大学数学公式超级详细总结

合集下载

大一高等数学公式

大一高等数学公式

大一高等数学公式1.极限:- 有界性:若$\lim_{x\to a} f(x) = L$,则$\lim_{x\to a} ,f(x), = ,L,$。

- 指数函数极限:$\lim_{x\to 0}(1+x)^{\frac{1}{x}} = e$。

- 自然对数的底:$\lim_{x\to\infty}(1+\frac{1}{x})^x = e$。

2.导数:-基本函数的导数:- 求导法则:$(C)' = 0$,$(x^n)' = nx^{n-1}$,$(\sin x)' =\cos x$,$(\cos x)' = -\sin x$,$(\ln x)' = \frac{1}{x}$。

-和差法则:$(f(x)+g(x))'=f'(x)+g'(x)$。

-积法则:$(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)$。

- 商法则:$(\frac{f(x)}{g(x)})' = \frac{f'(x)g(x) -f(x)g'(x)}{g(x)^2}$。

-链式法则:若$y=f(g(x))$,则$y'=f'(g(x))g'(x)$。

3.微分:- 微分近似:$y = f(x)$,则$\Delta y \approx f'(x_0)\Delta x$,其中$\Delta x$是$x$的变化量,$\Delta y$是对应的$y$的变化量。

- 泰勒展开:$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 + \cdots$。

4.积分:- 基本积分表:$\int k dx = kx + C$,$\int x^n dx =\frac{1}{n+1}x^{n+1} + C$,$\int \sin x dx = -\cos x + C$,$\int \cos x dx = \sin x + C$,$\int \frac{1}{x} dx = \ln ,x, + C$。

大学数学公式总结(全)

大学数学公式总结(全)

大学数学公式总结(全) 1. 代数1.1 代数运算公式- 加法:- $a + b = b + a$- $(a + b) + c = a + (b + c)$- 减法:- $a - b = -(b - a)$- $(a - b) - c = a - (b + c)$- 乘法:- $a \times b = b \times a$- $(a \times b) \times c = a \times (b \times c)$- 除法:- $\frac{a}{b} = \frac{1}{b} \times a$- $\frac{a}{b} \div c = \frac{a}{b \times c}$- 幂运算:- $a^m \times a^n = a^{m + n}$- $(a^m)^n = a^{m \times n}$1.2 二项式定理二项式定理是代数中常用的公式,用于展开一个二项式的幂:$(a + b)^n = C_n^0 \cdot a^n \cdot b^0 + C_n^1 \cdot a^{n-1}\cdot b^1 + C_n^2 \cdot a^{n-2} \cdot b^2 + \ldots + C_n^n \cdot a^0\cdot b^n$其中 $C_n^k$ 是从 $n$ 个不同元素中选取 $k$ 个元素的组合数。

2. 几何2.1 平面几何公式- 长方形:- 周长:$P = 2 \times (l + w)$- 面积:$A = l \times w$- 正方形:- 周长:$P = 4 \times a$- 面积:$A = a^2$- 圆:- 周长:$C = 2 \times \pi \times r$- 面积:$A = \pi \times r^2$2.2 三角形- 直角三角形:- 斜边长度:$c = \sqrt{a^2 + b^2}$- 面积:$A = \frac{1}{2} \times a \times b$- 等边三角形:- 周长:$P = 3 \times a$- 面积:$A = \frac{\sqrt{3}}{4} \times a^2$- 一般三角形:- 周长:$P = a + b + c$- 海伦公式求面积:$A = \sqrt{s \times (s - a) \times (s - b) \times (s - c)}$- 其中 $s = \frac{a + b + c}{2}$3. 微积分3.1 导数- 基本导数公式:- $(c)' = 0$(常数的导数)- $(x^n)' = n \times x^{n-1}$(幂函数的导数)- $(e^x)' = e^x$(指数函数的导数)- $(\ln(x))' = \frac{1}{x}$(对数函数的导数)- $(\sin(x))' = \cos(x)$(正弦函数的导数)- $(\cos(x))' = -\sin(x)$(余弦函数的导数)3.2 积分- 基本积分公式:- $\int{k} \, dx = kx$(常数的不定积分)- $\int{x^n} \, dx = \frac{1}{n+1}x^{n+1}$(幂函数的不定积分)- $\int{e^x} \, dx = e^x$(指数函数的不定积分)- $\int{\frac{1}{x}} \, dx = \ln|x|$(对数函数的不定积分)- $\int{\sin(x)} \, dx = -\cos(x)$(正弦函数的不定积分)- $\int{\cos(x)} \, dx = \sin(x)$(余弦函数的不定积分)以上仅是大学数学公式的一小部分总结,还有很多未列出的公式和定理。

全部高等数学计算公式

全部高等数学计算公式

全部高等数学计算公式高等数学是数学的一个分支,包括微积分、线性代数、数理方程、概率论、复分析等多个内容。

每个分支都有大量的计算公式,下面将分别介绍这些分支中一些经典的计算公式。

一、微积分公式1.极限公式:(1)函数极限公式:$lim(f(x)±g(x))=limf(x)±limg(x)$$lim(f(x)g(x))=limf(x)·limg(x)$$lim\frac{{f(x)}}{{g(x)}}=\frac{{limf(x)}}{{limg(x)}}$(2)常见函数极限:$lim\frac{{sinx}}{{x}}=1$$lim(1+\frac{1}{{n}})^n=e$$lim(1+\frac{1}{{n}})^{n(p-q)}=e^{(p-q)}$2.导数公式:(1)基本导数公式:$(c)'=0$$(x^n)'=nx^{n-1}$$(e^x)'=e^x$$(a^x)'=a^xlna$$(lnx)'=\frac{1}{{x}}$$(sinx)'=cosx$$(cosx)'=-sinx$$(tanx)'=sec^2x$(2)导数的四则运算:$(f(x)\pm g(x))'=f'(x)\pm g'(x)$$(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)$$(\frac{{f(x)}}{{g(x)}})'=\frac{{f'(x)g(x)-f(x)g'(x)}}{{g^2(x)}}$(3)链式法则:$(f(g(x)))'=f'(g(x))g'(x)$3.积分公式:(1)基本积分公式:$\int{cx^n}dx=\frac{{cx^{n+1}}}{{n+1}}+C$$\int{e^x}dx=e^x+C$$\int{a^x}dx=\frac{{a^x}}{{lna}}+C$$\int{\frac{{1}}{{x}}}dx=ln,x,+C$$\int{sinx}dx=-cosx+C$$\int{cosx}dx=sinx+C$$\int{sec^2x}dx=tanx+C$(2)常用积分公式:$\int{u}dv=uv-\int{v}du$$\int{sin^2x}dx=\frac{{x}}{2}-\frac{{sin2x}}{4}+C$$\int{cos^2x}dx=\frac{{x}}{2}+\frac{{sin2x}}{4}+C$4.泰勒展开公式:$f(x)=f(a)+f'(a)(x-a)+\frac{{f''(a)}}{{2!}}(x-a)^2+...+\frac{{f^{(n)}}}{{n!}}(x-a)^n+R_n(x)$二、线性代数公式1.行列式公式:(1)二阶行列式:$D=\begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc$(2)三阶行列式:$D=\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix}=aei+bfg+c dh-ceg-afh-bdi$2.矩阵运算公式:(1)两个矩阵的和:$A+B=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix }+\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}=\begin{bmatrix}a_{11}+b_{11}&a_{12}+b_{12}\\a_{21}+b_{21}&a_{22}+b_{2 2}\end{bmatrix}$(2)两个矩阵的乘积:$AB=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix} \begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}=\begin{ bmatrix}a_{11}b_{11}+a_{12}b_{21}&a_{11}b_{12}+a_{12}b_{22}\\a_{ 21}b_{11}+a_{22}b_{21}&a_{21}b_{12}+a_{22}b_{22}\end{bmatrix}$3.特征值与特征向量公式:$A-\lambda I=0$其中,A为矩阵,$\lambda$为特征值,I为单位矩阵。

大学高等数学公式大全

大学高等数学公式大全

大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。

2. 导数的运算法则:常数函数的导数为0。

幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。

指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。

对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。

三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。

3. 高阶导数:函数的导数可以继续求导,得到高阶导数。

例如,f''(x)表示二阶导数。

二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。

2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。

幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。

指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。

对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。

三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。

3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。

积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。

积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。

高等数学公式总结

高等数学公式总结

高等数学公式总结高等数学是大学理工科和经济金融等专业的重要基础课程,其中包含了众多的公式。

这些公式是解决各种数学问题的有力工具,掌握它们对于学好高等数学至关重要。

下面就为大家总结一些常见且重要的高等数学公式。

一、函数与极限1、函数的极限当\(x\)趋近于\(x_0\)时,函数\(f(x)\)的极限为\(A\),记作\(\lim_{x \to x_0} f(x) = A\)。

当\(x\)趋近于无穷大时,函数\(f(x)\)的极限为\(A\),记作\(\lim_{x \to \infty} f(x) = A\)。

2、无穷小量与无穷大量若\(\lim_{x \to x_0} f(x) = 0\),则称\(f(x)\)是当\(x\)趋近于\(x_0\)时的无穷小量。

若\(\lim_{x \to x_0} f(x) =\infty\),则称\(f(x)\)是当\(x\)趋近于\(x_0\)时的无穷大量。

3、极限的运算法则若\(\lim_{x \to x_0} f(x) = A\),\(\lim_{x \to x_0} g(x) = B\),则:\(\lim_{x \to x_0} f(x) + g(x) = A + B\)\(\lim_{x \to x_0} f(x) g(x) = A B\)\(\lim_{x \to x_0} f(x) \cdot g(x) = A \cdot B\)若\(B \neq 0\),\(\lim_{x \to x_0} \frac{f(x)}{g(x)}=\frac{A}{B}\)4、两个重要极限\(\lim_{x \to 0} \frac{\sin x}{x} = 1\)\(\lim_{x \to \infty} (1 +\frac{1}{x})^x = e\)二、导数与微分1、导数的定义函数\(y = f(x)\)在点\(x_0\)处的导数定义为:\(f'(x_0) =\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} =\lim_{\Delta x \to 0} \frac{f(x_0 +\Delta x) f(x_0)}{\Delta x}\)2、基本导数公式\((C)'= 0\)(\(C\)为常数)\((x^n)'= nx^{n 1}\)\((\sin x)'=\cos x\)\((\cos x)'=\sin x\)\((\tan x)'=\sec^2 x\)\((\cot x)'=\csc^2 x\)\((\sec x)'=\sec x \tan x\)\((\csc x)'=\csc x \cot x\)\((e^x)'= e^x\)\((\ln x)'=\frac{1}{x}\)\((\log_a x)'=\frac{1}{x \ln a}\)3、导数的四则运算\((u \pm v)'= u' \pm v'\)\((uv)'= u'v + uv'\)\(\left(\frac{u}{v}\right)'=\frac{u'v uv'}{v^2}\)(\(v \neq 0\))4、复合函数求导法则设\(y = f(u)\),\(u = g(x)\),则复合函数\(y = fg(x)\)的导数为:\(y' = f'g(x) \cdot g'(x)\)5、隐函数求导法则对于方程\(F(x, y) = 0\)确定的隐函数\(y = y(x)\),两边对\(x\)求导,然后解出\(y'\)。

大学高等数学公式汇总大全(珍藏版)

大学高等数学公式汇总大全(珍藏版)

1− x 21− x 2∫ 大学高等数学公式汇总大全(珍藏版)高等数学(上册)常用导数公式:(tgx )′ = sec 2x (ctgx )′ = −csc 2x (sec x )′ = sec x ⋅tgx (arcsin x )′ =1(arccos x )′ = − 1(csc x )′ = −csc x ⋅ctgx (a x )′ = a x ln a (arctgx )′ =11+ x 2(log a x )′ =1 x ln a(arcctgx )′ = −11+ x 2常用基本积分表:∫tgxdx = −ln cos x + C ∫ctgxdx = ln sin x + Cdx=cos 2 x dx∫sec 2 x dx = t g x + C ∫sec xdx = ln sec x + tgx + C ∫ sin 2 = csc2xdx = −ctgx + Cx ∫ csc xdx = ln csc x − c tg x + C dx = 1 arctg x +C∫sec x ⋅tgxdx = sec x + C∫csc x ⋅ctgxdx = −csc x + C∫ a 2+ x2a dx =1a ln x − a+ C∫a xdx =a xCln a ∫ x 2 − a 2 dx a 2 − x 2 2a x + a= 1 ln a + x + C 2a a − x ∫shxdx = chx + C∫chxdx = shx + C ∫ d x = arcsin x + C ∫d x = ln(x + x 2 ± a 2 ) + Ca 2 − x2a x 2 ± a 2π2I n = ∫ sin 0 π 2xdx =∫ cos nxdx =n −1 nI n −22 2x 2 2 a 2 ∫ x ∫ x 22+ a dx = 2 − a 2 dx = 2 x + a + 2 − a 2 2 a 2ln(x + ln x + x ) + C+ C ∫ a − x dx = + arcsin + C2 a三角函数的有理式积分:x 2 + a 2x 2 x 2 − a 2 x 2 − a 2 x 2 a 2 − x 2 ∫ ∫ + nsin x = 2u 1+ u 2 , cos x =1− u 2 , 1+ u 2 u = tg x 2dx = 2du 1+ u 2一些初等函数:两个重要极限:e x − e −x双曲正弦: shx =lim sin x = 1 2 x →0 x双曲余弦:chx = e x + e−xlim(1+ 1)x = e = 2.718281828459045...双曲正切:thx =2 shx = chx e x − e −xe x + e −xx →∞ xarshx = ln(x +archx = ± ln(x + x 2 +1)x 2 −1)arthx = 1 ln 1+ x2 1− x三角函数公式:· 诱导公式:· 和差角公式: ·和差化积公式:sin(α± β) = sin αcos β± cos αsin βsin α+ sin β = 2 s inα+ β cos α− βcos(α± β) = cos αcos β∓ s in αsin β2 2tg α± tg βsin α− sin β = 2 cos α+ βsin α− βtg (α± β) = 1∓ t g α⋅t g βctg α⋅ctg β∓1cos α+ cos β = 2 cos 2 α+ β 2 cos 2α− β2ctg (α± β) =ctg β± ctg αcos α− cos β = 2sinα+ βsin α− β22,(uv )= ∑C u v· 倍角公式:sin 2α = 2 sin αcos αcos 2α = 2 cos 2 α−1 = 1− 2 sin 2 α= cos 2 α− sin 2 αc t g 2α−1sin 3α = 3sin α− 4sin 3 α cos3α = 4 cos 3 α− 3cos α ctg 2α =tg 2α=2ctg α2tg αtg 3α=3t g α−t g 3α1− 3tg 2α1− tg 2α· 半角公式:sin α = ± 2α 1− cos α2 1− cos α 1− cos αsin α cos α = ± 2α 1+ cos α2 1+ cos α 1+ cos αsin α tg = ± 21+ cos α = sin α =1+ cos α c t g = ± 21− cos α = sin α =1− cos α· 正弦定理:a = sin Ab = sin B csin C= 2R · 余弦定理: c2= a 2 + b 2 − 2ab cos C· 反三角函数性质: arcsin x = π 2− arccos xarctgx = π 2− arcctgx高阶导数公式——莱布尼兹(L e i b n i z )公式:n(n )k (n −k ) (k )nk =0= u (n )v + nu (n −1)v ′ +n (n −1) u (n −2)v ′′ + ⋯+ n (n −1)⋯(n − k +1) u (n −k )v (k )+ ⋯+ uv (n ) 2! k !中值定理与导数应用:拉格朗日中值定理:f (b ) − f (a ) = f ′(ξ)(b − a ) f (b ) − f (a ) f ′(ξ)柯西中值定理: F (b ) − F (a ) =F ′(ξ)当F(x ) = x 时,柯西中值定理就是拉格朗日中值定理。

高等数学必背公式大全

高等数学必背公式大全

高等数学必背公式大全1、勾股定理:a2+b2=c22、椭圆方程:(x-x0)2/a2+(y-y0)2/b2=13、两点公式:,P1P2,=√((x2-x1)2+(y2-y1)2)4、双曲线方程:a2(x2/b2)-(y2/c2)=15、圆的方程:(x-x0)2+(y-y0)2=r26、三角形公式:a2+b2=c27、直线方程:y = kx + b (斜率k和截距b)8、斜率定理:m1*m2=-1/K29、余弦定理:a2 = b2 + c2 - 2bc*cosA10、正弦定理:a * sinA = b * sinB = c * sinC11、贝塞尔曲线方程:(x-x0)4+(y-y0)4=r412、三角函数公式:sin2A + cos2A = 113、极坐标方程:r = a * e(acosθ + bsinθ)14、反正弦定理:y = arcsin(x/a) + c15、偏微分公式:dy/dx = (dy/du) * (du/dx)16、平面四边形公式:a2+b2=c2+d217、反余弦定理:y = arccos(x/a) + c18、三角形面积公式:S = 1/2 * a * b * sinC19、多边形内角和公式:(n-2)*π=∑(内角弧度)20、抛物线公式:y=ax2+bx+c21、多项式求导公式:f'(x) = an-1 * xn-1 + an-2 * xn-2 + …… + a1 * x + a022、函数变换公式:f(x+h) = f(x) + hf'(x)23、矩阵乘法公式:(AB)ij = ∑k=1n(Aik*Bkj)24、求和公式:∑(a1+an)*n/225、模除法:a / b = a mod b + b * (a div b)26、几何平均数公式:(a1*a2*a3*……*an)^(1/n)27、距离公式:L=(x2-x1)^2+(y2-y1)^228、几何中点公式:(x1+x2)/2,(y1+y2)/229、坐标转换公式:x = x0 + (x-x0)cosα - (y-y0)sinα。

大学数学公式总结大全

大学数学公式总结大全

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

大学高等数学所有的公式大全精华

大学高等数学所有的公式大全精华

大学高等数学所有的公式大全精华在大学的数学学习中,高等数学是一门非常重要和广泛应用的学科。

学好高等数学,不仅需要理解和掌握其概念和原理,还需要熟练掌握其中的各种公式。

本文将为大家汇总并分享一份大学高等数学的公式大全,帮助大家更好地学习和运用这门学科。

一、导数和微分1. 函数y=f(x)的导函数:f'(x)2. 基本微分公式:(1)常数函数微分公式:d(cf(x))/dx = cf'(x),其中c为常数(2)幂函数微分公式:d(x^n)/dx = nx^(n-1),其中n为实数(3)指数函数微分公式:d(e^x)/dx = e^x(4)对数函数微分公式:d(lnx)/dx = 1/x(5)三角函数微分公式:a) d(sin x)/dx = cos xb) d(cos x)/dx = -sin xc) d(tan x)/dx = sec^2xd) d(cot x)/dx = -csc^2xe) d(sec x)/dx = sec x * tan xf) d(csc x)/dx = -csc x * cot x(6)反三角函数微分公式:a) d(arcsin x)/dx = 1/√(1-x^2)b) d(arccos x)/dx = -1/√(1-x^2)c) d(arctan x)/dx = 1/(1+x^2)d) d(arccot x)/dx = -1/(1+x^2)e) d(arcsec x)/dx = 1/(x√(x^2-1))f) d(arccsc x)/dx = -1/(x√(x^2-1))二、积分1. 基本积分表达式:(1)常数函数积分:∫c*dx = cx,其中c为常数(2)幂函数积分:∫x^n*dx = (1/(n+1))x^(n+1),其中n≠-1(3)指数函数积分:∫e^x*dx = e^x(4)对数函数积分:∫(1/x)*dx = ln|x|(5)三角函数积分:a) ∫sin x*dx = -cos xb) ∫cos x*dx = sin xc) ∫tan x*dx = -ln|cos x|d) ∫cot x*dx = ln|sin x|e) ∫sec x*dx = ln|sec x + tan x|f) ∫csc x*dx = ln|csc x - cot x|(6)反三角函数积分:a) ∫(1/√(1-x^2))*dx = arcsin xb) ∫(-1/√(1-x^2))*dx = arccos xc) ∫(1/(1+x^2))*dx = arctan xd) ∫(-1/(1+x^2))*dx = arccot xe) ∫(1/(x√(x^2-1)))*dx = sec^(-1)xf) ∫(-1/(x√(x^2-1)))*dx = csc^(-1)x三、级数1. 等差数列求和:(1)数列前n项和:Sn = (a1+an)*n/2(2)数列前n项和(已知首项和公差):Sn = (n/2)*(2a1+(n-1)d) 2. 等比数列求和:(1)数列前n项和(|q|<1):Sn = a1*(1-q^n)/(1-q)(2)无穷等比数列和(|q|<1):S = a1/(1-q)3. 幂级数收敛性:收敛:∑(n=0,∞)a^n(|a|<1)发散:∑(n=0,∞)a^n(|a|≥1)四、微分方程1. 常微分方程:(1)一阶线性常微分方程:dy/dx + P(x)y = Q(x)(2)一阶齐次线性常微分方程:dy/dx + P(x)y = 0(3)二阶齐次线性常微分方程:d^2y/dx^2 + P(x)dy/dx + Q(x)y = 0(4)常系数齐次线性常微分方程:d^n/dx^n + a_(n-1)d^(n-1)/dx^(n-1) + ... + a_1dy/dx + a_0y = 02. 偏微分方程:(1)一维波动方程:∂^2u/∂t^2=c^2∂^2u/∂x^2(2)二维泊松方程:∂^2u/∂x^2+∂^2u/∂y^2=f(x,y)(3)三维拉普拉斯方程:∂^2u/∂x^2+∂^2u/∂y^2+∂^2u/∂z^2=0五、概率与统计1. 古典概型计数原理:若一个事件可由n个步骤进行描述,第k个步骤有n_k种可能,则该事件共有n_1*n_2*...*n_k种可能2. 排列组合:(1)排列数公式:A(n,m) = n!/(n-m)!(2)组合数公式:C(n,m) = n!/(m!*(n-m)!)3. 随机事件概率计算:(1)基本事件概率公式:P(A) = n(A)/n(S),其中n(A)为事件A 发生的可能结果数,n(S)为样本空间S的可能结果数通过以上列举的公式,希望能够帮助大家更好地学习和理解大学高等数学。

大学数学公式(全集)

大学数学公式(全集)

⼤学数学公式(全集)⾼等数学公式导数公式:基本积分表:三⾓函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 ='='?-='?='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='?+±+=±+=+=+=+-=?+=?+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222?++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ⼀些初等函数:两个重要极限:三⾓函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e x xx x x x·和差⾓公式: ·和差化积公式: ·倍⾓公式:·半⾓公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三⾓函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ⾼阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应⽤:拉格朗⽇中值定理。

大学数学所有公式

大学数学所有公式

大学数学所有公式1. 代数公式- 一元二次方程求根公式: $x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$- 二次根式乘法公式: $\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$- 二次根式除法公式: $\frac{\sqrt{a}}{\sqrt{b}} =\sqrt{\frac{a}{b}}$- 二次根式的分子有理化公式: $\frac{a}{\sqrt{b}} =\frac{a\sqrt{b}}{b}$2. 微积分公式- 导数定义: $f'(x) = \lim_{h \to 0}\frac{f(x+h) - f(x)}{h}$- 和差法则: $(f \pm g)'(x) = f'(x) \pm g'(x)$- 积法则: $(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$- 商法则: $\left(\frac{f}{g}\right)'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}$- 定积分定义: $\int_a^b f(x) \,dx = \lim_{n \to \infty}\sum_{i=1}^n f(x_i) \Delta x$- 基本积分法则: $\int f(x) \, dx = F(x) + C$, where $F'(x) = f(x)$3. 概率公式- 加法概率公式: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$- 乘法概率公式: $P(A \cap B) = P(A) \cdot P(B|A)$, where$P(B|A)$ represents the probability of event B occurring given that event A has already occurred.4. 矩阵公式- 矩阵加法: $C = A + B$, where $C_{ij} = A_{ij} + B_{ij}$- 矩阵乘法: $C = AB$, where $C_{ij} = \sum_{k=1}^nA_{ik}B_{kj}$以上是一些大学数学中常见的公式,希望对您有帮助。

关于高等数学公式总结归纳绝对完整版

关于高等数学公式总结归纳绝对完整版

关于高等数学公式总结归纳绝对完整版高等数学是一门重要且广泛应用的学科,其中包含了许多公式和定理。

下面是一份高等数学公式的总结归纳,涵盖了微积分、线性代数、常微分方程等内容。

微积分公式:1. 导数的定义:对于函数 f(x),在 x 处的导数定义为 f'(x) =lim(h→0) [f(x+h) - f(x)]/h。

2.常见函数的导数公式:-常数函数的导数为0。

- 幂函数 f(x) = x^n 的导数为 f'(x) = nx^(n-1)。

- 指数函数 f(x) = a^x (a>0)的导数为 f'(x) = (ln a) * a^x。

- 对数函数 f(x) = log_a x (a>0 且a≠1)的导数为 f'(x) =1/(x * ln a)。

- 三角函数 f(x) = sin x, cos x, tan x, cot x 的导数为 f'(x)= cos x, -sin x, sec^2x, -csc^2x。

3.高阶导数:若函数f(x)的导数存在,则f'(x)的导数称为f(x)的二阶导数,记作f''(x)。

4.泰勒展开公式:对于函数f(x),在x=a处的泰勒展开公式为f(x)=f(a)+f'(a)(x-a)+(1/2!)f''(a)(x-a)^2+...+(1/n!)f^n(a)(x-a)^n。

线性代数公式:1.矩阵运算:-矩阵求逆:若A是一个非奇异矩阵,则存在一个矩阵B,使得AB=BA=I,其中I是单位矩阵。

-矩阵的转置:将矩阵的行与列对换得到的新矩阵称为原矩阵的转置矩阵。

- 矩阵的乘法:设 A 为m×n 的矩阵,B 为n×p 的矩阵,则它们的乘积 C = AB 是一个m×p 的矩阵,其中 C 的元素c_ij = ∑(k=1到n) a_ik * b_kj。

2.行列式:- 二阶行列式:对于二阶方阵 A = [a b; c d],它的行列式为det(A) = ad - bc。

大一数学知识点公式

大一数学知识点公式

大一数学知识点公式一、代数与方程1. 平方差公式:(a + b)² = a² + 2ab + b²2. 余弦和正弦的平方差公式:cos²θ - sin²θ = cos2θcos²θ + sin²θ = 13. 二次方程根的求解公式:对于ax² + bx + c = 0解为 x = (-b ± √(b² - 4ac)) / 2a4. 两点之间的距离公式:设点A(x₁, y₁)和点B(x₂, y₂),则AB的距离为:d = √((x₂ - x₁)² + (y₂ - y₁)²)5. 因式分解公式:a² - b² = (a - b)(a + b)二、微积分1. 导数的定义:若函数f(x)在点x处可导,则f'(x)表示f(x)在x处的导数。

f'(x) = lim(h→0) ((f(x + h) - f(x)) / h)2. 常见导数公式:- 可导函数的求导法则:- (cf(x))' = cf'(x),其中c为常数- (f(x) ± g(x))' = f'(x) ± g'(x)- (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)- (f(x) / g(x))' = (f'(x)g(x) - f(x)g'(x)) / (g(x)²)- 常见函数的导数:- (k)' = 0,k为常数- (xⁿ)' = n*x^(n-1),其中n为常数- (sin(x))' = cos(x)- (cos(x))' = -sin(x)- (eˣ)' = eˣ- (ln(x))' = 1/x3. 定积分公式:若函数f(x)在区间[a, b]上可积,则区间[a, b]上f(x)的定积分为:∫[a, b] f(x) dx4. 常见定积分公式:- ∫(cf(x)) dx = c∫f(x) dx,其中c为常数- ∫(f(x) ± g(x)) dx = ∫f(x) dx ± ∫g(x) dx- ∫(f(x)g'(x)) dx = f(x)g(x) - ∫(f'(x)g(x)) dx,其中g'(x)为g(x)的导数三、概率与统计1. 排列公式:从n个不同的元素中按顺序取出m个元素,有P(n, m)种排列方式,计算公式为:P(n, m) = n! / (n - m)!2. 组合公式:从n个不同的元素中无序地取出m个元素,有C(n, m)种组合方式,计算公式为:C(n, m) = n! / (m!(n - m)!)3. 条件概率公式:两个事件A和B的条件概率定义为事件B发生的前提下事件A发生的概率,计算公式为:P(A|B) = P(A∩B) / P(B)4. 期望值公式:对于离散型随机变量X,其期望值E(X)定义为X所有可能取值的加权平均,计算公式为:E(X) = ∑(x * P(X=x)),其中x为X的取值,P(X=x)为X等于x的概率以上是大一数学知识点的一些公式,这些公式在不同的数学领域有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。

:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααα定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dxx f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。

代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。

与是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB AB j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-== (马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuF v uG F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。

相关文档
最新文档