数)4.124812141++⎪⎭⎫⎝⎛÷⎪⎭⎫⎝⎛⋅⎪⎭⎫⎝⎛nnn5.117185⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛---m6.3324221225258416-++-+⋅⋅-⋅nnnnnnn三、应用与创新:1.去括号法则:去掉紧接在正号后面的括号时,括号里的各项都不变,去掉紧接负号后边的括号时,括号里的各项都要变号。
即:a+(b-c+d)= a+b-c +da-(b-c+d)= a-b+c-d添括号的法则:紧接正号后面添加括号时,括到括号里的各项都不变,紧接负号后面添加括号时,括到括号里的各项都要变号。
即:a+b-c+d = a+(b-c+d)a-b+c-d = a-(b-c+d)(1)在下列各式的括号内,填上适当的项:①a-b+c-d = a+()②a-b+c-d = a-b+()③a-b+c-d = a-b-()④a-b+c-d = a-()(2)去括号:①-(-3)-(+2)+(-9)+(+4)=②a+(b-c)=③a-(-b-c)=④+(-a+b-c-d)=⑤-(a-b-c+d)=2.π的前24位数值为3.14159265358979323846264:设a 1,a 2,…,a 24为该24个数字的任一个排列,试说明:(a 1-a 2)(a 3-a 4)…(a 21-a 22)(a 23-a 24)必为偶数。