数学必修2《立体几何初步》解析
高中数学 必修二-第一章 立体几何初步 知识点整理
底面为三角形、四边形、五边形„„的棱锥分别叫做三棱锥、四棱锥、五棱锥„„,
其中三棱锥又叫四面体。
4
必修二
正棱锥:如果一个棱锥的底面是正多边形,并且顶点在底面上的射影是底面的中心, 这样的棱锥叫做正棱锥。
正棱锥的性质: ①各侧棱相等,各侧面都是全等的等腰三角形; ②棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形,棱锥的高、侧棱和侧 棱在底面上的射影也组成一个直角三角形。 (4)棱台的结构特征 用一个平行于棱锥底面的平面去截棱 锥,底面与截面之间的部分叫做棱台。 原棱锥的底面和截面分别叫做棱台的 下底面和上底面;其它各面叫做棱台的侧 面;相邻侧面的公共边叫做棱台的侧棱; 底面与侧面的公共顶点叫做棱台的顶点; 当棱台的底面水平放置时,铅垂线与两底 面交点间的线段叫做棱台的高。 由正棱锥截得的棱台叫做正棱台。正棱台的性质: ①各侧棱相等,侧面是全等的等腰梯形;②两底面以及平行于底面的截面是相似多边 形;③两底面中心连线、相应的边心距和斜高组成一个直角梯形;④两底面中心连线、侧 棱和两底面外接圆相应半径组成一个直角梯形;⑤正棱台的上下底面中心的连线是棱台的 一条高;⑥正四棱台的对角面是等腰梯形。
8
必修二
②在已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x′轴或 y′ 轴的线段。
③在已知图形中平行于 x 轴的线段,在直观图中保持原长度不变,平行于 y 轴的线段, 长度变为原来的一半。
用斜二测法画直观图,关键是掌握水平放置的平面图形的直观图的画法,而画水平放 置的平面图形的关键是确定多边形的顶点。因为多边形顶点的位置一旦确定,依次连接这 些顶点就可画出多边形。
在一束平行光线照射下形成的投影,叫做平行投影。平行投影的投影线是平行的。在 平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影。
部编版高中数学必修二第八章立体几何初步带答案考点题型与解题方法
(名师选题)部编版高中数学必修二第八章立体几何初步带答案考点题型与解题方法单选题1、某正方体被截去部分后得到的空间几何体的三视图如图所示,则该空间几何体的体积为( )A .132B .223C .152D .2332、已知直线a 与平面α,β,γ,能使α//β的充分条件是( ) ①α⊥γ,β⊥γ ②α//γ,β//γ ③a //α,a //β ④a ⊥α,a ⊥β A .①②B .②③C .①④D .②④3、下列命题中,正确的是( ) A .三点确定一个平面B .垂直于同一直线的两条直线平行C .若直线l 与平面α上的无数条直线都垂直,则l ⊥αD .若a 、b 、c 是三条直线,a ∥b 且与c 都相交,则直线a 、b 、c 在同一平面上4、如图.AB 是圆的直径,PA ⊥AC ,PA ⊥BC ,C 是圆上一点(不同于A ,B ),且PA =AC ,则二面角P −BC −A 的平面角为( )A .∠PACB .∠CPAC .∠PCAD .∠CAB5、如图,“蘑菇”形状的几何体是由半个球体和一个圆柱体组成,球的半径为2,圆柱的底面半径为1,高为3,则该几何体的表面积为( )A .18πB .20πC .22π3D .26π6、如图,某圆锥的轴截面ABC 是等边三角形,点D 是线段AB 的中点,点E 在底面圆的圆周上,且BE ⌢的长度等于CE⌢的长度,则异面直线DE 与BC 所成角的余弦值是( )A .√24B .√64C .√104D .√1447、如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120°,腰为3的等腰三角形,则该几何体的体积为( )A .23B .24C .26D .278、如图,在梯形ABCD 中,AB ∥DC 且AB =2DC ,点E 为线段BC 的靠近点C 的一个四等分点,点F 为线段AD 的中点,AE 与BF 交于点O ,且AO⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ ,则x +y 的值为( )A .1B .57C .1417D .56多选题9、《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”;四个面均为直角三角形的四面体称为“鳖膈”.如图在堑堵ABC −A 1B 1C 1中,AC ⊥BC ,且AA 1=AB =2.下列说法正确的是( )A .四棱锥B −A 1ACC 1为“阳马” B .四面体A 1C 1CB 为“鳖膈” C .四棱锥B −A 1ACC 1体积最大为23D .过A 点分别作AE ⊥A 1B 于点E ,AF ⊥A 1C 于点F ,则EF ⊥A 1B10、在正方体ABCD−A1B1C1D1中,点P在线段AD1上运动,则下列命题正确的是()A.异面直线C1P和CB1所成的角为定值B.直线CD和平面BPC1相交C.三棱锥D−BPC1的体积为定值D.直线CP和直线A1B可能相交11、已知PA⊥矩形ABCD所在的平面,则下列结论中正确的是()A.PB⊥BCB.PD⊥CDC.PD⊥BDD.PA⊥BD填空题12、对于任意给定的两条异面直线,存在______条直线与这两条直线都垂直.部编版高中数学必修二第八章立体几何初步带答案(四)参考答案1、答案:C分析:根据几何体的三视图,可知该几何体是棱长为2的正方体截去两个小三棱锥,根据三棱锥的体积公式即可求解.解:根据几何体的三视图,该空间几何体是棱长为2的正方体截去两个小三棱锥,由图示可知,该空间几何体体积为V=23−(13×12×12×1+13×12×12×2)=152,故选:C.2、答案:D解析:根据线面的平行关系,结合相关性质,逐个分析判断即可得解.对①,若α⊥γ,β⊥γ,垂直于同一个平面的两个平面可以相交,故①错误;对②,若α//γ,β//γ,则α//β,平面的平行具有传递性,故②正确;对③,若a//α,a//β,平行于同一直线的两平面可以相交,故③错误;对④,a⊥α,a⊥β,垂直于同一直线的两平面平行,故④正确.综上:②④正确,故选:D.3、答案:D分析:利用空间点、线、面位置关系直接判断.A.不共线的三点确定一个平面,故A错误;B.由墙角模型,显然B错误;C.根据线面垂直的判定定理,若直线l与平面α内的两条相交直线垂直,则直线l与平面α垂直,若直线l与平面α内的无数条平行直线垂直,则直线l与平面α不一定垂直,故C错误;D.因为a//b,所以a、b确定唯一一个平面,又c与a、b都相交,故直线a、b、c共面,故D正确;故选:D.4、答案:C解析:由圆的性质知:AC⊥BC,根据线面垂直的判定得到BC⊥面PAC,即BC⊥PC,结合二面角定义可确定二面角P−BC−A的平面角.∵C是圆上一点(不同于A,B),AB是圆的直径,∴AC⊥BC,PA⊥BC,AC∩PA=A,即BC⊥面PAC,而PC⊂面PAC,∴BC⊥PC,又面ABC∩面PBC=BC,PC∩AC=C,∴由二面角的定义:∠PCA为二面角P−BC−A的平面角.故选:C5、答案:A分析:由题意可知该几何体的体积是由半球的表面积加上圆柱的侧面积,再加上圆的面积即可解:由题意得,球的半径R=2,圆柱的底面半径r=1,高ℎ=3,则该几何体的表面积为S=2πR2+πR2+2πrℎ=8π+4π+2π×1×3=18π故选:A.6、答案:A分析:过点A作AO⊥BC于点O,过点A作DG⊥BC于点G,取AO的中点F,连接GE、OE、EF,则有∠DEF (或其补角)就是异面直线DE与BC所成的角,设圆锥的底面半径为2,解三角形可求得答案.解:过点A作AO⊥BC于点O,过点A作DG⊥BC于点G,取AO的中点F,连接GE、OE、EF,BC,所以∠DEF(或其补角)就是异面直线DE与BC所成的角,则DF//BC,且DF=12设圆锥的底面半径为2,则DF=1,OE=2,AO=2√3,所以DG=OF=√3,在Rt△GOE中,GO=1,OE=2,所以GE=√GO2+OE2=√5,在Rt△GDE中,GE=√5,DG=√3,所以DE=√GD2+GE2=2√2,在Rt△FOE中,FO=√3,OE=2,FE=√FO2+OE2=√7,所以在△DFE中,满足DF2+FE2=DE2,所以∠DFE=90∘,所以cos∠DEF=DFDE =2√2=√24,故选:A.7、答案:D分析:作出几何体直观图,由题意结合几何体体积公式即可得组合体的体积.该几何体由直三棱柱AFD−BHC及直三棱柱DGC−AEB组成,作HM⊥CB于M,如图,因为CH=BH=3,∠CHB=120∘,所以CM=BM=3√32,HM=32,因为重叠后的底面为正方形,所以AB=BC=3√3,在直棱柱AFD−BHC中,AB⊥平面BHC,则AB⊥HM, 由AB∩BC=B可得HM⊥平面ADCB,设重叠后的EG与FH交点为I,则V I−BCDA =13×3√3×3√3×32=272,V AFD−BHC =12×3√3×32×3√3=814则该几何体的体积为V =2V AFD−BHC −V I−BCDA =2×814−272=27.故选:D. 8、答案:C分析:由向量的线性运算法则化简得到AO ⃑⃑⃑⃑⃑ ==(x −y2)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ 和BO ⃑⃑⃑⃑⃑ =(1−x)BA ⃑⃑⃑⃑⃑ +4y 3BE⃑⃑⃑⃑⃑ ,结合B,O,F 三点共线和A,O,E 三点共线,得出2x +3y −2=0和3x −4y =0,联立方程组,即可求解. 根据向量的线性运算法则,可得AO⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +y(BA ⃑⃑⃑⃑⃑ +AC ⃑⃑⃑⃑⃑ ) =xAB ⃑⃑⃑⃑⃑ −yAB ⃑⃑⃑⃑⃑ +yAC ⃑⃑⃑⃑⃑ =(x −y)AB ⃑⃑⃑⃑⃑ +y ⋅(AD ⃑⃑⃑⃑⃑ +DC⃑⃑⃑⃑⃑ ) =(x −y)AB ⃑⃑⃑⃑⃑ +y ⋅(2AF ⃑⃑⃑⃑⃑ +12AB ⃑⃑⃑⃑⃑ )=(x −y)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ +12yAB ⃑⃑⃑⃑⃑ =(x −y2)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ , 因为B,O,F 三点共线,可得x −y 2+2y =1,即2x +3y −2=0;又由BO ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +AO ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ −xBA ⃑⃑⃑⃑⃑ +y ⋅43BE ⃑⃑⃑⃑⃑ =(1−x)BA ⃑⃑⃑⃑⃑ +4y 3BE ⃑⃑⃑⃑⃑ , 因为A,O,E 三点共线,可得1−x +4y 3=1,即3x −4y =0,联立方程组{2x +3y −2=03x −4y =0 ,解得x =817,y =617,所以x +y =1417.故选:C. 9、答案:ABD分析:根据“阳马”和“鳖膈”的定义,可判断A ,B 的正误;当且仅当AC =BC 时,四棱锥B −A 1ACC 1体积有最大值,求值可判断C 的正误;根据题意可证A 1B ⊥平面AEF ,进而判断D 的正误. 底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”, ∴在堑堵ABC −A 1B 1C 1中,AC ⊥BC ,侧棱AA 1⊥平面ABC ,A 选项,∴AA 1⊥BC ,又AC ⊥BC ,且AA 1∩AC =A ,则BC ⊥平面A 1ACC 1, ∴四棱锥B −A 1ACC 1为“阳马”,对;B 选项,由AC ⊥BC ,即A 1C 1⊥BC ,又A 1C 1⊥C 1C 且BC ∩C 1C =C , ∴A 1C 1⊥平面BB 1C 1C ,∴A 1C 1⊥BC 1,则△A 1BC 1为直角三角形,又由BC⊥平面AA1C1C,得△A1BC为直角三角形,由“堑堵”的定义可得△A1C1C为直角三角形,∥CC1B为直角三角形.∴四面体A1C1CB为“鳖膈”,对;C选项,在底面有4=AC2+BC2≥2AC⋅BC,即AC⋅BC≤2,当且仅当AC=BC=√2时取等号,V B−A1ACC1=13S A1ACC1×BC=13AA1×AC×BC=23AC×BC≤43,错;D选项,因为BC⊥平面AA1C1C,则BC⊥AF,AF⊥A1C且A1C∩BC=C,则AF⊥平面A1BC,∴AF⊥A1B,又AE⊥A1B且AF∩AE=A,则A1B⊥平面AEF,所以则A1B⊥EF,对;故选:ABD.10、答案:AC解析:A:由正方体的性质判断B1C⊥平面ABC1D1,得出B1C⊥C1P,异面直线C1P与CB1所成的角为90°;B:由CD//AB,证明CD//平面ABC1D1,即得CD//平面BPC1;C:三棱锥D−BPC1的体积等于三棱锥的体积P−DBC1的体积,判断三棱锥D−BPC1的体积为定值;D:可得直线CP和直线A1B为异面直线.对于A,因为在正方体ABCD−A1B1C1D1中,B1C⊥BC1,B1C⊥C1D1,又BC1∩C1D1=C1,BC1,C1D1⊂平面ABC1D1,所以B1C⊥平面ABC1D1,而C1P⊂平面ABC1D1,所以B1C⊥C1P,故这两个异面直线所成的角为定值90°,所以A正确;对于B,因为平面BPC1与面ABC1D1是同一平面,DC//AB,AB⊂平面ABC1D1,CD⊂平面ABC1D1,故CD//平面ABC1D1,即CD//平面BPC1,故B错误;对于C,三棱锥D−BPC1的体积等于三棱锥P−DBC1的体积,而平面DBC1为固定平面,且△DBC1大小一定,又因为P∈AD1,因为AD1//BC1,AD1⊂平面BDC1,BC1⊂平面BDC1,所以AD1//平面DBC1,所以点A到平面DBC1的距离即为点P到该平面的距离,为定值,所以三棱锥D−BPC1的体积为定值,故C正确;对于D,直线CP和直线A1B是异面直线,不可能相交,故D错误.故选:AC.分析:本题考查线面平行的判定,线面垂直的判定及性质,异面直线所成的角,直线与平面所成的角,空间中的距离,正确理解判定定理和性质是解题的关键.11、答案:ABD分析:由PA⊥矩形ABCD,得PA⊥BD,若PD⊥BD,则BD⊥平面PAD,又BA⊥平面PAD,则过平面外一面有两条直线与平面垂直,不成立,故PD⊥BD不正确.解:∵PA⊥矩形ABCD,BD⊂矩形ABCD,∴PA⊥BD,故D正确.若PD⊥BD,则BD⊥平面PAD,又BA⊥平面PAD,则过平面外一面有两条直线与平面垂直,故PD⊥BD不正确,故C不正确;∵PA⊥矩形ABCD,∴PA⊥CD,AD⊥CD,∴CD⊥平面PAD,∴PD⊥CD,故B正确;∵PA⊥矩形ABCD,∴由三垂线定理得PB⊥BC,故A正确;故选:ABD.12、答案:无数分析:平移一条直线与另一条相交并确定一个平面,再由线面垂直的意义及异面直线所成角判断作答. 令给定的两条异面直线分别为直线a,b,平移直线b到直线b′,使b′与直线a相交,如图,则直线b′与a确定平面α,点A是平面α内任意一点,过点A有唯一直线l⊥α,因此,l⊥a,l⊥b′,即有l⊥b,由于点A的任意性,所以有无数条直线与异面直线a,b都垂直.所以答案是:无数。
新教材 人教A版高中数学必修第二册 第八章 立体几何初步 知识点汇总及解题规律方法提炼
第八章立体几何初步8.1基本立体图形第1课时棱柱、棱锥、棱台的结构特征1.空间几何体的定义及分类(1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)分类:常见的空间几何体有多面体与旋转体两类.2.空间几何体记作棱柱ABCDEFA′B′C′D′E′F′记作棱锥SABCD按底面多边形的边数分为三棱锥、记作棱台ABCDA′B′C′D′得的棱台分别为三棱台、四棱台、(1)棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).(2)各种棱柱之间的关系①棱柱的分类棱柱⎩⎨⎧直棱柱⎩⎨⎧正棱柱(底面为正多边形)一般的直棱柱斜棱柱②常见的几种四棱柱之间的转化关系典型应用1棱柱的结构特征下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平面截成的两部分可以都是棱柱.其中正确说法的序号是__________.【解析】①错误,棱柱的底面不一定是平行四边形;②错误,棱柱的底面可以是三角形;③正确,由棱柱的定义易知;④正确,棱柱可以被平行于底面的平面截成两个棱柱,所以正确说法的序号是③④.【答案】③④棱柱结构特征的辨析技巧(1)扣定义:判定一个几何体是否是棱柱的关键是棱柱的定义.①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;②看“线”,即观察每相邻两个四边形的公共边是否平行.(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.典型应用2棱锥、棱台的结构特征下列关于棱锥、棱台的说法:①用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;②棱台的侧面一定不会是平行四边形;③棱锥的侧面只能是三角形;④由四个面围成的封闭图形只能是三棱锥;⑤棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.【解析】①错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台.②正确,棱台的侧面一定是梯形,而不是平行四边形.③正确,由棱锥的定义知棱锥的侧面只能是三角形.④正确,由四个面围成的封闭图形只能是三棱锥.⑤错误,如图所示四棱锥被平面截成的两部分都是棱锥.所以正确说法的序号为②③④.【答案】②③④判断棱锥、棱台形状的两种方法(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点空间几何体的平面展开图(1)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图(图中数字写在正方体的外表面上),若图中的“2”在正方体的上面,则这个正方体的下面是()A.1 B.9C.快D.乐(2)如图是三个几何体的侧面展开图,请问各是什么几何体?【解】(1)选B.由题意,将正方体的展开图还原成正方体,“1”与“乐”相对,“2”与“9”相对,“0”与“快”相对,所以下面是“9”.(2)题图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱的特点;题图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥的特点;题图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点,把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.多面体展开图问题的解题策略(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推,同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.圆柱、圆锥、圆台、球、简单组合体的结构特征1.圆柱、圆锥、圆台和球的结构特征(1)圆柱的结构特征(1)圆柱有无数条母线,它们平行且相等.(2)平行于底面的截面是与底面大小相同的圆,如图1所示.(3)过轴的截面(轴截面)都是全等的矩形,如图2所示.(4)过任意两条母线的截面是矩形,如图3所示.(2)圆锥的结构特征(1)圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.(2)平行于底面的截面都是圆,如图1所示.(3)过轴的截面是全等的等腰三角形,如图2所示.(4)过任意两条母线的截面是等腰三角形,如图3所示.(3)圆台的结构特征(1)圆台有无数条母线,且长度相等,延长后相交于一点.(2)平行于底面的截面是圆,如图1所示.(3)过轴的截面是全等的等腰梯形,如图2所示.(4)过任意两条母线的截面是等腰梯形,如图3所示.(4)球的结构特征(1)球心和截面圆心的连线垂直于截面.(2)球心到截面的距离d与球的半径R及截面圆的半径r有如下关系:r=R2-d2.2.简单组合体(1)概念由简单几何体组合而成的几何体叫做简单组合体.(2)两种构成形式①由简单几何体拼接而成;②由简单几何体截去或挖去一部分而成.典型应用1圆柱、圆锥、圆台、球的概念(1)给出下列说法:①圆柱的底面是圆面;②经过圆柱任意两条母线的截面是一个矩形面;③圆台的任意两条母线的延长线可能相交,也可能不相交;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.(2)给出以下说法:①球的半径是球面上任意一点与球心所连线段的长;②球的直径是球面上任意两点间所连线段的长;③用一个平面截一个球,得到的截面可以是一个正方形;④过圆柱轴的平面截圆柱所得截面形状是矩形.其中正确说法的序号是________.【解析】(1)①正确,圆柱的底面是圆面;②正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;③不正确,圆台的母线延长相交于一点;④不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.(2)根据球的定义知,①正确;②不正确,因为球的直径必过球心;③不正确,因为球的任何截面都是圆面;④正确.【答案】(1)①②(2)①④(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成;②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量;②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.典型应用2简单组合体的结构特征如图所示的几何体是由下面哪一个平面图形旋转而形成的()【解析】该几何体自上而下由圆锥、圆台、圆台、圆柱组合而成,故应选A.【答案】A[变条件、变问法]若将本例选项B中的平面图形旋转一周,试说出它形成的几何体的结构特征.解:①是直角三角形,旋转后形成圆锥;②是直角梯形,旋转后形成圆台;③是矩形,旋转后形成圆柱,所以旋转后形成的几何体如图所示.通过观察可知,该几何体是由一个圆锥、一个圆台和一个圆柱自上而下拼接而成的.不规则平面图形旋转形成几何体的结构特征的分析策略(1)分割:首先要对原平面图形适当分割,一般分割成矩形、梯形、三角形或圆(半圆或四分之一圆)等基本图形.(2)定形:然后结合圆柱、圆锥、圆台、球的形成过程进行分析.典型应用3旋转体中的计算问题如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台O′O的母线长.【解】设圆台的母线长为l cm,由截得的圆台上、下底面面积之比为1∶16,可设截得的圆台的上、下底面的半径分别为r cm,4r cm.过轴SO作截面,如图所示,则△SO′A′∽△SOA,SA′=3 cm.所以SA′SA=O′A′OA,所以33+l=r4r=14.解得l=9,即圆台O′O的母线长为9 cm.解决旋转体中计算问题的方法用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程(组)而解得.[注意]在研究与截面有关的问题时,要注意截面与物体的相对位置的变化.由于相对位置的改变,截面的形状也会随之发生变化.8.2立体图形的直观图1.用斜二测画法画水平放置的平面图形的直观图的步骤(1)建系:在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)平行不变:已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.(3)长度规则:已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.2.空间几何体直观图的画法(1)与平面图形的直观图画法相比多了一个z轴,直观图中与之对应的是z′轴.(2)直观图中平面x′O′y′表示水平平面,平面y′O′z′和x′O′z′表示竖直平面.(3)已知图形中平行于z轴(或在z轴上)的线段,在其直观图中平行性和长度都不变.(4)成图后,去掉辅助线,将被遮挡的部分改为虚线.■名师点拨(1)画水平放置的平面图形的直观图,关键是确定多边形顶点的位置,借助于平面直角坐标系确定顶点后,只需把这些顶点顺次连接即可.(2)用斜二测画法画直观图要掌握水平长不变,垂线长减半,直角画45°(或135°).典型应用1画水平放置的平面图形的直观图画水平放置的直角梯形的直观图,如图所示.【解】(1)在已知的直角梯形OBCD中,以底边OB所在直线为x轴,垂直于OB的腰OD所在直线为y轴建立平面直角坐标系.如图①所示.(2)画相应的x′轴和y′轴,使∠x′O′y′=45°,在x′轴上截取O′B′=OB,在y′轴上截取O′D′=12OD,过点D′作x′轴的平行线l,在l上沿x′轴正方向取点C′使得D′C′=DC.连接B′C′,如图②.(3)所得四边形O′B′C′D′就是直角梯形OBCD的直观图.如图③.画水平放置的平面图形的直观图的关键及注意事项(1)在画水平放置的平面图形的直观图时,选取适当的直角坐标系是关键,一般要使平面多边形尽可能多的顶点在坐标轴上或边与坐标轴平行,以便于画图.(2)画图时要注意原图和直观图中线段的长度的关系是否发生变化.典型应用2画简单几何体的直观图已知一个正四棱台的上底面边长为2,下底面边长为6,高为4,用斜二测画法画出此正四棱台的直观图.【解】(1)画轴.如图①,画x轴、y轴、z轴,三轴相交于点O,使∠xOy =45°,∠xOz=90°.(2)画下底面.以O为中点,在x轴上取线段EF,使得EF=6,在y轴上取线段GH,使得GH=3,再过G,H分别作AB綊EF,CD綊EF,且使得AB的中点为G,CD的中点为H,连接AD,BC,这样就得到了正四棱台的下底面ABCD 的直观图.(3)画上底面.在z轴上截取线段OO1=4,过O1作O1x′∥Ox,O1y′∥Oy,使∠x′O1y′=45°,建立坐标系x′O1y′,在x′O1y′中仿照(2)的步骤画出上底面A1B1C1D1的直观图.(4)连接AA1、BB1、CC1、DD1,擦去辅助线,得到的图形就是所求的正四棱台的直观图(如图②).画空间图形的直观图的原则(1)用斜二测画法画空间图形的直观图时,图形中平行于x 轴、y 轴、z 轴的线段在直观图中应分别画成平行于x ′轴、y ′轴、z ′轴的线段.(2)平行于x 轴、z 轴的线段在直观图中长度保持不变,平行于y 轴的线段长度变为原来的12.典型应用3直观图的还原与计算如图所示,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图.若A 1D 1∥O ′y ′,A 1B 1∥C 1D 1,A 1B 1=23C 1D 1=2,A 1D 1=O ′D 1=1.试画出原四边形,并求原图形的面积.【解】 如图,建立直角坐标系xOy ,在x 轴上截取OD =O ′D 1=1,OC =O ′C 1=2.在过点D 与y 轴平行的直线上截取DA =2D 1A 1=2.在过点A 与x 轴平行的直线上截取AB =A 1B 1=2.连接BC ,便得到了原图形(如图).由作法可知,原四边形ABCD 是直角梯形,上、下底长度分别为AB =2,CD =3,直角腰长度为AD =2.所以面积为S =2+32×2=5.(1)直观图的还原技巧由直观图还原为平面图的关键是找与x ′轴、y ′轴平行的直线或线段,且平行于x ′轴的线段还原时长度不变,平行于y ′轴的线段还原时放大为直观图中相应线段长的2倍,由此确定图形的各个顶点,顺次连接即可.(2)直观图与原图面积之间的关系若一个平面多边形的面积为S ,其直观图的面积为S ′,则有S ′=24S 或S =22S ′.利用这一公式可由原图形面积求其直观图面积或由直观图面积求原图形面积.柱、锥、台的表面积和体积1.棱柱、棱锥、棱台的表面积多面体的表面积就是围成多面体各个面的面积的和.棱柱、棱锥、棱台的表面积就是围成它们的各个面的面积的和.2.棱柱、棱锥、棱台的体积(1)V棱柱=Sh;(2)V棱锥=13Sh;V棱台3S′,S分别是棱台的上、下底面面积,h为棱台的高.3.圆柱、圆锥、圆台的表面积和体积1.柱体、锥体、台体的体积(1)柱体:柱体的底面面积为S ,高为h ,则V =Sh . (2)锥体:锥体的底面面积为S ,高为h ,则V =13Sh .(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13()S ′+SS ′+S h .2.圆柱、圆锥、圆台的侧面积公式之间的关系 S 圆柱侧=2πrl ――→r ′=r S 圆台侧=π(r ′+r )l ――→r ′=0S 圆锥侧=πrl . 3.柱体、锥体、台体的体积公式之间的关系V 柱体=Sh ――→S ′=S V 台体=13(S ′+S ′S +S )h ――→S ′=0V 锥体=13Sh . 典型应用1柱、锥、台的表面积(1)若圆锥的正视图是正三角形,则它的侧面积是底面积的( ) A.2倍 B .3 倍 C .2 倍D .5 倍(2)已知正方体的 8 个顶点中,有 4 个为侧面是等边三角形的三棱锥的顶点,则这个三棱锥与正方体的表面积之比为( )A .1∶ 2B .1∶3C .2∶ 2D .3∶6(3)已知某圆台的一个底面周长是另一个底面周长的 3 倍,母线长为 3 ,圆台的侧面积为 84π,则该圆台较小底面的半径为( )A .7B .6C .5D .3【解析】 (1)设圆锥的底面半径为 r ,母线长为 l ,则由题意可知,l =2r ,于是 S 侧=πr ·2r =2πr 2,S 底=πr 2,可知选 C.(2)棱锥 B ′ACD ′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的棱长为 1,则 B ′C =2,S △B ′AC =32.三棱锥的表面积 S 锥=4×32=23,又正方体的表面积S正=6.因此S锥∶S正=23∶6=1∶ 3.(3)设圆台较小底面的半径为r,则另一底面的半径为3r.由S侧=3π(r+3r)=84π,解得r=7.【答案】(1)C (2)B (3)A空间几何体表面积的求法技巧(1)多面体的表面积是各个面的面积之和.(2)组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展开为平面图形计算,而表面积是侧面积与底面圆的面积之和.典型应用2柱、锥、台的体积如图所示,正方体ABCDA1B1C1D1的棱长为a,过顶点B,D,A1截下一个三棱锥.(1)求剩余部分的体积;(2)求三棱锥AA1BD的体积及高.【解】(1)V三棱锥A1ABD=13S△ABD·A1A=13×12·AB·AD·A1A=16a3.故剩余部分的体积V=V正方体-V三棱锥A1ABD=a3-16a3=56a3.(2)V三棱锥AA1BD=V三棱锥A1ABD=1 6a 3.设三棱锥AA1BD的高为h,则V三棱锥AA1BD=13·S△A1BD·h=13×12×32(2a)2h=36a2h,故36a2h=16a3,解得h=3 3a.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.[提醒]求几何体的体积时,要注意利用好几何体的轴截面(尤其为圆柱、圆锥时),准确求出几何体的高和底面积.典型应用3组合体的表面积和体积如图在底面半径为2,母线长为 4 的圆锥中内接一个高为3的圆柱,求圆柱的表面积.【解】设圆锥的底面半径为R,圆柱的底面半径为r,表面积为S.则R=OC=2,AC=4,AO=42-22=2 3.如图所示,易知△AEB∽△AOC,所以AEAO=EBOC,即323=r2,所以r=1,S 底=2πr 2=2π,S 侧=2πr ·h =23π. 所以 S =S 底+S 侧=2π+23π =(2+23)π.1.[变问法]本例中的条件不变,求圆柱的体积与圆锥的体积之比. 解:由例题解析可知:圆柱的底面半径为 r =1,高 h =3,所以圆柱的体积 V 1=πr 2h =π×12×3=3π.圆锥的体积 V 2=13π×22×23=833π. 所以圆柱与圆锥的体积比为 3∶8.2.[变问法]本例中的条件不变,求图中圆台的表面积与体积.解:由例题解析可知:圆台的上底面半径 r =1,下底面半径 R =2,高 h =3,母线 l =2,所以圆台的表面积 S =π(r 2+R 2+r ·l +Rl )=π(12+22+1×2+2×2)=11π.圆台的体积 V =13π(r 2+rR +R 2)h =13π(12+2+22)×3=733π.3.[变条件、变问法]本例中的“高为3”改为“高为 h ”,试求圆柱侧面积的最大值.解:设圆锥的底面半径为 R ,圆柱的底面半径为 r , 则 R =OC =2,AC =4, AO =42-22=2 3.如图所示易知△AEB ∽△AOC , 所以AE AO =EB OC , 即23-h 23=r2, 所以 h =23-3r ,S 圆柱侧=2πrh =2πr (23-3r ) =-23πr 2+43πr ,所以当 r =1,h =3时,圆柱的侧面积最大,其最大值为 23π.求组合体的表面积与体积的步骤(1)分析结构特征:弄清组合体的组成形式,找准有关简单几何体的关键量.(2)设计计算方法:根据组成形式,设计计算方法,特别要注意“拼接面”面积的处理,利用“切割”“补形”的方法求体积.(3)计算求值:根据设计的计算方法求值.球的体积和表面积1.球的表面积设球的半径为R,则球的表面积S=4πR2.2.球的体积设球的半径为R,则球的体积V=43πR3.■名师点拨对球的体积和表面积的几点认识(1)从公式看,球的表面积和体积的大小,只与球的半径相关,给定R都有唯一确定的S和V与之对应,故表面积和体积是关于R的函数.(2)由于球的表面不能展开成平面,所以,球的表面积公式的推导与前面所学的多面体与旋转体的表面积公式的推导方法是不一样的.(3)球的表面积恰好是球的大圆(过球心的平面截球面所得的圆)面积的4倍.典型应用1球的表面积与体积(1)已知球的体积是32π3,则此球的表面积是()A.12πB.16πC.16π3 D.64π3(2)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是()A.17πB.18πC.20πD.28π【解析】(1)设球的半径为R,则由已知得V=43πR3=32π3,解得R=2.所以球的表面积S=4πR2=16π.(2)由三视图可得此几何体为一个球切割掉18后剩下的几何体,设球的半径为r,故78×43πr3=283π,所以r=2,表面积S=78×4πr2+34πr2=17π,选A.【答案】(1)B(2)A球的体积与表面积的求法及注意事项(1)要求球的体积或表面积,必须知道半径R或者通过条件能求出半径R,然后代入体积或表面积公式求解.(2)半径和球心是球的最关键要素,把握住了这两点,计算球的表面积或体积的相关题目也就易如反掌了.典型应用2球的截面问题如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器厚度,则球的体积为()A.500π3cm3 B.866π3cm3C.1 372π3cm 3D.2 048π3cm 3【解析】 如图,作出球的一个截面,则MC =8-6=2(cm), BM =12AB =12×8=4(cm). 设球的半径为R cm ,则 R 2=OM 2+MB 2 =(R -2)2+42, 所以R =5,所以V 球=43π×53=5003π (cm 3). 【答案】 A球的截面问题的解题技巧(1)有关球的截面问题,常画出过球心的截面圆,将问题转化为平面中圆的问题.(2)解题时要注意借助球半径R ,截面圆半径r ,球心到截面的距离d 构成的直角三角形,即R 2=d 2+r 2.典型应用3与球有关的切、接问题 角度一 球的外切正方体问题将棱长为 2 的正方体木块削成一个体积最大的球,则该球的体积为( )A.4π3B.2π3C.3π2D.π6【解析】 由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为 2,故半径为 1,其体积是43×π×13=4π3.【答案】 A角度二球的内接长方体问题一个长方体的各个顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为________.【解析】长方体外接球直径长等于长方体体对角线长,即2R=12+22+32=14,所以球的表面积S=4πR2=14π.【答案】14π角度三球的内接正四面体问题若棱长为a的正四面体的各个顶点都在半径为R的球面上,求球的表面积.【解】把正四面体放在正方体中,设正方体棱长为x,则a=2x,由题意2R=3x=3×2a2=62a,所以S球=4πR2=32πa2.角度四球的内接圆锥问题球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该圆锥的体积和此球体积的比值为________.【解析】①当圆锥顶点与底面在球心两侧时,如图所示,设球半径为r,则球心到该圆锥底面的距离是r2,于是圆锥的底面半径为r2-⎝⎛⎭⎪⎫r22=3r2,高为3r 2.该圆锥的体积为13×π×⎝⎛⎭⎪⎫3r22×3r2=38πr3,球体积为43πr3,所以该圆锥的体积和此球体积的比值为38πr343πr3=932.②同理,当圆锥顶点与底面在球心同侧时,该圆锥的体积和此球体积的比值为332.【答案】 932或332角度五 球的内接直棱柱问题设三棱柱的侧棱垂直于底面,所有棱的长都为 a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2 C.113πa 2D .5πa 2【解析】 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为 a .如图,P 为三棱柱上底面的中心,O 为球心,易知 AP =23×32a =33a ,OP =12a ,所以球的半径 R = OA 满足R 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫12a 2=712a 2,故 S 球=4πR 2=73πa 2.【答案】 B(1)正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为 r 1=a2,过在一个平面上的四个切点作截面如图(1).(2)长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为 a ,b ,c ,过球心作长方体的对角线,则球的半径为 r 2=12a 2+b 2+c 2,如图(2).(3)正四面体的外接球正四面体的棱长a与外接球半径R的关系为:2R=6 2a.8.4.1平面1.平面(1)平面的概念几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.平面是向四周无限延展的.(2)平面的画法我们常用矩形的直观图,即平行四边形表示平面.当水平放置时,常把平行四边形的一边画成横向;当平面竖直放置时,常把平行四边形的一边画成竖向.(3)平面的表示方法我们常用希腊字母α,β,γ等表示平面,如平面α、平面β、平面γ等,并将它写在代表平面的平行四边形的一个角内;也可以用代表平面的平行四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称.如图中的平面α,也可以表示为平面ABCD、平面AC或者平面BD.■名师点拨(1)平面和点、直线一样,是只描述而不加定义的原始概念,不能进行度量.(2)平面无厚薄、无大小,是无限延展的.2.点、线、面之间的关系及符号表示A是点,l,m是直线,α,β是平面.从集合的角度理解点、线、面之间的关系(1)直线可以看成无数个点组成的集合,故点与直线的关系是元素与集合的关系,用“∈”或“∉”表示.(2)平面也可以看成点集,故点与平面的关系也是元素与集合的关系,用“∈”或“∉”表示.(3)直线与平面都是点集,它们之间的关系可看成集合与集合的关系,故用“⊂”或“⊄”表示.3.平面的性质在画两个相交平面时,如果其中一个平面的一部分被另一个平面挡住,通常把被挡住的部分画成虚线或不画,这样可使画出的图形立体感更强一些.如下图①,图②所示:4.平面性质的三个推论推论1经过一条直线和这条直线外一点,有且只有一个平面.如图(1).推论2经过两条相交直线,有且只有一个平面.如图(2).推论3经过两条平行直线,有且只有一个平面.如图(3).典型应用1图形、文字、符号语言的相互转化(1)用符号语言表示下面的语句,并画出图形.平面ABD与平面BDC交于BD,平面ABC与平面ADC交于AC.(2)将下面用符号语言表示的关系用文字语言予以叙述,并用图形语言予以表示.α∩β=l,A∈l,AB⊂α,AC⊂β.【解】(1)符号语言表示:平面ABD∩平面BDC=BD,平面ABC∩平面ADC=AC.用图形表示如图①所示.(2)文字语言叙述为:点A在平面α与平面β的交线l上,直线AB,AC分别在平面α,β内,图形语言表示如图②所示.。
人教版高中数学必修二《第八章 立体几何初步》同步练习及答案解析
人教版高中数学必修二《第八章立体几何初步》同步练习《8.1 基本几何图形》同步练习第1课时棱柱、棱锥、棱台一、选择题1.下图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是()A.B.C.D.2.一个棱锥的各条棱都相等,那么这个棱锥必不是( )A.三棱锥B.四棱锥C.五棱锥D.六棱锥3.下列几何体中棱柱有( )A.5个B.4个C.3个D.2个4.用一个平面去截一个四棱锥,截面形状不可能的是 ( )A.四边形 B.三角形 C.五边形 D.六边形5.(多选题)给出下列命题,其中假命题是()A.棱柱的侧棱都相等,侧面都是全等的平行四边形;B.用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台;C.若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;D.棱台的侧棱延长后交于一点,侧面是等腰梯形.6.(多选题)正方体的截面可能是()A.钝角三角形B.直角三角形C.菱形D.正六边形二、填空题7.一棱柱有10个顶点,其所有的侧棱长的和为60 cm,则每条侧棱长为________cm.8.如图,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________cm.9.下列说法中正确的为________(填序号).(1)棱柱的侧棱长相等,侧面都是平行四边形:(2)各侧面都是正方形的四棱柱一定是正方体;(3)正棱锥的侧面是等边三角形;(4)有两个面互相平行,其余各面都是等腰梯形的几何体是棱台.10.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱.三、解答题11.如图所示是一个三棱台ABC-A′B′C′,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.12.如图在正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)若正方形边长为2a,则每个面的三角形面积为多少?《8.1 基本几何图形》同步练习答案解析第1课时棱柱、棱锥、棱台一、选择题1.下图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是( )A .B .C .D .【答案】B 【解析】将其折叠起来,变成正方体后的图形中,相邻的平面中三条线段是平行线,排除A ,C ;相邻平面只有两个是空白面,排除D ;故选B2.一个棱锥的各条棱都相等,那么这个棱锥必不是( )A .三棱锥B .四棱锥C .五棱锥D .六棱锥【答案】D【解析】正六棱锥的底面是个正六边形,正六边形共由6个等边三角形构成,设每个等边三角形的边长为 r ,正六棱锥的高为h ,正六棱锥的侧棱长为 l ,由正六棱锥的高h 、底面的半径r 、侧棱长l 构成直角三角形得,222h r l += ,故侧棱长 l 和底面正六边形的边长r 不可能相等.故选D.3.下列几何体中棱柱有( )A.5个B.4个C.3个D.2个【答案】D【解析】由棱柱的定义及几何特征,①③为棱柱.故选D.4.用一个平面去截一个四棱锥,截面形状不可能的是 ( )A.四边形 B.三角形 C.五边形 D.六边形【答案】D【解析】根据一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,而四棱锥最多只有5个面,则截面形状不可能的是六边形,故选D.5.(多选题)给出下列命题,其中假命题是()A.棱柱的侧棱都相等,侧面都是全等的平行四边形;B.用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台;C.若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;D.棱台的侧棱延长后交于一点,侧面是等腰梯形.【答案】ABD【解析】对于A,棱柱的侧面不一定全等,故错误;对于B,由棱台的定义可知只有当平面与底面平行时,所截部分才是棱台,故错误;对于C,若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直,比如正方体中共点的三个相邻平面,故正确;对于D,棱台的侧面不一定是等腰三角形,故错误;故选ABD .6.(多选题)正方体的截面可能是()A.钝角三角形B.直角三角形C.菱形D.正六边形【答案】CD【解析】 如图所示截面为三角形ABC ,OA =a ,OB =b ,OC =c ,∴222222222,,AC a c AB a b BC b c =+=+=+, ∴222202AB AC BC cos CAB AB AC +-∠==>⋅ ∴∠CAB 为锐角,同理∠ACB 与∠ABC 也为锐角,即△ABC 为锐角三角形,∴正方体的截面若是三角形,则一定是锐角三角形,不可能是钝角三角形和直角三角形,A 、B 错误;若是四边形,则可以是梯形(等腰梯形)、平行四边形、菱形、矩形、正方形,但不可能是直角梯形,C 正确;正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,如图为正六边形,故若是六边形,则可以是正六边形,D 正确.故选:CD .二、填空题7.一棱柱有10个顶点,其所有的侧棱长的和为60 cm ,则每条侧棱长为________cm.【答案】12【解析】该棱柱为五棱柱,共有5条侧棱,每条侧棱长都相等,∴每条侧棱长为12 cm.8.如图,M 是棱长为2 cm 的正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,沿正方体表面从点A 到点M 的最短路程是________cm.【答案】 13【解析】 由题意,若以BC 为轴展开,则A ,M 两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm ,3 cm ,故两点之间的距离是13 cm.若以BB 1为轴展开,则A ,M 两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17cm.故沿正方体表面从点A到点M的最短路程是13 cm.9.下列说法中正确的为________(填序号).(1)棱柱的侧棱长相等,侧面都是平行四边形:(2)各侧面都是正方形的四棱柱一定是正方体;(3)正棱锥的侧面是等边三角形;(4)有两个面互相平行,其余各面都是等腰梯形的几何体是棱台.【答案】(1)【解析】(1)正确,由棱柱定义可知,棱柱的侧棱相互平行且相等,所以侧面均为平行四边形;(2)不正确,上、下底面是菱形,各侧面是全等的正方形的四棱柱不一定是正方体;(3)不正确,正棱锥的侧面都是等腰三角形,不一定是等边三角形;(4)不正确,用反例去检验,如图,显然错误图.故答案为:(1)10.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱.【答案】5 6 9【解析】面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱.三、解答题11.如图所示是一个三棱台ABC-A′B′C′,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.【答案】见解析【解析】过A′,B,C三点作一个平面,再过A′,B,C′作一个平面,就把三棱台ABC -A′B′C′分成三部分,形成的三个三棱锥分别是A′-ABC,B-A′B′C′,A′-BCC′.(答案不唯一)12.如图在正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A ,B ,C 重合,重合后记为点P .问:(1)折起后形成的几何体是什么几何体?(2)若正方形边长为2a ,则每个面的三角形面积为多少?【答案】(1)三棱锥 (2)见解析【解析】(1)如图折起后的几何体是三棱锥.(2)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2, S △DEF =32a 2.《8.1 基本几何图形》同步练习第2课时 圆柱、圆锥、圆台、球一、选择题1.下列命题中,正确的是( )①在圆柱上、下底面圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.A .①②B .②③C .②④D .③④ 2.圆柱体被平面截成如图所示的几何体,则它的侧面展开图是( )A .B .C .D .3.已知圆柱的轴截面是正方形,其面积为Q ,则它的一个底面的面积为( )A .QB .Q πC .4Q πD .2Q π 4.下列平面图形中,通过围绕定直线l 旋转可得到如图所示几何体的是( )A .B .C .D .5.(多选题)下列说法中正确的是( )A .正棱锥的所有侧棱长相等B .圆柱的母线垂直于底面C .直棱柱的侧面都是全等的矩形D .用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形6.(多选题)下列结论中错误的是( )A .半圆弧以其直径为轴旋转一周所形成的曲面叫做球B .直角三角形绕一边旋转得到的旋转体是圆锥C .夹在圆柱的两个平行截面间的几何体还是一个旋转体D .圆锥截去一个小圆锥后剩余的部分是圆台二、填空题7.如图所示的几何体是由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个竖直的平面去截这个几何体,则所截得的图形可能是______.(填序号)8.下列命题中正确的是________(填序号).①以直角三角形的一边所在直线为旋转轴,将直角三角形旋转一周所得到的旋转体是圆锥;②以直角梯形的一腰所在直线为旋转轴,将直角梯形旋转一周所得到的旋转体是圆台; ③圆柱、圆锥、圆台的底面都是圆;④以等腰三角形的底边上的高所在直线为旋转轴,将等腰三角形旋转一周形成的几何体是圆锥;⑤半圆面绕其直径所在直线旋转一周形成球;⑥用一个平面去截球,得到的截面是一个圆面.9.如图是一个几何体的表面展开图形,则这个几何体是 .10.一个半径为5 cm 的球,被一平面所截,球心到截面圆心的距离为4 cm ,则截面圆半径为 cm ,面积为 cm 2.三、解答题9.如图,四边形ABCD 为直角梯形,试作出绕其各条边所在的直线旋转所得到的几何体.10.一个圆台的母线长为12cm ,两底面面积分别为24cm π和225cm π.(1)求圆台的高;(2)求截得此圆台的圆锥的母线长.《8.1 基本几何图形》同步练习及答案解析第2课时圆柱、圆锥、圆台、球一、选择题1.下列命题中,正确的是()①在圆柱上、下底面圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.A.①②B.②③C.②④D.③④【答案】C【解析】①:若上下底面各取的点的连线能平行于轴,则是母线,反之则不是,错误;②:母线的定义,显然正确;③:圆台可看做是由平行于圆锥底面的平面截圆锥得到的,根据圆锥母线的定义可知错误;④圆柱的母线都平行于轴,故也相互平行,正确;只有②④两个命题是正确的.故选C.2.圆柱体被平面截成如图所示的几何体,则它的侧面展开图是()A.B.C.D.【答案】D【解析】结合几何体的实物图,从截面最低点开始高度增加缓慢,然后逐渐变快,最后增加逐渐变慢,不是均衡增加的,所以A,B,C错误.故选:D.3.已知圆柱的轴截面是正方形,其面积为Q ,则它的一个底面的面积为( )A .QB .Q πC .4Q πD .2Q π 【答案】C【解析】圆柱的轴截面一边为高,另一边为底面的直径,由轴截面为正方形可知,高与,所以底面的面积为2ππ4Q ⋅=⎝⎭. 4.下列平面图形中,通过围绕定直线l 旋转可得到如图所示几何体的是( )A .B .C .D .【答案】B【解析】A.是一个圆锥以及一个圆柱; C.是两个圆锥; D. 一个圆锥以及一个圆柱;所以选B.5.(多选题)下列说法中正确的是( )A .正棱锥的所有侧棱长相等B .圆柱的母线垂直于底面C .直棱柱的侧面都是全等的矩形D .用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形【答案】ABD【解析】对于A ,根据正棱锥的定义知,正棱锥的所有侧棱长相等,故A 正确;对于B ,根据圆柱是由矩形绕其一边旋转而成的几何体,可知圆柱的母线与底面垂直,故B 正确;对于C ,直棱柱的侧面都是矩形,但不一定全等,故C 错误;对于D ,圆锥的轴截面是全等的等腰三角形,故D 正确.故选:ABD 。
人教B高中数学必修二课时跟踪检测:第一章 立体几何初步 含解析
第一章立体几何初步1.1空间几何体1.1.7柱、锥、台和球的体积课时跟踪检测[A组基础过关]1.某三棱锥的三视图如图所示,该三棱锥的体积为()A.2 B.3C.4 D.6解析:由三视图可知三棱锥的直观图如图所示.其中AB为高,底面是直角三角形,V=13AB×12BD×CD=13×2×12×3×2=2,故选A.答案:A2.某几何体的三视图如图所示,则该几何体的体积为()A.13+π B.23+πC.13+2π D.23+2π解析:由该几何体的三视图可知该几何体是由一个三棱锥和半个圆柱组合而成,由此可知该几何体的体积为13×12×2×1×1+12π×12×2=13+π,故选A.答案:A3.某几何体的三视图如图所示,其中俯视图是等腰三角形,那么该几何体的体积是()A.96 B.128C.140 D.152解析:由三视图可知,该几何体是一个三棱柱,V=S·h=12×6×4×8=96.答案:A4.正三棱柱的侧面展开图是边长为2和4的矩形,则该正三棱柱的体积是()A.839B.439C.239D.439或839解析:当2为正三棱柱的底面周长时,正三棱柱底面三角形的边长a=2 3,底面面积S=34a2=39,正三棱柱的高h=4,所以正三棱柱的体积V=Sh=439;同理,当4为正三棱柱的底面周长时,正三棱柱底面三角形的边长a′=43,底面面积S′=34a′2=439,正三棱柱的高h′=2,所以正三棱柱的体积V′=S′h′=839.所以正三棱柱的体积为439或839.答案:D5.若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸多面体的体积为()A.26B.23C.33D.23解析:以正方体各个面的中心为顶点的凸多面体是由两个全等的正四棱锥构成,正四棱锥的底面边长为1,高为22,∴V=2×13×1×1×22=23.故选B.答案:B6.已知圆锥的母线长为5,侧面积为20π,则此圆锥的体积为________.解析:由S侧=πrl=20π,l=5得r=4,∴圆锥的高h=l2-r2=3.∴圆锥的体积为V=13πr2·h=16π.答案:16π7.(2018·江苏卷)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.解析:由图可知,该多面体为两个全等正四棱锥的组合体,且正四棱锥的高为1,底面正方形的边长等于2,所以该多面体的体积为2×13×1×(2)2=43.答案:438.已知某几何体的俯视图是边长分别为8和6的矩形,主视图是一个底边长为8,高为4的等腰三角形,左视图是一个底边长为6,高为4的等腰三角形.(1)求该几何体的体积; (2)求该几何体的侧面积.解:由已知可得该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥V -ABCD .如图所示,(1)V =13×(8×6)×4=64.(2)该四棱锥有两个侧面VAD ,VBC 是全等的等腰三角形,且BC 边上的高为h 1=42+⎝ ⎛⎭⎪⎫822=42,另两个侧面VAB ,VCD 也是全等的等腰三角形,AB边上的高为h 2=42+⎝ ⎛⎭⎪⎫622=5,因此S 侧=2×⎝ ⎛⎭⎪⎫12×6×42+12×8×5=40+24 2.[B 组 技能提升]1.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15解析:由三视图可知,正方体被平面截去三棱锥A1-AB1D1,设正方体的边长为a,V正=a3,VA1-AB1D1=13×12a2·a=16a3,∴V A1-AB1D1V剩=16a3a3-16a3=15,故选D.答案:D2.一个正方体的顶点都在球面上,它的棱长为3,则这个球的体积为() A.9π B.932πC.27π D.2732π解析:∵棱长为3的正方体的体对角线长为33,∴球半径为332,∴V=43π⎝⎛⎭⎪⎫3233=2732π.故选D.答案:D3.一个底面半径为R的圆柱形水桶中装有适量的水,若放入一个半径为r的实心铁球(水面漫过球),水面高度恰好升高r,则Rr=________.解析:由题知43πr3=πR2·r,∴R r=233.答案:23 34.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的主视图如图所示,则该三棱锥的体积是________.解析:由主视图知,三棱锥的高为1,底面是腰长为2,底边为23的等腰三角形,∴V=13×12×23×1×1=33.答案:3 35.如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的主视图和左视图在下面画出(单位:cm).(1)在主视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积.解:(1)如图.(2)所求多面体的体积V=V长方体-V正三棱锥=4×4×6-13×⎝⎛⎭⎪⎫12×2×2×2=2843.6.圆台的母线长为6 cm,它的轴截面等腰梯形的一条对角线与一腰垂直且与下底所成的角为30°,求该圆台的体积.解:如图,等腰梯形AA1B1B为圆台的轴截面,AA1=6 cm,∠AA1B=90°,∠ABA1=30°,于是AB=2AA1=12 cm,由A1B1∥AB,得∠B1A1B=∠A1BA=30°,又∠A=90°-30°=60°,得∠A1BB1=60°-30°=30°,故△A1B1B为等腰三角形,∴A1B1=B1B=6 cm.又OO1·AB=AA1·A1B得,OO1=AA1·A1BAB=6×6312=33(cm),由圆台的体积公式:V圆台=13π·OO1·(A1O21+A1O1·AO+AO2)=13·π·33·(32+3×6+62)=633π(cm3).。
(压轴题)高中数学必修二第一章《立体几何初步》测试(包含答案解析)(1)
一、选择题1.若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积取最小值时,该圆锥体积与其内切球体积比为( ) A .2:1B .4:1C .8:1D .8:32.已知正方体1111ABCD A B C D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( ) A .30B .45C .60D .903.如图,四棱柱ABCD A B C D ''''-中,底面ABCD 为正方形,侧棱AA '⊥底面ABCD ,32AB =,6AA '=,以D 为圆心,DC '为半径在侧面BCC B ''上画弧,当半径的端点完整地划过C E '时,半径扫过的轨迹形成的曲面面积为( )A .96π B .93π C .96π D .93π 4.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O .E ,F ,G ,H 为圆O 上的点,ABE △,BCF △,CDG ,ADH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形.沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起ABE △,BCF △,CDG ,ADH ,使得E ,F ,G ,H 重合得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为( )A .163πB .253πC .643πD .1003π5.如图,在四棱锥E ABCD -中,底面ABCD 是正方形,且平面ABCD ⊥平面AEB ,则( )A .DEC ∠可能为90︒B .若AEB △是等边三角形,则DEC 也是等边三角形C .若AEB △是等边三角形,则异面直线DE 和AB 所成角的余弦值为24D .若AEB △是直角三角形,则BE ⊥平面ADE6.在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱C 1D 1,B 1C 1的中点,P 是上底面A 1B 1C 1D 1内一点,若AP ∥平面BDEF ,则线段AP 长度的取值范围是( ) A .[322,5] B .[5,22]C .[324,6] D .[6,22]7.如图,在四棱锥P ABCD -中,底面ABCD 是矩形.其中3AB =,2AD =,PAD △是以A ∠为直角的等腰直角三角形,若60PAB ∠=︒,则异面直线PC 与AD 所成角的余弦值是( )A 22B .22C 27D 2118.三个平面将空间分成n 个部分,则n 不可能是( ) A .5B .6C .7D .89.正三棱柱111ABC A B C -各棱长均为1,M 为1CC 的中点,则点1B 到面1A BM 的距离为( ) A 2B .22C .12D .3210.已知四面体ABCD ,AB ⊥平面BCD ,1AB BC CD BD ====,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .73π B .7π C .712π D .79π 11.空间四边形PABC 的各边及对角线长度都相等,D 、E 、F 外别是AB 、BC 、CA 的中点,下列四个结论中不成立的是( ) A .//BC 平面PDF B . DF ⊥平面PAE C .平面PDE ⊥平面ABCD .平面PAE ⊥平面ABC12.如果一个水平放置的平面图形的斜二测直观图是如图所示的直角梯形,其中2O A ''=,45B A O '''∠=,//B C O A ''''.则原平面图形的面积为( )A .32B .62C .322D .34二、填空题13.已知直三棱柱111ABC A B C -,14AB BC AA ===,42AC =,若点P 是上底面111 A B C 所在平面内一动点,若三棱锥P ABC -的外接球表面积恰为41π,则此时点P 构成的图形面积为________.14.已知正三棱锥A BCD -的四个顶点在球O 的球面上,2AB =,且π2BAC ∠=,则球O 的表面积为_______.15.如图,在矩形ABCD 中,2AB =,1AD =,点E 为CD 的中点,F 为线段CE (端点除外)上一动点.现将DAF △沿AF 折起,使得平面ABD ⊥平面ABC .设直线FD 与平面ABCF 所成角为θ,θ的取值范围为__________.16.如图,四边形ABCD 是矩形,且有2AB BC =,沿AC 将ADC 翻折成AD C ',当二面角D AC B '--的大小为3π时,则异面直线D C '与AB 所成角余弦值是______.17.正四面体ABCD 棱长为2,AO ⊥平面BCD ,垂足为O ,设M 为线段AO 上一点,且90BMC ︒∠=则二面角M BC O --的余弦值为________.18.已知棱长为4的正方体ABCD -A 1B 1C 1D 1中,点M 是棱AD 的中点,点N 是棱AA 1的中点,P 是侧面四边形ADD 1A 1内一动点(含边界),若C 1P ∥平面CMN ,则线段C 1P 长度的取值范围是________.19.已知四面体P ﹣ABC 的外接球的球心O 在AB 上,且PO ⊥平面ABC ,2AC 3=AB ,若四面体P ﹣ABC 的体积为32,则该球的体积为_____. 20.在三棱锥P ABC -中,PA ⊥平面ABC ,60BAC ∠=︒,23AB AC ==,2PA =,则三棱锥P ABC -外接球的半径为____________.三、解答题21.如图,在直三棱柱111ABC A B C -中,1,2AC BC AC BC CC ⊥===.(1)求三棱柱111ABC A B C -的体积; (2)求异面直线1CB 与1AC 所成角的大小; (3)求二面角1B AC C --的平面角的余弦值.22.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:DE ⊥平面PAH ;(2)若2PA AD ==,求直线PD 与平面PAH 所成线面角的正弦值.23.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,3BAD π∠=,E 是线段AD 的中点,连结BE .(1)求证:BE PA ⊥;(2)求二面角A PD C --的余弦值;(3)在线段PB 上是否存在点F ,使得//EF 平面PCD ?若存在,求出PFPB的值;若不存在,说明理由.24.如图,在三棱锥M 中,M 为BC 的中点,3PA PB PC AB AC =====,26BC =.(1)求二面角P BC A --的大小; (2)求异面直线AM 与PB 所成角的余弦值. 25.如图,在三棱锥P ABC -中,1,2,135AB AC BAC ︒==∠=,1cos ,3BAP AP BC ∠=-⊥.(1)若23BM MC =,求证:PM BC ⊥; (2)当3AP =,且N 为BC 中点时,求AN 与平面PBC 所成角的正弦值.26.在三棱锥P ABC -中,AE BC ⊥于点,E CF AB ⊥于点F ,且AE CF O ⋂=,若点P 在平面ABC 上的射影为点O .(1)证明:AC PB ⊥;(2)若ABC 是正三角形,点,G H 分别为,PA PC 的中点.证明:四边形EFGH 是矩形.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据三角形相似得出圆锥的底面半径和高的关系,根据体积公式和基本不等式得出答案. 【详解】设圆锥的高为h ,底面半径为r ,则当球面与圆锥的侧面以及底面都相切时,轴截面如图,由~AOE ACF 可得:22(1)11h r --=,即22r h h =-, ∴圆锥的体积22148[(2)4]33(2)323h V r h h h h ππππ===-++--.当且仅当22h -=,即4h =时取等号.∴该圆锥体积的最小值为83π. 内切球体积为43π. 该圆锥体积与其内切球体积比2:1. 故选:A .【点睛】方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.2.C解析:C 【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果. 【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A B C D -的棱长为1,则11112AD AB B D === 所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A B C D -中,11//BB DD 且11BB DD =, 所以,四边形11BB D D 为平行四边形,则11//BD B D , 所以,异面直线EF 和BD 所成的角为1160AB D ∠=. 故选:C. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.3.A解析:A 【分析】先确定曲面面积占以点D 为顶点, DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18,利用圆锥的侧面积S rl π=即可得出结论. 【详解】由题意 6,32CE CC AA BC AB ''=====22361832BE CE CB -=-=,所以45BCE ∠=, 45ECC '∠=, 所以曲面面积占以点D 为顶点, DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18,所以圆锥的侧面积 636186S rl CC DC ππππ'==⨯⨯=⨯⨯=, 所以曲面面积为1961868ππ⨯=. 故选:A. 【点睛】方法点睛:本题考查曲面面积,考查圆锥的侧面积,确定曲面面积占以点D 为顶点, DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18是关键,考查系数的空间想象力. 4.D解析:D 【分析】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62xIE =-,求出x 的值,再利用勾股定理求R ,代入球的表面积公式,即可得答案. 【详解】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62x IE =-, 因为该四棱锥的侧面积是底面积的2倍, 所以246222x x x ⎛⎫⨯⨯-= ⎪⎝⎭,解得4x =. 设该四棱锥的外接球的球心为Q ,半径为R ,如图,则QP QC R ==,22OC =16423OP =-=所以()(222RR =+,解得R =所以外接球的表面积为210043S ππ==(2cm ). 故选:D . 【点睛】关键点点睛:本题考查平面图形的折叠,四棱锥外接球的半径,解题关键在于平面图形折叠成立体图形后,要明确变化的量和没有变的量,以及线线的位置,线面的位置关系,对于几何体的外接球的问题,关键在于确定外接球的球心的位置.5.C解析:C 【分析】对A ,直角三角形的斜边大于直角边可判断;对B ,由>=EC EB DC 可判断;对C ,可得CDE ∠即异面直线DE 和AB 所成角,即可求出;对D ,EAB ∠(或EBA ∠)为直角时,BE 与平面ADE 不垂直. 【详解】对A ,由题意,若90DEC ∠=︒,则DC EC >,但EC BC CD >=,故A 不正确; 对B ,若AEB △是等边三角形,显然有>=EC EB DC ,所以DEC 不会是等边三角形,故B 不正确;对C ,若AEB △是等边三角形,设边长为2,则DE EC ==//AB CD ,则CDE ∠即异面直线DE 和AB 所成角,易求cos4CDE ∠==,故C 正确; 对D ,当AEB △是以AEB ∠为直角的直角三角形时,BE ⊥平面ADE ,当AEB △是以EAB ∠(或EBA ∠)为直角的直角三角形时,BE 与平面ADE 不垂直,故D 不正确. 故选:C. 【点睛】本题考查四棱锥的有关位置关系的判断,解题的关键是正确理解长度关系,正确理解位置关系的变化.6.A解析:A 【分析】分别取棱A 1B 1、A 1D 1的中点M 、N ,连接MN ,可证平面AMN ∥平面BDEF ,得P 点在线段MN 上.由此可判断当P 在MN 的中点时,AP 最小;当P 与M 或N 重合时,AP 最大.然后求解直角三角形得答案. 【详解】如图所示,分别取棱A 1B 1、A 1D 1的中点M 、N ,连接MN ,连接B 1D 1, ∵M 、N 、E 、F 为所在棱的中点,∴MN ∥B 1D 1,EF ∥B 1D 1,∴MN ∥EF ,又MN ⊄平面BDEF ,EF ⊂平面BDEF ,∴MN ∥平面BDEF ; 连接NF ,由NF ∥A 1B 1,NF =A 1B 1,A 1B 1∥AB ,A 1B 1=AB , 可得NF ∥AB ,NF =AB ,则四边形ANFB 为平行四边形,则AN ∥FB ,而AN ⊄平面BDEF ,FB ⊂平面BDEF ,则AN ∥平面BDEF . 又AN ∩NM =N ,∴平面AMN ∥平面BDEF .又P 是上底面A 1B 1C 1D 1内一点,且AP ∥平面BDEF ,∴P 点在线段MN 上. 在Rt △AA 1M 中,AM 222211215AA A M =+=+=,同理,在Rt △AA 1N 中,求得AN 5=,则△AMN 为等腰三角形.当P 在MN 的中点时,AP 最小为222322()2+=, 当P 与M 或N 重合时,AP 最大为5.∴线段AP 长度的取值范围是32,52⎡⎤⎢⎥⎣. 故选:A .【点睛】本题主要考查了空间中点、线、面间的距离问题,其中解答中通过构造平行平面寻找得到点P 的位置是解答的关键,意在考查空间想象能力与运算能力,属于中档试题.7.D解析:D 【分析】在图形中找到(并证明)异面直线所成的角,然后在三角形中计算. 【详解】因为//AD BC ,所以PCB ∠是异面直线PC 与AD 所成角(或其补角), 又PA AD ⊥,所以PA BC ⊥,因为AB BC ⊥,AB PA A ⋂=,,AB PA ⊂平面PAB ,所以BC ⊥平面PAB , 又PB ⊂平面PAB ,所以PB BC ⊥. 由已知2PA AD ==,所以22222cos 23223cos607PB PA AB PA AB PAB =+-⋅∠=+-⨯⨯︒=22211cos 11(7)2BC PCB PC ∠===+, 所以异面直线PC 与AD 所成角的余弦值为21111. 故选:D . 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.8.A解析:A 【分析】三个平面不重合,先按其中平行的平面的个数分类:三个平面两两平行,两个平面平行,没有平行的平面(两两相交),对两两相交的情况,再根据三条交线互相平行,重合,交于一点,分别讨论. 【详解】按照三个平面中平行的个数来分类:(1)三个平面两两平行,如图1,可将空间分成4部分;(2)两个平面平行,第三个平面与这两个平行平面相交,如图2,可将空间分成6部分;(3)三个平面中没有平行的平面:(i )三个平面两两相交且交线互相平行,如图3,可将空间分成7部分; (ii )三个平面两两相交且三条交线交于一点,如图4,可将空间分成8部分.(iii )三个平面两两相交且交线重合,如图5,可将空间分成6部分;综上,可以为4,6,7,8部分,不能为5部分, 故选:A.9.B解析:B 【分析】 连接11A N B AB =,根据已知条件先证明11B A A B ⊥、1⊥MN AB ,再通过线面垂直的判定定理证明1AB ⊥平面1A BM ,由此确定出1B N 的长度即为点1B 到面1A BM 的距离,最后完成求解. 【详解】连接1B A 交1A B 于N ,连接11,,,,MB MN MB MA MA ,如图所示:因为11A ABB 为正方形,所以11B A A B ⊥, 又因为22111115142MB MC C B =+=+=2215142MA MC CA =+=+=, 所以1MB MA =且N 为1AB 中点,则MN 为等腰三角形1AMB 的中垂线, ∴1⊥MN AB 且1MNA B N =,∴1AB ⊥平面1A BM ,∴1B N 就是点1B 到截面1A BM 的距离, 又因为111121122B N AB ==+=,所以点1B 到截面1A BM 2, 故选:B. 【点睛】方法点睛:求解平面外一点A 到平面α的距离的方法:(1)几何方法:通过线面垂直的证明,找到A 在平面α内的投影点A ',则AA '即为A 到平面α的距离;(2)向量方法:①建立合适空间直角坐标系,在平面α内取一点B ;②求解出AB 和平面α的法向量n ;③根据AB n d n⋅=即可求解出点A 到平面α的距离.10.A解析:A 【分析】本题首先可根据题意将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分,然后求出直三棱柱的外接球的半径,最后根据球的表面积计算公式即可得出结果. 【详解】因为AB ⊥平面BCD ,1AB BC CD BD ====,所以可将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分,如图所示:则四面体ABCD 的外接球即直三棱柱的外接球,因为底面三角形BCD 的外心到三角形BCD 的顶点的长度为222131323, 所以直三棱柱的外接球的半径221372312r, 则球O 的表面积2277π4π4π123S r ,故选:A. 【点睛】关键点点睛:本题考查四面体的外接球的表面积的计算,能否将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分是解决本题的关键,考查直三棱柱的外接球的半径的计算,是中档题.11.C解析:C 【分析】由线面平行的判定定理可判断A ;由线面垂直的判定定理可判断B ;反证法可说明C ;由面面垂直的判定定理可判断D. 【详解】 对于A ,D ,F 外别是AB ,CA 的中点,//BC DF ∴,DF ⊂平面PDF ,∴//BC 平面PDF ,故A 正确,不符合题意;对于B ,各棱长相等,E 为BC 中点,,BC AE BC PE ∴⊥⊥,PEAE E =,BC ∴⊥平面PAE ,//BC DF ,∴DF ⊥平面PAE ,故B 正确,不符合题意;对于C ,假设平面PDE ⊥平面ABC ,设DE BF O ⋂=,连接PO ,则O 是DE 中点,PO DE ∴⊥,平面PDE平面ABC DE =,PO ∴⊥平面ABC ,BF ⊂平面ABC ,PO BF ∴⊥,则PB PF =,与PB PF ≠矛盾,故C 错误,符合题意;对于D ,由B 选项 DF ⊥平面PAE , DF ⊂平面ABC ,∴平面PAE ⊥平面ABC ,故D 正确,不符合题意. 故选:C. 【点睛】本题考查线面关系和面面关系的判定,解题的关键是正确理解判断定理,正确理解垂直平行关系.12.A解析:A 【分析】作出原平面图形,然后求出面积即可. 【详解】45B A O '''∠=B O A '''=∠,则O A B '''△是等腰直角三角形,∴2A B OB '''==又O C C B ''''⊥,45C O B '''∠=︒,∴1B C ''=, 在直角坐标系中作出原图形为:梯形OABC ,//OA BC ,2,1OA BC ==,高22OB = ∴其面积为1(21)22322S =+⨯= 故选:A 【点睛】方法点睛:本题考查斜二测法画平面图形直观图,求原图形的面积,可能通过还原出原平面图形求得面积,也可以通过直观图到原图形面积的关系求解:直观图面积为S ',原图形面积为S ,则2S S '=二、填空题13.【分析】确定是等腰直角三角形的中点分别是和的外心由直棱柱性质得的外接球的球心在上外接球面与平面的交线是圆是以为圆心为半径的圆求出可得面积【详解】则设分别是的中点则分别是和的外心由直三棱柱的性质得平面 解析:4π【分析】确定ABC 是等腰直角三角形,11,AC A C 的中点1,D D 分别是ABC 和111A B C △的外心,由直棱柱性质得P ABC -的外接球的球心O 在1DD 上,外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,求出1PD 可得面积. 【详解】4,2AB BC AC ===90ABC ∠=︒,设1,D D 分别是11,AC A C 的中点,则1,D D 分别是ABC 和111A B C △的外心,由直三棱柱的性质得1DD ⊥平面ABC , 所以P ABC -的外接球的球心O 在1DD 上,如图,24()41OA ππ=,则41OP OA ==,2222413(22)22OD OA AD ⎛⎫=-=-= ⎪ ⎪⎝⎭, 所以11135422OD DD OD AA OD =-=-=-=, 222211415222PD OP OD ⎛⎫⎛⎫=-=-= ⎪⎪ ⎪⎝⎭⎝⎭, P ABC -的外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,其面积为224S ππ=⨯=. 故答案为:4π.【点睛】关键点点睛:本题考查立体几何中动点轨迹问题的求解,重点考查了几何体的外接球的有关问题的求解,关键是根据外接球的性质确定球心位置,结合勾股定理得出动点所满足的具体条件,结论:三棱锥的外接球的球心在过各面外心且与此面垂直的直线上.14.【分析】经分析正三棱锥是以△BCD 底面的三棱锥可以把看出以AB 为边长的正方体切割下来的可借助于正方体的外接球求解【详解】正三棱锥中所以△BCD 为底面且所以正三棱锥是以AB 为边长的正方体切割下来的所以 解析:6π【分析】经分析,正三棱锥A BCD -是以△BCD 底面的三棱锥,可以把看出以AB 为边长的正方体切割下来的,可借助于正方体的外接球求解. 【详解】正三棱锥A BCD -中,π2BAC ∠=, 所以△BCD 为底面,且π2BAD DAC BAC ∠=∠=∠=, 所以正三棱锥A BCD -是以AB 为边长的正方体切割下来的, 所以正三棱锥A BCD -的外接球就是正方体的外接球.设外接球的半径为R ,所以2R =所以外接球的表面积为246S R ππ==. 故答案为:6π 【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.15.【分析】在矩形中作交于交于在翻折后的几何体中证得平面平面从而平面得是直线与平面所成的角设C 求得的范围后可得范围【详解】在矩形中作交于交于设由图易知∴即∴则在翻折后的几何体中又平面∴平面又平面∴平面平解析:(0,]6π【分析】在矩形ABCD 中作DO AF ⊥,交AF 于O ,交AB 于M ,在翻折后的几何体中,证得平面ODM ⊥平面ABCF ,从而DM ⊥平面ABCF ,得DFM ∠是直线FD 与平面ABCF 所成的角.设(01)CF x x =<<C ,求得sin θ的范围后可得θ范围.【详解】在矩形ABCD 中作DO AF ⊥,交AF 于O ,交AB 于M , 设(01)CF x x =<<,AM t =,由图易知DAM FDA △△,∴AM AD DA DF =,即112t x =-,∴12t x=-,01x <<,则112t <<. 在翻折后的几何体中,AF OD ⊥,AF OM ⊥,又OD OM O =,,OD OM ⊂平面ODM ,∴AF ⊥平面ODM ,又AF ⊂平面ABCF ,∴平面ODM ⊥平面ABCF ,又平面ABD ⊥平面ABC AB =.平面ODM平面ABD DM =,∴DM ⊥平面ABCF ,连接MF ,则DFM ∠是直线FD 与平面ABCF 所成的角.DFM θ∠=,而DM =12DF x t=-=,∴2422211sin 1()24DM t t t t t DF θ==-=-+=--+, ∵112t <<,∴2114t <<,∴10sin 2θ<≤,即06πθ<≤.故答案为:(0,]6π.【点睛】方法点睛:本题考查求直线与平面所成的角,求线面角常用方法:(1)定义法:作出直线与平面所成的角并证明,然后在直角三角形中计算可得; (2)向量法:建立空间直角坐标系,由直线的方向向量与平面的法向量夹角的余弦的绝对值等于直线与平面所成角的正弦值计算.16.【分析】作于于可得等于二面角的平面角从而可得然后求得而因此可得是异面直线与所成角(或补角)这样在求解可得【详解】如图作于于则连接根据二面角平面角的定义知与的夹角等于二面角的平面角所以因为所以设则在矩解析:12. 【分析】作DM AC ⊥于M ,BN AC ⊥于N ,可得,MD NB '<>等于二面角D AC B '--的平面角,从而可得DMD '∠,然后求得DD ',而//AB CD ,因此可得D CD '∠是异面直线D C '与AB 所成角(或补角).这样在DCD '求解可得.【详解】如图,作DM AC ⊥于M ,BN AC ⊥于N ,则//DM BN ,连接,D M DD '', 根据二面角平面角的定义知MD '与NB 的夹角等于二面角D AC B '--的平面角, 所以,3MD NB π'<>=,因为//DM BN ,所以23DMD π'∠=, 设1BC =,则22AB BC ==ABCD 中,3AC =1263DM ⨯==, 63D M DM '==, 则222222666612cos 22333332DD DM D M DM D M π⎛⎫⎛⎫⎛⎫'''=+-⋅=+-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以2DD '=,因为//AB CD ,所以D CD '∠是异面直线D C '与AB 所成角(或补角).DCD '是正三角形,3D CD π'∠=,1cos 2D CD '∠=. 所以异面直线D C '与AB 所成角余弦值是12. 故答案为:12.【点睛】关键点点睛:本题考查求异面直线所成的角,解题方法根据异面直线所成角定义作出它们所成的角,然后解三角形可得,解题关键是利用图中MD '与NB 的夹角等于二面角D AC B '--的平面角,从而求得DMD '∠,只要设1BC =,可求得DD ',从而求得结论.17.【分析】连接延长交于则是中点可得是二面角的平面角求出可得结论【详解】由已知是中心连接延长交于则是中点连接则而∴平面平面∴∴是二面角的平面角由对称性又由平面平面得∴故答案为:【点睛】关键点点睛:本题考 3 【分析】连接DO 延长交BC 于E ,则E 是BC 中点,可得MEO ∠是二面角M BC O --的平面角.求出,ME OE 可得结论. 【详解】由已知O 是BCD △中心,连接DO 延长交BC 于E ,则E 是BC 中点,连接AE ,则BC AE ⊥,BC DE ⊥,而AEDE E =,∴BC ⊥平面AED ,ME ⊂平面AED ,∴BC ME ⊥,∴MEO ∠是二面角M BC O --的平面角.2BC =,90BMC ︒∠=,由对称性2BM CM ==,112ME BC ==, 又1133233EO DE ==⨯⨯=, 由AO ⊥平面BCD ,EO ⊂平面BCD ,得AO EO ⊥, ∴3cos 3EO MEO ME ∠==. 故答案为:33.【点睛】关键点点睛:本题考查求二面角,解题关键是作出二面角的平面角.这可根据平面角的定义作出(并证明),然后在直角三角形中求角即得.注意一作二证三计算三个步骤.18.【分析】分别取棱的中点连接易证平面平面由题意知点必在线段上由此可判断在或处时最长位于线段中点处时最短通过解直角三角形即可求得【详解】如下图所示连分别为所在棱的中点则又平面平面平面四边形为平行四边形又 解析:[32,25]【分析】分别取棱1BB 、11B C 的中点M 、N ,连接MN ,易证平面1//A MN 平面AEF ,由题意知点P 必在线段MN 上,由此可判断P 在M 或N 处时1A P 最长,位于线段MN 中点处时最短,通过解直角三角形即可求得. 【详解】 如下图所示,连MN ,EF ,1A D ,EMM ,N ,E ,F 分别为所在棱的中点,则1//MN A D ,1//EF A D ,//EF MN ∴,又MN ⊂平面1C EF ,EF ⊂平面1C EF ,//MN ∴平面1C EF .11//,C C EM C C EM =, ∴四边形1C CME 为平行四边形,1//C E CM ,又CM ⊄平面1C EF ,1C E ⊂平面1C EF ,//CM ∴平面1C EF ,又NMCM M =,∴平面//NMC 平面1C EF .P 是侧面四边形ADD 1A 1内一动点,且C 1P ∥平面CMN , ∴点P 必在线段EF 上.在Rt △11C D E 中,222211114225C E C D D E =+=+=同理,在Rt △11C D F 中,可得125C F =,∴△1C EF 为等腰三角形.当点P 为EF 中点O 时,1C P EF ⊥,此时1C P 最短;点P 位于,E F 处时,1C P 最长.()222211(25)232C O C E OE =-=-=1125C E C F ==∴线段1C P 长度的取值范围是[32,25].故答案为:[32,25] 【点睛】本题考查点、线、面间的距离问题,考查学生的运算能力及推理转化能力,属中档题,解决本题的关键是通过构造平行平面寻找P 点位置.19.【分析】根据四面体是球的内接四面体结合位置关系可得棱锥的形状以及棱长之间的关系利用体积公式即可代值计算【详解】设该球的半径为R 则AB =2R2ACAB2R ∴ACR 由于AB 是球的直径所以△ABC 在大圆所解析:【分析】根据四面体是球的内接四面体,结合位置关系,可得棱锥的形状,以及棱长之间的关系,利用体积公式即可代值计算. 【详解】设该球的半径为R ,则AB =2R ,2AC ==2R , ∴AC=,由于AB 是球的直径,所以△ABC 在大圆所在平面内且有AC ⊥BC , 在Rt △ABC 中,由勾股定理,得:BC 2=AB 2﹣AC 2=R 2,所以R t △ABC 面积S 12=⨯BC ×AC =2, 又PO ⊥平面ABC ,且PO =R ,四面体P ﹣ABC 的体积为32,∴VP ﹣ABC 13=⨯R R 232=3=9,R 3=所以:球的体积V 43=⨯πR 343=⨯=.故答案为:. 【点睛】本题考查三棱锥外接球体积的计算,属基础题;本题的重点是要根据球心的位置去推导四面体的几何形态,从而解决问题.20.【分析】先在等边三角形中求出外接圆半径从而可求该三棱锥的外接球的半径【详解】详解:因为所以为等边三角形所以等边外接圆的半径为如图三棱锥外接球球心为半径为设球心到平面的距离为外接圆圆心为连接则平面取中【分析】先在等边三角形ABC 中求出BC =,外接圆半径2r ,从而可求该三棱锥的外接球的半径. 【详解】详解:因为060AB AC BAC ==∠=,所以ABC 为等边三角形,所以BC =ABC 外接圆的半径为23r,如图,三棱锥P ABC -外接球球心为O ,半径为R , 设球心O 到平面ABC 的距离为d ,ABC 外接圆圆心为'O , 连接,','AO AO OO ,则'OO ⊥平面ABC , 取PA 中点,D OP OA =,所以OD PA ⊥,又PA ⊥平面ABC ,所以//PA OO ',则四边形'ADOO 是矩形, 所以在PDO △和'OAO △中,由勾股定理可得()222222222R d R d ⎧=+⎪⎨=+-⎪⎩,解得:1,5d R ==. 故答案为:5.【点睛】本题主要考查了三棱锥外接球的表面积,其中根据几何体的结构特征和球的性质,求得三棱锥的外接球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力.三、解答题21.(1)4;(2)60︒;(33【分析】(1)根据棱锥的体积公式求解即可;(2)作辅助线,利用平行得出异面直线1CB 与1AC 所成角就是COE ∠,再结合等边三角形的性质得出夹角;(3)过C 作1CF AC ⊥于点F ,连接,CF BF ,由11,CF AC BF AC ⊥⊥结合定义得出二面角1B AC C --的平面角,再由直角三角形的边角关系得出平面角的余弦值. 【详解】(1)三棱柱111ABC A B C -的体积1122242ABC V SCC ⎛⎫=⋅=⨯⨯⨯= ⎪⎝⎭(2)记1BC 与1B C 的交点为O ,作AB 的中点E ,连接,OE CE ,异面直线1CB 与1AC 所成角就是COE ∠2CO OE CE ===60COE ︒∴∠=(3)过C 作1CF AC ⊥于点F ,连接,CF BF11,CF AC BF AC BFC ⊥⊥⇒∠为所求角3tan 2,cos 32BC BFC BFC FC ∠===∠=【点睛】关键点睛:在求异面直线的夹角时,关键是利用中位线定理得出平行,从而得出异面直线的夹角.22.(1)证明见解析;(2)105. 【分析】(1)由PA ⊥底面ABCD ,得PA DE ⊥,由Rt ABH Rt DAE ≌△△,得DE AH ⊥,可得答案.(2)由可知DE ⊥平面PAH ,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角,在Rt PDG △中,由sin DPG ∠可得答案. 【详解】(1)因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点,,,AB DA BH AE HBAEAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠=所以90BAH AED ∠+∠=,所以DE AH ⊥, 因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .(2)由(1)可知DE ⊥平面PAH ,设AH DE G ⋂=,如图,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角, 因为2PA AD ==,所以22PD =,5DE =, 在Rt DAE 中,由于AG DE ⊥,所以2AD DG DE =⋅, 所以45DG =⋅,所以5DG =, 所以在Rt PDG △中,105sin 22DG DPG PD ∠===,即直线PD 与平面PAH 所成线面角的正弦值为10.【点睛】本题主要考查线面垂直的证明、线面角的求法,对于线面角的求法的步骤,作:作(或找)出斜线在平面上的射影,证:证明某平面角就是斜线与平面所成的角;算:通常在垂线段、斜线段和射影所组成的直角三角形中计算. 23.(1)证明见解析;(2)73)存在;12PF PB =. 【分析】(1)首先证明BE AD ⊥,再由面面垂直的性质定理可得BE ⊥平面PAD ,即证. (2)连结PE ,以E 为坐标原点,EP ,EA ,EB 为,,x y z 轴,建立空间直角坐标系,(0,3,0)EB a =是平面PAD 的一个法向量,再求出平面PCD 的一个法向量,利用空间向量的数量积即可求解.(3)根据题意可得EF 与平面PCD 的法向量垂直,假设线段PB 上存在点F 使得//EF 平面PCD ,再利用向量的数量积即可求解. 【详解】解:(1)因为四边形ABCD 为菱形,所以AB AD =.。
(压轴题)高中数学必修二第一章《立体几何初步》检测(答案解析)(3)
一、选择题1.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //2.已知AB 是平面α外的一条直线,则下列命题中真命题的个数是( )①在α内存在无数多条直线与直线AB 平行;②在α内存在无数多条直线与直线AB 垂直;③在α内存在无数多条直线与直线AB 异面; ④一定存在过AB 且与α垂直的平面β.A .1个B .2个C .3个D .4个3.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A 3B 6C .23D .264.在长方体1111ABCD A B C D -中,12,3AB BC AA ===,E 是BC 的中点,则直线1ED 与直线BD 所成角的余弦值是( )A 7B .7C .3714D .3714- 5.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:3cm )为( )A .43B .2C .4D .6 6.如图,正三棱柱111ABC A B C -的高为4,底面边长为43,D 是11B C 的中点,P 是线段1A D 上的动点,过BC 作截面AP α⊥于E ,则三棱锥P BCE -体积的最小值为( )A .3B .3C .43D .127.已知α、β是平面,m 、n 是直线,下列命题中不正确的是( )A .若//m α,n αβ=,则//m nB .若//m n ,m α⊥,则n α⊥C .若m α⊥,m β⊥,则//αβD .若m α⊥,m β⊂,则αβ⊥ 8.一个底面为正三角形的棱柱的三视图如图所示,若在该棱柱内部放置一个球,则该球的最大体积为( )A .6πB .12πC .43πD .83π 9.一个几何体的三视图如图所示,则该几何体的外接球的表面积是( )A .2πB .3πC .4πD .16π10.如图正三棱柱111ABC A B C -的所有棱长均相等,O 是1AA 中点,P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,则直线OP 与平面ABC 所成角正弦值的最大值为( )A .22B .255C .3D .27711.已知E ,F 是四面体的棱AB ,CD 的中点,过EF 的平面与棱AD ,BC 分别相交于G ,H ,则( )A .GH 平分EF ,BH AG HC GD = B .EF 平分GH ,BH GD HC AG = C .EF 平分GH ,BH AG HC GD = D .GH 平分EF ,BH GD HC AG= 12.已知球O 的半径为5,球面上有,,A B C 三点,满足214,27AB AC BC ===,则三棱锥O ABC -的体积为( )A .77B .142C .714D .147二、填空题13.在三棱锥P ABC -中,PA ⊥平面ABC ,22AB =,3BC =,4PA =,4ABC π∠=,则该三棱锥的外接球体积为___________.14.如图,在三棱台111ABC A B C -中,11190,4,22ACB AC BC A B CC ∠=︒====,平面11AA B B ⊥平面ABC ,则该三棱台外接球的表面积为___________.15.已知长方体1234ABCD A B C D -,底面是边长为4的正方形,高为2,点O 是底面ABCD 的中心,点P 在以O 为球心,半径为1的球面上,设二面角111P A B C --的平面角为θ,则tan θ的取值范围是________.16.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =,1cos 3BAC ∠=,若三棱锥D ABC -的体积为273,则此三棱锥的外接球的表面积为______ 17.如图,已知正四面体D ABC -,P 为线段AB 上的动点(端点除外),则二面角D PC B --的平面角的余弦值的取值范围是___________.18.如图在长方形ABCD 中,AB 6=,BC 2=.E 为线段DC 上一动点,现将△AED 沿AE 折起.使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C .则K 所形成轨迹的长度为_____.19.将半径为3,圆心角为23π的扇形围成一个圆锥,则该圆锥内切球的体积为________. 20.棱长为a 的正四面体的外接球的表面积为______.三、解答题21.如图所示,四棱锥P ABCD -的底面ABCD 是平行四边形,90DBA ∠=︒,2BA BD ==,10,,PA PD E F ==分别是棱,AD PC 的中点.(2)若二面角P AD B --为60︒,求点B 到平面PAD 的距离.22.如图所示,在边长为2的菱形ABCD 中,60BAC ∠=,沿BD 将三角形BCD 向上折起到PBD 位置,E 为PA 中点,若F 为三角形ABD 内一点(包括边界),且//EF 平面PBD .(1)求点F 轨迹的长度;(2)若EF ⊥平面ABD ,求证:平面PBD ⊥平面ABD ,并求三棱锥P ABD -的体积. 23.在所有棱长均为2的直棱柱1111ABCD A B C D -中,底面ABCD 是菱形,且60BAD ∠=︒,O ,M 分别为1,BD B C 的中点.(Ⅰ)求证:直线//OM 平面11DB C ;(Ⅱ)求二面角1D AC D --的余弦值.24.如图,在直三棱柱111ABC A B C -中,底面ABC 为正三角形,1AB 与1A B 交于点O ,E ,F 是棱1CC 上的两点,且满足112EF CC =.(2)当1CE C F =,且12AA AB =,求直线OF 与平面ABC 所成角的余弦值. 25.在四棱锥P ABCD -中,四边形ABCD 为正方形,平面PAB ⊥平面,ABCD PAB 为等腰直角三角形,,2PA PB AB ⊥=.(1)求证:平面PBC ⊥平面PAC ;(2)设E 为CD 的中点,求点E 到平面PBC 的距离.26.在三棱柱111ABC A B C -中,侧面11BCC B 为矩形,AC ⊥平面11BCC B ,D ,E 分别是棱1AA ,1BB 的中点.(1)求证://AE 平面11B C D ;(2)求证:1CC ⊥平面ABC ;(3)若12AC BC AA ===,求直线AB 与平面11B C D 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误.【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误;对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴, 1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C.【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳. 2.C解析:C【分析】根据线面平行,线面垂直,异面直线等有关结论和定义即可判断.【详解】对于A ,若直线AB 与平面α相交,则在α内不存在直线与直线AB 平行,错误;对于B ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,则在平面α内过点C 一定可以作一条直线CD ,使得CD CM ⊥,所以CD AB ⊥,而在平面α内,与直线CD 平行的直线有无数条,所以在α内存在无数多条直线与直线AB 垂直,若直线AB 与平面α垂直,显然在α内存在无数多条直线与直线AB 垂直,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 垂直,正确;对于C ,若直线AB 与平面α相交,设AB M α=,根据异面直线的判定定理,在平面α内,不过点M 的直线与直线AB 异面,所以在α内存在无数多条直线与直线AB 异面,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 异面,正确; 对于D ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,若直线AB 与平面α垂直,则过直线AB 的所有平面都与平面α垂直,当直线AB 与平面α平行时,在直线AB 上取一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,正确.故真命题的个数是3个.故选:C .【点睛】本题主要考查线面平行,线面垂直,异面直线等有关结论和定义的理解和应用,熟记定义,定理和有关结论是解题的关键,属于中档题.3.A解析:A【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12A C ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值,因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M =因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥,则222211111(2)3M B A A M B =+=+=故选:A.【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题. 4.C解析:C【分析】连接11D B 、1D E 、DE ,先证明四边形11BB D D 为平行四边形,得到11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角,由余弦定理可得答案.【详解】连接11D B 、1D E 、DE ,因为棱11//BB DD ,11BB DD =,所以四边形11BB D D 为平行四边形,所以11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角11B D E ∠,因为12,3AB AD AA ===,1BE CE ==, 所以2211111122B D D C B C =+=213110B E =+=222415ED CE DC +=+==,所以222115914D E ED D D ==+=+,由余弦定理得, 从而22211111111137cos 24214B D D E B E B D E B D D E +-∠===⨯⨯. 故选:C【点睛】本题考查异面直线所成角的余弦值的求法,关键点是找到异面直线所成的角,考查空间中线线的位置关系等基础知识,考查运算求解能力,是中档题.5.B解析:B【分析】根据三视图判断出几何体的结构,利用椎体体积公式计算出该几何体的体积.【详解】根据三视图可知,该几何体为如图所示四棱锥,该棱锥满足底面是直角梯形,且侧棱ED ⊥平面ABCD , 所以其体积为11(12)22232V =⨯⨯+⨯⨯=, 故选:B. 【点睛】方法点睛:该题考查的是有关根据几何体三视图求几何体体积的问题,解题方法如下: (1)首先根据题中所给的几何体的三视图还原几何体;(2)结合三视图,分析几何体的结构特征,利用体积公式求得结果.6.C解析:C 【分析】因为P BCE P ABC E ABC V V V ---=-则当E ABC V -取最大值时,三棱锥P BCE -体积有最小值,建立坐标系求得当点E 的高为3时,问题得解. 【详解】以点O 为原点,,,OA OD OB 分别为,,x y z 轴建立空间直角坐标系,如图所示:设点(),0,E x z ,依题意得()6,0,0A ,则()6,0,AE x z =- ,(),0,OE x z =因为过BC 作截面AP α⊥于E ,所以AE OE ⊥则0AE OE ⋅=,故()2600x x z -++= 所以z =3x =时max 3z =又()143P BCE P ABC E ABC ABCV V V S z ---=-=-因为max 3z =所以三棱锥P BCE -体积的最小值()111436332P BCE ABC V S-=-=⋅⋅=故选:C 【点睛】关键点点晴:本题的解题关键是将问题转化为求E ABC V -的最大值,通过建系求得三棱锥E ABC -的高的最大值即可.7.A解析:A 【分析】根据已知条件判断直线m 、n 的位置关系,可判断A 选项的正误;利用线面垂直的性质可判断BC 选项的正误;利用面面垂直的判定定理可判断D 选项的正误. 【详解】对于A 选项,若//m α,则直线m 与平面α内的直线平行或异面, 由于n αβ=,则直线m 、n 平行或异面,A 选项错误;对于B 选项,若//m n ,m α⊥,则n α⊥,B 选项正确; 对于C 选项,若m α⊥,m β⊥,则//αβ,C 选项正确;对于D 选项,若m α⊥,m β⊂,由面面垂直的判定定理可知αβ⊥,D 选项正确. 故选:A. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.8.C解析:C 【分析】先由三视图计算底面正三角形内切圆的半径,内切圆的直径和三棱柱的高比较大小,确定球的半径的最大值,计算球的最大体积. 【详解】由三视图知该直三棱柱的高为4,底面正三角形的高为半径为高的三分之一,即r =4<,所以该棱柱内部可放置球的半径的最大值为3,它的体积()343433V ππ==.故选:C 【点睛】关键点点睛:本题的第一个关键是由三视图确定底面三角形的高是33,第二个关键是确定球的最大半径.9.C解析:C 【分析】由三视图还原出原几何体,确定其结构,再求出外接球的半径得球的表面积. 【详解】由三视图,知原几何体是一个四棱锥P ABCD -,如图,底面ABCD 是边长为1的正方形,PB ⊥底面ABCD ,由PB ⊥底面ABCD ,AD ⊂面ABCD ,得PB AD ⊥,又AD AB ⊥,AB PB B ⋂=,,AB PB ⊂平面PAB ,所以AD ⊥平面PAB ,而PA ⊂平面PAB ,所以AD PA ⊥,同理DC PC ⊥,同样由PB ⊥底面ABCD 得PB BD ⊥,所以PD 中点O 到四棱锥各顶点距离相等,即为其外接球球心,PD 为球直径,222222PD PB BD PA AD AB =+=++=,∴外接球半径为12ADr ==, 表面积为2414S ππ=⨯=. 故选:C .【点睛】关键点点睛:本题考查由三视图还原几何体,考查棱锥的外接球表面积.解题关键是确定外接球的球心.棱锥的外接球球心在过各面外心(外接圆圆心)且与该面垂直的直线上.10.D解析:D 【分析】先找到与平面11A BC 平行的平面OEFG ,确定点P 在直线FG 上,作出线面角,求出正弦,转化为求AP 的最小值. 【详解】分别取1,,CC BC BA 的中点,连接,,,OE EF FG GO ,并延长FG ,如图,由中位线性质可知11//OE A C , 1//EF BC ,且OE EF E =,故平面11//A BC 平面OGFE ,又P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC 则点P 在直线FG 上,OA ⊥平面ABC ,OPA ∴∠是直线OP 与平面ABC 所成角, sin OAOPA OP∴∠=, OA 为定值,∴当OP 最小时,正弦值最大,而22OP OA AP +所以当AP 最小时,sin OPA ∠最大, 故当AP FG ⊥时,sin OPA ∠最大, 设棱长为2, 则1212AG =⨯=,而30GAP ∠=︒, 32AP ∴=, 又1212OA =⨯=, 222sin 773()12OAOPA OP∴∠===+故选:D关键点点睛:由P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,转化为找过O 的平面与平面11A BC 平行,P 在所找平面与平面ABC 的交线上,从而容易确定出线面角,是本题解题的关键所在.11.C解析:C 【分析】举特例舍去不正确选项,可得正确答案. 【详解】过EF 的平面为平面ABF 时,G 在A 点, H 在B 点, 所以0BH AGHC GD==,EF 平分GH , 即BH AG HC GD =,所以舍去ABD ,选C 故选:C12.A解析:A 【分析】利用正弦定理求出ABC 的外接圆半径,则可求出三棱锥的高,进而求出三棱锥体积. 【详解】设ABC 的外接圆的圆心为D ,半径为r , 在ABC 中,72cos 4214ABC ∠==,14sin 4ABC ∴∠=, 由正弦定理可得28sin ACr ABC==∠,即4r =,则22543OD =-=,1111421427377332O ABC ABCV SOD -∴=⨯⨯=⨯⨯⨯⨯⨯=. 故选:A.本题考查球内三棱锥的相关计算,解题的关键是利用正弦定理求出ABC 的外接圆半径,利用勾股关系求出高.二、填空题13.【分析】利用余弦定理求得利用正弦定理计算出的外接圆直径可计算出三棱锥的外接球半径然后利用球体体积公式可求得结果【详解】如下图所示圆柱的底面圆直径为圆柱的母线长为则的中点到圆柱底面圆上每点的距离都相等 解析:1326π【分析】利用余弦定理求得AC ,利用正弦定理计算出ABC 的外接圆直径2r ,可计算出三棱锥P ABC -的外接球半径R ,然后利用球体体积公式可求得结果. 【详解】如下图所示,圆柱12O O 的底面圆直径为2r ,圆柱的母线长为h , 则12O O 的中点O 到圆柱底面圆上每点的距离都相等, 所以,圆柱12O O 的外接球直径为()2222R r h =+.本题中,作出ABC 的外接圆2O ,由于PA ⊥平面ABC ,可将三棱锥P ABC -放在圆柱12O O 中,在ABC 中,22AB =3BC =,4ABC π∠=,由余弦定理可得222cos 5AC AB BC AB BC ABC +-⋅∠=,由正弦定理可知,ABC 的外接圆直径为5210sin 2ACr ABC===∠ 则三棱锥P ABC -的外接球直径为()222226R PA r =+=26R =, 因此,三棱锥P ABC -的外接球的体积为334426132633V R ππ==⨯=⎝⎭. 故答案为:13263. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.14.【分析】取与中点根据平面平面可知平面球心必在直线上设球心为D 则可求得球心恰好为点O 从而求得外接球的半径代入球的表面积公式计算【详解】在三棱台中可得都是等腰三角形四边形为等腰梯形即如图取与中点连接则可 解析:32π【分析】取AB 与11A B 中点,O O ',根据平面11AA B B ⊥平面ABC ,可知'⊥O O 平面ABC ,球心必在直线O O '上,设球心为D ,则()22221O D O O OC O D O C ''''-+=+,可求得球心恰好为点O ,从而求得外接球的半径R ,代入球的表面积公式计算. 【详解】在三棱台111ABC A B C -中,11190,4,22ACB AC BC A B CC ∠=︒====可得111,A A C C B B 都是等腰三角形,11112A C B C ==,四边形11A ABB 为等腰梯形即11AA BB =,如图,取AB 与11A B 中点,O O ',连接1,,CO OO C O '',则可得122,2CO C O '==,O O AB '⊥,又平面11AA B B ⊥平面ABC ,两面交线为AB ,所以'⊥O O 平面ABC .因为OA OB OC ==,111O A O B O C '''==,面//ABC 面111A B C , 所以球心必在直线O O '上.所以在直角梯形1C O OC '中可求得6O O '=,由题意可知,该三棱台外接球的外接球的球心必在直线O O '上,设球的半径为R ,球心为D ,则()22221O D O O OC O D O C ''''-+=+,得6O D '=,所以球心恰好为点O ,所以球的半径为22,所以该三棱台外接球的表面积为24(22)32ππ=. 故答案为:32π【点睛】方法点睛:定义法:到各个顶点距离均相等的点为外接球的球心,借助面面垂直的性质,找到线面垂直,则球心一定在垂线上,再根据到其他顶点距离也是半径,列关系求解即可.15.【分析】根据题意画出相应的图形结合题意找出什么情况下取最大值什么情况下取最小值利用和差角正切公式求得最值得到结果【详解】根据题意如图所示:取的中点过点作球的切线切点分别为可以判断为的最小值为的最大值解析:4747-+⎣⎦【分析】根据题意,画出相应的图形,结合题意,找出什么情况下取最大值,什么情况下取最小值,利用和差角正切公式求得最值,得到结果. 【详解】根据题意,如图所示:取11A B 的中点H ,过H 点作球O 的切线,切点分别为,M N , 可以判断1O HN ∠为θ的最小值,1O HM ∠为θ的最大值, 且1112tan 12OO O HO HO ∠===, 22,1OH OM ON ===,所以7HM HN ==tan tan 7NHO OHM ∠=∠=, 1117827477tan tan()1637117O HN O HO NHO ---∠=∠-∠====++ 1117827477tan tan()1637117O HM O HO OHM ++∠=∠+∠====-, 所以tan θ的取值范围是4747-+⎣⎦,故答案为:4747-+⎣⎦. 【点睛】方法点睛:该题考查的是有关二面角的求解问题,解题方法如下: (1)先根据题意画图;(2)结合题意,找出在什么情况下取最大值和最小值; (3)结合图形求得相应角的正切值; (4)利用和差角正切公式求得结果.16.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案. 【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC 中,由正弦定理得172sin 22BC r BAC ==∠,解得334r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以1122sin 344222ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△. 因为11274233D ABC ABC V S AD AD -=⋅⋅=⨯⨯=△,所以144AD =.连接1OO ,又1//OO AD ,所以四边形1EAO O 为平行四边形,111428EA OO AD ===,所以22221114324588R OO AO ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭.所以该三棱锥的外接球的表面积()224π4π520πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.17.【分析】当点从点运动到点时二面角的平面角逐渐增大二面角的平面角最小趋于二面角的平面角最大趋于二面角的平面角的补角求出二面角的平面角和二面角的平面角即可【详解】当点从点运动到点时二面角的平面角逐渐增大解析:11,33⎛⎫-⎪⎝⎭【分析】当点P从点A运动到点B时,二面角D PC B--的平面角逐渐增大,二面角D PC B--的平面角最小趋于二面角D AC B--的平面角,最大趋于二面角D BC A--的平面角的补角,求出二面角D AC B--的平面角和二面角D BC A--的平面角即可.【详解】当点P从点A运动到点B时,二面角D PC B--的平面角逐渐增大,二面角D PC B--的平面角最小趋于D AC B--的平面角,最大趋于二面角D BC A--的平面角的补角,设正四面体的棱长为2a,如图所示,取AC的中点E,连接DE、BE,易知DEB∠为二面角D AC B--的平面角,3DE BE a==,所以((()()()2223321cos3233a a aDEBa a+-∠==⨯⨯,同理可得:二面角D BC A--的平面角的补角的余弦值为13-,故二面角D PC B--的平面角的余弦值的取值范围是11,33⎛⎫-⎪⎝⎭,故答案为:11,33⎛⎫-⎪⎝⎭【点睛】本题主要考查了二面角的平面角的求解,考查空间想象能力,属于中档题.18.【分析】由题意分析可得可知K 所形成轨迹为一个圆弧求出圆心角再求弧长即可【详解】由题意D′K ⊥AE 所以K 的轨迹是以AD′为直径的一段圆弧D′K 设AD′的中点为O ∵长方形ABCD′中ABBC ∴∠D′AC 解析:2π 【分析】由题意分析可得DK AE ⊥可知K 所形成轨迹为一个圆弧,求出圆心角再求弧长即可. 【详解】由题意,D ′K ⊥AE ,所以K 的轨迹是以AD ′为直径的一段圆弧D ′K ,设AD ′的中点为O , ∵长方形ABCD ′中,AB 6=,BC 2=,∴∠D ′AC =60°, ∴∠D ′OK =120°23π=, ∴K 所形成轨迹的长度为2223ππ⨯=,2【点睛】本题主要考查了空间中的轨迹问题,主要是找到定量关系分析轨迹,属于中等题型.19.【分析】根据圆锥底面圆周长为扇形弧长得圆锥底面半径设内切球半径为r ﹐圆锥高为h 结合轴截面图形计算得最后计算体积即可【详解】解:设圆锥底面半径为R 则所以设内切球半径为r ﹐圆锥高为h 则如图是圆锥轴截面三 解析:23π 【分析】根据圆锥底面圆周长为扇形弧长得圆锥底面半径1R =,设内切球半径为r ﹐圆锥高为h ,结合轴截面图形计算得2r ,最后计算体积即可. 【详解】解:设圆锥底面半径为R ,则2233R ππ=⨯,所以1R =.设内切球半径为r ﹐圆锥高为h ,则9122h =-=, 如图,是圆锥轴截面三角形图, 所以3r Rh r =-,解得:2r , 故3442223383r V πππ==⨯=. 故答案为:23π【点睛】本题考查圆锥的侧面展开图,圆锥的内切球的体积,考查空间想象能力,是中档题.20.【分析】由正四面体性质可知球心在棱锥高线上利用勾股定理可求出半径R 即可求出球的面积【详解】正四面体的棱长为:底面三角形的高:棱锥的高为:设外接球半径为R 解得所以外接球的表面积为:;故答案为:【点睛】 解析:232a π 【分析】由正四面体性质可知,球心在棱锥高线上,利用勾股定理可求出半径R ,即可求出球的面积. 【详解】正四面体的棱长为:a , 33a =, 22236()32a a -⨯⨯=, 设外接球半径为R ,22263)()33R a R a =-+,解得64R a =,所以外接球的表面积为:22342a ππ⎫⨯=⎪⎪⎝⎭; 故答案为:232a π. 【点睛】本题考查球的表面积的求法,解题的关键是根据球心的位置,在正四面体中求出球的半径.三、解答题21.(1)证明见解析;(2 【分析】(1)取PB 中点M ,连接,MF AM ,证出四边形AMFE 为平行四边形,利用线面平行的判定定理即可证明.(2)连接,PE BE ,可得PEB ∠为二面角P AD B --的平面角,求出PE =,再利用余弦定理可得PB ,再利用面面垂直的判定定理证明平面PBE ⊥平面PDA ,点B 作BO PE ⊥交PE 于点O ,在PEB △中即可求解.【详解】解:(1)证明:取PB 中点M ,连接,MF AM , 由F 为PC 中点,则//MF BC 且12MF BC =. 由已知有//,BC AD BC AD =,又由于E 为AD 中点,从而//,MF AE MF AE =, 故四边形AMFE 为平行四边形,所以//EF AM .又AM ⊂平面PAB ,而EF ⊂/平面PAB ,则//EF 平面PAB . (2)证明:连接,PE BE .由,PA PD BA BD ==,而E 为AD 中点, 所以,PE AD BE AD ⊥⊥,所以PEB ∠为二面角P AD B --的平面角,60PEB ∴∠=︒.又2,90,BA BD DBA AD ==∠=︒∴=∴在PAD △中,由PA PD AD ===,可解得PE =在Rt ABD △中,由AD E =为AD 的中点,可得12BE AD == ∴在PEB △中,2222cos PB PE EB PE EB PEB =+-⋅∠,2182262PB ∴=+-⨯=,222,PB PB EB PE PB EB ∴=∴+=∴⊥.又,,,PE AD BE AD PE BE E AD ⊥⊥⋂=∴⊥平面PBE ,AD ⊂平面PAD ,∴平面PBE ⊥平面PDA .过点B 作BO PE ⊥交PE 于点,O OB ∴⊥平面PDA . ∴在PEB △中,OB PE PB EB ⋅=⋅,从而62622PB EB OB PE ⋅⨯===. ∴点B 到平面PAD 的距离为6.【点睛】关键点点睛:本题考查了面面垂直的判定定理,求点到面的距离,解题的关键是求出6PB =,证出平面PBE ⊥平面PDA ,作出点到面的距离,考查了计算能力.22.(132)证明见解析,三棱锥P ABD -的体积为33. 【分析】(1)取AB 、AD 中点为M 、N ,连接MN ,证明出平面//PBD 平面EMN ,可得出点F 的轨迹为线段MN ,求出BD 的长,可求得线段MN 的长,即可得解; (2)连接AF 延长交BD 于点O ,利用面面平行的性质定理可得出//EF PO ,可得出PO ⊥平面ABD ,利用面面垂直的判定定理可证得平面PBD ⊥平面ABD ,可得出三棱锥P ABD -的高为PO ,利用锥体的体积公式可求得结果.【详解】(1)如图,取AB 、AD 中点为M 、N ,连接MN ,则点F 在线段MN 上,证明如下:连接EM 、EN ,因为E 为PA 中点,M 为AB 中点,所以//EM PB ,EM ⊄平面PBD ,PB ⊂平面PBD ,//EM ∴平面PBD ,同理可证//EN 平面PBD , 又EM EN E =,所以平面//PBD 平面EMN ,EF ⊂平面EMN ,所以//EF 平面PBD ,所以点F 的轨迹为线段MN ,因为60BAC ∠=,所以120BAD ∠=,2sin 23BD AB BAC ∴=∠=, 所以132MN BD ==,即点F 的轨迹的长度为3; (2)连接AF 延长交BD 于点O ,因为平面//PBD 平面EMN , 且平面APO平面EMN EF =,平面APO平面PBD PO =,所以//EF PO ,因为EF ⊥平面ABD ,所以PO ⊥平面ABD , 又PO ⊂平面PBD ,所以平面PBD ⊥平面ABD ,可得PO 为三棱锥P ABD -的高,且cos 1PO AO AB BAC ==∠=,1113231332P ABD ABD V S PO -=⨯⨯=⨯⨯=△. 【点睛】方法点睛:求空间几何体体积的方法如下:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.23.(Ⅰ)证明见解析;(Ⅱ5【分析】(Ⅰ)由中位线定理证明1//OM C D ,即可得线面平行;(Ⅱ)连1D O ,证明1D OD ∠为二面角1D AC D --的平面角, 在直角1D DO △中计算可得. 【详解】解:(Ⅰ)连1BC ,则M 也为1BC 的中点,又M 为BD 的中点,所以1//OM C D ,因为OM ⊄平面11DB C ,1C D ⊂平面11DC B ,所以直线//OM 平面11DB C ;(Ⅱ)连1D O ,因为ABCD 是菱形,所以DO AC ⊥,又1111ABCD A B C D -为直棱柱,底面为菱形,所以11D A D C =,而O 为AC 中点,所以1D O AC ⊥,所以1D OD ∠为二面角1D AC D --的平面角,因为ABCD 是边长为2的菱形,且60BAD ∠=︒,所以1DO =,又12DD =, 由直棱柱知1DD DO ⊥,所以15DO =,所以115cos DO D OD D O ∠==.【点睛】方法点睛:本题考查证明线面平行,考查求二面角角,求二面角常用方法: (1)定义法:作出二面角的平面角并证明,然后在三角形中计算可得;(2)向量法:建立空间直角坐标系,求出两个平面的法向量夹角的余弦即可得二面角的余弦(注意判断二面角是锐角还是钝角). 24.(1)证明见解析;(2)32【分析】(1)取AB 中点G ,连结OG 、EG ,可证明四边形OGEF 为平行四边形,则 OF EG ∥,由线面平行的判定定理即可求证;(2)由(1)可知,OF EG ∥,则直线OF 与平面ABC 所成角即为直线EG 与平面ABC 所成角,EC ⊥平面ABC ,则EGC ∠即为直线EG 与平面ABC 所成的角,在EGC 中即可求EGC ∠的余弦值. 【详解】。
北师大版高中数学必修2第一章《立体几何初步》直线与平面平行的性质
下面我们来证 明这一结论. 明这一结论.
7
探研新知
已知:如图,a∥α, 已知:如图,a∥α, α∩β= a ⊂β,α∩β=b。 求证:a∥b。 求证:a∥b。 证明:∵α∩β= 证明:∵α∩β=b,∴b⊂α ∴b⊂ a∥α,∴a与 无公共点, ∵ a∥α,∴a与b无公共点, ∵a⊂ ∴a∥b。 ∵a⊂β,b⊂β,∴a∥b。 我们可以把这个结论作定理来用. 我们可以把这个结论作定理来用.
b a
b c a α γ d δ β
15
例题示范 有一块木料如图, 例2:有一块木料如图,已知棱BC平行于面 (1)要经过木料表面 A′C′(1)要经过木料表面A′B′C′D′ 内的 一点P和棱BC将木料锯开,应怎样画线?(2)所 BC将木料锯开 一点P和棱BC将木料锯开,应怎样画线?(2)所 画的线和面AC有什么关系? AC有什么关系 画的线和面AC有什么关系? :(1 过点P EF∥B’C , 解:(1)过点P作EF∥B C’, 分别交棱A B , D 于点 于点E 分别交棱A’B’,C’D’于点E, 连接BE CF, BE, F。连接BE,CF,则 D1 E EF,BE,CF就是应画的线 就是应画的线。 EF,BE,CF就是应画的线。
结合实例(教室内的有关例子)得出结论: 结合实例(教室内的有关例子)得出结论: 如果一条直线与平面平行, 如果一条直线与平面平行,这条直线不会 与这个平面内的所有直线都平行, 与这个平面内的所有直线都平行,但在这个 平面内却有无数条直线与这条直线平行。 平面内却有无数条直线与这条直线平行。
5
探研新知 探究2.如果一条直线与一个平面平行, 2.如果一条直线与一个平面平行 探究2.如果一条直线与一个平面平行,那么这条 直线与这个平面内的直线有哪些位置关系? 直线与这个平面内的直线有哪些位置关系?
(必考题)高中数学必修二第一章《立体几何初步》测试(答案解析)(1)
一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A .5B .2C .3D .22.在正方体1111ABCD A BC D -中,点,E F 分别是梭BC ,CD 的中点,则1A F 与1C E 所成角的余弦值为( ) A .5B .25C .5 D .253.已知平面,αβ,直线l ,记l 与,αβ所成的角分别为1θ,2θ,若αβ⊥,则( ) A .12sin sin 1θθ+≤B .12sin sin 1θθ+≥C .122πθθ+≤D .122πθθ+≥4.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为正方形,PA AB =,E 为AP 的中点,则异面直线PC 与DE 所成的角的正弦值为( ).A 2B 5C 15D 10 5.如图,在Rt ABC △中,1AC =,BC x =,D 是斜边AB 的中点,将BCD △沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB AD ⊥,则x 的取值范围是( )A .(0,3⎤⎦B .2,22⎛⎤⎥ ⎝⎦C .3,23D .(]2,46.设有直线m ,n ,l 和平面α,β,下列四个命题中,正确的是( ) A .若//,//m n αα,则//m n B .若//,//,//l m αβαβ,则//l m C .若,m αβα⊥⊂,则m β⊥D .若,,m m αββα⊥⊥⊄,则//m α7.已知四面体ABCD 中,二面角A BC D --的大小为60,且2AB =,4CD =,120CBD ∠=,则四面体ABCD 体积的最大值是( )A .43B .23C .83D .438.如下图所示是一个正方体的平面展开图,在这个正方体中①//BM 平面ADE ;②D E BM ⊥;③平面//BDM 平面AFN ;④AM ⊥平面BDE .以上四个命题中,真命题的序号是( )A .①②③④B .①②③C .①②④D .②③④9.如图是某个四面体的三视图,则下列结论正确的是( )A .该四面体外接球的体积为48πB .该四面体内切球的体积为23π C .该四面体外接球的表面积为323π D .该四面体内切球的表面积为2π10.某几何体的三视图如图所示,该几何体的体积为V ,该几何体所有棱的棱长之和为L ,则( )A .8,14253V L ==+ B .8,1425V L ==+ C .8,16253V L ==+ D .8,1625VL ==+11.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .212.已知长方体1111ABCD A BC D -的顶点A ,B ,C ,D ,在球O 的表面上,顶点1A,1B ,1C ,1D ,在过球心O 的一个平面上,若6AB =,8AD =,14AA =,则球O 的表面积为( ) A .169πB .161πC .164πD .265π二、填空题13.如图,四边形ABCD 是矩形,且有2AB BC =,沿AC 将ADC 翻折成AD C ',当二面角D AC B '--的大小为3π时,则异面直线D C '与AB 所成角余弦值是______.14.已知长方体1234ABCD A B C D -,底面是边长为4的正方形,高为2,点O 是底面ABCD 的中心,点P 在以O 为球心,半径为1的球面上,设二面角111P A B C --的平面角为θ,则tan θ的取值范围是________.15.在三棱锥P ABC -中,4PA PB ==,42BC =,8AC =,AB BC ⊥.平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为_________.16.二面角a αβ--的大小为135A AE a E α︒∈⊥,,,为垂足,,B BF a F β∈⊥,为垂足,2,31AE BF EF P ===,,是棱上动点,则AP PB +的最小值为_______. 17.如图,在三棱锥V ABC -中,22AB =,VA VB =,1VC =,且AV BV ⊥,AC BC ⊥,则二面角V AB C --的余弦值是_____.18.已知四面体P ﹣ABC 的外接球的球心O 在AB 上,且PO ⊥平面ABC ,2AC 3=,若四面体P ﹣ABC 的体积为32,则该球的体积为_____. 19.在正方体1111ABCD A BC D -中,P 为线段1AB 上的任意一点,有下面三个命题:①//PB 平面11CC D D ;②1BD AC ⊥;③1BD PC ⊥.上述命题中正确命题的序号为__________(写出所有正确命题的序号).20.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.三、解答题21.如图,三棱柱111ABC A B C -中,1CC ⊥平面ABC ,5AB =,3AC =,14BC CC ==,M 是1CC 的中点.(Ⅰ)求证:BC AM ⊥;(Ⅱ)若N 是AB 上的点,且//CN 平面1AB M ,求BN 的长.22.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:DE ⊥平面PAH ;(2)若2PA AD ==,求直线PD 与平面PAH 所成线面角的正弦值.23.如图,四棱锥P ABCD -,底面ABCD 为矩形,PD ⊥面ABCD ,E 、F 分别为PA 、BC 的中点.(1)求证://EF 面PCD ;(2)若2AB =,1AD PD ==,求三棱锥P BEF -的体积.24.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,M 是棱PD 的中点.(1)求证://PB 平面AMC ;(2)若PD ⊥平面ABCD ,2AD PD ==,3BAD π∠=,求点B 到平面AMC 的距离.25.如图,在三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC ,2,AB BC ==30ACB ∠=,13AA =,11BC AC ,E 为AC 的中点.(1)求证:1//AB 平面1C EB ;(2)求证:1AC ⊥平面1C EB . 26.如图,四棱锥P ABCD -中,底面ABCD 是正方形,PD ⊥平面ABCD ,226AB PD ==,O 为AC 与BD 的交点,E 为棱PB 上一点.(1)证明:平面EAC ⊥平面PBD ;(2)若//PD 平面EAC ,求三棱锥B AEC -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===133xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-则在等腰直角三角形AOE 中,2522xAO OE -===O 是底面中心,则133xOE CE ==,2532x x-=,解得3x = 则1AO =,底面边长为23则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.D解析:D【分析】延长DA至G,使AG CE=,可证11//AG C E,得1GA F∠是异面直线1A F与1C E所成的角(或其补角).在1AGF△中,由余弦定理可得结论.【详解】延长DA至G,使AG CE=,连接1,GE GA,GF,11,AC AC,又//AG CE所以AGEC是平行四边形,//,GE AC GE AC=,又正方体中1111//,AC AC AC AC=,所以1111//,AC DE AC DE=,所以11AC EG是平行四边形,则11//AG C E,所以1GA F∠是异面直线1A F与1C E所成的角(或其补角).设正方体棱长为2,在正方体中易得15AG10GF22222112(21)3A F AA AF=+=++=,1AGF△中,2221111125cos2253AG A F GFGA FAG A F+-∠===⋅⨯⨯.故选:D.【点睛】方法点睛:本题考查空间向量法求异面直线所成的角,求异面直线所成角的方法: (1)定义法:根据定义作出异面直线所成的角并证明,然后解三角形得结论; (2)建立空间直角坐标系,由两异面直线的方向向量的夹角得异面直线所成的角.3.C解析:C 【分析】如图,作出1θ和2θ,再由线面角推得12sin sin 2πθθ⎛⎫≤- ⎪⎝⎭,利用三角函数的单调性判断选项. 【详解】设直线l 为直线AB ,m αβ=,AD m ⊥,BC m ⊥,连结BD ,AC ,1ABD θ=∠,2BAC θ=∠,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭,12,2πθθ-都是锐角, 122πθθ∴≤-,即122πθθ+≤故选:C 【点睛】关键点点睛:本题的关键是作图,并利用线段AD AC ≤,传递不等式,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭. 4.D解析:D 【分析】先取正方形的中心O ,连接OE ,由PC //OE 知OED ∠为异面直线PC 与DE 所成的角,再在OED 中求OED ∠的正弦即可. 【详解】连AC ,BD 相交于点O ,连OE 、BE ,因为E 为AP 的中点,O 为AC 的中点,有PC //OE ,可得OED ∠为异面直线PC 与DE 所成的角,不妨设正方形中,2AB =,则2PA =,由PA ⊥平面ABCD ,可得,PA AB PA AD ⊥⊥, 则145BE DE ==+=1122222OD BD ==⨯= 因为BE DE =,O 为BD 的中点,所以90EOD ∠=︒,210sin 5OD OED DE ∠===故选:D. 【点睛】 方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.5.A解析:A 【分析】取BC 中点E ,连接DE ,AE ,若CB AD ⊥,则可证明出BC ⊥平面ADE ,则可得BC AE ⊥. 根据题目中各边长的关系可得出AE ,AD 关于x 的表达式,然后在ADE中,利用三边关系求解即可.【详解】由题意得BC x =,则212x AD CD BD +===,如图所示,取BC 中点E ,翻折前,在图1中,连接DE ,CD ,则1122DE AC ==, 翻折后,在图2中,若CB AD ⊥,则有:∵BC DE ⊥,BC AD ⊥,AD DE D ⋂=,且,AD DE 平面ADE ,∴BC ⊥平面ADE ,∴BC AE ⊥,又BC AE ⊥,E 为BC 中点,∴1AB AC ==∴2114AE x =-212x AD +=,在ADE 中,由三边关系得:①221111224x x ++>-,②221111224x x +<-,③0x >;由①②③可得03x << 故选:A. 【点睛】本题考查折叠性问题,考查线面垂直的判定及性质在解题中的运用,解答本题的主要思路分析在于将异面直线间的垂直转化为线面垂直关系,即作出辅助线DE 与AE ,根据题目条件确定出BC ⊥平面ADE ,得到BC AE ⊥,从而通过几何条件求解.6.D解析:D 【分析】在A 中,m 与n 相交、平行或异面; 在B 中,l 与m 不一定平行,有可能相交; 在C 中,m ⊥β或m ∥β或m 与β相交;在D 中,由直线与平面垂直的性质与判定定理可得m ∥α.【详解】由直线m 、n ,和平面α、β,知: 对于A ,若m ∥α,n ∥α,则m 与n 相交、平行或异面,故A 错误;对于B ,若//,//,//l m αβαβ,l 与m 不一定平行,有可能相交,故B 错误; 对于C ,若α⊥β,m ⊂α,则m ⊥β或m ∥β或m 与β相交,故C 错误;对于D ,若α⊥β,m ⊥β,m ⊄α,则由直线与平面垂直的性质与判定定理得m ∥α,故D 正确.故选:D . 【点睛】本题考查了命题真假的判断问题,考查了空间线线、线面、面面的位置关系的判定定理及推论的应用,体现符号语言与图形语言的相互转化,是中档题.7.D解析:D 【分析】在BCD △中,利用余弦定理和基本不等式可得163BC BD ⋅≤,由三角形的面积公式可得43BCDS≤,由二面角A BC D --的大小为60,可得A 到平面BCD 的最大距离为2sin 603h ==ABCD 体积的最大值.【详解】在BCD △中,由余弦定理可得2222cos120CD BC BD BC BD =+-⋅22BC BD BC BD =++⋅因为222BC BD BC BD +≥,所以23CD BC BD ≥⋅, 所以163BC BD ⋅≤,当且仅当BC BD =时等号成立, 111634sin120322323BCDSBC BD =⋅≤⨯⨯= 因为二面角A BC D --的大小为60,所以点A 到平面BCD 的最大距离为2sin 603h ==所以1144333333A BCD BCDV S h -=⋅≤⨯⨯=, 所以四面体ABCD 体积的最大值是43, 故选:D 【点睛】关键点点睛:本题解题的关键点是利用余弦定理和基本不等式、三角形面积公式求出BCD S △最大值,再由二面角求出高的最大值. 8.A解析:A 【分析】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,得出BM ∥平面ADNE ,判断①正确;由连接AN ,则AN ∥BM ,又ED AN ⊥,判断②正确;由BD ∥FN ,得出BD ∥平面AFN ,同理BM ∥平面AFN ,证明平面BDM ∥平面AFN ,判断③正确;由MC BD ⊥,ED ⊥AM ,根据线面垂直的判定,判断④正确.【详解】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,如图1所示; 对于①,平面BCMF ∥平面ADNE ,BM ⊂平面BCMF , ∴BM ∥平面ADNE ,①正确;对于②,如图2所示,连接AN ,则AN ∥BM ,又ED AN ⊥,所以D E BM ⊥,②正确; 对于③,如图2所示,BD ∥FN ,BD ⊄平面AFN ,FN ⊂平面AFN ,∴BD ∥平面AFN ;同理BM ∥平面AFN ,且BD ∩BM =B ,∴平面BDM ∥平面AFN ,③正确; 对于④,如图3所示,连接AC ,则BD AC ⊥,又MC ⊥平面ABCD ,BD ⊂平面ABCD ,所以MC BD ⊥,又AC MC C ,所以BD ⊥平面ACM ,所以BD ⊥AM ,同理得ED ⊥AM ,ED BD D =,所以AM ⊥平面BDE ,∴④正确.故选:A .【点睛】关键点点睛:解决本题的关键在于展开空间想象,将正方体的平面展开图还原,再由空间的线线,线面,面面关系及平行,垂直的判定定理去判断命题的正确性.9.D解析:D 【分析】先找到几何体原图,再求出几何体的外接球的半径和内切球的半径,再判断每一个选项得解. 【详解】由三视图得几何体为下图中的三棱锥A BCD -,AB ⊥平面BCD,AB =2CE DE ==,2BE =,由题得2CBD π∠=.设外接球的球心为,O 外接球的半径为R ,则OE ⊥平面BCD , 连接,OB OA ,取AB 中点F ,连接OF .由题得12OE BF AB ===所以2222,R R =+∴=,所以外接球的体积为343π⨯=,所以选项A 错误;所以外接球的表面积为2448ππ⨯=,所以选项C 错误;由题得AC AD ===所以△ACD △6=, 设内切球的半径为r ,则11111112446)243222232r ++⨯⨯+⨯⨯=⨯⨯⨯⨯所以2r,所以内切球的体积为343π⨯=,所以选项B 错误;所以内切球的表面积为242ππ⨯=,所以选项D 正确. 故选:D【点睛】方法点睛:求几何体外接球的半径一般有两种方法:模型法和解三角形法.模型法就是把几何体放在长方体中,使几何体的顶点和长方体的若干个顶点重合,则几何体的外接球和长方体的外接球是重合的,长方体的外接球的半径22212r a b c =++就是几何体的外接球半径.如果已知中有多个垂直关系,可以考虑用此种方法.解三角形法就是找到球心O 和截面圆的圆心O ',找到OO '、球的半径OA 、截面圆的半径O A '确定的Rt OO A '△,再解Rt OO A '△求出球的半径OA .10.A解析:A 【分析】由三视图还原几何体,由棱锥的体积公式可得选项. 【详解】在如图所示的正方体1111ABCD A BC D -中,P ,E 分别为11,BC BC 的中点,该几何体为四棱锥P ABCD -,且PE ⊥平面ABCD . 由三视图可知2AB =,则5,3PC PB PD PA ====,则21825681425,2233L V =++=+=⨯⨯=. 故选:A.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.11.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112=221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.12.C【分析】把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体外接球的直径等于体对角线的长,求出直径,即可得出球的表面积. 【详解】 如下图所示:把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体的结构特征可得,其外接球直径等于体对角线的长, 所以球O 的半径R 满足2222688164R =++=, 所以球O 的表面积24164S R ππ==. 故选:C.【点睛】关键点点睛:本题主要考查几何体外接球的表面积,熟记长方体结构特征,其外接球的球心和半径与长方体的关系,以及球的表面积公式,是解决此类问题的关键.二、填空题13.【分析】作于于可得等于二面角的平面角从而可得然后求得而因此可得是异面直线与所成角(或补角)这样在求解可得【详解】如图作于于则连接根据二面角平面角的定义知与的夹角等于二面角的平面角所以因为所以设则在矩解析:12. 【分析】作DM AC ⊥于M ,BN AC ⊥于N ,可得,MD NB '<>等于二面角D AC B '--的平面角,从而可得DMD '∠,然后求得DD ',而//AB CD ,因此可得D CD '∠是异面直线D C '与AB 所成角(或补角).这样在DCD '求解可得.如图,作DM AC ⊥于M ,BN AC ⊥于N ,则//DM BN ,连接,D M DD '', 根据二面角平面角的定义知MD '与NB 的夹角等于二面角D AC B '--的平面角, 所以,3MD NB π'<>=,因为//DM BN ,所以23DMD π'∠=, 设1BC =,则22AB BC ==,在矩形ABCD 中,3AC =,1263DM ⨯==, 63D M DM '==, 则222222666612cos 22333332DD DM D M DM D M π⎛⎫⎛⎫⎛⎫'''=+-⋅=+-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以2DD '=,因为//AB CD ,所以D CD '∠是异面直线D C '与AB 所成角(或补角).DCD '是正三角形,3D CD π'∠=,1cos 2D CD '∠=. 所以异面直线D C '与AB 所成角余弦值是12. 故答案为:12.【点睛】关键点点睛:本题考查求异面直线所成的角,解题方法根据异面直线所成角定义作出它们所成的角,然后解三角形可得,解题关键是利用图中MD '与NB 的夹角等于二面角D AC B '--的平面角,从而求得DMD '∠,只要设1BC =,可求得DD ',从而求得结论.14.【分析】根据题意画出相应的图形结合题意找出什么情况下取最大值什么情况下取最小值利用和差角正切公式求得最值得到结果【详解】根据题意如图所示:取的中点过点作球的切线切点分别为可以判断为的最小值为的最大值解析:4747,⎡⎤-+⎢⎥⎣⎦【分析】根据题意,画出相应的图形,结合题意,找出什么情况下取最大值,什么情况下取最小值,利用和差角正切公式求得最值,得到结果. 【详解】根据题意,如图所示:取11A B 的中点H ,过H 点作球O 的切线,切点分别为,M N , 可以判断1O HN ∠为θ的最小值,1O HM ∠为θ的最大值, 且1112tan 12OO O HO HO ∠===, 22,1OH OM ON ===,所以7HM HN ==tan tan 7NHO OHM ∠=∠=, 11171827477tan tan()17117O HN O HO NHO ----∠=∠-∠====+ 11171827477tan tan()17117O HM O HO OHM ++++∠=∠+∠====-, 所以tan θ的取值范围是474733⎡⎢⎣⎦, 故答案为:4747-+⎣⎦.【点睛】方法点睛:该题考查的是有关二面角的求解问题,解题方法如下: (1)先根据题意画图;(2)结合题意,找出在什么情况下取最大值和最小值; (3)结合图形求得相应角的正切值; (4)利用和差角正切公式求得结果.15.4【分析】取中点连接再根据题意依次计算进而得球的球心即为(与重合)【详解】解:因为所以又因为所以所以因为平面平面平面平面平面所以平面取中点连接所以所以平面所以此时所以即球的球心球心即为(与重合)半径解析:4 【分析】取,AB AC 中点,D E ,连接DE ,DP ,再根据题意依次计算4EA EB EC EP ====,进而得球O 的球心O 即为E (O 与E 重合)【详解】解:因为BC =8AC =,AB BC ⊥,所以AB =4PA PB ==, 所以222PA PB AB +=,所以PA PB ⊥,因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,AB BC ⊥,BC ⊂平面ABC ,所以BC ⊥平面PAB ,取,AB AC 中点,D E ,连接DE ,DP所以//DE BC ,DE =DP =所以DE ⊥平面PAB ,所以DE PD ⊥,此时,142EB AC EA EC ====, 4EP =, 所以4EA EB EC EP ====,即球O 的球心球心O 即为E (O 与E 重合),半径为4EA =. 故答案为:4.【点睛】本题解题的关键在于寻找球心,在本题中,,PAB ABC △△均为直角三角形,故易得AC 中点即为球心.考查空间思维能力,运算求解能力,是中档题.16.【分析】首先将二面角展平根据两点距离线段最短求最小值【详解】如图将二面角沿棱展成平角连结根据两点之间线段最短可知就是的最小值以为邻边作矩形由可知三点共线则故答案为:【点睛】思路点睛:本题考查立体几何 解析:26 【分析】首先将二面角展平,根据两点距离线段最短,求AP PB +最小值.【详解】如图,将二面角沿棱a 展成平角,连结AB ,根据两点之间线段最短,可知AB 就是AP PB +的最小值,以,AE EF 为邻边,作矩形AEFC ,由,CF a BF a ⊥⊥可知,,C F B 三点共线, 则()222213226AB AC BC =+=++= 26【点睛】思路点睛:本题考查立体几何中的折线段和的最小值,一般都是沿交线展成平面,利用折线段中,两点间距离最短求解,本题与二面角的大小无关.17.【分析】取的中点连接证明出可得出面角的平面角为计算出利用余弦定理求得由此可得出二面角的余弦值【详解】取的中点连接如下图所示:为的中点则且同理可得且所以二面角的平面角为由余弦定理得因此二面角的余弦值为 解析:34【分析】 取AB 的中点O ,连接VO 、OC ,证明出VO AB ⊥,OC AB ⊥,可得出面角V AB C --的平面角为VOC ∠,计算出VO 、OC ,利用余弦定理求得cos VOC ∠,由此可得出二面角V AB C --的余弦值.【详解】取AB 的中点O ,连接VO 、OC ,如下图所示:VA VB =,O 为AB 的中点,则VO AB ⊥,且AV BV ⊥,22AB =122VO AB ∴== 同理可得OC AB ⊥,且2OC =V AB C --的平面角为VOC ∠,由余弦定理得2223cos 24VO OC VC VOC VO OC +-∠==⋅, 因此,二面角V AB C --的余弦值为34. 故答案为:34. 【点睛】本题考查二面角余弦值的计算,考查二面角的定义,考查计算能力,属于中等题. 18.【分析】根据四面体是球的内接四面体结合位置关系可得棱锥的形状以及棱长之间的关系利用体积公式即可代值计算【详解】设该球的半径为R 则AB =2R2ACAB2R ∴ACR 由于AB 是球的直径所以△ABC 在大圆所解析:43π【分析】根据四面体是球的内接四面体,结合位置关系,可得棱锥的形状,以及棱长之间的关系,利用体积公式即可代值计算.【详解】设该球的半径为R ,则AB =2R ,2AC 3=AB 3=⨯2R , ∴AC 3=R ,由于AB 是球的直径,所以△ABC 在大圆所在平面内且有AC ⊥BC ,在Rt △ABC 中,由勾股定理,得:BC 2=AB 2﹣AC 2=R 2,所以R t △ABC 面积S 12=⨯BC ×AC 3=R 2, 又PO ⊥平面ABC ,且PO =R ,四面体P ﹣ABC 的体积为32, ∴V P ﹣ABC 13=⨯R 32⨯⨯R 232=,即3R 3=9,R 3=33, 所以:球的体积V 43=⨯πR 343=⨯π×33=43π. 故答案为:43π.【点睛】本题考查三棱锥外接球体积的计算,属基础题;本题的重点是要根据球心的位置去推导四面体的几何形态,从而解决问题.19.①②③【分析】①证明线面平行可判断对错;②证明线面垂直可判断对错;③证明线面垂直可判断对错【详解】①如下图所示:因为平面平面平面所以平面故①正确;②连接如下图所示:因为平面所以又因为且所以平面又因为解析:①②③【分析】①证明线面平行可判断对错;②证明线面垂直可判断对错;③证明线面垂直可判断对错.【详解】①如下图所示:因为平面11//ABB A 平面11CC D D ,BP ⊂平面11ABB A ,所以//PB 平面11CC D D ,故①正确;②连接,AC BD ,如下图所示:因为1DD ⊥平面ABCD ,所以1DD AC ⊥,又因为AC BD ⊥且1DD BD D =,所以AC ⊥平面1DBD ,又因为1BD ⊂平面1DBD ,所以1BD AC ⊥,故②正确;③连接11,,,AC PC B C BC ,如下图所示:因为11D C ⊥平面11BCC B ,所以11D C ⊥1BC ,又因为11BC B C ⊥,且1111D C BC C ⋂=,所以1B C ⊥平面11BD C ,又1BD ⊂平面11BD C ,所以11B C BD ⊥,由②的证明可知1BD AC ⊥,且1AC BC C ⋂=,所以1BD ⊥平面1ABC ,又因为PC ⊂平面1ABC ,所以1BD PC ⊥,故③正确,故答案为:①②③.【点睛】本题考查空间线面平行、线线垂直关系的判断,涉及线面平行判定定理、线面垂直判定定理的运用,主要考查学生对空间中位置关系的逻辑推理能力,难度一般.20.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故解析:163π 【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积.【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=. 故答案为:163π. 【点睛】 本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.三、解答题21.(Ⅰ)证明见解析;(Ⅱ)52. 【分析】(Ⅰ)可证BC ⊥平面11AAC C ,从而可得BC AM ⊥.(Ⅱ)可证N 为AB 的中点,从而可得BN 的长.【详解】(Ⅰ)证明:1CC ⊥平面ABC ,BC ⊂平面平面ABC ,∴1CC BC ⊥.又5AB =,3AC =,4BC =,∴222AC BC AB +=,即BC AC ⊥.又1AC CC C =,∴BC ⊥平面11AAC C ,又AM ⊂平面11AAC C ,∴BC AM ⊥. (Ⅱ)过点N 作1//NE BB 交1AB 于点E ,连ME ,由三棱柱111ABC A B C -可得11//BB CC ,∴1//NE CC 即四边形NEMC 为平面图形. 又//CN 平面1AB M ,CN ⊂平面NEMC ,且平面NEMC 平面1AB M ME =, ∴//CN ME ,∴四边形NEMC 为平行四边形,∴NE CM =,且//NE CM ,又点M 为1CC 中点,∴112CM BB =,且1//CM BB ,∴112NE BB =,且1//NE BB , ∴1522BN AB ==. 【点睛】思路点睛:线面垂直的判定可由线线垂直得到,注意线线是相交的,也可由面面垂直得到,注意线在面内且线垂直于两个平面的交线.由线面平行得到线线平行时,注意构造过线的平面.22.(1)证明见解析;(2)105. 【分析】(1)由PA ⊥底面ABCD ,得PA DE ⊥,由Rt ABH Rt DAE ≌△△,得DE AH ⊥,可得答案.(2)由可知DE ⊥平面PAH ,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角,在Rt PDG △中,由sin DPG ∠可得答案.【详解】(1)因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点, ,,AB DA BH AE HBA EAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠= 所以90BAH AED ∠+∠=,所以DE AH ⊥,因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .(2)由(1)可知DE ⊥平面PAH ,设AH DE G ⋂=,如图,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角, 因为2PA AD ==,所以22PD =,5DE =,在Rt DAE 中,由于AG DE ⊥,所以2AD DG DE =⋅,所以45DG =⋅,所以5DG =, 所以在Rt PDG △中,105sin 522DG DPG PD ∠===,即直线PD 与平面PAH 所成线面角的正弦值为10.【点睛】本题主要考查线面垂直的证明、线面角的求法,对于线面角的求法的步骤,作:作(或找)出斜线在平面上的射影,证:证明某平面角就是斜线与平面所成的角;算:通常在垂线段、斜线段和射影所组成的直角三角形中计算.23.(1)证明见解析;(2)112. 【分析】(1)取PD 的中点M ,连接EM 、CM ,证明四边形CMEF 为平行四边形,可得出//EF CM ,利用线面平行的判定定理可证得结论成立;(2)连接AF ,取AD 的中点N ,连接EN ,由题意可知点P 、A 到平面BEF 的距离相等,并推导出EN ⊥平面ABCD ,可得出P BEF A BEF E ABF V V V ---==,利用锥体的体积公式可求得三棱锥P BEF -的体积.【详解】(1)如下图所示,取PD 的中点M ,连接EM 、CM ,因为四边形ABCD 为矩形,则//AD BC 且AD BC =,E 、M 分别为PA 、PD 的中点,则//EM AD 且12EM AD =, F 为BC 的中点,所以,//EM CF 且EM CF =,所以,四边形CMEF 为平行四边形,所以,//EF CM ,EF ⊄平面PCD ,CM ⊂平面PCD ,//EF ∴平面PCD ;(2)如下图所示,连接AF ,取AD 的中点N ,连接EN ,E 为PA 的中点,所以,点P 、A 到平面BEF 的距离相等, 所以,P BEF A BEF E ABF V V V ---==,E 、N 分别为PA 、AD 的中点,则//EN PD 且1122EN PD ==, PD ⊥平面ABCD ,EN ∴⊥平面ABCD ,ABF 的面积为111122222ABF S AB BF =⋅=⨯⨯=△, 因此,11111332212P BEF A BEF E ABF ABF V V V S EN ---===⋅=⨯⨯=△. 【点睛】方法点睛:常见的线面平行的证明方法有:(1)通过面面平行得到线面平行;(2)通过线线平行得到线面平行,在证明线线平行中,经常用到中位线定理或平行四边形的性质.24.(1)证明见详解;(2)22. 【分析】(1)连接BD 交AC 于点O ,连接OM ,根据题中条件,推出//OM PB ,再由线面平行的判定定理,即可证明结论成立;(2)根据题中条件,求出AMC S △,ABC S ,MD ;设点B 到平面AMC 的距离为d ,由B AMC M ABC V V --=,列出等式求解, 即可得出结果.【详解】(1)连接BD 交AC 于点O ,因为底面ABCD 为菱形,所以O 为AC 中点;连接OM ,因为M 是棱PD 的中点,所以//OM PB ,因为OM ⊂平面AMC ,PB ⊄平面AMC ,所以//PB 平面AMC ;(2)因为PD ⊥平面ABCD ,所以PD AD ⊥,PD DC ⊥,因为2AD PD ==,3BAD π∠=,所以22215AM MC ==+2BD =,23ABC π∠=, 则112sin 22sin 3223ABC S AB BC ABC π=⋅⋅∠=⋅⋅⋅=22cos 236AC AO AB π==⋅⋅= 所以22532MO MC CO =--=11232622AMC S AC MO =⋅⋅=⋅=, 设点B 到平面AMC 的距离为d ,由B AMC M ABC V V --=可得1133AMC ABC S d S MD ⋅=⋅, 则3226ABC AMC S MDd S ⋅===, 即点B 到平面AMC 的距离为22. 【点睛】方法点睛: 求解空间中点P 到平面的距离的方法:(1)空间向量的方法:建立适当的空间直角坐标系,求出平面的法向量m ,以及一条斜线的方向向量PA ,根据PA md m ⋅=,即可求出点到面的距离;(2)等体积法:先设所求点到面的距离,选几何体不同的定点为顶点,表示出该几何体的体积,列出等量关系,即可求出点到面的距离.25.(1)证明见解析;(2)证明见解析.【分析】(1)连接1AB 、1BC ,设11B C BC F =,连接EF ,可知点F 为1BC 的中点,利用中位线的性质可得出1//EF AB ,再利用线面平行的判定定理可证得结论成立; (2)推导出BE ⊥平面11AAC C ,可得出1BE AC ⊥,再由11BC AC ,利用线面垂直的判定定理可证得1AC ⊥平面1C EB . 【详解】(1)如下图所示,连接1AB 、1BC ,设11B C BC F =,连接EF ,在三棱柱111ABC A B C -中,四边形11BB C C 为平行四边形,因为11B C BC F =,在点F 为1BC 的中点,又因为点E 为AC 的中点,1//EF AB ∴, 1AB ⊄平面1C EB ,EF ⊂平面1C EB ,所以,1//AB 平面1C EB ;(2)AB BC =,E 为AC 的中点,BE AC ∴⊥,因为平面11A ACC ⊥平面ABC ,平面11A ACC ⋂平面ABC AC =,BE ⊂平面ABC , BE ∴⊥平面11A ACC ,1AC ⊂平面11A ACC ,1AC BE ∴⊥, 11BC AC ⊥,1BE BC B =,1AC ∴⊥平面1C EB . 【点睛】方法点睛:证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.26.(1)证明见解析;(226.。
新北师大版高中数学必修二第一章《立体几何初步》测试题(含答案解析)(4)
一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O是其中心,则正视图(等腰三角形)的腰长等于()A.5B.2 C.3D.22.已知三棱锥A BCD的各棱长都相等,E为BC中点,则异面直线AB与DE所成角的余弦值为()A.13B.3C.33D.1163.某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:3cm)为()A.43B.2C .4D .64.如图,正三棱柱111ABC A B C -的高为4,底面边长为43,D 是11B C 的中点,P 是线段1A D 上的动点,过BC 作截面AP α⊥于E ,则三棱锥P BCE -体积的最小值为( )A .3B .23C .43D .125.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .676.如图正三棱柱111ABC A B C -的所有棱长均相等,O 是1AA 中点,P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,则直线OP 与平面ABC 所成角正弦值的最大值为( )A .2 B .255C .32D .2777.如图,在四棱锥P ABCD -中,底面ABCD 是矩形.其中3AB =,2AD =,PAD △是以A ∠为直角的等腰直角三角形,若60PAB ∠=︒,则异面直线PC 与AD 所成角的余弦值是( )A .2211B .2211-C .77D .211118.已知球O 的半径为5,球面上有,,A B C 三点,满足214,27AB AC BC ===,则三棱锥O ABC -的体积为( ) A .77B .142C .714D .1479.在正方体1111ABCD A BC D -中,M 是棱1CC 的中点.则下列说法正确的是( ) A .异面直线AM 与BC 5B .BDM 为等腰直角三角形C .直线BM 与平面11BDD B 10D .直线1AC 与平面BDM 相交10.如图,正方形ABCD 的边长为4,点E ,F 分别是AB ,B C 的中点,将ADE ,EBF △,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体A DEF '的四个顶点都在同一个球面上,则以FDE 为底面的三棱锥G -DEF 的高h 的最大值为( )A .263+B .463+C .4263-D .2263- 11.在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PFFC=( ) A .1B .32C .2D .312.如图,长、宽、高分别为2、1、1的长方体木块上有一只小虫从顶点A 出发沿着长方体的外表面爬到顶点B ,则它爬行的最短路程是( )A .10B .5C .22D .3二、填空题13.如图,在三棱锥P ABC -中,点B 在以AC 为直径的圆上运动,PA ⊥平面,ABC AD PB ⊥,垂足为,D DE PC ⊥,垂足为E ,若23,2PA AC ==,则三棱锥P ADE -体积的最大值是_________.14.如图,点E 是正方体1111ABCD A BC D -的棱1DD 的中点,点M 在线段1BD 上运动,则下列结论正确的有__________. ①直线AD 与直线1C M 始终是异面直线②存在点M ,使得1B M AE ⊥ ③四面体EMAC 的体积为定值④当12D M MB =时,平面EAC ⊥平面MAC15.正方体1111ABCD A BC D -棱长为点1,点E 在边BC 上,且满足2BE EC =,动点P 在正方体表面上运动,满足1PE BD ⊥,则动点P 的轨迹的周长为__________. 16.在三棱锥P ABC -中,4PA PB ==,42BC =,8AC =,AB BC ⊥.平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为_________.17.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________. 18.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =,1cos 3BAC ∠=,若三棱锥D ABC -的体积为27,则此三棱锥的外接球的表面积为______19.如图,在三棱锥A BCD -,,AB AD BC ⊥⊥平面ABD ,点E 、F (E 与A 、D 不重合)分别在棱AD 、BD 上,且EF AD ⊥.则下列结论中:正确结论的序号是______.①//EF 平面ABC ;②AD AC ⊥;③//EF CD20.将底面直径为8,高为23为______.三、解答题21.在所有棱长均为2的直棱柱1111ABCD A BC D -中,底面ABCD 是菱形,且60BAD ∠=︒,O ,M 分别为1,BD B C 的中点.(Ⅰ)求证:直线//OM 平面11DB C ; (Ⅱ)求二面角1D AC D --的余弦值.22.如图(1)在ABC 中,AC BC =,D 、E 、F 分别是AB 、AC 、BC 边的中点,现将ACD △沿CD 翻折,使得平面ACD ⊥平面BCD .如图(2)(1)求证://AB 平面DEF ; (2)求证:BD AC ⊥.23.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,32,3,PB PD PA AD ====点,E F 分别为线段,PD BC 的中点.(1)求证://EF 平面ABP ; (2)求证:平面AEF ⊥平面PCD ;(3)求三棱锥C AEF -的体积24.如图,圆柱的轴截面ABCD 是长方形,点E 是底面圆周上异于A ,B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,3AD =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 25.如图,在平面四边形A ABC '中,90CAB CA A '∠=∠=,M 在直线AC 上,A A A C ''=,AB AM MC ==,A AC '绕AC 旋转.(1)若A AC '所在平面与ABC 所在平面垂直,求证:A C '⊥平面A AB '. (2)若二面角A AC B '--大小为60,求直线A B '与平面ABM 所成角的正弦值. 26.如图,四边形ABCD 为矩形,且4=AD ,22AB =PA ⊥平面ABCD ,2PA =,E 为BC 的中点.(1)求证:PC DE ⊥;(2)若M 为PC 的中点,求三棱锥M PAB -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===1333xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-则在等腰直角三角形AOE 中,2522xAO OE -===O 是底面中心,则133xOE CE ==,则253 23x x-=,解得3x=,则1AO=,底面边长为23,则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.B解析:B【分析】取AC中点F,连接,EF DF,证明FED∠是异面直线AB与DE所成角(或其补角),然后在三角形中求得其余弦值即可得.【详解】取AC中点F,连接,EF DF,∵E是BC中点,∴//EF AB,12EF AB=,则FED∠是异面直线AB与DE所成角(或其补角),设1AB=,则12EF=,32DE DF==,∴在等腰三角形DEF中,11324cos3EFFEDDE∠===.所以异面直线AB与DE3故选:B.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.3.B解析:B 【分析】根据三视图判断出几何体的结构,利用椎体体积公式计算出该几何体的体积. 【详解】根据三视图可知,该几何体为如图所示四棱锥,该棱锥满足底面是直角梯形,且侧棱ED ⊥平面ABCD , 所以其体积为11(12)22232V =⨯⨯+⨯⨯=, 故选:B. 【点睛】方法点睛:该题考查的是有关根据几何体三视图求几何体体积的问题,解题方法如下:(1)首先根据题中所给的几何体的三视图还原几何体;(2)结合三视图,分析几何体的结构特征,利用体积公式求得结果.4.C解析:C 【分析】因为P BCE P ABC E ABC V V V ---=-则当E ABC V -取最大值时,三棱锥P BCE -体积有最小值,建立坐标系求得当点E 的高为3时,问题得解. 【详解】以点O 为原点,,,OA OD OB 分别为,,x y z 轴建立空间直角坐标系,如图所示:设点(),0,E x z ,依题意得()6,0,0A ,则()6,0,AE x z =- ,(),0,OE x z = 因为过BC 作截面AP α⊥于E ,所以AE OE ⊥则0AE OE ⋅=, 故()2600x x z -++= 所以()6z x x =-3x =时max 3z =又()143P BCE P ABC E ABC ABCV V V S z ---=-=-因为max 3z =所以三棱锥P BCE -体积的最小值()1114343643332P BCE ABC V S-=-=⋅⋅=故选:C 【点睛】关键点点晴:本题的解题关键是将问题转化为求E ABC V -的最大值,通过建系求得三棱锥E ABC -的高的最大值即可.5.D解析:D 【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-=,所以几何体的高为7. 所以几何体的体积为11(24)676732⋅+⋅⋅=. 故选:D 【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解.6.D解析:D 【分析】先找到与平面11A BC 平行的平面OEFG ,确定点P 在直线FG 上,作出线面角,求出正弦,转化为求AP 的最小值. 【详解】分别取1,,CC BC BA 的中点,连接,,,OE EF FG GO ,并延长FG ,如图,由中位线性质可知11//OE AC , 1//EF BC ,且OEEF E =,故平面11//A BC 平面OGFE ,又P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC 则点P 在直线FG 上,OA ⊥平面ABC ,OPA ∴∠是直线OP 与平面ABC 所成角,sin OAOPA OP∴∠=, OA 为定值,∴当OP 最小时,正弦值最大,而OP所以当AP 最小时,sin OPA ∠最大, 故当AP FG ⊥时,sin OPA ∠最大, 设棱长为2, 则1212AG =⨯=,而30GAP ∠=︒,AP ∴=, 又1212OA =⨯=,sin OAOPA OP∴∠===故选:D 【点睛】关键点点睛:由P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,转化为找过O 的平面与平面11A BC 平行,P 在所找平面与平面ABC 的交线上,从而容易确定出线面角,是本题解题的关键所在.7.D解析:D 【分析】在图形中找到(并证明)异面直线所成的角,然后在三角形中计算. 【详解】因为//AD BC ,所以PCB ∠是异面直线PC 与AD 所成角(或其补角), 又PA AD ⊥,所以PA BC ⊥,因为AB BC ⊥,AB PA A ⋂=,,AB PA ⊂平面PAB ,所以BC ⊥平面PAB , 又PB ⊂平面PAB ,所以PB BC ⊥. 由已知2PA AD ==,所以PB==cos11BCPCBPC∠===,所以异面直线PC与AD所成角的余弦值为11.故选:D.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.8.A解析:A【分析】利用正弦定理求出ABC的外接圆半径,则可求出三棱锥的高,进而求出三棱锥体积.【详解】设ABC的外接圆的圆心为D,半径为r,在ABC中,cos ABC∠==sin4ABC∴∠=,由正弦定理可得28sinACrABC==∠,即4r=,则3OD==,11133324O ABC ABCV S OD-∴=⨯⨯=⨯⨯=故选:A.【点睛】本题考查球内三棱锥的相关计算,解题的关键是利用正弦定理求出ABC 的外接圆半径,利用勾股关系求出高.9.C解析:C 【分析】A 通过平移,找出异面直线所成角,利用直角三角形求余弦即可. B.求出三角形的三边,通过勾股定理说明是不是直角三角形.C.求出点M 到面11BB D D 的距离,再求直线BM 与平面11BDD B 所成角的正弦.D.可通过线线平行证明线面平行. 【详解】 设正方体棱长为2A. 取1BB 的中点为N ,则//BC MN ,则AM 与BC 所成角为AMN ∠ 由BC ⊥面11ABB A ,故MN ⊥面11ABB A ,故MN AN ⊥,在Rt ANM △中,5tan AMN ∠=,故2cos 3AMN ∠=B. BDM 中,5BM =22BD =5DM =C. AC BD ⊥,1AC BB ⊥,故AC ⊥面11BB D D ,1//CC 面11BB D D ,故M 到面11BB D D 的距离等于C 到面11BB D D 的距离,即为122d AC =直线BM 与平面11BDD B 所成角为θ210sin 5d BM θ===直线BM 与平面11BDD B 所成角的正弦值等于105D.如图ACBD O =OM 为1ACC △的中位线,有1//OM AC故直线1AC 与平面BDM 平行故选:C 【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.10.A解析:A 【分析】先求出'A FDE -外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h 的最大值. 【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为2R==R=,DE DF====EF=在DFE△中,222cos2DE EF DFDEFDE EF+-∠===⨯,所以DEF∠为锐角,所以sin DEF∠==,DEF的外接圆的半径为2sinDFrDEF===∠则球心到DEF23,以FDE为底面的三棱锥G-DEF的高h的最大值为1R OO+23.故选:A.【点睛】本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.11.C解析:C【分析】首先通过延长直线,DC AB,交于点G,平面BAE变为GAE,连结PG,EG交于点F,再根据三角形中线的性质,求PFFC的值.【详解】延长,DC AB,交于点G,连结PG,EG交PC于点F,//AD BC,且2AD BC=,可得点,B C分别是,AG DG的中点,又点E是PD的中点,PC∴和GE是△PGD的中线,∴点F是重心,得2PFFC=故选:C 【点睛】关键点点睛:本题的关键是找到PC 与平面BAE 的交点,即将平面BAE 转化为平面GAE 是关键.12.C解析:C 【分析】小虫有两种爬法,一种是从点A 沿着侧面ACGF 和上底面BHFG 爬行,另一种是从点A 沿着侧面ACGF 和侧面BDCG 爬行,将两种情况下的两个面延展为一个面,计算出平面图形的对角线长,比较大小后可得结果. 【详解】由于长方体ACDE FGBH -的长、宽、高分别为2、1、1,则小虫从点A 沿着侧面AEHF 和上底面FHBG 爬行,以及小虫从点A 沿着侧面ACGF 和侧面BDCG 爬行,这两条线路的最短路程相等.①若小虫从点A 沿着侧面ACGF 和上底面BHFG 爬行,将侧面ACGF 和上底面BHFG延展为一个平面,如下图所示:则2AC BC ==,最短路程为2222AB AC BC +=②若小虫从点A 沿着侧面ACGF 和侧面BDCG 爬行,将面ACGF 和侧面BDCG 延展为一个平面,如下图所示:则3AD AC CD =+=,1BD =,最短路程为2210AB AD BD =+因为2210,因此,小虫爬行的最短路程为22 故选:C. 【点睛】方法点睛:(1)计算多面体或旋转体的表面上折线段的最值问题时,一般采用转化的方法进行,即将侧面展开化为平面图形,即“化折为直”或“化曲为直”来解决,要熟练掌握多面体与旋转体的侧面展开图的形状;(2)对于几何体内部折线段长的最值,可采用转化法,转化为两点间的距离,结合勾股定理求解.二、填空题13.【分析】由已知证明再由三角形相似列比例式可得证明利用基本不等式求得的最大值可得三棱锥体积的最大值【详解】由平面得又平面得又平面得而平面可得在中由得由得则由得又得即(当且仅当时等号成立)三棱锥体积的最解析:34【分析】由已知证明AE PC ⊥,再由三角形相似列比例式可得PE ,证明AD DE ⊥,利用基本不等式求得AD DE ⋅的最大值,可得三棱锥P ADE -体积的最大值. 【详解】由PA ⊥平面ABC ,得PA BC ⊥,又BC AB ⊥,PAAB A =,BC ∴⊥平面PAB ,得BC AD ⊥,又AD PB ⊥,PB BC B ⋂=, AD ∴⊥平面PBC ,得AD PC ⊥,而DE PC ⊥,AD DE D ⋂=,PC ∴⊥平面ADE ,可得AE PC ⊥.在Rt PAC △中,由23,2PA AC ==,得4PC =.由Rt PEA Rt PAC ∽,得PE PA PA PC =,则21234PA PE PC ===, 由3PE =,23PA =23AE =,又AD DE ⊥,2223AD DE AE ∴+==,得2232AD DE AD DE =+≥⋅, 即32AD DE⋅(当且仅当AD DE =时等号成立), ∴三棱锥P ADE -体积的最大值是1111333323224AD DE PE ⨯⨯⨯=⨯⨯⨯=.故答案为:34. 【点睛】方法点睛:解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.14.②③④【分析】取点为线段的中点可判断①建立空间直角坐标系假设存在点使得利用解出的值即可判断②;连接交于点证明线段到平面的距离为定值可判断③;求出点的坐标然后计算平面和平面的法向量即可判断④【详解】对解析:②③④. 【分析】取点M 为线段1BD 的中点可判断①,建立空间直角坐标系假设存在点M ,使得1B M AE ⊥,利用()1110AE B M AE B B BD λ⋅=⋅+=解出λ的值即可判断②;连接AC 、BD 交于点1O ,证明11//EO BD ,线段1BD 到平面AEC 的距离为定值,可判断③;求出点M 的坐标,然后计算平面AEC 和平面MAC 的法向量,即可判断④. 【详解】对于①:连接1AC 交1BD 于点O ,当点M 在O 点时直线AD 与直线1C M 相交,故①不正确,以D 为坐标原点,建立如图所示的空间直角坐标系,设正方体的边长为2,则()0,0,0D ,()10,0,2D ,()2,0,0A ,()0,2,0C ,()0,0,1E ,()2,2,0B ,()12,2,2B ,对于②:()2,0,1AE =-,假设存在点M ,使得1B M AE ⊥,()()()1110,0,22,2,22,2,22B M B B BD λλλλλ=+=-+--=---,[]0,1λ∈,所以14220AE B M λλ⋅=+-=,解得13λ=,所以当12D M MB =时1B M AE ⊥, 故②正确; 对于③:连接AC 、BD 交于点1O ,因为点E 是棱1DD 的中点,此时11//EO BD ,故线段1BD 到平面AEC 的距离为定值,所以四面体EMAC 的体积为定值,故③正确; 对于④:当12D M MB =时,442,,333M ⎛⎫⎪⎝⎭,()2,0,1AE =-,()2,2,0AC =-,设平面AEC 的法向量为()111,,m x y z =,由111120220m AE x z m AC x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩令12z =,可得11x =,11y =,可得()1,1,2m =,设平面MAC 的法向量为()222,,n x y z =,242,,333MA ⎛⎫=-- ⎪⎝⎭,由222222202420333n AC x y n MA x y z ⎧⋅=-+=⎪⎨⋅=--=⎪⎩解得:20y =,令 21x =可得22z =,所以1,1,1n ,因为1111120m n ⋅=⨯+⨯-⨯=,m n ⊥所以平面EAC ⊥平面MAC ,故④正确;故答案为:②③④.【点睛】方法点睛:证明面面垂直的方法(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可;(2)利用性质://,αββγαγ⊥⇒⊥(客观题常用);(3)面面垂直的定义(不常用);(4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.15.【分析】根据题意得平面在上取使得连接证得平面平面将空间中的动点轨迹的周长问题转化为求三角形边周长问题又代入计算即可【详解】解:如图正方体中连接:易得平面在上取使得连接易得根据线面平行判定定理证得平面【分析】根据题意得1BD ⊥平面1ABC ,在1,BB AB 上取,F G使得12,2BF FB AG GB ==连接,,GE EF GF 证得平面1//AB C 平面EFG ,将空间中的动点P 轨迹的周长问题转化为求三角形EFG 边周长问题,又GE EF GF ===,代入计算即可. 【详解】解:如图正方体中连接11,,AC B C B A :易得1BD ⊥平面1ABC ,在1,BB AB 上取,F G 使得12,2BF FB AG GB ==连接,,GE EF GF ,易得1//,//GE AC EF BC根据线面平行判定定理证得平面1//AB C 平面EFG所以1BD ⊥平面EFG所以线段,,GE EF GF 就是点P 的运动轨迹, 因为1223GE EF GF ==== 所以动点P 的运动轨迹周长为232GE EF GF ++==2【点睛】关键点点睛:本题考查线面垂直,面面平行的概念,解题的关键是借助图形将空间问题转化为平面问题.本题中根据1BD ⊥平面1ABC 及平面1//ABC 平面EFG 得到线段,,GE EF GF 就是点P 的运动轨迹,代值计算即可.16.4【分析】取中点连接再根据题意依次计算进而得球的球心即为(与重合)【详解】解:因为所以又因为所以所以因为平面平面平面平面平面所以平面取中点连接所以所以平面所以此时所以即球的球心球心即为(与重合)半径 解析:4【分析】取,AB AC 中点,D E ,连接DE ,DP ,再根据题意依次计算4EA EB EC EP ====,进而得球O 的球心O 即为E (O 与E 重合)【详解】 解:因为42BC =8AC =,AB BC ⊥, 所以42AB =4PA PB ==,所以222PA PB AB +=,所以PA PB ⊥,因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,AB BC ⊥,BC ⊂平面ABC ,所以BC ⊥平面PAB ,取,AB AC 中点,D E ,连接DE ,DP所以//DE BC ,22DE =,22DP =所以DE ⊥平面PAB ,所以DE PD ⊥,此时,142EB AC EA EC ====, 224EP DP DE =+=, 所以4EA EB EC EP ====,即球O 的球心球心O 即为E (O 与E 重合),半径为4EA =.故答案为:4.【点睛】本题解题的关键在于寻找球心,在本题中,,PAB ABC △△均为直角三角形,故易得AC 中点即为球心.考查空间思维能力,运算求解能力,是中档题.17.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角M BC A--的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHN PGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值.【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ;由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥;又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH ,所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥,所以MHN ∠为二面角M BC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角,所以tan PO PGO OG ∠=,tan MN MHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MN PGO MHN OG HN ∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHN PGO MHN PGO MHN MHN α∠-∠∠=∠-∠==+∠⋅∠+∠, 令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+,当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】关键点点睛: 求解本题的关键在于确定二面角M BC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角MBC A --的4倍,进而可求得结果. 18.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC 的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案.【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC中,由正弦定理得2sin BC r BAC ==∠r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以11sin 34223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△因为11333D ABC ABC V S AD AD -=⋅⋅=⨯=△,所以4AD =.连接1OO ,又1//OO AD ,所以四边形1EAOO 为平行四边形,1128EA OO AD ===,所以R ===所以该三棱锥的外接球的表面积()224π4π520πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.19.①②【分析】采用逐一验证法根据线面平行线面垂直的判定定理以及线面距离判断可得结果【详解】由共面所以因为平面平面所以平面;故①正确;平面平面所以又因为平面平面所以故②正确;若则平面或EF 在平面ACD 内 解析:①②【分析】采用逐一验证法,根据线面平行,线面垂直的判定定理,以及线面距离,判断可得结果.【详解】由AB AD ⊥,,,EF AD AD EF AB ⊥,共面 ,所以//EF AB ,因为EF ⊄平面ABC ,AB 平面ABC ,所以//EF 平面ABC ;故①正确; BC ⊥平面ABD ,AD ⊂平面ABD ,所以BC AD ⊥,又因为AB AD ⊥,AB BC B ⋂=,AD ⊥平面ABC ,AC ⊂平面ABC ,所以AD AC ⊥,故②正确;若//EF CD ,则//EF 平面ACD ,或EF 在平面ACD 内,如图EF 与平面ACD 相交于点E ,显然不成立,故③不正确,故答案为:①②【点睛】本题主要考查了线线、线面之间的位置关系,考查了线面平行的判断以及由线面垂直证明线线垂直,属于中档题. 20.【分析】欲使圆柱侧面积最大需使圆柱内接于圆锥设圆柱的高为h 底面半径为r 用r 表示h 从而求出圆柱侧面积的最大值【详解】欲使圆柱侧面积最大需使圆柱内接于圆锥;设圆柱的高为h 底面半径为r 则解得;所以;当时取 解析:43π【分析】欲使圆柱侧面积最大,需使圆柱内接于圆锥,设圆柱的高为h ,底面半径为r ,用r 表示h ,从而求出圆柱侧面积的最大值.【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥;设圆柱的高为h ,底面半径为r , 23423h r -=,解得323h =; 所以()23222334S rh r r r πππ⎛⎫===- ⎪ ⎪⎝⎭圆柱侧; 当2r 时,S 圆柱侧取得最大值为43π 故答案为:43π.【点睛】本题考查了求圆柱侧面积的最值,考查空间想象能力,将问题转化为函数求最值,属于中档题.三、解答题21.(Ⅰ)证明见解析;(Ⅱ5 【分析】(Ⅰ)由中位线定理证明1//OM C D ,即可得线面平行;(Ⅱ)连1D O ,证明1D OD ∠为二面角1D AC D --的平面角, 在直角1D DO △中计算可得.【详解】解:(Ⅰ)连1BC ,则M 也为1BC 的中点,又M 为BD 的中点,所以1//OM C D ,因为OM ⊄平面11DB C ,1C D ⊂平面11DC B ,所以直线//OM 平面11DB C ;(Ⅱ)连1D O ,因为ABCD 是菱形,所以DO AC ⊥,又1111ABCD A BC D -为直棱柱,底面为菱形,所以11D A D C =,而O 为AC 中点,所以1D O AC ⊥,所以1D OD ∠为二面角1D AC D --的平面角,因为ABCD 是边长为2的菱形,且60BAD ∠=︒,所以1DO =,又12DD =, 由直棱柱知1DD DO ⊥,所以15DO =,所以115cos DO D OD D O ∠==.【点睛】方法点睛:本题考查证明线面平行,考查求二面角角,求二面角常用方法:(1)定义法:作出二面角的平面角并证明,然后在三角形中计算可得;(2)向量法:建立空间直角坐标系,求出两个平面的法向量夹角的余弦即可得二面角的余弦(注意判断二面角是锐角还是钝角).22.(1)证明见解析;(2)证明见解析.【分析】(1)根据三角形中位线的性质,得到//EF AB ,利用线面平行的判定定理证得结果; (2)根据面面垂直的性质定理,得到BD ⊥平面ACD ,进而证得BD AC ⊥.【详解】证明:(1)如图(2):在ABC 中,E 、F 分别是AC 、BC 中点,得//EF AB , 又AB ⊄平面DEF ,EF ⊂平面DEF ,//AB ∴平面DEF .(2)∵平面ACD ⊥平面BCD 且交线为CD ,BD CD ⊥,且BD ⊂平面BCD , ∴BD ⊥平面ACD ,又AC ⊂平面ACD∴BD AC ⊥.【点睛】方法点睛:该题考查的是有关空间关系的证明问题,解题方法如下:(1)熟练掌握线面平行的判定定理,在解题过程中,一定不要忘记线在面内、线在面外的条件;(2)根据面面垂直的条件,结合线线垂直,利用面面垂直的性质定理,得到线面垂直,进而证得线线垂直.23.(1)证明见解析;(2)证明见解析;(3)98. 【分析】(1)取PA 的中点G ,连接,BG EG ,证明四边形EFBG 为平行四边形,得出//EF BG ,再由线面平行的判定定理证明即可;(2)先证明PA ⊥平面ABCD ,从而得出PA CD ⊥,再由等腰三角形的性质得出AE PD ⊥,最后由面面垂直的判定定理证明即可;(3)以AFC △为底,12PA 为高,由棱锥的体积公式得出答案. 【详解】(1)如图,取PA 的中点G ,连接,BG EG .因为点,E G 分别为,PD PA 的中点,所以1//,2EG AD EG AD = 又因为F 是BC 的中点,四边形ABCD 是正方形,所以//BF EG 且BF EG = 故四边形EFBG 为平行四边形,所以//EF BG因为BG ⊂平面,ABP EF 不在平面ABP 内,所以//EF 平面ABP .(2)由条件知32,3PB PD PA AD AB =====,所以PAB △和PAD △都是等腰直角三角形,,PA AB PA AD ⊥⊥又因为,,AB AD A AB AD =⊂平面,ABCD 所以PA ⊥平面ABCD因为CD ⊂平面ABCD ,所以PA CD ⊥又因为,,AD CD PA AD A ⊥⋂=所以CD ⊥平面PAD ,所以CD AE ⊥因为E 是PD 的中点,所以AE PD ⊥又因为,,PD CD D PD CD ⋂=⊂平面PCD ,所以AE ⊥平面PCD因为AE ⊂平面,AEF 所以平面AEF ⊥平面PCD .(3)由图可知C AEF E ACF V V --=,1111319333232228E ACF ACF V S PA -=⨯=⨯⨯⨯⨯⨯=△, 即三棱锥C AEF -的体积为98 【点睛】 关键点睛:在证明线线平行时,关键是证明四边形EFBG 为平行四边形,从而得出//EF BG .24.(1)证明见解析;(232211【分析】。
高中数学必修2解析几何初步教材分析及教学建议之一
高中数学必修2《解析几何初步》教材分析及教学建议之一三明九中李宇宙一、解析几何内容的设计:1. 几何的内容按三个层次设计(1)必修课程中的几何,主要包括:立体几何初步、解析几何初步、平面向量、解三角形等。
(2)选修系列1、系列2中的几何,主要包括:圆锥曲线与方程、空间向量与立体几何。
(3)选修系列3、系列4(专题)中的几何.主要包括:球面上的几何、坐标系与参数方程、几何证明选讲等。
2.解析几何内容的变化突出了用代数方法解决几何问题的过程,同时也强调代数关系的几何意义。
解析几何的内容也是分层次设计的:在必修课程中,主要是直线与方程、圆与方程;圆锥曲线与方程的内容则放在选修系列1、系列2中。
3.必修2削弱的内容两条直线的位置关系(删除了两条直线的夹角)等。
4.必修2增删的内容(1) 解析几何增加的内容:直线与圆、圆与圆的位置关系;空间直角坐标系(2) 解析几何删除的内容:曲线与方程;圆的参数方程;圆锥曲线;线性规划移至必修5(第三章)不等式部分二、数学必修2《解析几何初步》的教学建议认真把握教学要求教学中,注意控制教学的难度,避免进行综合性强、难度较大的数学题的训练,避免在解题技巧上做文章。
关注重要数学思想方法的教学重要的数学思想方法不怕重复。
《标准》要求“坐标法”应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
在教学中应自始至终强化这一思想方法,这是解析几何的特点。
教学中注意“数”与“形”的结合,在通过代数方法研究几何对象的位置关系以后,还可以画出其图形,验证代数结果;同时,通过观察几何图形得到的数学结论,对结论进行代数证明,即用解析方法解决某些代数问题,不应割断它们之间的联系,应避免只强调“形”到“数”的方面,而忽视“数”到“形”的方面。
关注学生的动手操作和主动参与学习方式的转变是课程改革的重要目标之一。
教学中,注意适当给学生数学活动和交流的机会,引导他们在自主探索的过程中获得知识、增强技能、掌握基本的数学思想方法。
人教版高中数学必修第二册第三单元《立体几何初步》测试(含答案解析)
一、选择题1.已知空间中不同直线m 、n 和不同平面α、β,下面四个结论:①若m 、n 互为异面直线,//m α,//n α,//m β,βn//,则//αβ;②若m n ⊥,m α⊥,βn//,则αβ⊥;③若n α⊥,//m α,则n m ⊥;④若αβ⊥,m α⊥,//n m ,则βn//.其中正确的是( )A .①②B .②③C .③④D .①③ 2.球面上有,,,A B C D 四个点,若,,AB AC AD 两两垂直,且4AB AC AD ===,则该球的表面积为( )A .803πB .32πC .42πD .48π3.如图,P 是正方体1111ABCD A B C D -中1BC 上的动点,下列命题:①1AP B C ⊥;②BP 与1CD 所成的角是60°;③1P AD C V -为定值;④1//B P 平面1D AC ;⑤二面角PAB C 的平面角为45°. 其中正确命题的个数有( ) A .2个 B .3个 C .4个 D .5个4.如图所示,AB 是⊙O 的直径,VA 垂直于⊙O 所在的平面,点C 是圆周上不同于A ,B 的任意一点,M ,N 分别为VA ,VC 的中点,则下列结论正确的是( )A .MN //ABB .MN 与BC 所成的角为45° C .OC ⊥平面VACD .平面VAC ⊥平面VBC5.如图,在长方体1111ABCD A B C D -中,13,2,4AA AB AD ===,点M 是棱AD 的中点,点N 在棱1AA 上,且满足12AN NA =,P 是侧面四边形11ADD A 内的一动点(含边界),若1//C P 平面CMN ,则线段1C P 长度的取值范围是( )A .[3,17]B .[2,3]C .[6,22]D .[17,5] 6.已知某正三棱锥侧棱与底面所成角的余弦值为219,球1O 为该三棱锥的内切球.若球2O 与球1O 相切,且与该三棱锥的三个侧面也相切,则球2O 与球1O 的表面积之比为( )A .49B .19C .925D .1257.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC 2aD .22a 8.菱形ABCD 的边长为3,60B ∠=,沿对角线AC 折成一个四面体,使得平面ACD ⊥平面ABC ,则经过这个四面体所有顶点的球的表面积为( )A .15πB .12πC .8πD .6π9.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm ),则此构件的表面积为( )A .27600mmB .28400mmC .29200mmD .210000mm 10.α,β是两个平面,m ,n 是两条直线,有下列四个命题;①如果m n ⊥,m α⊥,//n β,那么αβ⊥.②如果m α⊥,//n α,那么m n ⊥.③如果//αβ,m α⊂,那么//m β.④如果//m n ,//αβ,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题的个数为( )A .1B .2C .3D .411.如图为水平放置的ΔOAB 的直观图,则原三角形的面积为( )A .3B .32C .6D .1212.已知,a b 是两条直线,,αβ是两个平面,则a b ⊥的一个充分条件是( ) A .a α⊥,b β//,αβ⊥B .a α⊥,b β⊥,//αβC .a α⊂,b β⊥,//αβD .a α⊂,b β//,αβ⊥13.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A .13cmB .61cmC 61cmD .234cm14.用一个平行于圆锥底面的平面截这个圆锥,截得的圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm ,则圆台的母线长是( )A .9cmB .10cmC .12cmD .15cm二、解答题15.如图三棱柱111ABC A B C -中,11,,60CA CB AB AA BAA ∠︒===,(1)证明1AB A C ⊥;(2)若16AC =,2AB CB ==,求三棱柱111ABC A B C -的体积S . 16.如图,圆柱的轴截面ABCD 是正方形,点E 是底面圆周上异于,A B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 17.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为棱1DD 的中点.(1)证明:1//BD 平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.18.如图,在斜三棱柱111ABC A B C -中,点O .E 分别是11A C 、11A B 的中点,1A C 与1AC 交于点F ,AO ⊥平111A B C .已知90BCA ∠=︒,12AA AC BC ===.(1)求证://EF 平面11BB C C ;(2)求11A C 与平面11AA B 所成角的正弦值.19.如图,在四棱锥P ABCD -中,四边形ABCD 为菱形,60BAD ∠=︒,PAD ∆为正三角形,平面PAD ⊥平面ABCD ,且E ,F 分别为AD ,PC 的中点.(1)求证://DF 平面PEB ;(2)求直线EF 与平面PDC 所成角的正弦值.20.如图,在空间几何体A -BCDE 中,底面BCDE 是梯形,且CD //BE ,CD =2BE =4,∠CDE =60°,△ADE 是边长为2的等边三角形.(1)若F 为AC 的中点,求证:BF //平面ADE ;(2)若AC =4,求证:平面ADE ⊥平面BCDE .21.如图,在平行四边形ABCD 中,4AB =,60DAB ∠=︒.点G ,H 分别在边CD ,CB 上,点G 与点C ,D 不重合,GH AC ⊥,GH 与AC 相交于点O ,沿GH 将CGH 翻折到EGH 的位置,使二面角E GH B --为90°,F 是AE 的中点.(1)请在下面两个条件:①AB AD =,②AB BD ⊥中选择一个填在横线处,使命题P :若________,则BD ⊥平面EOA 成立,并证明.(2)在(1)的前提下,当EB 取最小值时,求直线BF 与平面EBD 所成角的正弦值. 22.如图,在五面体ABCDEF 中,FA ⊥平面ABCD ,AD //BC //FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD .(I )证明:平面AMD ⊥平面CDE ;(II )求二面角A ﹣CD ﹣E 的余弦值.23.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,2AB =,1AD =,60DAB ∠=︒,PD BD =,且PD ⊥平面ABCD .(1)证明:平面PBC ⊥平面PBD ;(2)若Q 为PC 的中点,求三棱锥D PBQ -的体积.24.如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,PB PA ⊥,PB PA =,90DAB ABC ∠=∠=,435AB BC CD ===,,,M 是PA 的中点.(1)求证:BM //平面PCD ;(2)求三棱锥B CDM -的体积.25.如图,在棱长为1的正方体1111ABCD A B C D -中,点O 是BD 中点.(1)求证:平面11BDD B ⊥平面1C OC ;(2)求二面角1C BD C --的正切值.26.如图,四棱锥P ABCD -中,底面ABCD 是菱形,,60,PA PD BAD E =∠=是AD 的中点,点Q 在侧棱PC 上.(1)求证:AD ⊥平面PBE ;(2)若Q 是PC 的中点,求证://PA 平面BDQ ;(3)若2P BCDE Q ABCD V V --=,试求CP CQ的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由线面和面面平行和垂直的判定定理和性质定理即可得解.【详解】解:对于①,由面面平行的判定定理可得,若m 、n 互为异面直线,//m α,//n β,则//αβ或相交,又因为//m β,//n α,则//αβ,故①正确;对于②,若m n ⊥,m α⊥,//n β,则//αβ或α,β相交,故②错误, 对于③,若n α⊥,//m α,则n m ⊥;故③正确,对于④,若αβ⊥,m α⊥,//n m ,则//n β或n β⊂,故④错误,综上可得:正确的是①③,故选:D .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.2.D解析:D【分析】分析:首先求得外接球半径,然后求解其表面积即可.详解:由题意可知,该球是一个棱长为4的正方体的外接球,设球的半径为R ,由题意可得:()22222444R =++,据此可得:212R =,外接球的表面积为:2441248S R πππ==⨯=.本题选择D 选项.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 3.C解析:C【详解】①在正方体中,1111,,AB B C BC B C AB BC B ⊥⊥=,所以1B C ⊥平面11,ABC D AP ⊂平面11ABC D ,从而1AP B C ⊥正确;②由于11//CD A B ,并且11,BC A B 的夹角是60°,故1BP CD 与所成的角是60°正确;③虽然点P 变化,但P 到1AD 的距离始终不变,故1P AD C V -为定值正确;④若1//B P 平面1D AC ,而1//BC 平面1D AC ,1111,,B P BC P B P BC =⊂平面11BB C C ,所以平面1//D AC 平面11BB C C ,这与平面1D AC 与平面11BB C C 相交矛盾,所以不正确;⑤P 点变化,但二面角PAB C 都是面11ABC D 与面ABCD 所成的角, 故二面角PAB C 的平面角为45°正确;故选:C. 4.D解析:D【分析】由中位线性质,平移异面直线即可判断MN 不与AB 平行,根据异面直线平面角知MN 与BC 所成的角为90°,应用反证知OC 不与平面VAC 垂直,由面面垂直的判定知面VAC ⊥面VBC ,即可知正确选项.【详解】M ,N 分别为VA ,VC 的中点,在△VAC 中有//MN AC ,在面ABC 中AB AC A =,MN 不与AB 平行;AC BC C =,知:MN 与BC 所成的角为90BCA ∠=︒;因为OC ⋂面VAC C =,OC 与平面内交线,AC VC 都不垂直,OC 不与平面VAC 垂直; 由VA ⊥面ABC ,BC ⊂面ABC 即VA BC ⊥,而90BCA ∠=︒知AC BC ⊥,AC VA A ⋂=有BC ⊥面VAC ,又BC ⊂面VBC ,所以面VAC ⊥面VBC ; 故选:D【点睛】本题考查了异面直线的位置关系、夹角,以及线面垂直的性质,面面垂直判定的应用,属于基础题.5.C解析:C【分析】首先找出过点1C 且与平面CMN 平行的平面,然后可知点P 的轨迹即为该平面与侧面四边形11ADD A 的交线段,进而可以利用解三角形的知识求出线段1C P 长度的取值范围.【详解】 如图所示:,取11A D 的中点G ,取MD 的中点E ,1A G 的中点F ,1D D 的三等分点H 靠近D ,并连接起来.由题意可知1//C G CM ,//GH MN ,所以平面1//C GH 平面CMN .即当点P 在线段GH 上时,1//C P 平面CMN .在1H C G 中,2212222C G =+=2212222C H =+=22GH =, 所以1H C G 为等边三角形,取GH 的中点O ,1226C O ==故线段1C P 长度的取值范围是6,22].故选:C .【点睛】本题主要考查线面平行,面面平行的判定定理和性质定理的应用,以及解三角形,意在考查学生的逻辑推理能力和数学运算能力,属于中档题.6.C解析:C【分析】先证明PO ⊥平面ABC ,接着求出19cos 19PAO =∠,再得到214r PO =和114R PO =,从而得到35rR=,最后求出球2O与球1O的表面积之比即可.【详解】如图,取ABC的外心O,连接PO,AO,则PO必过1O,2O,且PO⊥平面ABC,可知PAO∠为侧棱与底面所成的角,即219cos19PAO=∠.取AB的中点M,连接PM,MC.设圆1O,2O的半径分别为R,r,令2OA=,则19PA=,23AB=,3AM=,1OM=,所以214r OMPO PM==,即24PO r=,从而145PO r r R r R=++=+,所以1154R RPO r R==+,则35rR=,所以球2O与球1O的表面积之比为925.故选:C.【点睛】本题考查三棱锥内切球的应用,考查空间想象能力,逻辑推理能力,是中档题.7.D解析:D【分析】解:设G,H,I分别为CD、1CC、11C D边上的中点,证明平面1//A BGE平面1B HI,得到1//B F面1A BE,则F落在线段HI上,求出1122HI CD==【详解】解:设G,H,I分别为CD、1CC、11C D边上的中点,1//A B EG,则1A BEG四点共面,11//,//EG HI B H A E , 平面1//A BGE 平面1B HI ,又1//B F 面1A BE ,F ∴落在线段HI 上,正方体1111ABCD A B C D -中的棱长为a ,11222HI CD a ∴==, 即F 在侧面11CDD C 上的轨迹的长度是22a . 故选:D .【点睛】本题考查利用线面平行求线段长度,找到动点的运动轨迹是解题的关键,属于基础题. 8.A解析:A【分析】首先根据已知条件找到四面体外接球的球心,再求出半径,即可得到球体的表面积.【详解】如图所示,1O ,2O 分别为ABC 和DAC △的外接圆圆心,因为菱形ABCD ,60B ∠=,所以ABC 和DAC △为等边三角形.设E 为AC 的中点,连接DE ,BE ,则DE AC ⊥,BE AC ⊥,又因为平面ACD ⊥平面ABC AC =,所以DE ⊥平面ABC .分别过1O ,2O 作垂直平面ABC 和平面ACD 的直线,则交点O 为四面体ABCD 外接球的球心.因为2233332⎛⎫==-= ⎪⎝⎭EB DE ,四边形12OO EO 为矩形, 所以123==O B DO ,1213===O E O E OO . 所以外接圆半径为()223153=22⎛⎫+⎪ ⎪⎝⎭,表面积为15π. 故选:A【点睛】 本题主要考查四面体外接球的表面积,根据题意确定外接球的球心为解题关键,属于中档题.9.B解析:B【分析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可.【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示,其表面积为:()210020220202100204010210202840m 0m S =⨯⨯+⨯⨯+⨯-⨯⨯+⨯⨯=.故选:B.【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.10.C解析:C【分析】对①,运用长方体模型,找出符合条件的直线和平面,即可判断;对②,运用线面平行的性质定理和线面垂直的性质定理,即可判断;对③,运用面面平行的性质定理,即可判断;对④,由平行的传递性及线面角的定义,即可判断④.【详解】对于命题①,可运用长方体举反例证明其错误:如图,不妨设AA '为直线m ,CD 为直线n ,ABCD 所在的平面为α,ABC D ''所在的平面为β,显然这些直线和平面满足题目条件,但αβ⊥不成立;命题②正确,证明如下:设过直线n 的某平面与平面α相交于直线l ,则//l n ,由m α⊥知m l ⊥,从而m n ⊥,结论正确;由平面与平面平行的定义知命题如果//αβ,m α⊂,那么//m β.③正确;由平行的传递性及线面角的定义知命题:如果//m n ,//αβ,那么m 与α所成的角和n 与β所成的角相等,④正确.故选:C .【点睛】本题考查命题的真假判断,考查空间线面、面面平行和垂直的位置关系,注意运用判定定理和性质定理,考查推理能力,属于中档题.11.C解析:C【分析】根据直观图的画法,可以得到直角坐标系下3014A B (,),(,),还原三角形的图象,求得面积.【详解】根据直观图的画法,可以得到直角坐标系下3014A B (,),(,),如图所示:故原三角形面积为:13462S =⨯⨯= 故选:C【点睛】 本题考查了还原直观图为直角坐标系的图像问题,考查了学生概念理解,直观想象,数学运算的能力,属于基础题.12.C解析:C【分析】在A 中,a 与b 可以成任意角;在B 中a 与b 是平行的;在C 中,可得b α⊥,从而得到a b ⊥;在D 中,可得a 与b 可以成任意角,从而得到正确结果.【详解】由a ,b 是两条不同的直线,,αβ是两个不同的平面,在A 中,a α⊥,b β//,αβ⊥,因为b 的方向不确定,则a 与b 可以成任意角,故A 错误;在B 中,a α⊥,b β⊥,//αβ,根据对应的性质可知,可知a 与b 是平行的,故B 错误;在C 中,由a α⊂,b β⊥,//αβ,可知b α⊥,由线面垂直的性质可知a b ⊥,故C 正确;在D 中,a α⊂,b β//,αβ⊥,可得a 与b 可以成任意角,故D 错误.故选:C.【点睛】该题考查线线垂直的充分条件的判断,考查空间中线线、线面、面面间的位置关系等基础知识,在解题的过程中,注意结合图形去判断,属于中档题目.13.A解析:A【分析】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,计算得到答案.【详解】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,易知5BC =,'12A C =,故'13A B =.故选:A .【点睛】本题考查了立体几何中的最短距离问题,意在考查学生的计算能力和空间想象能力. 14.A解析:A【分析】计算得到12:1:4r r =,根据相似得到3134l =+,计算得到答案. 【详解】圆台上、下底面的面积之比为1:16,则12:1:4r r =.设圆台母线长为l ,根据相似得到:3134l =+,故9l =. 故选:A .【点睛】本题考查了圆台的母线长,意在考查学生的计算能力和空间想象能力. 二、解答题15.(1)证明见解析;(2)3.【分析】(1)取AB 中点E ,连接11,,CE A B A E ,根据已知条件,利用等腰三角形的性质得到1A E AB ⊥,,CE AB ⊥利用线面垂直的判定定理证得AB ⊥面1,CEA 即可得到1AB A C ⊥ ;(2) 在1CEA 中可以证明1A E CE ⊥,结合1A E AB ⊥,利用线面垂直判定定理得到1A E ⊥平面ABC ,作为三棱柱的高,进而计算体积.【详解】(1)取AB 中点E ,连接11,,CE A B A E ,11,60AB AA BAA ∠︒==,1BAA ∴是等边三角形,1A E AB ∴⊥,CA CB =,,CE AB ∴⊥1,CE A E E ⋂=AB ∴⊥面1,CEA1AB A C ∴⊥.(2)由于CAB ∆为等边三角形,CE ∴11222S AB CE ⨯⨯⨯=底面积==1CEA 中,CE 1EA 1AC =1A E CE ∴⊥,结合1A E AB ⊥,又,,AB CE E AB CE ⋂=⊂平面ABC ,1A E ∴⊥平面ABC ,1h A E ∴=3V Sh ==.【点睛】本题考查线面垂直的判定与证明,考查棱柱的体积计算,属基础题,为证明线线垂直,常常先证线面垂直,为证明线面垂直,又常常需要先证明线线垂直,这是线面垂直关系常用的证明与判定方式,要熟练掌握.16.(1)详见解析;(2【分析】(1)要证明线线垂直,需证明线面垂直,根据题中所给的垂直关系,证明AF ⊥平面DEB ;(2)首先确定点E 的位置,再根据等体积转化求点到平面的距离.【详解】(1)由圆柱性质可知,DA ⊥平面ABE ,EB ⊂平面AEB ,DA EB ∴⊥, AB 是圆柱底面的直径,点E 在圆周上,AE EB ∴⊥,又AE DA A ⋂=,BE ∴⊥平面DAE ,AF ⊂平面DAE ,EB AF ∴⊥,又AF DE ⊥,且EB DE E =,AF ∴⊥平面DEB ,DB ⊂平面DEB ,AF DB ∴⊥;(2)13D AEB AEB V S DA -=⨯⨯,3DA =, 当D AEB V -最大时,即AEB S 最大,即AEB △是等腰直角三角形时,2DA AB ==∵,BE ∴=DE ==,并且点E 到平面ABCD 的距离就是点E 到直线AB 的距离112AB =, 设点C 到平面EBD 的距离为h ,则1111262213232C DBE E CBD V V h --==⨯⨯⨯⨯=⨯⨯⨯⨯, 解得:233h = 【点睛】方法点睛:本题重点考查垂直关系,不管证明面面垂直还是证明线面垂直,关键都需转化为证明线线垂直,一般证明线线垂直的方法包含1.矩形,直角三角形等,2.等腰三角形,底边中线,高重合,3.菱形对角线互相垂直,4.线面垂直,线线垂直.17.(1)证明见解析;(2)30.【分析】(1)AC 和BD 交于点O ,则O 为BD 的中点.推导出1//PO BD .由此能证明直线1//BD 平面PAC ;(2)由1//PO BD ,得APO ∠即为异面直线1BD 与AP 所成的角或其补角.由此能求出异面直线1BD 与AP 所成角的大小.【详解】(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点.连结PO ,又因为P 是1DD 的中点,所以1//PO BD .又因为PO ⊂平面PAC ,1BD ⊄平面PAC所以直线1//BD 平面PAC.(2)解:由(1)知,1//PO BD ,所以APO ∠即为异面直线1BD 与AP 所成的角或其补角.因为2PA PC ==212AO AC ==且PO AO ⊥, 所以212sin 22AO APO AP ∠===. 又(0,90APO ︒︒⎤∠∈⎦,所以30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30.【点睛】方法点睛:异面直线所成的角的求法方法一:(几何法)找→作(平移法、补形法)→证(定义)→指→求(解三角形) 方法二:(向量法)cos m n m n α=,其中α是异面直线,m n 所成的角,,m n 分别是直线,m n 的方向向量.18.(1)证明见解析;(2)217. 【分析】(1)由题意可得11//OE B C ,1//OF C C ,利用面面平行的判定定理可得平面//OEF 平面11BB C C ,由面面平行的性质定理即可证明. (2)利用等体法111112A A B C C AA B V V --=,求出点1C 到平面11AA B 的距离2217d =,由11sin d A C θ=即可求解. 【详解】证明:(1)∵O ,E 分别是11A C 、11A B 的中点,1A C 与1AC 交于点F ,∴11//OE B C ,1//OF C C ,1111B C C C C ⋂=,//OE ∴平面11B C C ,//OF ∴平面11B C C ,又OE OF O ⋂=,∴平面//OEF 平面11BB C C ,∵EF ⊂平面OEF ,∴//EF 平面11BB C C .(2)解:设点1C 到平面11AA B 的距离为d ,∵111112A A B C C AA B V V --=, ∴111111111323AA B AC B C AO S d ⨯⨯⨯⨯=⨯⨯,AO ==1OB ==1AB ==,∵11AA B中,111A B AB ==,12AA =,∴11AA B S =∴11122323d ⨯⨯⨯=,解得7d =, 设11A C 与平面11AA B 所成角为θ,∴11A C 与平面11AA B所成角的正弦值为:11sin 7d AC θ==. 【点睛】方法点睛:证明线面平行的常用方法:(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理.(3)利用面面平行的性质.19.(1)证明见解析;(2. 【分析】(1)取PB 中点G ,推出//FG BC ,证明四边形DEGF 是平行四边形,得到//DF EG ,然后证明//DF 平面PEB .(2)以E 为原点,EA ,EB ,EP 分别为x ,y ,z 轴建立空间直角坐标系,求出平面PDC 的法向量,求出EF ,利用空间向量的数量积求解EF 与平面PDC 所成角的正弦值.【详解】(1)证明:取PB 中点G ,因为F 是PC 中点,//FG BC ∴,且12FG BC =, E 是AD 的中点,则//DE BC ,且12DE BC =, //FG DE ∴,且FG DE =,∴四边形DEGF 是平行四边形,//DF EG ∴,又DF ⊂/平面PEB ,EG ⊂平面PEB ,//DF ∴平面PEB .(2)因为E 是正三角形PAD 边为AD 的中点,则PE AD ⊥. 因为平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =,PE ⊂平面PAD ,PE ∴⊥平面ABCD ,四边形ABCD 为菱形,60BAD ∠=︒,∴正三角形BAD 中,BE AD ⊥,以E 为原点,EA ,EB ,EP 分别为x ,y ,z 轴建立空间直角坐标系, 不妨设菱形ABCD 的边长为2,则1AE ED ==,2PA =,3PE =,223BE AB AE =-=则点33(0,0,0),(1,0,0),(3,0),3),(E D C P F ---, ∴(1DC =-30),(1DP =,03),设平面PDC 的法向量为(n x =,y ,)z ,则·0·0n DC n DP ⎧=⎨=⎩,即3030x z x ⎧=⎪⎨-+=⎪⎩,解得33x x z⎧=⎪⎨=⎪⎩,不妨令1z =,得(3n =-,1-,1); 又33(1,2EF =-, 设EF 与平面PDC 所成角为θ,∴36sin |cos |555?2EF n θ=<>=⋅=,.所以EF 与平面PDC 6. 【点睛】对于线面角可以转化为直线的方向向量与平面的法向量的夹角运算,对于证明线线关系,线面关系,面面关系等方面的问题,必须在熟练掌握有关的定理和性质的前提下,再利用已知来进行证明.20.(1)证明见解析;(2)证明见解析. 【分析】(1)取DA 的中点G ,连接FG ,GE ,推导出四边形BFGE 为平行四边形,从而BF //EG ,由此能证明BF //平面ADE.(2)取DE 的中点H ,连AH ,CH ,推导出AH ⊥DE ,AH ⊥HC ,从而AH ⊥平面BCDE ,由此能证明平面ADE ⊥BCDE . 【详解】(1)如图所示,取DA 的中点G ,连接FG ,GE.∵F 为AC 的中点, ∴GF //DC ,且GF =12DC .又DC //BE ,CD =2BE =4, ∴EB //GF ,且EB =GF ∴四边形BFGE 是平行四边形, ∴BF //EG .∵EG ⊂平面ADE ,BF ⊄平面ADE , ∴BF //平面ADE .(2)取DE 的中点H ,连接AH ,CH . ∵△ADE 是边长为2的等边三角形, ∴AH ⊥DE ,且AH 3.在△DHC 中,DH =1,DC =4,∠HDC =60°根据余弦定理可得HC 2=DH 2+DC 2-2DH ·DCcos 60°=12+42-2×1×4×12=13,即HC 13 在△AHC 中,AH 3HC 13AC =4. 所以AC 2=AH 2+HC 2,即AH ⊥HC .因为AH DE ⊥,AH HC ⊥,DE HC H ⋂=AH ∴⊥平面BCDE ∵AH ⊂平面ADE ,∴平面ADE ⊥平面BCDE . 【点睛】方法点睛:要证线面平行,一般需要证明(1)线线平行(2)面面平行两种方法,在平行的证明中,线线平行一般需要考虑中位线、平行四边形,平行线分线段成比例的逆定理.21.(1)答案见解析;(2)11. 【分析】(1)选择①,结合直二面角的定义,证明BD ⊥平面EOA 内的两条相交直线,EO AO ;(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =CO x =,可得EB 关于x 的函数,求出EB 取得最小值时x 的值,连结EM ,作QF EM ⊥于F ,连结BF ,求出sin QBF ∠的值,即可得答案; 【详解】解:(1)命题P :若AB AD =,则BD ⊥平面EOA . ∵AC GH ⊥,∴AO GH ⊥,EO GH ⊥, 又二面角E GH B --的大小为90°, ∴90AOE ∠=︒,即EO AO ⊥, ∴EO ⊥平面ABCD , ∴EO BD ⊥,又AB BC =,∴AO BD ⊥,AO EO O =,∴BD ⊥平面EOA .(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =设CO x =,OM x =,222216OB OM MB x =+=-+,2222216EB EO OB x =+=-+,当x =min EB =连结EM ,作QF EM ⊥于F ,连结BF , 由(1)知BD ⊥平面EOA , ∴BD QF ⊥,∴QF ⊥平面EBD , ∴QBF ∠即为QB 与平面EBD 所成角,在Rt EMB 中,EB =2BM =,EM =AE =,由()2222(2)2QB AE AB BE QB +=+⇒=,2QF =∴sin QF QBF QB ∠==,即QB 与平面EBD .【点睛】求线面角首先要根据一作、二证、三求找出线面角,然后利用三角函数的知识,求出角的三角函数值即可. 22.(I)证明见解析;(II)3 . 【分析】(I )取AD 的中点P ,连结EP PC ,,MP ,利用平行四边形及线面垂直的性质定理证明,,PE PC AD 相互垂直,从而可证明EC 与,MP MD 垂直,然后可得线面垂直,面面垂直;(II )取Q CD 为的中点,连结,PQ EQ ,可得EQP ∠为二面角A CD E --的平面角,在Rt EPQ △中求得其余弦值.【详解】(Ⅰ)证明:取AD 的中点P ,连结EP PC ,.则EF AP =,∵//FE AP =,∴四边形FAPE 是平行四边形, ∴//FA EP =,同理,//AB PC =.又∵FA ⊥平面ABCD ,∴EP ⊥平面ABCD ,而PC AD ,都在平面ABCD 内,∴.EP PC EP AD ⊥⊥, 由AB AD ⊥,可得PC AD ⊥, 设FA a =,则2.EP PC PD a CD DE EC a ======,所以△ECD 为正三角形.∵DC DE =且M 为CE 的中点,∴DM CE ⊥.连结MP ,则.MP CE ⊥PM ∩MD =M ,而PM ,MD 在平面AMD 内 , ∴CE ⊥平面AMD而CE ⊂平面CDE ,所以平面AMD ⊥CDE . (Ⅱ)解:取Q CD 为的中点,连结,PQ EQ , ∵CE DE =,∴.EQ CD ⊥ ∵PC PD =,∴PQ CD ⊥∴EQP ∠为二面角A CD E --的平面角.由(Ⅰ)可得, EP PQ EQ a PQ ==⊥,,.于是在Rt EPQ △中,cos 3PQ EQP EQ ∠==.∴二面角A CD E --. 【点睛】方法点睛:本题考查证明面面垂直,考查求二面角.求二面角的几何方法:一作二证三计算,一作:作出二面角的平面角;二证:证明所作的角是二面角的平面角;三计算:在三角形中求出这个角(这个角的余弦值). 23.(1)证明见解析;(2)14【分析】(1)由余弦定理可得23BD =,证得AD BD ⊥,则BC BD ⊥由PD ⊥底面ABCD ,BC ⊂平面ABCD ,证得PD BC ⊥,得证.(2)Q 为PC 的中点,利用等积法12D PBQ D BCQ Q BCD P BCD V V V V ----=== ,即可求出结果. 【详解】(1) 在ABD △中,由余弦定理得2222cos 3BD BA AD BA AD DAB =+-⋅∠=, ∵222AD BD AB +=,∴AD BD ⊥,∵//AD BC ,∴BC BD ⊥.又∵PD ⊥底面ABCD ,BC ⊂平面ABCD ∴PD BC ⊥.∵PD BD D ⋂=,∴BC ⊥平面PBD .(2)因为Q 为PC 的中点,所以三棱锥D PBQ -的体积A PBQ V -, 与三棱锥D QBC -的体积相等,即11111232412D PBQ D BCQ Q BCD P BCD V V V V ----=⨯⨯====. 所以三棱锥A PBQ -的体积14D PBQ V -=.【点睛】本题主要考查了线面垂直的证明,在含有长度时需要解三角形来证垂直,并且不要忘记线面垂直的性质运用,在求三棱锥的体积时注意等体积法的使用 24.(1)证明见解析;(2)2. 【分析】(1)取PD 中点N ,证明BMNC 为平行四边形,得到//BM NC ,从而得到//BM 平面PCD .(2)对三棱锥B CDM -进行等体积转化,转化为求P BCD -的体积的一半.取AB 中点O ,连PO ,可证PO 为三棱锥P BCD -的高并求出其长度,求出BCD △的面积,得到三棱锥P BCD -的体积,即可求出三棱锥B CDM -的体积. 【详解】证明:(1)取PD 中点N ,连接MN ,NC , MN 为PAD △的中位线,//MN AD ∴,且12MN AD =, 又//BC AD ,且12BC AD =,//MN BC ∴,且MN BC =, 则BMNC 为平行四边形,//BM NC ∴,又NC ⊂平面PCD ,MB ⊂/平面PCD , //BM ∴平面PCD .(2)取AB 中点O ,连PO ,,PB PA PO AB =∴⊥,又平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,PO ⊂平面PAB ,PO ∴⊥平面ABCD . PO ∴为三棱锥P BCD -的高, PA PB =,4AB =,PB PA ⊥, PAB ∴为等腰直角三角形,2PO =, 90DAB ABC ,//AD BC ,1134622BCDSBC AB =⨯⨯=⨯⨯=, M 是PA 的中点,∴三棱锥B CDM -的体积为:11162223126P B CDM M BCD BCD BCDV V V SPO ---==⨯=⨯=⨯⨯=.【点睛】本题考查通过线线平行证明线面平行,通过面面垂直证明线面垂直,变换顶点和底面进行等体积转化,求三棱锥的体积,属于中档题. 25.(1)证明见解析;(22. 【分析】(1)在正方体1111ABCD A B C D -中,易证1,C O BD CO BD ⊥⊥,由线面垂直的判定定理得到BD ⊥平面1C OC ,然后再利用面面垂直的判定定理证明.(2)由(1)知BD ⊥平面1C OC ,且平面1C BD ⋂平面CBD BD =,得到1C OC ∠是二面角1C BD C --的平面角 ,然后在1Rt C OC ∆中求解. 【详解】(1)∵在正方体1111ABCD A B C D -中, 点O 是BD 中点 , 又11BC DC = , BC DC = ,∴ 1,C O BD CO BD ⊥⊥11,C O CO O C O =⊂平面1,C OC CO ⊂平面1C OC ,BD ∴⊥平面1C OC ,又∵BD ⊂平面11BDD B , ∴平面11BDD B ⊥平面1C OC .… (2)由(1)知:平面1C BD ⋂平面CBD BD =,11,C O BD C O ⊥⊂半平面1;,C BD CO BD CO ⊥⊂ 半平面;CBD所以1C OC ∠是二面角1C BD C --的平面角 则在正方体1111ABCD A B C D -中121,C C OC == ∴在1Rt C OC ∆中,11tan 2C CC OC OC∠== 故二面角1C BD C --2 . 【点睛】本题主要考查线面垂直,面面垂直的判定定理以及二面角的求法,还考查了逻辑推理和运算求解的能力,属于中档题.26.(1)证明见解析;(2)证明见解析;(3)8 3 .【分析】(1)由线面垂直判定定理,要证线面垂直,需证AD垂直平面PBE内两条相交直线,由,E是AD的中点,易得AD垂直于,再由底面是菱形,得三角形为正三角形,所以AD垂直于PA,(2)由线面平行判定定理,要证线面平行,需证PC平行于平面内一条直线,根据1h是的中点,联想到取AC中点O所以OQ为△PAC中位线.所以OQ // PA注意在写定理条件时,不能省,要全面.例如,线面垂直判定定理中有五个条件,线线垂直两个,相交一个,线在面内两个;线面平行判定定理中有三个条件,平行一个,线在面内一个,线在面外一个,(3)研究体积问题关键在于确定高,由于两个底面共面,所以求的值就转化为求对应高的长度比.【详解】(1)因为E是AD的中点,PA=PD,所以AD⊥PE.因为底面ABCD是菱形,∠BAD=,所以AB=BD,又因为E是AD的中点,所以AD⊥BE.因为PE∩BE=E,所以AD⊥平面PBE.(2)连接AC交BD于点O,连结OQ.因为O是AC中点,Q是PC的中点,所以OQ为△PAC中位线.所以OQ//PA.因为PA 平面BDQ,OQ平面BDQ.所以PA//平面BDQ.(3)设四棱锥P-BCDE,Q-ABCD的高分别为2h,1h,所以V P-BCDE=13S BCDE2h,V Q-ABCD=13S ABCD1h.因为V P-BCDE=2V Q-ABCD,且底面积S BCDE=S ABCD.所以,因为,所以.。
北师大版必修第二册第六章立体几何初步专题课:平面与平面垂直的证明技法课件
证明:取BC的中点D,连接AD,SD。由题意知
, 为等边三角形,所以 = ,易证 ⊥
。
因为 ∆是等腰直角三角形,所以 =SD,可得
2
2
2
2
2
2
+ = + = = 。
在 ∆中,由勾股定理的逆定理知 ⊥SD.由 ∩
B.垂直于同一条直线的两条直线互相平行
C.两个平面与第三个平面垂直,则这两个平面互相平行
D.两个平行平面中的一个平面与第三个平面垂直,则另一
个平面也与第三个平面垂直
分析:本题主要考查空间直线与直线,直线与平
面,平面与平面的位置关系。
解:对于A,平行于同一个平面的两条直线可能
的位置关系有相交、异面、平行,因此不一定是
互相平行。
对于B,垂直于同一条直线的两条直线的位置关
系有平行、相交、异面,因此不一定是互相平行。
对于C,如图3所示,平面ABC与平面ABE都垂直
平面BCE,但平面ABC与平面ABE相交 。D是正
确的。
说明
这种方法用的比较少,在理论中行得通,
在实践中,针对性的题比较少。
四、向量法
已知两个平面α,β,两个平面的法向量分别为
垂线在平面BDM内.
(1)如图所示,取EC的中点F,连接DF.
∵EC⊥平面ABC,
∴EC⊥BC,
又由已知,易得DF∥BC,
∴DF⊥EC.
在Rt△EFD和Rt△DBA中,EF=EC=BD,
且由已知,易得FD=BC=AB,
∴Rt△DFE≌Rt△ABD,故ED=DA.
(2)取CA的中点N,连接MN,BN,
则MN∥EC,又BD∥CE,且MN=EC,又BD=CE
立体几何初步复习课
立体几何初步复习课一、内容和内容解析1.内容人教版普通高中教科书数学必修第二册第167页至第171页第八章立体几何初步小结及复习参考题8.重点是通过分析常见几何图形及典型问题,梳理立体几何初步的核心概念、定理等内容与思想方法.本章知识结构如下框图:2.内容解析本章包括两部分内容,第一部分是认识基本立体图形:包括从空间几何体的整体观察入手,通过认识柱、锥、台、球等基本立体图形的组成元素及其相互关系,认识这些图形的几何结构特征,以及它们在平面上的直观图表示和它们的表面积和体积的计算.第二部分是认识基本图形位置关系:主要是讨论组成立体图形的几何元素之间的位置关系.从组成立体图形的基本元素——点、直线、平面出发,研究平面基本性质,认识空间点、直线、平面的位置关系,重点研究直线、平面之间的平行和垂直这两种特殊的位置关系.因此本节课的教学重点是通过分析常见几何图形及典型问题,梳理立体几何初步的核心概念、定理等内容与思想方法,从而构建立体几何的核心体系.难点是分析组合体的结构特征以及运用有关定理推理证明一些几何元素间的位置关系.二、目标和目标解析1.目标(1)在回顾与思考本章的主要内容的基础上,引导学生梳理立体几何的核心概念、定理等内容与思想方法,构建立体几何的核心体系,体会研究空间图形的基本思路:直观感知、操作确认、推理论证、度量计算.(2)借助分析典型问题的通性通法,通过“图”(识图、画图、用图)提升学生直观想象素养,通过“写”(图形、文字、符号三种语言)培养学生逻辑推理能力,通过“悟”(直观感知、操作确认)发展学生数学抽象水平.2.目标解析(1)通过问题的形式回顾主要内容,并不是简单的重复,而是深入思考、归纳概括、建立知识结构,形成研究空间图形的基本方法.(2)借助正方体等常见几何体模型,设计一些综合性较强的问题让学生自主探究,建立一套解决复杂问题的处理模式.三、教学问题诊断分析学生虽然学完了立体几何初步的内容,但对几何图形的认识基本上停留在碎片化的就题论题的表层水平,对空间元素位置关系的研究不深入,需要在一两节复习课上以师生相互交流的方式更深入地认识立体几何.四、教学支持条件分析观察和展示现实生活中的实例与图片,“几何画板”的画图软件,投影仪等.五、教学过程设计问题1:我们是从哪些角度入手研究基本几何体的结构特征的?你能用基本几何体的结构特征解释身边物体的结构吗?请举例说明.我们从对空间几何体(实物、模型、图片等)的整体观察入手,认识多面体、旋转体以及一些基本几何体(棱柱、棱锥、棱台、圆柱、圆锥、圆台、球)的结构特征,研究这些几何体的组成元素及其相互关系.师生共同总结:(1)n棱锥:F=n+1,E=2n,V=n+1,V+F-E=2n棱柱与n棱台:F=n+2,E=3n,V=2n,V+F-E=2n棱锥的本质特征:有一个面是n边形,其余各面是有一个公共顶点的三角形.n棱柱的本质特征:有两个面(均为n边形)相互平行,其余各面是每相邻两个面的公共边互相平行的四边形面.n棱台是用一个平行于n棱锥底面的平面去截棱锥,所得的底面与截面之间的部分.当n棱柱的一个底面“均匀”缩小变为面积较小的相似底面时,变成n棱台;继续“均匀”缩小成一个点时,便变成n棱锥.(2)V+F-E=2这个规律是欧拉拓扑公式:V+F-E=2,其中V,F,E分别是简单多面体的顶点个数、面数、棱的条数.例2 中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体,它的所有顶点都在同一个正方体的表面上,半正多面体体现了数学的对称美.图2是图1“半正多面体”的直观图.(1)请你数一数该几何体的面数F,棱数E,顶点数V,是否有例1的规律?(2)请你说说是怎样数出来的?说说该半正多面体的结构特征.师生共同总结:(1)F=26,E=48,V=24,F+V-E=2(2)①该半正多面体可看成一个组合体,从上而下看,最上层与最下层是两个全等的多面体(如图3,图5),图3多面体的下底面是正八边形,上底面是正方形,且下底面与上底面平行,侧面有四个正方形,四个正三角形;中间是正八棱柱(如图4).②从上下、左右、前后三个方向看,该半正多面体都具有相同的结构,体现了数学的对称美,也展示了南北朝时期的审美观与几何文化.问题2:利用斜二测画法可以画出空间几何体的直观图.你能结合实例说出用斜二测画法画空间几何体的直观图的基本步骤吗?斜二测画法画空间几何体的直观图,是用平面图形表示空间图形的重要方法,我们能够根据直观图想象空间几何体的形状和结构.简单说,斜二测画法的规则是:横竖不变,纵减半,平行性不变.我们可以例1中的正八棱柱为例,具体展示用斜二测画法画空间几何体的直观图的基本步骤(如图6).问题3:对于空间几何体,可以有不同的分类,你能选择不同的分类标准对柱、锥、台、球等空间几何体进行分类吗?如何计算柱、锥、台、球的表面积和体积?你能说出柱、锥、台、球的体积公式之间的联系吗?空间几何体按照围成它的各个面的特征(平面还是曲面)分类,可以得到多面体、旋转体.进一步地,按照组成多面体和旋转体的面、棱、顶点等组成要素的特征及其位置关系分类,又可以得到棱柱、棱锥、棱台等基本的多面体以及圆柱、圆锥、圆台、球等基本的旋转体.棱柱、棱锥和棱台的表面积就是组成它们的各个面的面积和,圆柱、圆锥、圆台的侧面与表面积可以通过侧面展开为平面图形来处理.用运动变化的观点研究棱柱、棱锥和棱台的体积公式之间的关系:分析:考虑旋转后得到怎样的几何体.解析:图7旋转后形成的几何体是底面圆半径与高均为的圆柱挖去一个圆锥后的几何体,该圆锥的顶点为圆柱下底的圆心,底面与圆柱上底面重合(如图9中的右图所示).为什么这两个几何体的体积相等呢?课后同学们可上网查阅“祖暅原理”进行更多的了解.探究1:问以该正方体的顶点为顶点的四面体有几种(全等的算一种)?比较这些四面体的结构特征.展示同学们的作业,同时交流思路.四面体的四个顶点不可能在正方体的同一个面上,应该分布在正方体的上、下两个面上,以在下底面的顶点为标准分类考虑.归纳总结有以下四种(如图11):探究2:是否存在四个面都是直角三角形的四面体?总结:(1)求四面体的体积一般可根据四面体的结构特征,确定高与底面,转化为求三棱锥的体积;图11(4)中的四面体是正四面体(各面都是全等的正三角形),也可通过割补法求得;定义法、转化法、割补法等是求几何体体积的重要方法.(2)经计算发现,图11(4)中的正四面体的体积最大,表面积最小,这也是现实中经常要考虑的最优化问题.探究4:怎样求图11中的四个四面体的外接球与内切球的半径?四个四面体的外接球与正方体的外接球相同,其一条直径为正方体的体对角线,半径.如图12,可以类比三角形内切圆半径的面积计算思路,可计算出四个内切球的半径.问题4:刻画平面的三个基本事实是立体几何公理体系的基石,是研究空间图形、进行逻辑推理的基础.实际上,三个基本事实刻画了平面的“平”、平面的“无限延展”,你能归纳一下刻画的方法吗?平面的三个基本事实是按照从简单到复杂的顺序,刻画平面的基本性质.基本事实1是从点与平面关系的角度刻画平面的唯一存在性,基本事实2是从直线与平面关系的角度利用直线的“直”和“无限延伸”的属性刻画了平面的“平”和“无限延展”的属性,基本事实3是从平面与平面关系的角度进一步说明了平面的“平”和“无限延展”的特征:由于平面是“平的”,因而它们才可能交于一条直线,否则交线就不是“直”的,而是“曲”的了,例如圆柱的侧面和底面的交线就是一条曲线;另外,两个平面相交于一条直线,直线是“无限延伸”的,也说明平面的交点有无数个,平面是“无限延展”的.空间直线与直线,直线与平面,平面与平面之间的位置关系是从生活世界中找到模型,再根据公共点的个数、是否共面等进行逻辑分类建立起来的.例5(复习参考题8第5题)三个平面可将空间分成几部分?请分情况说明.探究1:一个平面将空间分成两个部分,两个平面有几种位置关系?它们将空间分成几部分?图13(1)中αPβ,它们将空间分成三部分;图13(2)中αIβ=a,它们将空间分成四部分.探究2:在图13中再增加一个平面,这三个平面可能产生哪些位置关系?每种位置关系可将空间分成几部分?可能出现五种不同的位置关系如图14,三个不同的平面α,β,γ,直线a,b,c,l.将12条分成三个共面组,侧棱组4条,上底面棱组4条,下底面棱组4条,若“异面直线组”含四条或以上的棱,则至少有两条棱在同一组,这样两条棱便共面,这与“异面直线组”的定义矛盾,故“异面直线组”最多有三条棱.问题5:在直线、平面的位置关系中,“平行”和“垂直”是最重要的.(1)在研究这些位置关系的判定时,我们采用了哪些思想方法?以直线与平面垂直为例,总结一下研究判定的内容、过程和方法.(2)研究这些位置关系的性质,实际上就是要研究什么问题?以两个平面相互垂直为例,总结一下研究性质的内容、过程和方法.研究“什么是空间直线、平面的垂直?”以及“空间直线、平面垂直时其要素(直线、平面)有什么确定不变关系”;确立研究空间直线、平面垂直的内容(判定与性质)与路径:“化繁为简”“以简驭繁”“空间问题平面化”是空间元素位置关系的一般思路.我们利用直线与直线的垂直研究直线与平面的垂直,利用直线与直线垂直、直线与平面垂直研究平面与平面垂直.反过来,由直线与平面垂直又可以得到直线与直线垂直,由平面与平面垂直又可以得到直线与直线、直线与平面垂直.小结:正方体(或长方体)是重要的几何体模型,我们要深入研究正方体模型,对它进行变形,构建出新的模型,探求各种空间位置关系或几何模型与正方体之间的联系,彰显正方体的“母体”地位.课后作业:5.教材第170页复习参考题8第10题.6.教材第170页复习参考题8第11题.7.教材第171页复习参考题8第13题.8.教材第171页复习参考题8第14题.六、目标检测设计(时间:90分,满分:100分)一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法错误的是().(A)一个八棱柱有10个面(B)任意n面体都可以分割成n个棱锥(C)棱台侧棱的延长线必相交于一点(D)矩形旋转一周一定形成一个圆柱2.给出下列4个命题:①平行于同一直线的两条直线平行;②平行于同一平面的两条直线平行;③平行于同一直线的两个平面平行;④平行于同一平面的两个平面平行.其中正确的命题是().(A)①②(B)③④(C)①④(D)②③3.给出下列4个命题:①垂直于同一直线的两条直线平行;②垂直于同一平面的两条直线平行;③垂直于同一直线的两个平面平行;④垂直于同一平面的两个平面平行.其中正确的命题是().(A)①②(B)③④(C)①④(D)②③4.三棱锥的三条侧棱两两互相垂直,长分别为,则这个三棱锥的体积是().二、填空题:本大题共6小题,每小题5分,共30分.请将答案填在对应题号的位置上.9.正方体相邻两个面的两条对角线所成角的大小是________.10.长方体的所有顶点都在一个球面上,长、宽、高分别为3,2,1,那么这个球面的面积是________.11.正三棱锥的底面边长为2,侧棱长为3,则它的体积为________.13.已知矩形ABCD,AB=2,AD=1,沿BD将△ABD折起成△.若点A′在平面BCD上的射影落在△BCD的内部,则四面体的体积的取值范围是________.14.空间的4个平面,最多能将空间分成________个区域.三、解答题:本大题共4小题,共38分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分8分)画图,并证明:若m//α,n⊥α,则m⊥n.16.(本题满分10分)17.(本题满分10分)如图,正四棱锥P-ABCD中,已知侧棱和底面边长都等于2,E是AB的中点.(1)求证:AB∥平面PCD.(2)求异面直线PE与BC所成角的余弦值.。
高中数学必修2解析几何初步教材分析及教学建议之一
高中数学必修2《解析几何初步》教材分析及教学建议之一三明九中李宇宙一、解析几何内容的设计:1. 几何的内容按三个层次设计(1)必修课程中的几何,主要包括:立体几何初步、解析几何初步、平面向量、解三角形等。
(2)选修系列1、系列2中的几何,主要包括:圆锥曲线与方程、空间向量与立体几何。
(3)选修系列3、系列4(专题)中的几何.主要包括:球面上的几何、坐标系与参数方程、几何证明选讲等。
2.解析几何内容的变化突出了用代数方法解决几何问题的过程,同时也强调代数关系的几何意义。
解析几何的内容也是分层次设计的:在必修课程中,主要是直线与方程、圆与方程;圆锥曲线与方程的内容则放在选修系列1、系列2中。
3.必修2削弱的内容两条直线的位置关系(删除了两条直线的夹角)等。
4.必修2增删的内容(1) 解析几何增加的内容:直线与圆、圆与圆的位置关系;空间直角坐标系(2) 解析几何删除的内容:曲线与方程;圆的参数方程;圆锥曲线;线性规划移至必修5(第三章)不等式部分二、数学必修2《解析几何初步》的教学建议认真把握教学要求教学中,注意控制教学的难度,避免进行综合性强、难度较大的数学题的训练,避免在解题技巧上做文章。
关注重要数学思想方法的教学重要的数学思想方法不怕重复。
《标准》要求“坐标法”应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
在教学中应自始至终强化这一思想方法,这是解析几何的特点。
教学中注意“数”与“形”的结合,在通过代数方法研究几何对象的位置关系以后,还可以画出其图形,验证代数结果;同时,通过观察几何图形得到的数学结论,对结论进行代数证明,即用解析方法解决某些代数问题,不应割断它们之间的联系,应避免只强调“形”到“数”的方面,而忽视“数”到“形”的方面。
关注学生的动手操作和主动参与学习方式的转变是课程改革的重要目标之一。
教学中,注意适当给学生数学活动和交流的机会,引导他们在自主探索的过程中获得知识、增强技能、掌握基本的数学思想方法。
人教A版高一数学必修第二册第八章《立体几何初步》章末练习题卷含答案解析 (21)
高一数学必修第二册第八章《立体几何初步》单元练习题卷11(共22题)一、选择题(共10题)1.如图,在长方体ABCD−A1B1C1D1中,下列说法正确的是( )A.长方体的顶点一共有8个B.线段AA1所在的直线是长方体的一条棱C.矩形ABCD所在的平面是长方体的一个面D.长方体由六个平面围成2.半径为2的球的表面积为( )A.4πB.16π3C.16πD.32π33.一个棱柱是正四棱柱的条件是( )A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱4.已知下列四个结论:①铺得很平的一张白纸是一个平面;②平面是矩形或平行四边形的形状;③一个平面的面积可以等于1m2.其中正确结论的个数是( )A.0B.1C.2D.35.已知一个四棱锥的高为3,其底面用斜二测画法所画出的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为( )A.√2B.6√2C.13D.2√26.下列几何体中,多面体是( )A.B.C.D.7.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+36√5B.54+18√5C.90D.818.三棱柱ABC−A1B1C1的侧棱垂直于底面,且AB⊥BC,AB=BC=AA1=2,若该三棱柱的所有顶点都在同一球面上,则该球的表面积为( )A.48πB.32πC.12πD.8π9.半径为2的球的表面积为( )A.4πB.8πC.12πD.16π10.两等角的一组对应边平行,则A.另一组对应边平行B.另一组对应边不平行C.另一组对应边不可能垂直D.以上都不对二、填空题(共6题)11.已知l∩α=∅,A∈l,则A∉α.用文字语言叙述为.12.有三个命题:甲:底面是平行四边形的四棱柱是平行六面体;乙:底面是矩形的平行六面体是长方体;丙:直四棱柱是直平行六面体.其中真命题的个数是个.13.思考辨析,判断正误.若直线l与平面α内的无数条直线垂直,则l⊥α.( )14.按“斜二测”作图法,平行线段的直观图是.15.空间两直线的位置关系.异面直线定义:不同在平面内的两条直线.16.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为.三、解答题(共6题)17.如图所示,在三棱锥P−ABC中,D,E是PC上不重合的两点,F,H分别是PA,PB上的点,且与点P不重合.判断EF和DH的位置关系,并说明理由.18.用斜二测画法画长、宽、高分别为4cm,3cm,2cm的长方体ABCD−AʹBʹCʹDʹ的直观图.19.圆台的母线长为2a,母线与轴的夹角为30∘,一个底面的半径是另一个底面半径的2倍,求两底面的半径及两底面面积之和.20.圆锥的结构特征圆锥的轴截面有多少个?母线有多少条?圆锥顶点和底面圆周上任意一点的连线都是母线吗?21.侧面都是等腰直角三角形的正三棱锥,底面边长为a时,求该棱锥的表面积.22.如图,正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP=DQ.求证:PQ∥平面BCE.答案一、选择题(共10题)1. 【答案】A【解析】对于A,长方体有8个顶点,A正确;对于B,长方体的棱是长方体相邻两个矩形的公共边,而不是直线,B错误;对于C,长方体的面是围成长方体的各个矩形,C 错误;对于D,长方体由六个矩形围成,D错误.【知识点】棱柱的结构特征2. 【答案】C【知识点】球的表面积与体积3. 【答案】C【知识点】棱柱的结构特征4. 【答案】A【解析】在立体几何中,平面是无限延展的,所以①③错误;通常我们画一个平行四边形或矩形来表示一个平面,但并不是说平面就是矩形或平行四边形,故②错.【知识点】平面的概念与基本性质5. 【答案】D【解析】由题意结合原图与直观图的面积比为2√2可知该四棱锥的底面积S=2√2,则该四棱锥的体积为V=13Sℎ=13×2√2×3=2√2.【知识点】直观图6. 【答案】B【解析】选项A中给的几何体是球,它是旋转体,故A错误;选项B中给的几何体是三棱柱,它是多面体,故B正确;选项C中给的几何体是圆柱,它是旋转体,故C错误;选项D中给的几何体是圆锥,它是旋转体,故D错误.故选B.【知识点】球的结构特征、棱柱的结构特征、圆锥的结构特征、圆柱的结构特征7. 【答案】B【知识点】棱柱的表面积与体积、三视图8. 【答案】C【知识点】球的表面积与体积9. 【答案】D【解析】因为球的半径为r=2,所以该球的表面积为S=4πr2=16π.【知识点】球的表面积与体积10. 【答案】D【知识点】平面的概念与基本性质二、填空题(共6题)11. 【答案】已知直线l与平面α平行,若点A在直线l上,则点A不在平面α上【知识点】平面的概念与基本性质12. 【答案】1【知识点】棱柱的结构特征13. 【答案】×【知识点】直线与平面垂直关系的判定14. 【答案】平行线段【知识点】直观图15. 【答案】任何一个【知识点】直线与直线的位置关系16. 【答案】2√3【解析】如图,以A2为直角顶点,B2,C2为另外两个顶点,过点C2作C2E⊥AA1,垂足为E,过点B2作B2F⊥AA1,垂足为F,由题可设A2E=A2F=x,在Rt△A2B2C2中,A2B2=A2C2=√x2+4,B2C2=√(2x)2+4,所以2(x2+4)=4x2+4,解得x2=2,所以B2C2=2√3.【知识点】棱柱的结构特征三、解答题(共6题)17. 【答案】EF和DH是异面直线.理由如下:因为DH⊂平面PCB,FE∩平面PCB=E,E∉DH,H∈DH,H∉FE,所以EF和DH是异面直线.【知识点】直线与直线的位置关系18. 【答案】(1)画轴,如图,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45∘,∠xOz=90∘.(2)画底面.以点O为中点,在x轴上取线段MN,使MN=4cm;在y轴上取线段PQ,使PQ=32cm.分别过点M和N作y轴的平行线,过点P和Q作x轴的平行线,设它们的交点分别为A,B,C,D,四边形ABCD就是长方体的底面ABCD.(3)画侧棱.过A,B,C,D各点分别作z轴的平行线,并在这些平行线上分别截取2cm长的线段AAʹ,BBʹ,CCʹ,DDʹ.(4)成图.顺次连接Aʹ,Bʹ,Cʹ,Dʹ(去掉辅助线,将被遮挡的部分改为虚线),就得到长方体的直观图.【知识点】频率分布直方图19. 【答案】设圆台上底面半径为r,则下底面半径为2r.将圆台还原为圆锥,如图,则有∠ABO=30∘.在Rt△BOʹAʹ中,rBAʹ=sin30∘=12,所以BAʹ=2r.在Rt△BOA中,2rBA =sin30∘=12,所以BA=4r.又BA−BAʹ=AAʹ,即4r−2r=2a,所以r=a.所以两底面面积之和S=πr2+π(2r)2=5πr2=5πa2.所以圆台上底面半径为a,下底面半径为2a,两底面面积之和为5πa2.【知识点】圆锥的结构特征20. 【答案】圆锥的轴截面有无穷多个,母线有无穷多条,圆锥顶点和底面圆周上任意一点的连线都是母线.【知识点】圆锥的结构特征21. 【答案】因为正三棱锥的侧面都是等腰直角三角形,所以侧棱长等于√22a,所以该棱锥的表面积S=√34a2+3×12×(√22a)2=3+√34a2.【知识点】棱锥的表面积与体积22. 【答案】联结AQ,并延长交BC于点K,联结EK,易证:APPE =DQBQ,DQBQ=AQQK,所以APPE=AQQK,从而可得PQ∥EK.又PQ不在平面BCE内,EK⫋平面BCE,所以PQ∥平面BCE.【知识点】直线与平面平行关系的判定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系的几何意义。
内容
空间几何体 →点、线、面之间的位置关系 →柱、锥、台、球的表面积和体积
结构
空间几何体
简单的空间几何体
结构特征 图形表示 侧面积和体积
多面体(棱柱、棱锥、棱台) 旋转体(圆柱 圆锥 圆台 球)
结构 特征
图形 表示
侧面积 和体积
结构 特征
图形 表示
侧面积 和体积
结构(续)
置关系?
复杂的几何体,通常是由一些简单几何 体(如柱、锥、台、球)组合而成的。 ● 柱、锥、台、球分别具有怎样的结构特征? ● 如何在平面上表示空间几何体? ● 如何计算柱、锥、台、球的表面积和体积?
● 仔细观察下面的几何体,它们有什么共
同的特点?
标准与
大纲
平面向量(12课时)
解三角形(8课时)
解三角形(含在三角函数内)
平面解析几何初步(18课时) 直线和圆的方程(22课时)
圆锥曲线方程 (选1-1,2-1、12\18课时)
圆锥曲线方程 (18课时)
立体几何初步(18课时)、空间 直线、平面、简单几何体 向量与立体几何(选、18课时) (36课时)
基本元素(点 线 面) 位置关系 语言描述 判定 性质
直线与直线
直线与平面
平面与平面
位置 语言 判定 关系 描述 性质
位置 语言 判定 关系 描述 性质
位置 语言 判定 关系 描述 性质
◆ 分层递进
必修数学2——立体几何初步(通过 直观感知、操作确认,获得几何图形的 性质,并通过简单的推理发现、论证一 些几何性质)
这是学习空间向量这部分内容的重点)
(1)观察(空间几何体)、认识(结 构特征)、理解(三视图)、会画 (直观图)
(2)利用载体(长方体)→直观认识 关系(点、线、面)→语言表述(平行、 垂直的性质与判定)→证明(性质定理)
(3)能运用(证明一些简单命题),
会计算(简单几何体的表面积与体积)
最大的相同点 大纲中的几何内容在课标中都有 最大的不同点 课标中选3、选4中的几何在大纲中没有
核心 几何课程给学生提供了充分的选择余地;几何课程为学
生未来的发展提供了丰富的数学文化土壤
问题串
● 空间几何体是由哪些基本几何体构成的? ● 如何描述和刻画这些基本几何体的形状和大小? ● 构成这些几何体的基本元素之间具有怎样的位
苏州大学数学科学学院 徐稼红
必修数学2: 必修数学4:平面向量 选修系列1:圆锥曲线与方程 选修系列2: 选修系列3:
选修系列4:
培养和发展学生
把握图形的能力
空间想象能力 推理能力
几何直觉能力
提升几何直观的思想方法,突出用代
数方法解决几何问题的过程,强调代数关
特殊变化
棱柱、棱锥、棱台的新描述
投影→视图→直观图
判定定理和性质定理的不同要求
三垂线定理的淡出
计算要求的降低(线线、线面、
面面角的计算)
弹性内容的处理
旁白(32) 思考(9) 阅读(艺术家的透视法·年希尧的《视学》
\平面几何与立体几何的类比\祖暅原理)
链接(圆锥、圆台侧面积公式的推导) 探究拓展 (类比推出球面积公式) 问题与建模(体积的近似计算)
高中几何与义务阶段几何课程的关系
图形的认识 立体几何、球面几何、解三角形
图形与变换 欧拉公式与闭曲面分类(3)、对
称与群(3)、矩阵与变换(4)
图形与坐标
平面解析几何、平面向量、圆锥 曲线与方程、空间向量与立体几 何、坐标系与参数方程(4)
图形与证明 几何证明选讲(4)、三等分角与
数域扩充(3)
1.1 空间几何体
(直观感知)
1.2 点、线、面之间的位置关系
(直观感知\操作确认\思辨论证)
1.3 柱、锥、台、球的表面积和体积
(直观感知\操作确认\思辨论证\度量计算)
教学要点 体现直观感知、操作确认、思辨
论证、度量计算这一几何学习的过程, 把握教材内容递进的三个层次:
(第四个层次是利用向量来解决立几问题,
选修2-1——空间向量与立体几何
(进一步的论证与度量)
◆ 从整体到局部
传统处理方式——从局部到整体: 点、线、面→柱、锥、台
新教材处理方式——从整体到局部: 柱、锥、台→点、线、面→度量计算
遵循整体到局部、具体到抽象的 原则,通过直观感知、操作确认、 思辨论证、度量计算等方法,认识 和探索空间几何图形及其性质。