伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-第三篇(第13~15章)【圣才出品】
伍德里奇计量经济学第六版答案Chapter-3
CHAPTER 3TEACHING NOTESFor undergraduates, I do not work through most of the derivations in this chapter, at least not in detail. Rather, I focus on interpreting the assumptions, which mostly concern the population. Other than random sampling, the only assumption that involves more than population considerations is the assumption about no perfect collinearity, where the possibility of perfect collinearity in the sample (even if it does not occur in the population) should be touched on. The more important issue is perfect collinearity in the population, but this is fairly easy to dispense with via examples. These come from my experiences with the kinds of model specification issues that beginners have trouble with.The comparison of simple and multiple regression estimates – based on the particular sample at hand, as opposed to their statistical properties – usually makes a strong impression. Sometimes I do not bother with the “partialling out” interpretation of multiple regression.As far as statistical properties, notice how I treat the problem of including an irrelevant variable: no separate derivation is needed, as the result follows form Theorem 3.1.I do like to derive the omitted variable bias in the simple case. This is not much more difficult than showing unbiasedness of OLS in the simple regression case under the first four Gauss-Markov assumptions. It is important to get the students thinking about this problem early on, and before too many additional (unnecessary) assumptions have been introduced.I have intentionally kept the discussion of multicollinearity to a minimum. This partly indicates my bias, but it also reflects reality. It is, of course, very important for students to understand the potential consequences of having highly correlated independent variables. But this is often beyond our control, except that we can ask less of our multiple regression analysis. If two or more explanatory variables are highly correlated in the sample, we should not expect to precisely estimate their ceteris paribus effects in the population.I find extensive t reatments of multicollinearity, where one “tests” or somehow “solves” the multicollinearity problem, to be misleading, at best. Even the organization of some texts gives the impression that imperfect collinearity is somehow a violation of the Gauss-Markov assumptions. In fact, they include multicollinearity in a chapter or part of the book devoted to “violation of the basic assumptions,” or something like that. I have noticed that master’s students who have had some undergraduate econometrics are often confused on the multicollinearity issue. It is very important that students not confuse multicollinearity among the included explanatory variables in a regression model with the bias caused by omitting an important variable.I do not prove the Gauss-Markov theorem. Instead, I emphasize its implications. Sometimes, and certainly for advanced beginners, I put a special case of Problem 3.12 on a midterm exam, where I make a particular choice for the function g(x). Rather than have the students directly comparethe variances, they should appeal to the Gauss-Markov theorem for the superiority of OLS over any other linear, unbiased estimator.SOLUTIONS TO PROBLEMS3.1 (i) hsperc is defined so that the smaller it is, the lower the student’s standing in high school . Everything else equal, the worse the student’s standing in high school, the lower is his/her expected college GPA.(ii) Just plug these values into the equation:colgpa = 1.392 - .0135(20) + .00148(1050) = 2.676.(iii) The difference between A and B is simply 140 times the coefficient on sat , because hsperc is the same for both students. So A is predicted to have a score .00148(140) ≈ .207 higher.(iv) With hsperc fixed, colgpa ∆ = .00148∆sat . Now, we want to find ∆sat such that colgpa ∆ = .5, so .5 = .00148(∆sat ) or ∆sat = .5/(.00148) ≈ 338. Perhaps not surprisingly, a large ceteris paribus difference in SAT score – almost two and one-half standard deviations – is needed to obtain a predicted difference in college GPA or a half a point.3.2 (i) Yes. Because of budget constraints, it makes sense that, the more siblings there are in a family, the less education any one child in the family has. To find the increase in the number of siblings that reduces predicted education by one year, we solve 1 = .094(∆sibs ), so ∆sibs = 1/.094 ≈ 10.6.(ii) Holding sibs and feduc fixed, one more year of mother’s education implies .131 years more of predicted education. So if a mother has four more years of education, her son is predicted to have about a half a year (.524) more years of education.(iii) Since the number of siblings is the same, but meduc and feduc are both different, the coefficients on meduc and feduc both need to be accounted for. The predicted difference in education between B and A is .131(4) + .210(4) = 1.364.3.3 (i) If adults trade off sleep for work, more work implies less sleep (other things equal), so 1β < 0.(ii) The signs of 2β and 3β are not obvious, at least to me. One could argue that more educated people like to get more out of life, and so, other things equal, they sleep less (2β < 0). The relationship between sleeping and age is more complicated than this model suggests, and economists are not in the best position to judge such things.(iii) Since totwrk is in minutes, we must convert five hours into minutes: ∆totwrk = 5(60) = 300. Then sleep is predicted to fall by .148(300) = 44.4 minutes. For a week, 45 minutes less sleep is not an overwhelming change.(iv) More education implies less predicted time sleeping, but the effect is quite small. If we assume the difference between college and high school is four years, the college graduate sleeps about 45 minutes less per week, other things equal.(v) Not surprisingly, the three explanatory variables explain only about 11.3% of the variation in sleep . One important factor in the error term is general health. Another is marital status, and whether the person has children. Health (however we measure that), marital status, and number and ages of children would generally be correlated with totwrk . (For example, less healthy people would tend to work less.)3.4 (i) A larger rank for a law school means that the school has less prestige; this lowers starting salaries. For example, a rank of 100 means there are 99 schools thought to be better.(ii) 1β > 0, 2β > 0. Both LSAT and GPA are measures of the quality of the entering class. No matter where better students attend law school, we expect them to earn more, on average. 3β, 4β > 0. The number of volumes in the law library and the tuition cost are both measures of the school quality. (Cost is less obvious than library volumes, but should reflect quality of the faculty, physical plant, and so on.)(iii) This is just the coefficient on GPA , multiplied by 100: 24.8%.(iv) This is an elasticity: a one percent increase in library volumes implies a .095% increase in predicted median starting salary, other things equal.(v) It is definitely better to attend a law school with a lower rank. If law school A has a ranking 20 less than law school B, the predicted difference in starting salary is 100(.0033)(20) =6.6% higher for law school A.3.5 (i) No. By definition, study + sleep + work + leisure = 168. Therefore, if we change study , we must change at least one of the other categories so that the sum is still 168.(ii) From part (i), we can write, say, study as a perfect linear function of the otherindependent variables: study = 168 - sleep - work - leisure . This holds for every observation, so MLR.3 violated.(iii) Simply drop one of the independent variables, say leisure :GPA = 0β + 1βstudy + 2βsleep + 3βwork + u .。
伍德里奇计量经济学导论第6版笔记和课后答案
伍德里奇计量经济学导论第6版笔记和课后答案
第1章计量经济学的性质与经济数据
1.1 复习笔记
考点一:计量经济学及其应用★
1计量经济学
计量经济学是在一定的经济理论基础之上,采用数学与统计学的工具,通过建立计量经济模型对经济变量之间的关系进行定量分析的学科。
进行计量分析的步骤主要有:①利用经济数据对模型中的未知参数进行估计;②对模型进行检验;③通过检验后,可以利用计量模型来进行相关预测。
2经济分析的步骤
经济分析是指利用所搜集的相关数据检验某个理论是否成立或估计某种关系的方法。
经济分析主要包括以下几步,分别是阐述问题、构建经济模型、经济模型转化为计量模型、搜集相关数据、参数估计和假设检验。
考点二:经济数据★★★
1经济数据的结构(见表1-1)
表1-1 经济数据的结构
2面板数据与混合横截面数据的比较(见表1-2)
表1-2 面板数据与混合横截面数据的比较
考点三:因果关系和其他条件不变★★
1因果关系
因果关系是指一个变量的变动将引起另一个变量的变动,这是经济分析中的重要目标之一。
计量分析虽然能发现变量之间的相关关系,但是如果想要解释因果关系,还要排除模型本身存在因果互逆的可能,
否则很难让人信服。
2其他条件不变
其他条件不变是指在经济分析中,保持所有的其他变量不变。
“其他条件不变”这一假设在因果分析中具有重要作用。
《计量经济学导论》考研伍德里奇考研复习笔记二
《计量经济学导论》考研伍德里奇考研复习笔记二第1章计量经济学的性质与经济数据1.1 复习笔记一、什么是计量经济学计量经济学是以一定的经济理论为基础,运用数学与统计学的方法,通过建立计量经济模型,定量分析经济变量之间的关系。
在进行计量分析时,首先需要利用经济数据估计出模型中的未知参数,然后对模型进行检验,在模型通过检验后还可以利用计量模型来进行预测。
在进行计量分析时获得的数据有两种形式,实验数据与非实验数据:(1)非实验数据是指并非从对个人、企业或经济系统中的某些部分的控制实验而得来的数据。
非实验数据有时被称为观测数据或回顾数据,以强调研究者只是被动的数据搜集者这一事实。
(2)实验数据通常是通过实验所获得的数据,但社会实验要么行不通要么实验代价高昂,所以在社会科学中要得到这些实验数据则困难得多。
二、经验经济分析的步骤经验分析就是利用数据来检验某个理论或估计某种关系。
1.对所关心问题的详细阐述问题可能涉及到对一个经济理论某特定方面的检验,或者对政府政策效果的检验。
2构造经济模型经济模型是描述各种经济关系的数理方程。
3经济模型变成计量模型先了解一下计量模型和经济模型有何关系。
与经济分析不同,在进行计量经济分析之前,必须明确函数的形式,并且计量经济模型通常都带有不确定的误差项。
通过设定一个特定的计量经济模型,我们就知道经济变量之间具体的数学关系,这样就解决了经济模型中内在的不确定性。
在多数情况下,计量经济分析是从对一个计量经济模型的设定开始的,而没有考虑模型构造的细节。
一旦设定了一个计量模型,所关心的各种假设便可用未知参数来表述。
4搜集相关变量的数据5用计量方法来估计计量模型中的参数,并规范地检验所关心的假设在某些情况下,计量模型还用于对理论的检验或对政策影响的研究。
三、经济数据的结构1横截面数据(1)横截面数据集,是指在给定时点对个人、家庭、企业、城市、州、国家或一系列其他单位采集的样本所构成的数据集。
伍德里奇计量经济学导论第6版笔记和课后习题答案
第1章计量经济学的性质与经济数据1.1复习笔记考点一:计量经济学★1计量经济学的含义计量经济学,又称经济计量学,是由经济理论、统计学和数学结合而成的一门经济学的分支学科,其研究内容是分析经济现象中客观存在的数量关系。
2计量经济学模型(1)模型分类模型是对现实生活现象的描述和模拟。
根据描述和模拟办法的不同,对模型进行分类,如表1-1所示。
(2)数理经济模型和计量经济学模型的区别①研究内容不同数理经济模型的研究内容是经济现象各因素之间的理论关系,计量经济学模型的研究内容是经济现象各因素之间的定量关系。
②描述和模拟办法不同数理经济模型的描述和模拟办法主要是确定性的数学形式,计量经济学模型的描述和模拟办法主要是随机性的数学形式。
③位置和作用不同数理经济模型可用于对研究对象的初步研究,计量经济学模型可用于对研究对象的深入研究。
考点二:经济数据★★★1经济数据的结构(见表1-3)2面板数据与混合横截面数据的比较(见表1-4)考点三:因果关系和其他条件不变★★1因果关系因果关系是指一个变量的变动将引起另一个变量的变动,这是经济分析中的重要目标之计量分析虽然能发现变量之间的相关关系,但是如果想要解释因果关系,还要排除模型本身存在因果互逆的可能,否则很难让人信服。
2其他条件不变其他条件不变是指在经济分析中,保持所有的其他变量不变。
“其他条件不变”这一假设在因果分析中具有重要作用。
1.2课后习题详解一、习题1.假设让你指挥一项研究,以确定较小的班级规模是否会提高四年级学生的成绩。
(i)如果你能指挥你想做的任何实验,你想做些什么?请具体说明。
(ii)更现实地,假设你能搜集到某个州几千名四年级学生的观测数据。
你能得到它们四年级班级规模和四年级末的标准化考试分数。
你为什么预计班级规模与考试成绩成负相关关系?(iii)负相关关系一定意味着较小的班级规模会导致更好的成绩吗?请解释。
答:(i)假定能够随机的分配学生们去不同规模的班级,也就是说,在不考虑学生诸如能力和家庭背景等特征的前提下,每个学生被随机的分配到不同的班级。
伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解OLS用于时间序列数据的其他问题
伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解OLS用于时间序列数据的其他问题第11章OLS用于时间序列数据的其他问题11.1复习笔记考点一:平稳和弱相关时间序列★★★★1.时间序列的相关概念(见表11-1)表11-1时间序列的相关概念2.弱相关时间序列(1)弱相关对于一个平稳时间序列过程{x t:t=1,2,…},随着h的无限增大,若x t和x t+h“近乎独立”,则称为弱相关。
对于协方差平稳序列,如果x t和x t+h之间的相关系数随h的增大而趋近于0,则协方差平稳随机序列就是弱相关的。
本质上,弱相关时间序列取代了能使大数定律(LLN)和中心极限定理(CLT)成立的随机抽样假定。
(2)弱相关时间序列的例子(见表11-2)表11-2弱相关时间序列的例子考点二:OLS的渐近性质★★★★1.OLS的渐近性假设(见表11-3)表11-3OLS的渐近性假设2.OLS的渐近性质(见表11-4)表11-4OLS的渐进性质考点三:回归分析中使用高度持续性时间序列★★★★1.高度持续性时间序列(1)随机游走(见表11-5)表11-5随机游走(2)带漂移的随机游走带漂移的随机游走的形式为:y t=α0+y t-1+e t,t=1,2,…。
其中,e t(t=1,2,…)和y0满足随机游走模型的同样性质;参数α0被称为漂移项。
通过反复迭代,发现y t的期望值具有一种线性时间趋势:y t=α0t+e t+e t-1+…+e1+y0。
当y0=0时,E(y t)=α0t。
若α0>0,y t的期望值随时间而递增;若α0<0,则随时间而下降。
在t时期,对y t+h的最佳预测值等于y t加漂移项α0h。
y t的方差与纯粹随机游走情况下的方差完全相同。
带漂移随机游走是单位根过程的另一个例子,因为它是含截距的AR(1)模型中ρ1=1的特例:y t=α0+ρ1y t-1+e t。
2.高度持续性时间序列的变换(1)差分平稳过程I(1)弱相关过程,也被称为0阶单整或I(0),这种序列的均值已经满足标准的极限定理,在回归分析中使用时无须进行任何处理。
伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-多元回归分析:OLS的渐近性【圣才出品】
第5章多元回归分析:OLS 的渐近性5.1复习笔记考点一:一致性★★★★1.定理5.1:OLS 的一致性(1)一致性的证明当假定MLR.1~MLR.4成立时,对所有的j=0,1,2,…,k,OLS 估计量∧βj 是βj 的一致估计。
证明过程如下:将y i =β0+β1x i1+u i 代入∧β1的表达式中,便可以得到:()()()()11111111122111111ˆnni ii i i i n ni i i i xx y n x x u xxnxx ββ-==-==--==+--∑∑∑∑根据大数定律可知上式等式右边第二项中的分子和分母分别依概率收敛于总体值Cov (x 1,u)和Var(x 1)。
假定Var(x 1)≠0,因为Cov(x 1,u)=0,利用概率极限的性质可得:plim ∧β1=β1+Cov(x 1,u)/Var(x 1)=β1。
这就说明了OLS 估计量∧βj 具有一致性。
前面的论证表明,如果假定只有零相关,那么OLS 在简单回归情形中就是一致的。
在一般情形中也是这样,可以将这一点表述成一个假定。
即假定MLR.4′(零均值与零相关):对所有的j=1,2,…,k,都有E(u)=0和Cov(x j1,u)=0。
(2)MLR.4′与MLR.4的比较①MLR.4要求解释变量的任何函数都与u 无关,而MLR.4′仅要求每个x j 与u 无关(且u 在总体中均值为0)。
②在MLR.4假定下,有E(y|x 1,x 2,…,x k )=β0+β1x 1+β2x 2+…+βk x k ,可以得到解释变量对y 的平均值或期望值的偏效应;而在假定MLR.4′下,β0+β1x 1+β2x 2+…+βk x k 不一定能够代表总体回归函数,存在x j 的某些非线性函数与误差项相关的可能性。
2.推导OLS 的不一致性当误差项和x 1,x 2,…,x k 中的任何一个相关时,通常会导致所有的OLS 估计量都失去一致性,即使样本量增加也不会改善。
《计量经济学导论》考研伍德里奇版考研复习笔记
《计量经济学导论》考研伍德里奇版考研复习笔记第1章计量经济学的性质与经济数据1.1 复习笔记一、计量经济学由于计量经济学主要考虑在搜集和分析非实验经济数据时的固有问题,计量经济学已从数理统计分离出来并演化成一门独立学科。
1.非实验数据是指并非从对个人、企业或经济系统中的某些部分的控制实验而得来的数据。
非实验数据有时被称为观测数据或回顾数据,以强调研究者只是被动的数据搜集者这一事实。
2.实验数据通常是在实验环境中获得的,但在社会科学中要得到这些实验数据则困难得多。
二、经验经济分析的步骤经验分析就是利用数据来检验某个理论或估计某种关系。
1.对所关心问题的详细阐述在某些情形下,特别是涉及到对经济理论的检验时,就要构造一个规范的经济模型。
经济模型总是由描述各种关系的数理方程构成。
2.经济模型变成计量模型先了解一下计量模型和经济模型有何关系。
与经济分析不同,在进行计量经济分析之前,必须明确函数的形式。
通过设定一个特定的计量经济模型,就解决了经济模型中内在的不确定性。
在多数情况下,计量经济分析是从对一个计量经济模型的设定开始的,而没有考虑模型构造的细节。
一旦设定了一个计量模型,所关心的各种假设便可用未知参数来表述。
3.搜集相关变量的数据4.用计量方法来估计计量模型中的参数,并规范地检验所关心的假设在某些情况下,计量模型还用于对理论的检验或对政策影响的研究。
三、经济数据的结构1.横截面数据(1)横截面数据集,就是在给定时点对个人、家庭、企业、城市、州、国家或一系列其他单位采集的样本所构成的数据集。
有时,所有单位的数据并非完全对应于同一时间段。
在一个纯粹的横截面分析中,应该忽略数据搜集中细小的时间差别。
(2)横截面数据的重要特征①假定它们是从样本背后的总体中通过随机抽样而得到的。
当抽取的样本(特别是地理上的样本)相对总体而言太大时,可能会导致另一种偏离随机抽样的情况。
这种情形中潜在的问题是,总体不够大,所以不能合理地假定观测值是独立抽取的。
伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-多元回归分析:推断【圣才出品】
伍德⾥奇《计量经济学导论》(第6版)复习笔记和课后习题详解-多元回归分析:推断【圣才出品】第4章多元回归分析:推断4.1复习笔记考点⼀:OLS估计量的抽样分布★★★1.假定MLR.6(正态性)假定总体误差项u独⽴于所有解释变量,且服从均值为零和⽅差为σ2的正态分布,即:u~Normal(0,σ2)。
对于横截⾯回归中的应⽤来说,假定MLR.1~MLR.6被称为经典线性模型假定。
假定下对应的模型称为经典线性模型(CLM)。
2.⽤中⼼极限定理(CLT)在样本量较⼤时,u近似服从于正态分布。
正态分布的近似效果取决于u中包含多少因素以及因素分布的差异。
但是CLT的前提假定是所有不可观测的因素都以独⽴可加的⽅式影响Y。
当u是关于不可观测因素的⼀个复杂函数时,CLT论证可能并不适⽤。
3.OLS估计量的正态抽样分布定理4.1(正态抽样分布):在CLM假定MLR.1~MLR.6下,以⾃变量的样本值为条件,有:∧βj~Normal(βj,Var(∧βj))。
将正态分布函数标准化可得:(∧βj-βj)/sd(∧βj)~Normal(0,1)。
注:∧β1,∧β2,…,∧βk的任何线性组合也都符合正态分布,且∧βj的任何⼀个⼦集也都具有⼀个联合正态分布。
考点⼆:单个总体参数检验:t检验★★★★1.总体回归函数总体模型的形式为:y=β0+β1x1+…+βk x k+u。
假定该模型满⾜CLM假定,βj的OLS 量是⽆偏的。
2.定理4.2:标准化估计量的t分布在CLM假定MLR.1~MLR.6下,(∧βj-βj)/se(∧βj)~t n-k-1,其中,k+1是总体模型中未知参数的个数(即k个斜率参数和截距β0)。
t统计量服从t分布⽽不是标准正态分布的原因是se(∧βj)中的常数σ已经被随机变量∧σ所取代。
t统计量的计算公式可写成标准正态随机变量(∧βj-βj)/sd(∧βj)与∧σ2/σ2的平⽅根之⽐,可以证明⼆者是独⽴的;⽽且(n-k-1)∧σ2/σ2~χ2n-k-1。
伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-第三篇(第16~19章)【圣才出品】
第16章联立方程模型16.1 复习笔记考点一:联立方程模型的性质★★当一个或多个解释变量与因变量联合被决定时,模型就会出现内生性问题。
联立方程模型是指从经济理论中推导出来的若干的相关的方程,联立起来就是一个模型,如凯恩斯的国民收入模型等。
联立方程的重要特征:(1)给定多个方程中的外生变量和误差项,所有的方程就决定了剩余的内生变量,因此任一方程的因变量和方程中的内生变量都是SEM的内生变量。
(2)模型中的外生变量的关键假设是与所有的误差项都不相关。
由于这些误差出现在结构方程中,所以它们是结构误差。
(3)SEM中的每个方程自身都应该有一个行为上的其他条件不变解释。
考点二:OLS中的联立性偏误★★★★1.约简型方程考虑两个方程的结构模型:y1=α1y2+β1z1+u1y2=α2y1+β2z2+u2专门估计第一个方程。
变量z1和z2都是外生的,所以每个都与u1和u2无关。
如果将式y1=α1y2+β1z1+u1的右边作为y1代入式y2=α2y1+β2z2+u2中,得到(1-α2α1)y2=α2β1z1+β2z2+α2u1+u2为了解出y2,需对参数做一个假定:α2α1≠1这个假定是否具有限制性则取决于应用。
如果上式的条件成立,y2可写成y2=π21z1+π22z2+v2其中,π21=α2β1/(1-α2α1)、π22=β2/(1-α2α1)和v2=(α2u1+u2)/(1-α2α),用外生变量和误差项表示y2的方程y2=π21z1+π22z2+v2是y2的约简型。
参数π21和π1被称为约简型参数,它们是结构方程中出现的结构型参数的非线性函数。
22约简型误差v2是结构型误差u1和u2的线性函数。
因为u1和u2都与z1和z2无关,所以v2也与z1和z2无关。
因此,可用OLS一致地估计π21和π22。
2.联立性偏误及其方向在约简型方程中,除非在特殊的假定之下,否则对方程y1=α1y2+β1z1+u1的OLS估计,将导致α1和β1的估计量有偏误和不一致。
伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-模型设定和数据问题的深入探讨【圣才出品】
第9章模型设定和数据问题的深入探讨9.1复习笔记考点一:函数形式设误检验(见表9-1)★★★★表9-1函数形式设误检验考点二:对无法观测解释变量使用代理变量★★★1.代理变量代理变量就是某种与分析中试图控制而又无法观测的变量相关的变量。
(1)遗漏变量问题的植入解假设在有3个自变量的模型中,其中有两个自变量是可以观测的,解释变量x3*观测不到:y=β0+β1x1+β2x2+β3x3*+u。
但有x3*的一个代理变量,即x3,有x3*=δ0+δ3x3+v3。
其中,x3*和x3正相关,所以δ3>0;截距δ0容许x3*和x3以不同的尺度来度量。
假设x3就是x3*,做y对x1,x2,x3的回归,从而利用x3得到β1和β2的无偏(或至少是一致)估计量。
在做OLS之前,只是用x3取代了x3*,所以称之为遗漏变量问题的植入解。
代理变量也可以以二值信息的形式出现。
(2)植入解能得到一致估计量所需的假定(见表9-2)表9-2植入解能得到一致估计量所需的假定2.用滞后因变量作为代理变量对于想要控制无法观测的因素,可以选择滞后因变量作为代理变量,这种方法适用于政策分析。
但是现期的差异很难用其他方法解释。
使用滞后被解释变量不是控制遗漏变量的唯一方法,但是这种方法适用于估计政策变量。
考点三:随机斜率模型★★★1.随机斜率模型的定义如果一个变量的偏效应取决于那些随着总体单位的不同而不同的无法观测因素,且只有一个解释变量x,就可以把这个一般模型写成:y i=a i+b i x i。
上式中的模型有时被称为随机系数模型或随机斜率模型。
对于上式模型,记a i=a+c i和b i=β+d i,则有E(c i)=0和E(d i)=0,代入模型得y i=a+βx i+u i,其中,u i=c i+d i x i。
2.保证OLS无偏(一致性)的条件(1)简单回归当u i=c i+d i x i时,无偏的充分条件就是E(c i|x i)=E(c i)=0和E(d i|x i)=E(d i)=0。
伍德里奇《计量经济学导论》笔记和课后习题详解(简单回归模型)【圣才出品】
β1 就是斜率参数。
②给定零条件均值假定 E(u|x)=0,把斱程中的 y 看成两个部分是比较有用的。一
部分是表示 E(y|x)的 β0+β1一个
部分是被称为非系统部分的 u,即丌能由 x 觋释的那一部分。
二、普通最小二乘法的推导
1.最小二乘估计值
表 2-1 简单回归的术语
3.零条件均值假定 (1)零条件均值 u 的平均值不 x 值无关。可以把它写作:E(u|x)=E(u)。当斱程成立时,就说 u 的均值独立亍 x。 (2)零条件均值假定的意义 ①零条件均值假定给出 β1 的另一种非常有用的觋释。以 x 为条件叏期望值,幵利用 E
1 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 2 章 简单回归模型
2.1 复习笔记
一、简单回归模型的定义 1.双发量线性回归模型 一个简单的斱程是:y=β0+β1x+u。 假定斱程在所关注的总体中成立,它便定义了一个简单线性回归模型。因为它把两个发 量 x 和 y 联系起来,所以又把它称为两发量戒者双发量线性回归模型。 2.回归术语
E x y β0 β1x 0
得到
1 n
n i1
yi βˆ0 βˆ1xi
0
和
2 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台
1
n
n i 1
xi
yi βˆ0 βˆ1xi
0
这两个斱程可用来觋出 βˆ0 和 βˆ1 , y βˆ0 βˆ1x ,则 βˆ0 y βˆ1x 。
量了 yi 的样本发异,SSR 度量了 ui 的样本发异。y 的总发异总能表示成觋释了的发异和未
觋释的发异 SSR 乊和。因此,SST=SSE+SSR。
伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-高级面板数据方法【圣才出品】
第14章高级面板数据方法14.1复习笔记考点一:固定效应估计法★★★★★1.固定效应变换固定效应变换又称组内变换,考虑仅有一个解释变量的模型:对每个i,有y it =β1x it +a i +u it ,t=1,2,…,T对每个i 求方程在时间上的平均,便得到_y i =β1_x i +a i +_u i 其中,11T it t y T y-==∑(关于时间的均值)。
因为a i 在不同时间固定不变,故它会在原模型和均值模型中都出现,如果对于每个t,两式相减,便得到y it -_y i =β1(x it -_x i )+u it -_u i ,t=1,2,…,T或1 12it it it y x u ,t ,,,T=+=&&&&&&L β其中,it it i y y y =-&&是y 的除时间均值数据;对it x &&和it u &&的解释也类似。
方程的要点在于,非观测效应a i 已随之消失,从而可以使用混合OLS 去估计式1 12it it it y x u ,t ,,,T =+=&&&&&&L β。
上式的混合OLS 估计量被称为固定效应估计量或组内估计量。
组间估计量可以从横截面方程_y i =β1_x i +a i +_u i 的OLS 估计量而得到,即同时使用y 和x的时间平均值做一个横截面回归。
如果a i与_x i相关,估计量是有偏误的。
而如果认为a i 与x it无关,则使用随机效应估计量要更好。
组间估计量忽视了变量如何随着时间而变化。
在方程中添加更多解释变量不会引起什么变化。
2.固定效应模型(1)无偏性原始的非固定效应模型,只要让每一个变量都减去时间均值数据,即可得到固定效应模型。
固定效应模型的无偏性是建立在严格外生性的假定下的,所以FE模型需要假定特异误差u it应与所有时期的每个解释变量都无关。
伍德里奇《计量经济学导论》笔记和课后习题详解(多元回归分析:深入专题)【圣才出品】
第6章 多元回归分析:深入专题6.1 复习笔记一、数据的测度单位对OLS 统计量的影响 1.数据的测度单位对OLS 统计量无实质性影响当对变量重新测度时,系数、标准误、置信区间、t 统计量和F 统计量改变的方式,都不影响所有被测度的影响和检验结果。
怎样度量数据通常只起到非实质性的作用,比如说,减少所估计系数中小数点后零的个数等。
通过对度量单位明智的选择,可以在不做任何本质改变的情况下,改进所估计方程的形象。
对任何一个x i ,当它在回归中以log (x i )出现时,改变其度量单位也只能影响到截距。
这与对百分比变化和(特别是)弹性的了解相对应:它们不会随着y 或x i 度量单位的变化而变化。
2.β系数 原始方程:01122ˆˆˆˆˆi i i k iki y ββx βx βx u =+++++ 减去平均方程,就可以得到:()()()111222ˆˆˆˆi i i k ik ki y y βx x βx x βx x u -=-+-++-+ 令ˆy σ为因变量的样本标准差,1ˆσ为x 1的样本标准差,2ˆσ为x 2的样本标准差,等等。
然后经过简单的运算就可以得到方程:()()()()()()11111ˆˆˆˆˆˆˆˆˆˆˆ//////i y y i k y k ik k y i y y y σσσβx x σσσβx x σuσ⎡⎤⎡⎤-=-++-+⎣⎦⎣⎦每个变量都用其z 得分而被标准化,这就得到一些新的斜率参数。
截距项则完全消失:11ˆˆy k kz b z b z =+++误差 新的系数是:()ˆˆˆˆ/,1,,jj y b j k ==σσβ传统上称这些ˆjb 为标准化系数或β系数。
以标准差为单位,由于它使得回归元的度量单位无关紧要,所以这个方程把所有解释变量都放到相同的地位上。
在一个标准的OLS 方程中,不可能只看不同系数的大小,也不可能断定具有最大系数的解释变量就“最重要”。
通过改变x i 的度量单位,可以任意改变系数的大小。
伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-时间序列回归中的序列相关和异方差性
第12章时间序列回归中的序列相关和异方差性12.1复习笔记考点一:含序列相关误差时OLS 的性质★★★1.无偏性和一致性当时间序列回归的前3个高斯-马尔可夫假定成立时,OLS 的估计值是无偏的。
把严格外生性假定放松到E(u t |X t )=0,可以证明当数据是弱相关时,∧βj 仍然是一致的,但不一定是无偏的。
2.有效性和推断假定误差存在序列相关,即满足u t =ρu t-1+e t ,t=1,2,…,n,|ρ|<1。
其中,e t 是均值为0方差为σe 2满足经典假定的误差。
对于简单回归模型:y t =β0+β1x t +u t 。
假定x t 的样本均值为零,因此有:1111ˆn x t tt SST x u -==+∑ββ其中:21nx t t SST x ==∑∧β1的方差为:()()122221111ˆ/2/n n n t j xt t x x t t j t t j Var SST Var x u SST SST x x ---+===⎛⎫==+ ⎪⎝⎭∑∑∑βσσρ其中:σ2=Var(u t )。
根据∧β1的方差表达式可知,第一项为经典假定条件下的简单回归模型中参数的方差。
因此,当模型中的误差项存在序列相关时,OLS 估计的方差是有偏的,假设检验的统计量也会出现偏差。
3.拟合优度当时间序列回归模型中的误差存在序列相关时,通常的拟合优度指标R 2和调整R 2便会失效;但只要数据是平稳和弱相关的,拟合优度指标就仍然有效。
4.出现滞后因变量时的序列相关(1)在出现滞后因变量和序列相关的误差时,OLS 不一定是不一致的假设E(y t |y t-1)=β0+β1y t-1。
其中,|β1|<1。
加上误差项把上式写为:y t =β0+β1y t-1+u t ,E(u t |y t-1)=0。
模型满足零条件均值假定,因此OLS 估计量∧β0和∧β1是一致的。
误差{u t }可能序列相关。
虽然E(u t |y t-1)=0保证了u t 与y t-1不相关,但u t-1=y t -1-β0-β1y t-2,u t 和y t-2却可能相关。
计量经济学导论第六版课后答案知识伍德里奇
计量经济学导论第六版课后答案知识伍德里奇第一章:计量经济学介绍1. 为什么需要计量经济学?计量经济学的主要目标是提供一种科学的方法来解决经济问题。
经济学家需要使用数据来验证经济理论的有效性,并预测经济变量的发展趋势。
计量经济学提供了一种框架,使得经济学家能够使用数学和统计方法来分析经济问题。
2. 计量经济学的基本概念•因果推断:计量经济学的核心是通过观察数据来推断出变量之间的因果关系。
通过使用统计方法,我们可以分析出某个变量对另一个变量的影响。
•数据类型:计量经济学研究的数据可以是时间序列数据或截面数据。
时间序列数据是沿着时间轴观测到的数据,而截面数据是在某一时间点上观测到的数据。
•数据偏差:在计量经济学中,数据偏差是指由于样本选择问题、观测误差等原因导致数据与真实值之间的差异。
3. 计量经济学的方法计量经济学使用了许多统计和经济学方法来分析数据。
以下是一些常用的计量经济学方法:•最小二乘法(OLS):在计量经济学中,最小二乘法是一种常用的回归方法。
它通过最小化观测值和预测值之间的平方差来估计未知参数。
•时间序列分析:时间序列分析是通过对时间序列数据进行模型化和预测来研究经济变量的变化趋势。
•面板数据分析:面板数据是同时包含时间序列和截面数据的数据集。
面板数据分析可以用于研究个体和时间的变化,以及它们之间的关系。
4. 计量经济学应用领域计量经济学广泛应用于经济学研究和实践中的各个领域。
以下是一些计量经济学的应用领域:•劳动经济学:计量经济学可以用来研究劳动力市场的供求关系、工资决定因素等问题。
•金融经济学:计量经济学可以用来研究证券价格、金融市场的波动等问题。
•产业组织经济学:计量经济学可以用来研究市场竞争、垄断力量等问题。
•发展经济学:计量经济学可以用来研究发展中国家的经济增长、贫困问题等。
第二章:统计学回顾1. 统计学基本概念•总体和样本:总体是指我们想要研究的全部个体或事物的集合,而样本是从总体中选取的一部分个体或事物。
伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-跨时横截面的混合:简单面板数据方法
第三篇高级专题第13章跨时横截面的混合:简单面板数据方法13.1复习笔记考点一:跨时独立横截面的混合★★★★★1.独立混合横截面数据的定义独立混合横截面数据是指在不同时点从一个大总体中随机抽样得到的随机样本。
这种数据的重要特征在于:都是由独立抽取的观测所构成的。
在保持其他条件不变时,该数据排除了不同观测误差项的相关性。
区别于单独的随机样本,当在不同时点上进行抽样时,样本的性质可能与时间相关,从而导致观测点不再是同分布的。
2.使用独立混合横截面的理由(见表13-1)表13-1使用独立混合横截面的理由3.对跨时结构性变化的邹至庄检验(1)用邹至庄检验来检验多元回归函数在两组数据之间是否存在差别(见表13-2)表13-2用邹至庄检验来检验多元回归函数在两组数据之间是否存在差别(2)对多个时期计算邹至庄检验统计量的办法①使用所有时期虚拟变量与一个(或几个、所有)解释变量的交互项,并检验这些交互项的联合显著性,一般总能检验斜率系数的恒定性。
②做一个容许不同时期有不同截距的混合回归来估计约束模型,得到SSR r。
然后,对T个时期都分别做一个回归,并得到相应的残差平方和,有:SSR ur=SSR1+SSR2+…+SSR T。
若有k个解释变量(不包括截距和时期虚拟变量)和T个时期,则需检验(T-1)k个约束。
而无约束模型中有T+Tk个待估计参数。
所以,F检验的df为(T-1)k和n-T-Tk,其中n为总观测次数。
F统计量计算公式为:[(SSR r-SSR ur)/SSR ur][(n-T-Tk)/(Tk-k)]。
但该检验不能对异方差性保持稳健,为了得到异方差-稳健的检验,必须构造交互项并做一个混合回归。
4.利用混合横截面作政策分析(1)自然实验与真实实验当某些外生事件改变了个人、家庭、企业或城市运行的环境时,便产生了自然实验(准实验)。
一个自然实验总有一个不受政策变化影响的对照组和一个受政策变化影响的处理组。
自然实验中,政策发生后才能确定处理组和对照组。
伍德里奇 计量经济学导论
伍德里奇计量经济学导论摘要:一、伍德里奇《计量经济学导论》概述二、伍德里奇对计量经济学的定义与应用三、伍德里奇《计量经济学导论》的主要内容四、伍德里奇《计量经济学导论》的课后习题及其答案五、伍德里奇《计量经济学导论》的参考价值正文:一、伍德里奇《计量经济学导论》概述伍德里奇所著的《计量经济学导论》是一本广泛应用于经济学领域的经典教材,受到了全球范围内众多学者和学生的欢迎。
本书旨在介绍计量经济学的基本概念、方法和应用,帮助读者理解和掌握计量经济学的基本理论和实证分析技巧。
二、伍德里奇对计量经济学的定义与应用在《计量经济学导论》中,伍德里奇对计量经济学进行了明确的定义,认为计量经济学是一门在经济理论基础上,运用数学和统计学方法,通过建立计量经济模型对经济变量之间的关系进行定量分析的学科。
计量经济学的应用范围广泛,包括政策分析、市场预测、数据分析等诸多领域。
三、伍德里奇《计量经济学导论》的主要内容伍德里奇的《计量经济学导论》共分为六章,涵盖了计量经济学的基本概念、数据处理、回归分析、多元回归分析、假设检验和模型优化等核心内容。
具体来说,书中内容包括:1.计量经济学的性质与经济数据:介绍了计量经济学的基本概念,经济数据的来源和特点,以及如何利用经济数据进行计量分析。
2.简单回归模型:阐述了简单回归模型的基本原理,包括线性回归、最小二乘法、参数估计等。
3.多元回归分析:介绍了多元回归分析的基本概念,包括多元线性回归、多元逻辑回归等,以及如何进行多元回归模型的估计和检验。
4.假设检验:介绍了计量经济学中的假设检验原理,包括t 检验、F 检验等。
5.模型优化:探讨了如何优化计量经济模型,提高模型的预测能力和解释能力。
6.横截面数据的回归分析:介绍了横截面数据的回归分析方法,包括生产函数估计、需求函数估计等。
四、伍德里奇《计量经济学导论》的课后习题及其答案伍德里奇的《计量经济学导论》每章都配有丰富的课后习题,帮助读者巩固和拓展所学知识。
伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-第1章及第一篇(第2~3章)【圣才出品】
品数(output)方面的信息。 (i)仔细陈述这个政策问题背后其他情况不变的思维试验。 (ii)一个企业培训其员工的决策看起来有可能独立于工人特征吗?工人可观测与不可
观测的特征各有哪些? (iii)除工人特征之外,再列出一个影响工人生产力的因素。 (iv)你若发现 training 和 output 之间成正相关关系,你令人信服地证明了工作培训
2.工作培训项目的理由之一是能提高工人的生产力。假设要求你评估更多的工作培训 是否使工人更有生产力。不过,你没有工人的个人数据,而是有俄亥俄州制造企业的数据。 具体而言,对每个企业,你都有人均工作培训小时数(training)和单位工时生产的合格产
4 / 91
圣才电子书 十万种考研考证电子书、题库视频学习平台
十万种考研考证电子书、题库视频学习平台
表 1-1 经济数据的结构
2.面板数据与混合横截面数据的比较(见表 1-2) 表 1-2 面板数据与混合横截面数据的比较
2 / 91
圣才电子书 十万种考研考证电子书、题库视频学习平台
考点三:因果关系和其他条件不变 ★★
1.因果关系 因果关系是指一个变量的变动将引起另一个变量的变动,这是经济分析中的重要目标之 一。计量分析虽然能发现变量之间的相关关系,但是如果想要解释因果关系,还要排除模型 本身存在因果互逆的可能,否则很难让人信服。
答:讲不通。因为找出每周学习小时数(study)和每周工作小时数(work)之间的关 系,是说每周学习小时数(study)和每周工作小时数(work)之间有关系,但没有说是因 果关系,每周学习小时数可能与其他因素有关或每周工作小时数与其他因素有关。
4.对税收有控制权的州或省份有时候会减少税收来刺激经济增长。假设你被某州政府 雇佣来估计公司税率的影响,比如说对每单位州生产总值增长的影响。
伍德里奇 计量经济学导论
伍德里奇计量经济学导论摘要::1.伍德里奇《计量经济学导论》概述2.多元线性回归模型及其假设3.高斯- 马尔科夫假设4.伍德里奇《计量经济学导论》的课后习题答案5.总结正文:计量经济学是一门以经济理论为基础,运用数学和统计学方法,通过建立计量经济模型对经济变量之间的关系进行定量分析的学科。
伍德里奇的《计量经济学导论》是计量经济学领域的经典教材,受到了广泛关注和应用。
本文将从伍德里奇的《计量经济学导论》概述、多元线性回归模型及其假设、高斯- 马尔科夫假设以及伍德里奇《计量经济学导论》的课后习题答案等方面进行探讨。
伍德里奇《计量经济学导论》概述《计量经济学导论》是伍德里奇所著的一本计量经济学教材,目前已经出版到第6 版。
本书旨在为读者提供一个全面、系统的计量经济学知识体系,帮助读者了解和掌握计量经济学的基本概念、理论和方法。
全书共分为四篇,包括横截面数据的回归分析、多元回归分析、时间序列分析和面板数据分析。
每一篇都涵盖了相应的理论知识和应用实例,既有理论深度,又有实践操作,使得读者能够更好地理解和应用计量经济学知识。
多元线性回归模型及其假设多元线性回归模型是计量经济学中一种常用的模型,用于分析多个自变量与因变量之间的关系。
在伍德里奇的《计量经济学导论》中,多元线性回归模型被详细介绍,包括模型的构建、参数估计、模型检验等内容。
同时,伍德里奇还介绍了多元线性回归模型的假设,这些假设被称为高斯- 马尔科夫假设。
高斯- 马尔科夫假设高斯- 马尔科夫假设是多元线性回归模型的五个假设之一,它包括以下四个假设:1.线性性假设:因变量与自变量之间的关系是线性的。
2.独立性假设:自变量之间相互独立,自变量与误差项之间也相互独立。
3.正态性假设:自变量和误差项都服从正态分布。
4.零均值假设:所有自变量的平均值等于零。
这四个假设被称为高斯- 马尔科夫假设,它们保证了多元线性回归模型的估计结果具有无偏性和最小方差性。
伍德里奇《计量经济学导论》的课后习题答案伍德里奇的《计量经济学导论》每一章节都配有详细的课后习题,帮助读者巩固和检验所学知识。
伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-工具变量估计与两阶段最小二乘法
第15章工具变量估计与两阶段最小二乘法15.1复习笔记考点一:工具变量法★★★★★1.简单模型的工具变量法简单回归模型为y=β0+β1x+u,其中x与u相关:Cov(x,u)≠0。
(1)为了在x和u相关时得到β0和β1的一致估计量,需要有一个可观测到的变量z,z满足两个假定:①工具外生性条件,z与u不相关,即Cov(z,u)=0,意味着z应当对y无偏效应(一旦x和u中的遗漏变量被控制),也不应当与其他影响y的无法观测因素相关;②工具相关性条件,z与x相关,即Cov(z,x)≠0,意味着z必然与内生解释变量x 有着或正或负的关系。
满足这两个条件,则z称为x的工具变量,简称为x的工具。
(2)工具变量的两个要求之间的差别①Cov(z,u)是z与无法观测误差u的协方差,通常无法对它进行检验:在绝大多数情形中,必须借助于经济行为或反思来维持这一假定。
②给定一个来自总体的随机样本,z与x(在总体中)相关的条件则可加以检验。
最容易的方法是估计一个x与z之间的简单回归。
在总体中,有x=π0+π1z+v,从而,由于π1=Cov(z,x)/Var(z)所以式Cov(z,x)≠0中的假定当且仅当π1≠0时成立。
因而就能够在充分小的显著水平上,相对双侧对立假设H 1:π1≠0而拒绝虚拟假设H 0:π1=0。
就能相当有把握地肯定工具z 与x 是相关的。
2.工具变量估计量(1)参数的工具变量(IV)估计量参数的识别意味着可以根据总体矩写出β1,而总体矩可用样本数据进行估计。
为了根据总体协方差写出β1,利用简单回归方程可得z 与y 之间的协方差为:Cov(z,y)=β1Cov(z,x)+Cov(z,u)在Cov(z,u)=0与Cov(z,x)≠0的假定下,可以解出β1为:β1=Cov(z,y)/Cov(z,x)β1是z 和y 之间的总体协方差除以z 和x 之间的总体协方差,说明β1被识别了。
给定一个随机样本,用对应样本量来估计总体量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三篇高级专题
第13章跨时横截面的混合:简单面板数据方法
13.1 复习笔记
考点一:跨时独立横截面的混合★★★★★
1.独立混合横截面数据的定义
独立混合横截面数据是指在不同时点从一个大总体中随机抽样得到的随机样本。
这种数据的重要特征在于:都是由独立抽取的观测所构成的。
在保持其他条件不变时,该数据排除了不同观测误差项的相关性。
区别于单独的随机样本,当在不同时点上进行抽样时,样本的性质可能与时间相关,从而导致观测点不再是同分布的。
2.使用独立混合横截面的理由(见表13-1)
表13-1 使用独立混合横截面的理由
3.对跨时结构性变化的邹至庄检验
(1)用邹至庄检验来检验多元回归函数在两组数据之间是否存在差别(见表13-2)表13-2 用邹至庄检验来检验多元回归函数在两组数据之间是否存在差别
(2)对多个时期计算邹至庄检验统计量的办法
①使用所有时期虚拟变量与一个(或几个、所有)解释变量的交互项,并检验这些交互项的联合显著性,一般总能检验斜率系数的恒定性。
②做一个容许不同时期有不同截距的混合回归来估计约束模型,得到SSR r。
然后,对T个时期都分别做一个回归,并得到相应的残差平方和,有:SSR ur=SSR1+SSR2+…+SSR T。
若有k个解释变量(不包括截距和时期虚拟变量)和T个时期,则需检验(T-1)k 个约束。
而无约束模型中有T+Tk个待估计参数。
所以,F检验的df为(T-1)k和n-T -Tk,其中n为总观测次数。
F统计量计算公式为:[(SSR r-SSR ur)/SSR ur][(n-T-Tk)/(Tk-k)]。
但该检验不能对异方差性保持稳健,为了得到异方差-稳健的检验,必须构造交互项并做一个混合回归。
4.利用混合横截面作政策分析
(1)自然实验与真实实验
当某些外生事件改变了个人、家庭、企业或城市运行的环境时,便产生了自然实验(准
实验)。
一个自然实验总有一个不受政策变化影响的对照组和一个受政策变化影响的处理组。
自然实验中,政策发生后才能确定处理组和对照组。
在真实实验中,处理组和对照组是随机而明确地抽取的。
为了控制对照组和处理组之间的系统差异,可以按照使用目的将样本分为:变化前的对照组、变化后的对照组、变化前的处理组和变化后的处理组。
对照组称为C,处理组称为T,并设置虚拟变量dT,如果样本属于处理组,则dT=1,否则等于0。
令d2为第2个时期的虚拟变量,模型方程为y=β0+δ0d2+β1dT+δ1d2·dT+其他因素。
其中,y是结果变量;δ1度量政策效应。
当回归中没有其他因素时,δ∧1是倍差估计量,满足:δ∧1=(y_2,T-y_2,C)-(y_1,T-y_1,C)。
(2)政策的平均处理效应及其估计方法
平均处理效应度量的是对y的平均结果的“处理”或政策效应。
估计值为:δ∧1=(y_2,
-y_1,T)-(y_2,C-y_1,C),该值不会依赖于进行差分的方式。
估计方法主要有:
T
①在每个时期都计算处理组与控制组的平均值之差,再对不同时期的上述差值做差分。
②分别计算处理组和控制组不同时期的平均值变化,然后再将这些变化做差分。
考点二:两时期面板数据分析★★★★
1.面板数据的定义
面板数据具有横截面和时间序列的特征,区别于独立混合横截面。
面板数据是指在不同时间跟踪的相同个体的数据,即每个样本个体在不同时间都有观测值。
如果对于n个个体,每个变量的时间跨度都一致,则称为平衡面板,否则称为非平衡面板。
2.固定效应模型
令i表示横截面单位,t表示时期,可将含有单个可观测解释变量的模型写成:y it=β0+δ0d2t+β1x it+a i+u it,t=1,2。
其中,变量d2t是一个在t=1时取值为零而在t=2时取值为1的虚拟变量,它不随i而变化;变量a i包含影响y it但又不随时间而变化的所有无法观测的因素,一般都被称为非观测效应或固定效应;误差u it通常被称为特异误差或时变误差。
因此,上述模型被称为非观测效应模型或固定效应模型,a i被称为非观测异质性。
3.估计β1的方法
给定两年的面板数据,估计参数β1的方法是:直接把两年的数据混合起来用OLS估计。
为了得到一致的估计量,必须假定非观测效应a i与x it无关。
将模型写成:y it=β0+δ0d2t+β1x it+v it,t=1,2。
其中,v it=a i+u it常被称为复合误差。
即使假定特异误差u it与x it无关,如果a i与x it相关,混合OLS估计就是偏误且不一致的。
由此造成的偏误有时被称为异质性偏误,这是由于遗漏了一个不随时间而变化的变量所导致的。
4.一阶差分方程
在大多应用中,收集面板数据主要是为了考虑非观测效应a i与解释变量相关。
因为a i 是不随着时间而变化的常数,所以可以取两个年份的数据之差。
对横截面的第i个观测值,把两年的方程分别写为:y i2=(β0+δ0)+β1x i2+a i+u i2(t=2),y i1=β0+β1x i1+a i+u i1(t=1)。
两个方程相减可得:y i2-y i1=δ0+β1(x i2-x i1)+(u i2-u i1),简化为:∆y i=δ0+β1∆x i+∆u i。
该式称为一阶差分方程,它是由单个横截
面方程对每个变量都取时间上的差分所得到的。
如果容许x it 与不随时间而变化的无法观测因素相关,则∆u i 与∆x i 无关,这就是在时间序列模型中的严格外生性假定。
此时对β1进行OLS 估计,得到β1的OLS 估计量为一阶差分估计量。
另一个关键条件是,∆x i 必须因i 的不同而有所变化。
要用通常的OLS 得到精确的无偏估计,还需要满足同方差性。
考点三:用面板数据作政策分析 ★★★★
1.两期面板数据
面板数据对于政策分析是非常有用的,特别是项目评估。
在第一个时期先得到个人、企业或城市等单位的一个样本,然后让一部分横截面单位参与下一个时期举办的某个项目,剩余的单位则作为对照组。
这样通过一阶差分估计量可以去做政策分析。
在项目评估模型中,令y it 为结果变量,prog it 为项目参与虚拟变量。
最简单的非观测效应模型为:y it =β0+δ0d2t +β1prog it +a i +u it 。
(1)如果项目参与仅发生在第二个时期,则β1的OLS 估计量为:
有了面板数据,便可以对同样的横截面单位取y 在不同时期的差分,从而控制个人、企业或城市特有的效应。
(2)如果项目参与发生在两个时期。
β∧1代表着控制随时间而变化之后,因项目参加所致的Y 的均值的变化。
这样就可以控制那些可能与项目相关且随着时间而变化的变量。
2.多于两期的差分法
扩展到多期的固定效应模型为:y it =δ1+δ2d2t +δ3d3t +β1x it1+…+βk x itk +a i +u it 。
1ˆtreat control
y y β=∆-∆。