高分子的力学性能

合集下载

高分子物理高分子的力学性能

高分子物理高分子的力学性能

高分子物理高分子的力学性能引言高分子是由大量重复单元组成的长链聚合物,具有广泛的应用领域。

高分子材料的力学性能是评估其性能和应用范围的重要指标之一。

本文将重点介绍高分子物理高分子的力学性能,包括拉伸性能、弯曲性能和压缩性能。

拉伸性能拉伸性能是衡量高分子材料抵抗拉伸变形的能力。

引伸模量是评估高分子材料刚度的指标,反映了材料在受力下沿着拉伸方向的抗弯刚度。

拉伸模量越大,材料刚度越高,说明材料越难被拉伸变形。

另一个重要的指标是断裂伸长率,即材料在断裂前所能延伸的长度与原始长度之比。

断裂伸长率越大,材料的延展性越好,能够在受力下更好地承受高应变。

弯曲性能弯曲性能是评估高分子材料在受力下的弯曲变形能力。

弯曲模量是衡量材料刚度和弯曲抗弯能力的指标,它反映了材料在弯曲过程中所需的力和弯曲程度之间的关系。

弯曲模量越大,材料的刚度越好,弯曲变形能力越低。

另一个重要的指标是弯曲强度,即材料在抵抗内部应力下断裂弯曲的能力。

弯曲强度越高,材料越能够承受弯曲应力而不断裂。

压缩性能压缩性能是评估高分子材料在受力下的抗压能力。

压缩模量是衡量材料在受压过程中抗弯刚度的指标,它反映了材料在压缩过程中所需的力和压缩程度之间的关系。

压缩模量越大,材料的刚度越高,抗压变形能力越低。

另一个重要的指标是压缩强度,即材料在抵抗内部应力下断裂压缩的能力。

压缩强度越高,材料越能够承受压缩应力而不断裂。

影响高分子材料力学性能的因素高分子材料的力学性能受多种因素影响。

其中,聚合度是一个重要的因素,即聚合物链的长度。

聚合度越高,链段之间的力学相互作用越多,因此材料的力学性能越好。

另一个重要因素是材料的结晶度。

高结晶度的材料通常具有更好的力学性能,因为结晶区域可以提供更多的强度和刚度。

此外,材料的处理方式和加工工艺也会对力学性能产生影响。

高分子物理高分子的力学性能是评估其应用潜力和性能表现的关键指标。

拉伸性能、弯曲性能和压缩性能是评估高分子材料力学性能的重要指标。

高分子材料性能测试力学性能

高分子材料性能测试力学性能

3.1.2 高分子经典应力-应变曲线 I
3.1 拉伸性能
(c)旳特点是硬而强。拉伸强度和弹性模量大,且有合适旳伸长率,如硬聚氯乙烯等。(d)旳特点是软而韧。断裂伸长率大,拉伸强度也较高,但弹性模量低,如天然橡胶、顺丁橡胶等。
3.1 拉伸性能
3.1.2 高分子经典应力-应变曲线 III
(e)旳特点是硬而韧。弹性模量大、拉伸强度和断裂伸长率也大,如聚对苯二甲酸乙二醇酯、尼龙等
塑性(Plasticity):外力作用下,材料发生不可逆旳永久性变形而不破坏旳能力。
Mechanical properties of materials
应 力
应 变
Mechanical properties of materials
3.1 拉伸性能
3.1.1 应力-应变曲线
Байду номын сангаас
高分子应力-应变过程
3.1 拉伸性能
电子万能试验机
3.1 拉伸性能
3.1 拉伸性能
3.1.5 拉伸性能测试原理 拉伸试验是对试样延期纵轴方向施加静态拉伸负荷,使其破坏,经过测量试样旳屈服力、破坏力和试样标距间旳伸长来求得试样旳屈服强度拉伸强度和伸长率。
3.1 拉伸性能
3.1.6 测量方法即实验环节 ①试样旳状态调节和试验环境按国家原则规定。②在试样中间平行部分做标线,示明标距。③测量试样中间平行部分旳厚度和宽度,精确到0.01mm,II型试样中间平行部分旳宽度,精确到0.05mm,测3点,取算术平均值。④夹具夹持试样时,要使试样纵轴与上下夹具中心连线重合,且松紧适宜。⑤选定试验速度,进行试验。⑥记录屈服时负荷,或断裂负荷及标距间伸长。试样断裂在中间平行部分之外时,此试样作废,另取试样补做。

高分子材料的力学性能

高分子材料的力学性能
目录
高分子材料的力学性能
01 高聚物的抗拉强度
02 长期强度
高分子材料的力学性能
抗拉强度:
在规定的温度、湿度和加载速度下,在试样上沿轴 向施加拉力直到试样被拉断为止,断裂前试样所承受的 最大载荷与试样截面之比称为抗拉强度。
宽度b
厚度d
P
t
p bd
p A0
抗拉强度越大,说明材料越不易断裂、越结实
高分子材料的力学性能
高分子材料的力学性能
玻璃纤维是将玻璃材料通过拉丝形成的纤维状的玻璃, 没有固定的熔点。是一种综合性能优异的无机非金属材料, 通常作为复合材料增强基材、电绝缘材料、耐热绝热材料、 光导材料、耐蚀材料和过滤材料等,广泛应用于国民经济各 个领域。
玻璃纤维
高分子材料的力学性能
玻璃纤维对高聚物的增强:
短玻璃纤维可以提高热塑性塑料的强度,还可以用玻璃纤维与其 他织物复合而制成玻璃钢。
玻璃钢的性能优越,其强度高于钢,是以玻璃纤维制成玻璃布,
以不同的角度排列,以环氧树脂、酚醛树脂、呋喃树脂的顺序形成涂 层,经加热、层压、固化而成。
材料
拉伸强度/MPa
未增强
23
聚乙烯
右表为一些热塑性
增强
76
塑料用玻璃纤维增
未增强
58
聚苯乙烯
强后其拉伸强度的
增强
96
变化
未增强
62
聚碳酸酯
增强
140
未增强
在高分子材料中长期强度指一定时间后,高分子材料 不发生断裂时的强度值。
长期
t
谢谢!
高分子材料的力学性能
2、应力和缺陷:
缺陷的存在将使材料受力时内部压力分布不平均, 缺陷附近范围内的应力急剧地增加,远远超过压力平均 值,这种现象称为应力集中,缺陷就是应力集中物,包 括裂缝、空隙、缺口、银纹和杂质等,缺陷成为材料的 薄弱环节,材料的破坏就从这些缺陷处开始而扩展到 整个体系,严重降低材料的强度。

高分子材料的结构与力学性能研究

高分子材料的结构与力学性能研究

高分子材料的结构与力学性能研究高分子材料是一类重要的工程材料,具有广泛的应用领域。

它们的性能很大程度上取决于其结构与力学性能之间的关系。

因此,对高分子材料的结构与力学性能进行深入研究是十分必要的。

一、高分子材料的结构高分子材料的结构是指其中分子的组成和排列方式。

其主要由聚合物链的排列方式、分子量分布以及分子内外力结构等因素决定。

首先,聚合物链的排列方式对高分子材料的性能有显著影响。

一种常见的排列方式是线性结构,即聚合物链呈直线排列。

这种结构能够使高分子材料更加柔软、可拉伸,并具有较高的延展性。

相反,如果聚合物链呈无规则状或高度交织状排列,则高分子材料的强度和硬度会明显提升。

其次,分子量分布也是高分子结构的重要方面。

分子量分布越广,高分子材料的性能越稳定。

这是因为分子量越大,高分子材料的强度和硬度越高。

然而,如果分子量分布过窄,容易导致性能不均匀,从而影响材料的应用。

最后,分子内外力结构对高分子材料的结构和性能同样起着关键作用。

分子内的键长、键角和二面角等结构参数决定了高分子材料的刚性和柔软性。

而分子之间的力结构包括范德华力、静电力和氢键等,可以影响材料的粘合性和熔融性。

二、高分子材料的力学性能高分子材料的力学性能包括强度、硬度、韧性以及流变性等方面。

这些性能与材料的结构密切相关。

首先,强度是衡量材料抵抗外力破坏能力的重要指标。

高分子材料的强度主要取决于其内部的结构以及分子内外的各种力作用。

一般来说,高分子材料强度较低,但具有较好的拉伸性能和延展性。

其次,硬度是衡量材料抵抗表面刮擦、磨损和压缩的能力。

高分子材料的硬度主要由分子链的排列方式和分子量分布来决定。

线性排列和较窄的分子量分布会导致高分子材料较好的硬度。

韧性是衡量材料断裂前出现塑性变形的能力。

高分子材料的韧性与其延展性有关,而延展性又与聚合物链的排列方式和分子结构有关。

流变性是指高分子材料在外力作用下的变形行为。

它与材料的粘弹性和塑性变形有关。

高分子物理----高分子的力学性能

高分子物理----高分子的力学性能

一般刻痕试样的冲击强度小于这一数值为脆性断裂,大
于这一数值时为韧性断裂。但这一指标并不是绝对的,
例如玻璃纤维增强的聚酯塑料,甚至在脆性破坏时也有
很高的冲击强度。
7.1 玻璃态与结晶态聚合物的力学性质
2. 高聚物的理论强度 从分子结构的角度来看,高聚物的断裂要破坏分子 内的化学键,分子间的范德华力与氢键。
7.2 高弹态聚合物的力学性质
加入增塑剂虽然可以降低Tg,但有利条件,因此选
用增塑法来降低Tg必须考虑结晶速度增大和结晶形成的 可能性。
7.2 高弹态聚合物的力学性质
(2)共聚法
共聚法也能降低聚合物的Tg,如:PS的主链上带有体 积庞大的苯基,聚丙烯腈有强极性腈基存在,Tg都在室温 以上,只能作为塑料和纤维使用,如果用丁二烯分别与苯 乙烯和丙烯腈共聚可得丁苯橡胶和丁腈橡胶,使Tg下降。 例如:丁苯30,Tg=-53℃,丁腈26,Tg=-42℃。
7.1 玻璃态与结晶态聚合物的力学性质
(3)当温度升高到Tg以下几十度范围内,如曲线③,过
了屈服点后,应力先降后升,应变增大很多,直到C点断裂,
C点的应力称为断裂应力,对应的应变称为断裂伸长率ε 。
7.1 玻璃态与结晶态聚合物的力学性质
(4)当温度升至Tg以上,试样进入高弹态,在应力不大
时,就可发生高弹形变,如曲线④,无屈服点,而呈现一段
应力称为屈服应力或屈服强度。
7.1 玻璃态与结晶态聚合物的力学性质
屈服点之后,应力有所下降,在较小的负荷下即可产生形 变,称为应变软化。之后应力几乎不变的情况下应变有很大 程度的增加,最后应力又随应变迅速增加,直到材料断裂。
7.1 玻璃态与结晶态聚合物的力学性质
四、几类高聚物的拉伸行为 1. 玻璃态高聚物的拉伸

高分子材料的力学性能测试及其应用研究

高分子材料的力学性能测试及其应用研究

高分子材料的力学性能测试及其应用研究高分子材料是一类重要的工程材料,主要用于纺织、建筑、电子、医药等领域。

高分子材料具有轻量、高强、高韧性、耐磨损、耐腐蚀等特点,因此广泛应用于各种领域。

在使用高分子材料的过程中,需要了解其力学性能,以便更好地设计、制造和使用。

本文将介绍高分子材料的力学性能测试方法和应用研究。

一、高分子材料的力学性能高分子材料的力学性能包括弹性性能、塑性性能和破坏性能。

其中弹性性能是指材料在受力后恢复原状的能力,主要包括弹性模量和泊松比。

塑性性能是指材料在受力后能够发生变形的能力,主要包括屈服强度和延伸率。

破坏性能是指材料在受到足够大的载荷后会发生破坏的能力,主要包括断裂韧性和破坏模式。

二、高分子材料的力学性能测试方法1、拉伸试验拉伸试验是最常用的高分子材料力学性能测试方法之一。

通过将试样拉伸至断裂点,测量其载荷与变形量的关系,可以得到材料的应力-应变曲线。

从应力-应变曲线中,可以计算出材料的弹性模量、屈服强度、断裂强度和断裂伸长率等重要参数。

拉伸试验可以使用单轴拉伸机、万能试验机等设备进行。

2、压缩试验压缩试验是评估材料抗压能力的一种方法。

该试验通常以轴向载荷进行,压缩试验结果可以用于确定材料的体积模量或多轴应力状态下的应变量。

根据材料应变分布的不同,可以得到不同的应力-应变曲线,从而得到压缩弹性模量和屈服应力等参数。

3、剪切试验剪切试验可以评估材料的剪切性能,通常使用剪切试验机进行。

在剪切试验中,试样被植入两个夹具中,夹具沿着对称面施加力,使试样发生沿切平面的剪切变形。

通过测量必要的载荷和位移,可以获得材料剪切应力和剪切应变,并从中得出剪切模量和剪切强度等重要参数。

4、冲击试验冲击试验是评估材料耐冲击能力的一种方法。

通常在低温下进行,使用冲击试验机施加冲击载荷,在断裂前测量材料的冲击强度和断裂韧性等参数。

这种试验可以评估大多数高分子材料的耐冲击性和脆性,在材料开发和制造中具有重要的应用价值。

高分子材料的力学性能模拟及分析

高分子材料的力学性能模拟及分析

高分子材料的力学性能模拟及分析高分子材料是一种重要的材料类型,具有许多引人注目的优良性能。

它们具有很高的可塑性和韧性,可以成型为各种复杂形状,且可以在不同温度和湿度下使用。

在这篇文章中,我们将讨论高分子材料的力学性能模拟及其分析方法。

高分子材料的力学性能高分子材料的力学性能是指材料在受力时的反应,包括材料的弹性、塑性、断裂等性质。

这些性能对于材料的使用非常关键,因为它们决定了材料的强度、韧性和耐久性等方面。

在高分子材料中,弹性模量是衡量材料弹性性能的一项关键指标。

弹性模量可以定义为材料在受力时的弹性变形与应力的比值。

高分子材料的弹性模量通常比金属和陶瓷等传统材料低,这是由于高分子材料的链状分子结构和较弱的相互作用力导致的。

除了弹性模量,高分子材料还表现出不同的塑性行为。

塑性行为主要由两个因素决定:分子在受力下的形变和传递形变的机制。

高分子材料通常表现出可塑性行为,这意味着他们可以在受到压力时变形而不会破裂。

分析高分子材料的力学性能分子动力学模拟是一种非常有效的方法,可以用来分析高分子材料的力学性能。

分子动力学模拟是一种计算机模拟技术,可以模拟分子之间相互作用的力学行为。

在分子动力学模拟中,分子被建模为一系列离散的质点,并通过牛顿运动定律来计算分子的位置和速度随时间的变化。

分子动力学模拟可以提供高分子材料的微观结构和力学性能的详细信息。

通过模拟,我们可以了解材料在受力时的分子间相互作用和变形,并且可以预测材料的力学性能,如弹性模量、塑性性质和断裂行为等。

另一种用于分析高分子材料的力学性能的技术是有限元方法。

有限元方法是一种数值分析技术,广泛应用于工程、物理学和其他学科。

有限元方法的基本思想是将大型问题分解为许多小型问题,然后使用计算机程序解决。

在有限元方法中,高分子材料被分解成数百万个小元素,然后通过数值方法来求解每个元素的力学行为。

这些小元素的行为可以被组合成整个材料的力学性能。

总结高分子材料是一种非常重要的材料类型,因为它们具有许多优良的性能。

高分子的力学性能

高分子的力学性能
缺陷就是应力集中物,包括裂缝、孔隙、缺口、 银纹、杂质等,它们成为材料破坏的薄弱环节, 严重降低材料的强度。
银纹如果不发展为裂纹,对材料的冲击强度提高 有贡献
-22-
(4) 增塑剂
增塑剂:具有低挥发性的低分子量有机物或柔性高 分子—— 酯类、醇类、聚酯、丙烯氰,丁二烯共聚 物、氯化石蜡等,能降低聚合物体系的黏度及聚合 物的玻璃化温度,弹性模量、屈服应力、抗张强度, 但断裂伸长与冲击强度则上升。
-5-
2. 压缩变形 P为单位面积上的静压力;
V为初始体积;△V为体 积变化。
P B V V
3. 剪切变形
σs为剪切应力; εs为剪切应变
s G s
-6-
模量:理想弹性体的应力与应变遵从虎克定律 E = σ / ε E 称为杨氏模量 G = σ/S/D G 称为切变模量
柔量:模量的倒数
3.1.2 强度与破坏
强度是指物质抵 抗破坏的能力
拉伸外力 弯曲力矩
压力 冲击载荷
拉伸强度 抗弯强度 压缩强度 冲击强度
拉伸模量 弯曲模量 硬度
材料的断裂方式分析
聚合物材料的破坏可能是高分子主链的化学键断裂或是 高分子分子间滑脱或分子链间相互论值
分子间滑脱
第3章 高分子结构与性能-2
高分子的力学性能
结构~性质关系——构效关系,可用类似拓扑 指数来表达,拓扑指数法是基于图形理论,从 图的不变量出发,利用各种算法算出一个数用 来描述化合物的性质。——计算化学,药物分 子设计较为成功。
特点:1.唯一性;2.相关性
-2-
如今已出现100余种指数,但各有优缺点。如Wienter, Randic指数相关性好,但唯一性差;Balaban的J指数唯一性 好,但相关性差。理想的拓扑指数是相关性、唯一性均好, 且计算简便的指数法。例如中科院长春应用化学所提出的 从邻接矩阵出发的EA系列指数。

高分子材料性能

高分子材料性能

高分子材料性能高分子材料是一类由大量重复单元组成的聚合物材料,具有许多优异的性能,广泛应用于工业、建筑、医疗等领域。

其性能特点主要包括力学性能、热学性能、电学性能、光学性能和耐化学性能等方面。

首先,高分子材料的力学性能表现出较高的强度和韧性。

由于其分子链结构的柔韧性和交联结构的稳定性,使得高分子材料具有较好的抗拉伸、抗压缩和抗弯曲等力学性能。

比如聚乙烯、聚丙烯等塑料材料具有较高的强度和韧性,广泛应用于塑料制品制造领域。

其次,高分子材料的热学性能也备受关注。

高分子材料具有较低的热导率和较高的热膨胀系数,使得其在热绝缘和热膨胀方面表现出良好的性能。

例如聚四氟乙烯具有优异的耐高温性能,被广泛应用于制造高温耐腐蚀的管道、阀门等产品。

另外,高分子材料的电学性能也是其重要特点之一。

许多高分子材料具有较好的绝缘性能和介电性能,被广泛应用于电气绝缘材料和电子器件的制造。

例如聚氯乙烯、聚苯乙烯等塑料材料在电气绝缘领域有着重要的应用。

此外,高分子材料的光学性能也备受关注。

许多高分子材料具有良好的透明性和光学均匀性,被广泛应用于光学器件、光学镜片、光学膜等产品的制造。

例如聚碳酸酯、聚甲基丙烯酸甲酯等材料在光学领域有着重要的应用。

最后,高分子材料的耐化学性能也是其重要特点之一。

许多高分子材料具有良好的耐腐蚀性能和耐化学介质性能,被广泛应用于化工设备、管道、容器等产品的制造。

例如聚丙烯、聚乙烯等塑料材料在化工领域有着重要的应用。

总之,高分子材料具有多种优异的性能,广泛应用于各个领域。

随着科学技术的不断发展,高分子材料的性能将会不断得到提升,为人类社会的发展进步做出更大的贡献。

高分子材料的力学特性分析

高分子材料的力学特性分析

高分子材料的力学特性分析高分子材料是一种很特殊的材料,它具有很高的分子量和相对分子质量,分子之间连接着共价键或者氢键,因此它具有很特殊的力学特性。

高分子材料在很多领域得到广泛应用,比如医学、食品、化学工程、电子、建筑、纺织等。

本文将对高分子材料的力学特性进行分析,帮助读者更好地了解这种材料,并且更好地应用它。

1. 高分子材料的物理结构高分子材料是由分子体系组成的宏观体系。

在这个宏观体系中,高分子材料的物理结构非常重要。

高分子材料的物理结构由分子之间的键和链构成。

分子间的键可以分为两种:共价键和氢键。

共价键是通过原子之间的原子轨道重叠形成的键,它们通常是非极性的,但是有些共价键还包含极性成分。

氢键是通过氢原子与另外一个原子之间形成的键,它们通常是极性的。

高分子材料的物理结构还包括它的分子链结构。

分子链的结构决定了高分子材料的形态和性能。

分子链结构主要分为线性、支化、交联等几种类型。

线性结构的高分子材料是由一个单独的长链构成。

支化结构是由以一主链为中心,同时连接着若干支链的高分子材料。

交联结构是由大量的分子链相交织形成的高分子材料。

2. 高分子材料的力学性能高分子材料的力学性能主要包括弹性、塑性、黏弹性和粘性等方面。

弹性是指高分子材料在外部受力下产生的形变,一旦外力消失,高分子材料可以恢复原有形状和大小的能力。

塑性是指高分子材料在外部受力后发生的形变,外力撤离后无法恢复原有形状和大小的性质。

黏弹性是指高分子材料在外部受力下,受力速度不同时形变的特性不同。

在低速下,高分子材料是弹性体;在高速下,高分子材料表现出粘性特性。

粘性是指高分子材料在外部受到剪切力时会发生形变,形变速度逐渐增加,形状和大小逐渐稳定的性质。

3. 高分子材料的测试方法高分子材料的力学特性是通过测试来获取的。

有许多不同的测试方法可以用来测试高分子材料的力学特性。

其中最常用的测试方法有拉伸测试、弯曲测试和压缩测试。

拉伸测试用来测试高分子材料的弹性和塑性特性,可以通过测定高分子材料在拉伸状态下产生的应力和应变来测定高分子材料的弹性模量。

高分子材料的力学性能与结构关系研究

高分子材料的力学性能与结构关系研究

高分子材料的力学性能与结构关系研究高分子材料是当代材料科学领域中的重要一环,其广泛应用于医疗、航空航天、电子等众多领域。

高分子材料的力学性能与结构关系研究是提高材料性能和设计新材料的关键。

一、介绍高分子材料的力学性能与结构关系研究的重要性高分子材料是由大分子化合物组成的塑料、橡胶、纤维等,其性能受到分子结构和力学性能的相互影响。

了解高分子材料的力学性能与分子结构之间的关系,可以为材料的设计和功能优化提供指导。

二、高分子材料的力学性能研究方法1. 拉伸测试:通过拉伸试验可以获得高分子材料的强度、延伸率等力学性能指标。

同时,还可以通过拉伸过程中的应力-应变曲线来分析材料的变形行为,以及不同结构对应力传递的影响。

2. 动态力学分析:采用动态力学分析仪可以测量材料在固态下的弹性、刚性以及黏弹性等性能,进一步了解材料的力学特性。

这种方法可以考察材料在不同温度、频率下的变化规律,从而推导出结构与性能之间的关系。

三、高分子材料的结构与力学性能关系研究案例1. 成键方式与强度关系:高分子材料的成键方式决定了分子链之间的相互作用强度。

例如,共价键构成的高分子材料通常具有较高的强度和硬度,而氢键构成的则较为柔软。

因此,通过调控成键方式可以实现高分子材料的力学性能调整。

2. 结晶性与强度关系:高分子材料中存在结晶区域和非结晶区域,其结晶性对材料的强度和刚度具有重要影响。

通过控制结晶程度和分子排列方式,可以调节高分子材料的力学性能。

例如,可以利用拉伸方法引导高分子材料中的结晶,从而提高其力学性能。

3. 功能化基团与性能关系:在高分子材料中引入功能化基团可以改变其分子结构,进而影响力学性能。

例如,通过引入交联基团可以增加材料的强度和耐磨性;引入流变助剂可以改善材料的黏性和变形能力。

四、未来高分子材料力学性能与结构关系研究的展望随着科学技术的不断进步,高分子材料的力学性能与结构关系研究将迎来更多的发展机遇。

未来可以探索更精确的力学测试方法,结合先进的计算模拟技术,全面分析高分子材料的力学行为。

高分子材料的动态力学性能分析

高分子材料的动态力学性能分析

高分子材料的动态力学性能分析在现代材料科学的领域中,高分子材料以其独特的性能和广泛的应用成为了研究的重点之一。

而高分子材料的动态力学性能更是其中一个关键的方面,对于深入理解和优化其在各种实际场景中的应用具有重要意义。

首先,我们来了解一下什么是高分子材料的动态力学性能。

简单来说,就是指高分子材料在动态载荷(如振动、冲击等)作用下表现出的力学行为和特性。

这种性能反映了材料在不同频率和温度条件下对能量的吸收、储存和释放能力。

高分子材料的动态力学性能通常通过动态力学分析(DMA)技术来进行研究。

在这个过程中,会施加一个周期性的应变或应力,然后测量材料的响应,从而得到诸如储能模量、损耗模量和损耗因子等重要参数。

储能模量代表了材料储存弹性变形能量的能力,它反映了材料的刚度。

损耗模量则反映了材料在变形过程中能量的损耗,与材料的粘性相关。

而损耗因子则是损耗模量与储能模量的比值,能够很好地反映材料的阻尼特性。

温度对高分子材料的动态力学性能有着显著的影响。

随着温度的升高,高分子材料会经历从玻璃态到高弹态再到粘流态的转变。

在玻璃态下,分子链的运动被冻结,材料表现出较高的模量和较低的阻尼。

当温度升高到玻璃化转变温度(Tg)时,分子链开始获得一定的运动能力,模量急剧下降,阻尼迅速增大。

继续升温进入高弹态,材料的弹性和粘性并存。

而当温度进一步升高到粘流温度以上时,材料变为可流动的粘性液体。

频率也是影响高分子材料动态力学性能的一个重要因素。

在低频下,分子链有足够的时间响应外力,材料表现出更多的粘性特征;而在高频下,分子链来不及响应,材料表现出更多的弹性特征。

高分子材料的结构和组成对其动态力学性能有着决定性的影响。

分子链的长度、分子量分布、支化程度以及交联结构等都会改变材料的动态力学性能。

例如,分子量较大且分布较窄的高分子材料通常具有更高的模量和更好的力学性能。

交联结构可以增加材料的刚度和耐热性,但可能会降低其韧性。

不同类型的高分子材料具有不同的动态力学性能特点。

高分子材料力学性能

高分子材料力学性能
全剪切应力下的流变曲线
曲线3:宾汉流体
D、触变性流体:t延长,粘度迅速下降; (例:重防腐涂料中的应用)
震凝性流体:反之
一、高聚物的流动性
§5.1 力学性能
1、第一牛顿区 2、第二牛顿区
一、高聚物的流动性
§5.1 力学性能
2、与结构的关系 (η、 Tf 、非牛顿性 )
解缠能力
1)分子量:
分子量越大,粘度越大, Tf 越高, 非牛顿性越大
4)粘弹模型 : 建立模型--模拟曲线--得到参数
理想粘壶+理想弹簧
分子运 动
并联
串联
Kelvin 模型 描述蠕变
Maxwell模型 描述应力松弛
三、粘弹性
§5.1 力学性能
三、粘弹性
§5.1 力学性能
2、动态粘弹性 (滞后)
• 滞后:一定温度下,受交变的应力,形变随时
间的变化跟不上力随时间的变化
银纹化过程
裂缝
4)分子间作用力: 越大: 四 屈服、强度与断裂
一Tf 越定高,的粘度温越高度, 、一定的拉伸速度下,观察应力随应
变的变化曲线 5
ΔV= 0
柔性越大,Tf 越低, 非牛顿性越大(粘度对剪切的敏感性大)
相比较而言
2、力学强度 不同力学要求如何选材?
3、强度与结构的关系 明显的松弛过程--时间依赖性
弯曲形变较小时的载荷与挠度
• 抗冲击强度 (韧性) σi=W/bd (kJ/m2)
2、力学强度
§5.1 力学性能
四屈服、强度与断裂
2) 理论强度》 实际强度,σ实=(1/100~1/1000 )σ理 而模量接近 原因:缺陷(裂缝、结构的不均一性)
3)强度理论: • 应力集中: • Griffith表面能理论 (脆性材料)

高分子材料的物理化学性质

高分子材料的物理化学性质

影响粘合强度的因素:
1.分子量:中等分子量
高聚物透气性能的应用 透气性能越大越好
海水淡化
选择性渗透
污水处理 富氧气体 物料分离
(二)胶粘性
胶粘性:粘合行为及被粘合行为
粘合过程:
第一阶段:液体胶黏剂分子借助于布朗运动向被粘物表面 扩散,使两者的急性基团或链节相互靠近; 第二阶段是吸附力的产生,当胶黏剂与被粘物两处分子间 距离达到0.5-1nm,分子便产生相互吸引作用,并使分子间的 距离进一步缩短到能够处于最大稳定状态的距离。
3.滞后现象
当外力不是静力,而是交变力(即应力大小呈周期性变化)时,应 力和应变的关系就会呈现出滞后现象。所谓滞后现象,是指应变随 时间的变化一直跟不上应力随时间的变化的现象。
例如,自行车行驶时橡胶轮胎的某一部分一会儿着地,一会儿离地,因而 受到的是一个交变力(图7-58)。在这个交变力作用下,轮胎的形变也是 一会儿大一会儿小的变化。形变总是落后于应力的变化,这种滞后现象的 发生是由于链段在运动时要受到内摩擦力的作用。当外力变化时,链段的 运动跟不上外力的变化,所以落后于应力,有一个相位差δ。相位差越大, 说明链段运动越困难。
(5)惰性填料:有时为了降低成本,在聚合物中加入一 些只起稀释作用的惰性填料,如在聚合物中加入粉状碳 酸钙。惰性填料往往使聚合物材料的强度降低。
(6)增塑:增塑剂的加入可使材料强度降低,只适于对 弹性、韧性的要求远甚于强度的软塑料制品。
(7)外界因素:温度、外力作用速度和作用时间对强度 都有影响。
五、高分子材料的其他性能 (一)渗透性及透气性 高分子材料通过扩散和吸收过程,使气体或 液体透过一个表面传递到另一表面渗出、从浓度 高的一侧扩散到浓度低的一侧,这种现象称为渗 透性。 影响渗透性的主要因素:温度、极性、分子 大小、链的柔性等。

高分子材料的力学性能分析

高分子材料的力学性能分析

高分子材料的力学性能分析高分子材料是一类广泛应用于各个行业的材料,具有重要的地位和作用。

高分子材料的力学性能对于其应用的稳定性和可靠性具有至关重要的影响。

因此,对高分子材料的力学性能进行分析和评估是非常重要的工作。

首先,我们来了解高分子材料的力学性能包括哪些方面。

高分子材料的力学性能主要包括强度、韧性和刚性等方面。

强度是指高分子材料在受力作用下抵抗断裂的能力,通常用抗拉强度来表示。

韧性是指高分子材料能够在受力作用下发生可逆性变形的能力,通常用断裂伸长率和冲击韧性来表示。

刚性是指高分子材料在受力作用下不发生可逆性变形的能力,通常用弹性模量来表示。

这些力学性能指标可以通过一系列测试方法得到。

其次,我们来探讨高分子材料力学性能分析的方法和工具。

力学性能分析需要使用一些专业的测试设备和仪器,例如拉伸试验机、冲击试验机、扭转试验机等。

这些设备可以通过施加不同方向和大小的外力来评估高分子材料的不同力学性能。

通过这些测试方法,我们可以得到高分子材料的力学性能曲线,从而分析和评估其力学性能特点。

在力学性能分析中,我们还需要考虑高分子材料的成分和结构对力学性能的影响。

高分子材料通常是由分子链组成的,分子链的结构和排列方式对力学性能具有重要影响。

例如,聚合度高的高分子材料有较高的强度,分子链的交联程度高的高分子材料有较高的韧性。

此外,添加剂和填充物的使用也可以改善高分子材料的力学性能。

例如,加入增强纤维可以提高高分子材料的强度和刚性。

在实际应用中,高分子材料的力学性能要符合特定的要求。

不同行业和领域对于高分子材料的力学性能要求各不相同。

例如,在汽车工业中,要求高分子材料具有较高的刚性和耐热性,以保证车身的稳定性和安全性。

在医疗行业中,要求高分子材料具有较高的耐腐蚀性和生物相容性,以确保医疗器械的安全和有效性。

因此,在力学性能分析中,我们需要将高分子材料的特定要求考虑进去,以便更好地满足实际应用的需求。

最后,力学性能分析的结果对于改进高分子材料的性能和设计优化具有重要意义。

高分子科学基础-高分子材料力学性能

高分子科学基础-高分子材料力学性能
13
么么么么方面
• Sds绝对是假的
2.橡胶弹性的热力学分析
长度lo的试样,等温时受外力 f 拉伸,伸长 dl dU = dQ-dW
拉伸中体积变化所做的功 PdV
dW
PdV-fdl
拉伸中形状变化所做的功-fdl
又 dQ=TdS, ∴ dU = TdS + fdl -PdV
橡胶在拉伸中体积不变, dV=0; ∴ dU = TdS + fdl

脆 断裂强度高低;

断裂伸长大小
类型 形变产生 屈服现象 σ ε
实例
软而弱


低中
凝胶,低分子量树脂
软而韧


中大
橡胶,软PVC,LDPE
硬而脆


中小
PS,PMMA
硬而强


高中
硬PVC
10
硬而韧


高大
尼龙,PC
3.影响聚合物实际强度的因素
①高分子的化学结构
——增加极性或产生氢键,强度↑
PE < PVC < 尼龙66
力变化一个相位角δ
ε(t)=ε0 sinωt
σ(t)=σ0 sin(ωt+δ)
σ(t)=σ0 sinωtcosδ+σ0 cosωtsinδ
与应变同相位,幅值为σ0cosδ,是弹性形变的动力
与应变相差90o,幅值为σ0sinδ,消耗于克服摩擦阻力
E’=(σ0 /ε0 ) cosδ E”=(σ0 /ε0 ) sinδ
§2 高分子的力学性能
研究目的:
•求得高分子各种力学性能的宏观描述和测试合理化,以作为高分

高分子材料的力学性能与断裂行为分析

高分子材料的力学性能与断裂行为分析

高分子材料的力学性能与断裂行为分析高分子材料在日常生活和工业生产中具有广泛的应用。

了解高分子材料的力学性能和断裂行为对于材料设计和工程应用至关重要。

本文将对高分子材料的力学性能和断裂行为进行分析和讨论。

一、高分子材料的力学性能高分子材料的力学性能包括强度、刚度、韧性等指标。

强度是材料抵抗外部加载和应力集中的能力,刚度是材料对外力的响应程度,而韧性则反映了材料的断裂行为。

1.1 强度高分子材料的强度与其分子结构、结晶度、分子量以及添加的填料等因素密切相关。

通常来说,高分子材料的强度较低,容易发生塑性变形和破坏。

然而,通过改变分子结构和添加增强剂,可以显著提高高分子材料的强度。

1.2 刚度刚度是材料对外力的响应程度。

高分子材料的刚度通常由分子链的柔性和分子交联度决定。

分子链较为柔软的高分子材料具有较低的刚度,而分子交联度较高的高分子材料则具有较高的刚度。

刚度可以通过调整高分子材料的结晶度、分子量和添加增强剂等方法进行改善。

1.3 韧性韧性是材料的断裂行为的一个重要指标,也是衡量高分子材料抵抗断裂的能力。

高分子材料通常具有较高的韧性,能够发生大量的塑性变形和吸收较大的断裂能量。

韧性可以通过改变材料的分子结构、添加韧化剂和改变处理条件等方法进行改善。

二、高分子材料的断裂行为高分子材料的断裂行为通常表现为拉伸断裂、剪切断裂和冲击断裂等形式。

2.1 拉伸断裂拉伸断裂是高分子材料最常见的断裂行为形式。

在拉伸过程中,高分子材料会逐渐变细并最终断裂。

材料的拉伸断裂强度是衡量其抵抗拉伸加载的能力。

拉伸断裂的形貌通常可以通过断口形态观察来判定高分子材料的断裂机制,如韧化断裂、脆性断裂等。

2.2 剪切断裂剪切断裂主要发生在高分子材料的剪切区域。

剪切断裂强调的是材料在受到扭矩或切割力作用下的断裂行为。

在剪切断裂中,高分子材料会发生剪切变形,并在剪切应力达到一定程度时突然断裂。

2.3 冲击断裂冲击断裂通常发生在高分子材料受到高速撞击或冲击加载时。

高分子材料的力学性能研究

高分子材料的力学性能研究

高分子材料的力学性能研究高分子材料广泛应用于工程、医学、生物和纳米技术等领域,因其良好的可塑性、机械性能和化学稳定性备受关注。

了解高分子材料的力学性能对于改善材料设计和应用至关重要。

本文将探讨高分子材料的力学性能研究方法和相关的研究成果。

一、力学性能研究方法1. 实验方法实验方法是研究高分子材料力学性能的常用手段之一。

常用的实验方法包括拉伸实验、压缩实验和剪切实验。

拉伸实验通常用于测量材料的弹性模量、屈服强度和断裂强度等参数。

压缩实验可用于研究高分子材料在受压力时的变形和破坏行为。

剪切实验通常用于研究高分子材料的剪切变形和断裂行为。

2. 数值模拟方法数值模拟方法在研究高分子材料的力学性能方面发挥着重要作用。

常用的数值模拟方法包括分子动力学模拟、有限元分析和分子力场模拟。

分子动力学模拟能够提供高分子材料在原子尺度上的力学行为信息。

有限元分析是一种基于数学方法的力学模拟技术,可以研究高分子材料的力学行为及其变形情况。

分子力场模拟基于分子间相互作用力原理,能够模拟高分子材料的结构和力学行为。

二、力学性能研究成果1. 强度性能强度是衡量高分子材料耐力学应力的指标,也是研究中常关注的一个参数。

通过实验和数值模拟方法可以获得不同高分子材料的强度性能数据。

例如,拉伸实验可以得到高分子材料的屈服强度和断裂强度。

数值模拟方法可以模拟高分子材料在受力过程中的应力分布和破坏行为,进一步解释实验结果。

2. 变形行为高分子材料在受力下的变形行为是力学性能研究的重点之一。

通过实验和模拟方法可以研究高分子材料的弹性、塑性和粘弹性行为。

例如,拉伸实验可以测量材料的应变和应力关系,以及应力的恢复情况。

数值模拟方法可以模拟高分子材料的变形过程及其对应的应力状态,进一步解释实验现象。

3. 断裂行为断裂行为是研究高分子材料力学性能的另一个重要方面。

强度不仅仅取决于材料的强度性能,还与材料的断裂方式有关。

通过实验和模拟方法可以研究高分子材料的断裂方式和断裂韧性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

d
1
1 1 2 1d d 0
y
1 0
d d 1
在真应力-应变图上从横坐标点 = 1
向曲线上作切线,其切点就是屈服点, 对应的真应力就是屈服真应力。
Three types of true stress-strain curve
三种真应力-应变曲线
AB
0
1 0
1 0
1. 从横坐标点不能向曲线上作切线,这种聚合物拉伸时随负荷增大而均 匀伸长,但不能成颈。
c 2asE12
裂缝面积
单位面积裂 缝的表面能
Griffith Equation
Stress Intensity Factor 应力强度因子
Griffith Equation
c 2asE12
KIC
ca122 sE
> C 时破坏
KI > KIC 时破坏
K Ia12
应力强度因子
材料本身 的性质
Molecular Theory 断裂的分子理论
d>1.5nm时化学键破坏
高分子链
f E d 5 .1 8 .5 1 1 1 0 1 J 0 9 m /0 根 3 .9 1 9 0 N /根
的截面积
A0.2nm 2 根
破坏单位面积 化学键所需的力
单位面积的 高分子链数
N51108根 m 2
f 3 N . 9 1 9 N 根 0 5 1 1 根 8 m 0 2 2 1 1 N m 0 0 2
2. 从横坐标点可向曲线上作一条切线,切点即为屈服点,聚合物拉伸时 随负荷增大而均匀伸长,到切点时成颈,随后细颈逐渐变细,负荷下 降直至断裂。
3. 从横坐标点可向曲线上作二条切线,在A处达极大值,成颈,进一步拉 伸时沿曲线下降直至B点,之后应力稳定在B点。细颈稳定,试样被冷 拉,直至试样全部变成细颈,最后,进一步拉伸则继续发展直至断裂。
Polymer Physics
高分子物理
高分子的力学性能
Mechanical Properties of Polymers
Mechanical Properties
Tensile 拉伸
拉伸强度,拉伸(杨氏)模量,断裂伸长率, 屈服强度,100%定伸应力…
Impact 冲击
悬臂梁,简支梁,落锤… 缺口,无缺口
上出现与拉伸方向成约45角倾斜的
剪切滑移变形带(Shear band),并
且逐渐生成对称的细颈
A
A
A0
cos
F//Fsin FFcos
F A A F 0co 2s0co 2s
F A
F//
F
F
A0
//F A //A F 0sic no 1 2 s0si2n
Analysis of the stress during tensile test
如果不考虑其他因素的影响,可以由微观角 度计算出聚合物的理论强度
为了简化问题,把聚合物断裂的微观过程归 纳为三种
化学键破坏 分子间滑脱 范德华力或氢键破坏
Chain scission 断链
断裂截面上所有高分子链的化学键同时破坏 化学键键能
破坏一根化学 键所需的力
E 3k 5 m J 0 5 .8 o 1 l 10 J 9 根
U'103 J/mol
134 230 218~222 230~243 318~335 180
Merry Christmas
9.4 Tensile Strength of Polymers
高分子的拉伸强度
Theoretical strength 理论强度
从分子结构的角度看,聚合物之所以有抵抗 外力破坏的能力,主要靠分子内的化学键和 分子间的范德华力和氢键
薄弱环节出现应力集中而产生局部的塑性形
银纹
变和取向,以至于在材料表面或内部垂直于
应力方向上出现的微细的空化条纹状形变区
银 纹 的 长 约 100m 、 宽 约 10m 、 厚 约 1m , 外 形 与 裂 缝
(Crack)相似,但裂缝内部是空的,而银纹内部有许多高
度取向的聚合物微纤,这些微纤把银纹体的两个面连接起来
Mc,非晶态聚合物的分子量达到Mc以上时就会产生分 子间缠结,形成物理交联点 PS等脆性聚合物的Mc(19000)较大,缠结点密度低, 缠结链伸长的长度大,容易产生银纹 PC等韧性聚合物的Mc(2490)较小,缠结点密度高, 缠结链伸展较困难,容易发生应变硬化,这种情况下银 纹化形变不会得到充分发展,当应力增大到剪切屈服应 力时,试样即可产生剪切形变
I Elastic deformation
普弹形变
键长键角运动,可回复
II Forced rubber-like
Y
B
deformation
强迫高弹形变
链段沿外力方向取向
加热至Tg以上可恢复
III Viscous flow
I
II III
粘流形变
整链相互滑移或断链
不可回复
0
y
b
Types of stress-strain curve 应力
并沿外力方向取向,微纤之间为空隙隔开。银纹体中聚合物
的体积分数约为40~60%。银纹进一步发展,以至于微纤断
裂时,就成为裂缝
银纹形变导致的体积增加,而截面积基本不变
银纹的产生与发展吸收了大量能量
Shear band and Craze
剪切带和银纹
银纹和剪切变形带是聚合物形变的两种主要形式 某种聚合物采取什么形式主要取决于其临界缠结分子量
脆性试样在最大切应力达到剪切强度之前,横截面上的法向正应力 已达到材料的拉伸强度,因此试样还来不及屈服就断裂了,而且断 面与拉伸方向相垂直。
Shear band and Craze
剪切带和银纹
Shear band 剪切带
剪切带是韧性聚合物在单向拉伸至屈 服点时出现的与拉伸方向成约45角倾 斜的剪切滑移变形带
9.2 Yielding of Polymer
聚合物的屈服
Cold drawing 冷拉
脆性聚合物在断裂前试样并没
有明显变化,断裂面一般与拉
伸方向垂直,而且很光洁
韧性聚合物在屈服后产生细颈 Nhomakorabea(neck),之后细颈逐渐扩展,
应变增加而应力不变,这种现
象称为冷拉(cold drawing),
直至细颈扩展到整个试样,应
A’
U0
A
B
Distance
Potential barrier of a chemical bond
Blue: without stress Red: with stress
Activation energy of fracture 断裂活化能
在拉伸应力作用下,材料寿命与应力的关系为
0expU0R T
9.3 Fracture Theory of Polymers
高分子的断裂理论
Griffith Fracture Theory
Griffith断裂理论
该理论由Griffith于60年前为解释玻璃纤维的 断裂强度而提出,目前广泛应用于金属和非 金属材料的断裂现象
Griffith认为,实际的脆性固体在受到外力作 用时,由于局部不均匀性,会在垂直于主应 力方向上产生裂缝,在裂缝的两端产生应力 集中。当局部应力超过材料的内聚力时,就 会导致裂缝增长并进而使材料断裂
真应力-应变曲线
True stress
真应力 F
A
无体积变化
且均匀变形
AA0l0 A0
l 1
y
F11
0
A 0
Considère drawing Considère作图法
How to find yield point in true stress-strain curve?
d 0 屈服点定义
拉伸应变
l0 l0
True stress
真应力
’ F
A
l0 l
l
F
Typical stress-strain curve
Y: yield point 屈服点
y: yield strength 屈服强度
y: elongation at yield 屈服伸长率 by
Y
B: break point 断裂点
剪切带的厚度约1m,在剪切带内部, 高分子链沿外力方向高度取向
剪切带内部没有空隙,因此,形变过 程没有明显的体积变化
剪切带的产生与发展吸收了大量能量。 同时,由于发生取向硬化,阻止了形 变的进一步发展
剪切带
Shear band and Craze
剪切带和银纹
Craze 银纹
裂缝
银纹是聚合物在应力作用下,于材料的某些
Y’
b: break strength 断裂强度 y: elongation at break 断裂伸长率
Tensile strength 拉伸强度
t y,b
Young's Modulus 杨氏模量 0 y Etan
Fracture energy 断裂能: OYB面积
B B’
b
Molecular motion during tensile test 拉伸过程中高分子链的运动
Stress Concentration 应力集中
在无限大的平板上刻一椭圆孔。在垂直于长轴方向施以均 匀张应力,则在椭圆孔附近存在应力集中,两端的应力最 大。Lnglis导得
m012ba
0
m
椭圆
a >> b
2b
m 20
a
裂缝
裂缝尖端 曲率半径
2a
0
Stress distribution near an ellipsoid
相关文档
最新文档