第三章_可测函数的知识要点与复习自测
可测函数小结
可测函数(一)可测函数的定义1、在可测函数定义的学习过程中,对于可测函数的表示:∀a∈R, 有{x |f(x) > a}可测,则f(x) 可测;用简单间函数列来表示:有简单函数列{φn},满足limφn = f (x) , 则f(x)可测;由鲁津定理得用连续函数逼近可测函数;n→∞通过本章可测函数的学习,要把这三种关系透彻理解、掌握。
2、简单函数的引入对于学习讨论可测函数、L积分都有重要的意义。
简单函数是常量函数、分段函数的进一步扩展。
通过简单函数,对可测函数及L 积分的讨论从简到繁、从特殊到一般过渡;要证明某个命题对于可测函数(或其一部分)成立,可先证明该命题对简单函数成立,再由极限过程过渡到一般可测函数。
3、可测函数列的等价条件。
(二)可测函数列的收敛性由L测度建立的L积分理论中,零测度集不影响函数的可积性和积分值。
实变函数中的L积分与数学分析中的R积分,有一个很重要的不同点,就是命题的成立引入了“几乎处处”的概念。
对于可测函数列的三种强度不等的收敛定义:几乎一致收敛、几乎处处收敛、依测度收敛,要理解其意义与作用及相互关系。
可测函数列{f n (x) }处处收敛与依测度收敛虽然有很大区别,但仍有密切联系,主要表现在于:(1)处收敛的函数列可能不是依测度收敛,依测度收敛的函数列仍右能不是处处收敛。
(x) }几乎处处收敛(2)若{f n (x) }依测度收敛f(x),则必有子列{f ni于f (x)。
(3)几乎一致收敛函数列{f n(x)}一定依测度收敛于同一函数;反之,若{fn (x) }依测度收敛于f(x),则存在子列几乎一致收敛函数f(x) 。
(三)函数可测与连续的关系——鲁津定理区间上的连续函数、单调函数、简单函数都是可测函数,所以可测函数类比连续函数类更广。
鲁津定理给出了连续函数与可测函数的关系,表明用连续函数可以“逼近”可测函数,从而用我们比较熟悉的连续函数去把握比较抽象的可测函数,在某些情况下可以适当地把可测函数转换为连续函数。
概率复习题自测题解答
概率论与数理统计练习册 复习题和自测题解答第一章 复习题1、一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是正品(i =1,2,3,……,n ),用i A 表示下列事件: (1) 没有一个零件是次品; (2) 至少有一个零件是次品; (3) 仅仅只有一个零件是次品; (4) 至少有两个零件是次品。
解:1)1ni i A A ==2)1ni i A =3)11nn i j i j j i B A A ==≠⎡⎤⎛⎫⎢⎥ ⎪=⎢⎥⎪ ⎪⎢⎥⎝⎭⎣⎦4)A B2、任意两个正整数,求它们的和为偶数的概率。
解:{}(S =奇,奇),(奇,偶),(偶,奇),(偶,偶) 12P ∴=3、从数1,2,3,……,n 中任意取两数,求所取两数之和为偶数的概率。
解:i A -第i 次取到奇数(i =1,2);A -两次的和为偶数1212()()P A P A A A A =当n 为奇数时:11111112222()112n n n n n P A n n nn n----+--=⋅+⋅=--当n 为偶数时:1122222()112(1)nnn nn P A n n n n n ---=⋅+⋅=---4、在正方形{(,)|1,1}p q p q ≤≤中任意取一点(,)p q ,求使方程20x px q ++=有两个实根的概率。
解: 21411136xS dx dy --==⎰⎰13136424p ∴==5、盒中放有5个乒乓球,其中4个是新的,第一次比赛时从盒中任意取2个球去用,比赛后放回盒中,第二次比赛时再从盒中任意取2个球,求第二次比赛时取出的2个球都是新球的概率。
解:i A -第一次比赛时拿到i 只新球(i =1,2)B -第二次比赛时拿到2只新球1)()()1122()()|()|P B P A P B A P A P B A =⋅+⋅2122344222225555950C C C C C C C C =⨯+⨯=6、两台机床加工同样的零件,第一台加工的零件比第二台多一倍,而它们生产的废品率分别为0.03与0.02,现把加工出来的零件放在一起 (1)求从中任意取一件而得到合格品的概率;(2)如果任意取一件得到的是废品,求它是第一台机床所加工的概率。
第三章可测函数
第三章Lebesgue 可测函数1f 是[a,b ]上几乎处处有限的可测函数.证明:m ({x ∈[a,b ]:f (x )>α})是α的右连续函数,m ({x ∈[a,b ]:f ≥α})是α的左连续函数.证明我们仅仅考虑第二个结论.假如{Δn }n ≥1,Δn ↑0,0≤m ({x ∈[a,b ]:f (x )≥α+Δn })−m ({x ∈[a,b ]:f (x )≥α})≤m ({x ∈[a,b ]:α+Δn ≤f (x )<α}).一个明显的事实是集合列{{x ∈[a,b ]:α+Δn ≤f (x )<α}}n ≥1是单调下降的集合列且测度都有限,从而lim n →∞m ({x ∈[a,b ]:α+Δn ≤f (x )<α})=m (︁∩∞n =1{x ∈[a,b ]:α+Δ≤f (x )<α})︁这就证明了我们理想的结论.2设E =[0,1]上的可测函数f 几乎处处有限,证明:存在实数α0,使得m (E (f ≥α0))≥1/2,m (E (f ≤α0))≥1/2.证明我们知道:lim λ→−∞m (E (f ≥λ))=1,lim λ→∞m (E (f ≤λ))=1,令α=sup {λ:m (E (f ≥λ))≥1/2},β=inf {λ:m (E (f ≤λ))≥1/2}.则α,β都是有限实数.我们来证明:m (E (f ≥α))≥1/2,m (E (f ≤β))≥1/2.我们仅考虑前面一个不等式(后者可以用同样的方式证明).对于任意的自然数n ,存在λ,使得λ>α−1/n ,并且m (E (f ≥λ))≥1/2,46这样就得到m(E(f≥α−1/n))≥1/2.再利用单调增加的可测集合列的测度的极限性质就给出理想的结论.现在回到我们要证明的结论.假如β≤α,明显地β就是我们需要的α0.假如α<β,则存在γ∈(α,β),m(E(f≥γ))<1/2,m(E(f≤γ))<1/2.这是不可能的!(3)设D是可测集合,f沿D连续,证明:f在D上可测.证明我们首先断言Fσ型集合上的连续函数一定可测.事实上,假如E是Fσ型集合,则E可以表示成一列闭集的并集,即E=∪∞E n,n=1其中E n是闭集.由于闭集上的连续函数是可测函数,从而Fσ型集合上的连续函数可测.对于可测集合D,利用可测集合的充分必要条件,我们知道存在Fσ型集合E使得m(D∖E)=0.f在D上可测,所以也在E上连续,当然在E上可测,而f在D∖E上可测很明显,这样就知道f在D上可测。
可测函数的定义与性质
1
第11讲 可测函数的定义与性质 11讲
a + (−∞) = −∞
(iii)对任意 b > 0, C < 0,
b ⋅ +∞ = +∞, b ⋅ (−∞) = −∞ ξ ⋅ +∞ = −∞, c ⋅ (−∞) = +∞
(iv) (+∞) ⋅ (−∞) = (−∞) ⋅ (+∞) = −∞
(−∞) ⋅ (−∞) = (+∞) ⋅ (+∞) = +∞
1 E{ x | f ( x ) ≥ a} = U E{ x | f ( x ) > a − } k k =1 E{ x | f ( x ) < a} = E − E{ x | f ( x ) ≥ a} ∞ 1 E{ x | f ( x ) ≤ a} = U E{ x | f ( x ) > a + } k k =1
i
第11讲 可测函数的定义与性质 11讲
(若 C i = C j ,则将 E i U E j 看作某个Ek ), 往证对任意 a ∈ R1 , E{ x | ϕ( x ) > a} 是可测 集。显然,
∅ 当a ≥ Gn E{ x | ϕ( x ) > a} = E 当a ≥ G1 n U E j当C i ≤ a < C i +1 ( i = 1,L, n − 1), j = i +1
= [ E{ x | f ( x ) > a} I E{ x | f ( x ) = g ( x )}] U [ E{ x | f ( x ) ≠ g ( x )} I E{ x | g ( x ) > a}] 故E{ x | g ( x ) > a} 是可测集 E{ x | f ( x ) > a} I E{ x | f ( x ) = g ( x )}与一个零
第三章可测函数
第三章 可测函数为了引进新的积分,我们还需要引进一类重要的函数即可测集上的可测函数,这类函数一方面与数学分析中的连续函数有着密切的联系,另一方面比连续函数更为广泛、应用价值更大.这里我们需要强调,今后所提到的函数都是指定义在n R 中某点集上的单值实函数,且允许它的值可以取±∞(±∞也称为非正常实数,通常的实数称为有限实数或实数).另外,我们规定:(+∞)+(+∞)=+∞,(-∞)+(-∞)=-∞,对于任意实数a ,总有a +(+∞)=(+∞)+a =+∞,a +(-∞)=-∞,对于b >0,c <0,b ·(±∞)=±∞,c ·(±∞)= ∞,(±∞)·(±∞)=+∞, (+∞)·(-∞)=(-∞)·(+∞)=-∞,0·(±∞)=(±∞)·0=0, 对∞≠b ,o b =∞,对o c ≠,∞=oc, 但(+∞)-(+∞),(±∞)+( ∞),(-∞)-(-∞)均无意义.§1 可测函数的定义及简单性质可测函数的定义方法很多,本节,我们将采用从简单到复杂的方法定义可测函数,即先给出简单的可测函数,然后分析这些函数的测度特性从而归纳出一般可测函数的定义.一、可测函数的定义及等价定义1.简单函数定义1 设E n R ⊂为一个可测集,)(x f 为定义在E 上的实函数,如果 (1)E = mi i E 1=,其中i E 为两两不交的可测集,(2)在每个i E 上)(x f =i c ,即)(x f = ⎩⎨⎧1C C m1E x E x m ∈∈ ,亦即∑==m i E i x c x f i 1)()(χ,其中)(x i E χ表示i E 的特征函数,则称)(x f 为E 上的简单函数.显然)(x D =⎩⎨⎧01 上的无理点为上的有理点为]1,0[]1,0[x x 及 )sgn(x =⎪⎩⎪⎨⎧-10100<=>x x x 均为其定义域上的简单函数.注 只有当可测集E 的分解为有限不交可测分解,且在每个小可测集上)(x f 的取值为常数时,)(x f 才是E 上的简单函数.可以证明,可测集E 上的两个简单函数)(),(x g x f 的和、差及乘积仍为E 上的简单函数,且当0)(≠x g 时,)()(x g x f 也是E 上的简单函数。
深圳实验学校初中部必修第一册第三单元《函数概念与性质》测试题(答案解析)
一、选择题1.已知定义域为R 的函数()f x 在[2)+∞,上单调递减,且(2)f x +是奇函数,则(1)f 、52f ⎛⎫⎪⎝⎭、(3)f 的大小关系是( ) A .5(1)(3)2f f f ⎛⎫<<⎪⎝⎭B .5(1)(3)2f f f ⎛⎫<< ⎪⎝⎭C .5(3)(1)2f f f ⎛⎫<<⎪⎝⎭D .5(3)(1)2f f f ⎛⎫<<⎪⎝⎭2.已知,A B 是平面内两个定点,平面内满足PA PB a ⋅=(a 为大于0的常数)的点P 的轨迹称为卡西尼卵形线,它是以发现土星卫星的天文学家乔凡尼·卡西尼的名字命名.当,A B 坐标分别为(1,0)-,(1,0),且1a =时,卡西尼卵形线大致为( )A .B .C .D .3.已知奇函数()f x 在区间[]2,3上单调递增,则()f x 在区间[]3,2--上( ) A .单调递增,且最大值为()2f - B .单调递增,且最大值为()3f - C .单调递减,且最大值为()2f -D .单调递减,且最大值为()3f -4.意大利著名天文学家伽利略曾错误地猜测链条自然下垂时的形状是抛物线.直到1690年,雅各布·伯努利正式提出该问题为“悬链线”问题并向数学界征求答案.1691年他的弟弟约翰·伯努利和菜布尼兹、惠更斯三人各自都得到了正确答案,给出悬链线的数学表达式——双曲余弦函数:()coshxf x ca c a =+=2xx aae e a -++⋅(e 为自然对数的底数).当0c ,1a =时,记(1)p f =-,12m f ⎛⎫= ⎪⎝⎭,(2)n f =,则p ,m ,n 的大小关系为( ).A .p m n <<B .n m p <<C .m p n <<D .m n p <<5.已知32()2f x x ax ax =++,对任意两个不等实数12,[1,)x x ∈+∞,都有()()2112120x f x x f x x x ->-,则a 的取值范围( )A .2a ≥-B .2a ≤-C .4a ≥-D .4a ≤-6.已知函数2()2+1,[0,2]f x x x x =-+∈,函数()1,[1,1]g x ax x =-∈-,对于任意1[0,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,则实数a 的取值范围是( )A .(,3]-∞-B .[3,)+∞C .(,3][3,)-∞-+∞D .(,3)(3,)-∞-⋃+∞7.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当(]2,4x ∈时,224,23,()2,34,x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对(]12,0x ∀∈-,2[2,1]x ∃∈-,使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-⋃+∞ ⎪⎪⎢⎝⎭⎣⎭B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦ C .(0,8]D .11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭8.已知函数f (x )=|x |+ln|x |,若f (3a -1)>f (1),则实数a 的取值范围是( ) A .a <0B .23a >C .023a <<D .a <0或23a >9.给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{}{},x x m =即.在此基础上给出下列关于函数的四个命题:①11()22f -=;②(3.4)0.4f =-;③11()()44f f -<;④()y f x =的定义域是R ,值域是11,22⎡⎤-⎢⎥⎣⎦;则其中真命题的序号是 ( )A .①②B .①③C .②④D .③④第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案10.已知函数2log (1),1,()1,1,x x f x x +≥⎧=⎨<⎩则满足(21)(31)f x f x +<-的实数x 的取值范围是( ) A .2,3⎛⎫+∞⎪⎝⎭B .(2,)+∞C .2,23⎛⎫⎪⎝⎭D .()1,211.已知函数()()2lg 1f x x x =-+,若函数()f x 在开区间()(),1t t t +∈R 上恒有最小值,则实数t 的取值范围为( ). A .3111,,2222⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭ B .1113,,2222⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭C .11,22⎛⎫-⎪⎝⎭ D .13,22⎛⎫⎪⎝⎭12.若01m n <<<且1mn =,则2m n +的取值范围是( ) A.)+∞B .[3,)+∞C.)+∞D .(3,)+∞13.若函数()f x 满足()()a f x b a b ≤≤<,定义b a -的最小值为()f x 的值域跨度,则是下列函数中值域跨度不为2的是( ) A.()f x =B .||()2x f x -= C .24()4xf x x =+D .()|1|||f x x x =+-14.函数1()lg f x x=+ ) A .(0,2] B .(0,2) C .(0,1)(1,2]⋃D .(,2]-∞15.若()21f x ax x a =+++在()2,-+∞上是单调递增函数,则a 的取值范围是( ) A .1(,]4-∞B .1(0,]4C .1[0,]4D .1[,)4+∞二、填空题16.已知定义在R 上的偶函数()y f x =在[)0,+∞上是严格增函数,如果(1)(2)f ax f +≤对于任意[]1,2x ∈恒成立,则实数a 的取值范围是________17.设函数()()333f x x x x R =-+∈.已知0a >,且()()()()2f x f a x b x a -=--,b R ∈,则ab =______.18.设2,0()1,0x x f x x -⎧≤=⎨>⎩,则满足()()1 2f x f x +<的实数x 的取值范围是__________.19.已知等差数列{}n a 满足:20a >,40a <,数列的前n 项和为n S ,则42S S 的取值范围是__________. 20.已知函数12()log f x x a =+,g (x )=x 2-2x ,若11[,2]4x ∀∈,2[1,2]x ∃∈-,使得f(x 1)=g (x 2),则实数a 的取值范围是________.21.定义在()1,1-上的函数()3sin f x x x =--,如果()()2110f a f a -+->,则实数a 的取值范围为______.22.已知函数246,0()log ,0x x f x x x x ⎧++>⎪=⎨⎪<⎩,则()()2f f -=______.23.已知()f x =2243,023,0x x x x x x ⎧-+≤⎨--+<⎩不等式()(2)f x a f a x +>-在[a ,a +1]上恒成立,则实数a 的取值范围是________.24.幂函数()()2231mm f x a x --=-(),a m N ∈为偶函数,且在()0,∞+上是减函数,则a m +=____.25.设函数()f x 在定义域(0,+∞)上是单调函数,()()0,,xx f f x e x e ⎡⎤∀∈+∞-+=⎣⎦,若不等式()()f x f x ax '+≥对()0,x ∈+∞恒成立,则实数a 的取值范围是______. 26.已知定义在()0,∞+上的函数()f x 的导函数为()f x ',若对于任意0x >都有()()3f x f x x '<,且()44f =,则不等式()31016f x x -<的解集为________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据函数(2)f x +是奇函数和在[2)+∞,上单调递减,得到()f x 在R 连续且单调递减可得答案. 【详解】因为(2)f x +是奇函数,所以()f x 的图象关于(2,0)对称,且在[2)+∞,上单调递减,所以()f x 在(,2)-∞单调递减, 又因为()f x 定义域为R ,所以(2)0f =,所以()f x 在R 连续且单调递减,由于5132<<,所以5(3)()(1)2f f f <<.故选:D. 【点睛】本题考查了抽象函数的单调性和奇偶性,解题的关键点是由题意分析出()f x 在R 连续且单调递减,考查了学生分析问题、解决问题的能力.2.A解析:A 【分析】设(,)P x y 1=,代0x =排除C 、D ,通过奇偶性排除B.【详解】 解:设(,)P x y因为PA PB a ⋅=,,A B 坐标分别为(1,0)-,(1,0),且1a =1=当0x =时,上式等式成立,即点(0,0)满足PA PB a ⋅=,故排除C 、D.当x -代替x 1== 即图形关于y 轴对称,排除B. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.3.A解析:A 【分析】利用函数单调性的定义结合奇函数的基本性质可判断函数()f x 在区间[]3,2--上的单调性,进而可得出函数()f x 在区间[]3,2--上的最值. 【详解】任取1x 、[]23,2x ∈--且12x x <,即1232x x -≤<≤-,所以,2123x x ≤-<-≤, 因为函数()f x 在区间[]2,3上单调递增,则()()21f x f x -<-, 因为函数()f x 为奇函数,则()()21f x f x -<-,()()12f x f x ∴<, 因此,函数()f x 在区间[]3,2--上为增函数,最大值为()2f -,最小值为()3f -.故选:A. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号;(4)下结论:判断,根据定义得出结论. 即取值→作差→变形→定号→下结论.4.C解析:C 【分析】先利用导数证明函数()f x 在区间0,上单调递增,再结合单调性比较大小即可.【详解】由题意知,()2x x e e f x -+=,21()22x x x xe e ef x e--+-'== 当0x >时,()0f x '>,即函数()f x 在区间0,上单调递增1(1)(1)2e ef f -+-==10122<<<,1(1)(2)2f f f ⎛⎫∴<< ⎪⎝⎭,即m p n << 故选:C 【点睛】关键点睛:解决本题的关键是利用导数证明函数()f x 的单调性,再结合单调性比较大小.5.C解析:C 【分析】首先变形条件,得到函数()()f xg x x=在[)1,+∞单调递增,利用二次函数的单调性,求a 的取值范围.【详解】[)12,1,x x ∈+∞,不等式两边同时除以12x x ()()()()12211212121200f x f x x f x x f x x x x x x x --∴>⇔>--, 即函数()()f x g x x=在[)1,+∞单调递增,()22g x x ax a =++, 函数的对称轴是4a x =-,则14a-≤,解得:4a ≥-.故选:C 【点睛】关键点点睛:本题的关键是原式等价为()()121212f x f x x x x x ->-,从而通过构造函数,确定函数的单调性,转化为二次函数的单调性解决问题.6.C解析:C 【分析】先求得()f x 的值域,根据题意可得()f x 的值域为[1,2]是()g x 在[1,1]-上值域的子集,分0,0a a ><两种情况讨论,根据()g x 的单调性及集合的包含关系,即可求得答案.【详解】因为2()(2)2,[0,2]f x x x =--+∈,所以min max ()(0)1()(2)2f x f f x f ==⎧⎨==⎩,即()f x 的值域为[1,2],因为对于任意1[0,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立, 所以()f x 的值域为[1,2]是()g x 在[1,1]-上值域的子集,当0a >时,()g x 在[1,1]-上为增函数,所以(1)()(1)g g x g -≤≤,所以()[1,1]g x a a ∈---,所以1112a a --≤⎧⎨-≥⎩,解得3a ≥,当0a <时,()g x 在[1,1]-上为减函数,所以(1)()(1)g g x g ≤≤-,所以()[1,1]g x a a ∈---所以1112a a -≤⎧⎨--≥⎩,解得3a ≤-,综上实数a 的取值范围是(,3][3,)-∞-+∞,故选:C 【点睛】解题的关键是将题干条件转化为两函数值域的包含关系问题,再求解,考查分析理解的能力,属中档题.7.D解析:D 【分析】问题等价于函数()f x 在(]2,0-上的值域是函数()g x 在[2,1]-上的值域的子集,先求出()f x 在(]2,4上的值域,再根据(2)2()f x f x +=求出()f x 在(]2,0-的值域;分类讨论求出()g x 的值域,根据子集关系即可求出a 的范围. 【详解】由题知问题等价于函数()f x 在(]2,0-上的值域是函数()g x 在[2,1]-上的值域的子集.当(]2,4x ∈时,2(2)4,23()2,34x x f x x x x ⎧--+≤≤⎪=⎨+<≤⎪⎩, 由二次函数及对勾函数的图象及性质,得此时9()3,2f x ⎡⎤∈⎢⎥⎣⎦,由(2)2()f x f x +=, 可得11()(2)(4)24f x f x f x =+=+ 当(]2,0x ∈-时,(]42,4x +∈.则()f x 在(]2,0-的值域为39,48⎡⎤⎢⎥⎣⎦.当0a >时,()[21,1]g x a a ∈-++,则有3214918a a ⎧-+≤⎪⎪⎨⎪+≥⎪⎩,解得18a ≥,当0a =时,()1g x =,不符合题意;当0a <时,()[1,21]g x a a ∈+-+,则有3149218a a ⎧+≤⎪⎪⎨⎪-+≥⎪⎩,解得14a -.综上所述,可得a 的取值范围为11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 故选:D . 【点睛】本题考查双变元利用值域求参数的问题,属于中档题.结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .8.D解析:D 【分析】根据函数为偶函数可转化为(|31|)(1)f a f ->,利用单调性求解即可. 【详解】()||ln ||f x x x =+的定义域为(,0)(0,)-∞+∞,关于原点对称,又()||ln ||()f x x x f x -=-+-=, 所以()||ln ||f x x x =+为偶函数, 当0x >时,()ln f x x x =+为增函数, 又(31)(1)f a f ->可化为(|31|)(1)f a f ->, 所以|31|1a ->,所以311a ->或311a -<-, 解得23a >或0a <, 故选:D 【点睛】本题主要考查了函数的奇偶性,函数的单调性,绝对值不等式的解法,属于中档题.9.B解析:B 【解析】111()(1)222f -=---= ;111()(0)444f -=--=-,111()(0)444f =-=,所以11()()44f f -<; (3.4) 3.430.4f =-=;()y f x = 的定义域是R ,值域是11(,]22- ,所以选B.点睛:解决新定义问题,关键是明确定义含义,正确运用定义进行运算.对于抽象的概念,可先列举一些具体的数值进行理解与归纳.本题易错点在区间端点是否可取上,难点在于整数的确定.10.B解析:B 【分析】根据函数的解析式,得出函数的单调性,把不等式(21)(32)f x f x +<-,转化为相应的不等式组,即可求解. 【详解】由题意,函数2log (1),1()1,1x x f x x +≥⎧=⎨<⎩,可得当1x <时,()1f x =,当1≥x 时,函数()f x 在[1,)+∞单调递增,且()21log 21f ==,要使得()()2131f x f x +<-,则2131311x x x +<-⎧⎨->⎩ ,解得2x >, 即不等式()()2131f x f x +<-的解集为()2,+∞, 故选:B.【点睛】思路点睛:该题主要考查了函数的单调性的应用,解题思路如下: (1)根据函数的解析式,得出函数单调性; (2)合理利用函数的单调性,得出不等式组; (3)正确求解不等式组,得到结果.11.A解析:A 【分析】根据函数的奇偶性和单调性,求出最小值取得的条件,结合开区间位置求解参数的取值范围. 【详解】由题210x x -+>恒成立,所以()()2lg 1f x x x =-+定义域为R ,()()()()2lg 1f x x x f x -=---+=,所以()()2lg 1f x xx =-+为定义在R 上的偶函数,当220,11x y x x x x ≥=-+=-+在10,2⎡⎤⎢⎥⎣⎦单调递减,在1,2⎡⎫+∞⎪⎢⎣⎭单调递增,所以()()2lg 1f x x x =-+在10,2⎡⎤⎢⎥⎣⎦单调递减,在1,2⎡⎫+∞⎪⎢⎣⎭单调递增, 在1,2⎛⎤-∞- ⎥⎝⎦单调递减,在1,02⎡⎤-⎢⎥⎣⎦单调递增,1122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭, 所以函数()()2lg 1f x x x =-+在12x =和12x =-处均取得最小值,若函数()f x 在开区间()(),1t t t +∈R 上恒有最小值, 则112t t <-<+或112t t <<+, 解得:3111,,2222t ⎛⎫⎛⎫∈--- ⎪ ⎪⎝⎭⎝⎭ 故选:A12.D解析:D 【分析】先利用已知条件构造函数()2(),01f m m m m+<<=,再求其值域即得结果. 【详解】由01m n <<<且1mn =知,22m n m m +=+,故设()2(),01f m m m m+<<=, 设1201m m <<<,则()1212121212222()()1f m f m m m m m m m m m ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 12120,01m m m m -<<<,即1222m m >,故()1212210m m m m ⎛⎫--> ⎪⎝⎭,即12()()f m f m >,函数2()f m m m =+在()0,1上单调递减,2(1)131f =+=,故函数的值域为(3,)+∞. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <; (2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形; (3)定号:确定差12()()f x f x -的符号;(4)下结论:判断,根据定义作出结论. 即取值---作差----变形----定号----下结论.13.B解析:B 【分析】根据函数解析式,利用根式非负性、绝对值的区间讨论、分式的性质求值域,即可判断正确选项. 【详解】A 选项:22023(1)44x x x ≤-++=--+≤,所以0()2f x ≤≤,值域跨度为2;B 选项:||0x -≤,所以0()1f x <≤,值域跨度不为2;C 选项:当0x =时()0f x =;当0x >时,244()144x f x x x x ==≤=++;当0x <时,244()144()()x f x x x x ==-≥=-+-+-;故1()1f x -≤≤,值域跨度为2;D 选项:1,0()21,101,1x f x x x x ≥⎧⎪=+-≤<⎨⎪-<-⎩,故1()1f x -≤≤,值域跨度为2;故选:B 【点睛】本题考查了根据解析式求值域,注意根式、指数函数、对勾函数、绝对值的性质应用,属于基础题.14.C解析:C 【分析】对数的真数大于零,分母不为零,偶次根式要求被开方式大于等于零,依据以上三点,列不等式求解. 【详解】欲使函数有意义,则0lg 020x x x >⎧⎪≠⎨⎪-≥⎩,即012x x x >⎧⎪≠⎨⎪≤⎩解得()(]0,11,2x ∈⋃ 故选:C . 【点睛】方法点睛:该题考查的是有关求函数定义域的问题,在求解的过程中,注意: (1)对数要求真数大于0; (2)分式要求分母不等于0; (3)偶次根式要求被开方式大于等于0.15.C解析:C 【分析】先考虑a 是否为零,然后再分一次函数和二次函数分别考虑. 【详解】当0a =时,则()1f x x =+,显然在()2,-+∞上递增;当0a ≠时,则()21f x ax x a =+++是二次函数,因为()f x 在()2,-+∞上递增,则对称轴122x a =-≤-且0a >,解得:10,4a ⎛⎤∈ ⎥⎝⎦;综上:a 的取值范围是1[0,]4, 故选C. 【点睛】本题考查根据单调区间求解参数范围问题,难度一般.对于形如()2f x ax bx c =++的函数,一定要明确:并不一定是二次函数,可能会出现0a =的情况,所以要分类讨论.二、填空题16.【分析】根据偶函数在对称区间上单调性相反结合已知可得在R 上是增函数进而可将对于任意恒成立转化为对任意都成立进而可得最后结合函数的单调性可得实数a 的取值范围【详解】因为定义在R 上的偶函数在上是严格增函解析:31,22⎡⎤-⎢⎥⎣⎦【分析】根据偶函数在对称区间上单调性相反结合已知可得()y f x =在R 上是增函数,进而可将(1)(2)f ax f +≤对于任意[]1,2x ∈恒成立,转化为12ax +≤对任意[]1,2x ∈都成立,进而可得31a x x-≤≤,最后结合函数的单调性可得实数a 的取值范围 【详解】因为定义在R 上的偶函数()y f x =在[)0,+∞上是严格增函数, 因为(1)(2)f ax f +≤对任意[]1,2x ∈都成立,所以12ax +≤对任意[]1,2x ∈都成立, 即212ax -≤+≤对任意[]1,2x ∈都成立,变形可得31a x x-≤≤, 由函数3y x=-在[]1,2为增函数,1y x =在[]1,2上为减函数,故31max min a x x ⎛⎫⎛⎫-≤≤ ⎪⎪⎝⎭⎝⎭,所以31,22a ⎡⎤∈-⎢⎥⎣⎦.故答案为:31,22⎡⎤-⎢⎥⎣⎦. 【点睛】关键点睛:本题的解题关键是由函数为偶函数得出12ax +≤,进而结合单调性求出a 的取值范围.17.【分析】先将进行因式分解再与比较利用对应系数相等可得关于的方程即可得的值即可求解【详解】因为所以因为所以对任意的恒成立所以不恒为所以展开整理可得:所以解得:或(舍)所以故答案为:【点睛】关键点点睛: 解析:2-【分析】先将()()f x f a -进行因式分解再与()()2x b x a --比较,利用对应系数相等可得关于,a b 的方程,即可得,a b 的值,即可求解.【详解】因为()()333f x x x x R =-+∈,所以()()()()333333333f x f a x x a a x a x a -=-+----=-+,()()()()222233x ax a x ax x a x a x a a ⎡⎤---==+-++-⎣+⎦,因为()()()()2f x f a x b x a -=--,所以()()()2223x ax a x b x x a a ⎡⎤-=⎣-⎦++--,对任意的x 恒成立, 所以x a -不恒为0,所以()()223x ax a x b x a ++-=--展开整理可得:()23ax a a b x ab +-=-++,所以()23a a b a ab ⎧=-+⎨-=⎩解得:12a b =⎧⎨=-⎩或12a b =-⎧⎨=⎩(舍),所以()122ab =⨯-=-, 故答案为:2-. 【点睛】关键点点睛:本题解题的关键是将()()f x f a -进行因式分解,由x a -不恒为0,得出()()223x ax a x b x a ++-=--利用待定系数法可求,a b 的值.18.【分析】画出图像结合图像判断题出函数的单调性即可求解【详解】作出函数的图像如图满足解得故答案为:【点睛】方法点睛:该不等式的求解利用的是函数的单调性用数形结合法解决更为直观 解析:(),0-∞【分析】画出2,0()1,0x x f x x -⎧≤=⎨>⎩图像,结合图像判断题出函数的单调性,即可求解(1)(2)f x f x +<.【详解】作出函数2,0()1,0x x f x x -⎧≤=⎨>⎩的图像如图,满足(1)(2)f x f x +<2021x x x <⎧∴⎨<+⎩,解得0x <.故答案为:(),0-∞. 【点睛】方法点睛:该不等式的求解利用的是函数的单调性,用数形结合法解决更为直观.19.【分析】根据题意可得到把转化为关于的函数即可求出范围【详解】由题意可得:据此可得:则令结合等差数列前n 项和公式有:令则据此可知函数在上单调递减即的取值范围是故答案为:【点睛】关键点点睛:本题根据等差解析:6(2,)5-【分析】根据题意可得到131a d -<<-,把42S S 转化为关于()13,1at d=∈--的函数,即可求出范围.【详解】由题意可得:121410,0030a d a a d a a d ><⎧⎪=+>⎨⎪=+<⎩,据此可得:13d a d -<<-,则131ad -<<-,令()13,1a t d=∈--,结合等差数列前n 项和公式有: 111142434464622122122a dS a d t S a d t a d ⨯+++===⨯+++,令()()463121t f t t t +=-<<-+,则()2(21)4422121t f t t t ++==+++,据此可知函数()f t 在()3,1--上单调递减,()1242f -=-=-,()4632615f -=+=-+, 即42S S 的取值范围是62,5⎛⎫- ⎪⎝⎭. 故答案为:6(2,)5- 【点睛】关键点点睛:本题根据等差数列的条件,求出首项与公差的关系,看作一个整体t ,将问题转化为关于t 的函数,利用函数的单调性求解,体现了转化思想,考查了运算能力,属于中档题.20.01【分析】当时当时由使得f (x1)=g (x2)等价于解不等式即可得解【详解】当时当时由使得f (x1)=g (x2)则可得:解得故答案为:【点睛】本题考查了求函数值域考查了恒成立和存在性问题以及转化思解析:[0,1] 【分析】当11[,2]4x ∈时,[]1()1+,2f x a a ∈-+,当2[1,2]x ∈-时,[]2()1,3g x ∈-,由11[,2]4x ∀∈,2[1,2]x ∃∈-,使得f (x 1)=g (x 2),等价于[][]1,21,3a a -++⊆-,解不等式即可得解. 【详解】当11[,2]4x ∈时,[]1()1+,2f x a a ∈-+, 当2[1,2]x ∈-时,[]2()1,3g x ∈-,由11[,2]4x ∀∈,2[1,2]x ∃∈-,使得f (x 1)=g (x 2),则[][]1,21,3a a -++⊆-,可得:1123a a -≤-+⎧⎨+≤⎩,解得01a ≤≤,故答案为:01a ≤≤. 【点睛】本题考查了求函数值域,考查了恒成立和存在性问题以及转化思想,有一定的计算量,属于中档题.21.【分析】先得出函数是奇函数且是减函数从而得到结合函数的定义域从而求出的范围【详解】解:是奇函数又是减函数若则则解得:或由解得:综上:故答案为:【点睛】本题考查了函数的奇偶性函数的单调性的应用属于中档题解析:(【分析】先得出函数是奇函数且是减函数,从而得到211a a -<-,结合函数的定义域,从而求出a 的范围. 【详解】 解:()3sin (3sin )()f x x x x x f x -=-=-+=-,是奇函数,又()3cos 0f x x '=-+<,是减函数, 若2(1)(1)0f a f a -+->, 则2((1))1f a f a -->,则211a a -<-,解得:1a >或2a <-,由2111111a a -<-<⎧⎨-<-<⎩,解得:0a <<,综上:1a <<故答案为:(. 【点睛】本题考查了函数的奇偶性,函数的单调性的应用,属于中档题.22.11【分析】用分段函数的解析式先求出从而可得的值【详解】解:∵且∴∴故答案为:【点睛】本题主要考查分段函数的解析式属于中档题对于分段函数解析式的考查是命题的动向之一这类问题的特点是综合性强对抽象思维解析:11 【分析】用分段函数的解析式先求出()2f - ,从而可得()()2f f -的值.【详解】解:∵ 246,0()log ,0x x f x x x x ⎧++>⎪=⎨⎪<⎩,且20-<, ∴ ()222log 10f -=->= ∴ ()()()42116111f f f -==++=. 故答案为:11. 【点睛】本题主要考查分段函数的解析式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.23.(-∞-2)【分析】讨论分段函数各区间上单调递减且在处连续可知在R 上单调递减结合在aa +1上恒成立根据单调性列不等式求参数范围即可【详解】二次函数的对称轴是x =2∴该函数在(-∞0上单调递减即在(-解析:(-∞,-2) 【分析】讨论分段函数()f x 各区间上单调递减,且在3x =处连续可知()f x 在R 上单调递减,结合()(2)f x a f a x +>-在[a ,a +1]上恒成立,根据单调性列不等式求参数范围即可【详解】二次函数2143y x x =-+的对称轴是x =2∴该函数在(-∞,0]上单调递减,即在(-∞,0]上13y ≥同理,函数2223y x x =--+在(0,+∞)上单调递减,即在(0,+∞)上23y <∴分段函数()f x 在3x =处连续,()f x 在R 上单调递减由()(2)f x a f a x +>-有2x a a x +<-,即2x < a 在[a ,a +1]上恒成立∴2(a +1) < a ,解得a <-2 ∴实数a 的取值范围是(-∞,-2) 故答案为:(-∞,-2) 【点睛】本题考查了函数的单调性,确定分段函数在整个定义域内的单调性,再利用单调性和不等式恒成立的条件求参数范围24.3【分析】由幂函数为偶函数且在(0+∞)上是单调递减函数可得m2-2m-3<0且m2-2m-3为偶数m ∈Z 且解出即可【详解】∵幂函数为偶函数且在上是减函数∴且为偶数且解得12且只有时满足为偶数∴故答解析:3 【分析】由幂函数()()2231mm f x a x --=-(),a m N ∈为偶函数,且在(0,+∞)上是单调递减函数,可得m 2-2m -3<0,且m 2-2m -3为偶数,m ∈Z ,且1=1a -.解出即可. 【详解】∵幂函数()()2231mm f x a x --=-(),a m N ∈为偶函数,且在()0,∞+上是减函数,∴2230m m --<,且223m m --为偶数,m N ∈,且1=1a -. 解得13m -<<,0m =,1,2, 且=2a ,只有1m =时满足223=4m m ---为偶数. ∴1m =.3a m +=故答案为:3. 【点睛】本题考查幂函数的性质,根据幂函数性质求参数值,可根据幂函数性质列不等式和等式,求解即可,属于基础题.25.【分析】先利用换元法求出然后再用分离变量法借助函数的单调性解决问题【详解】解:由题意可设则∵∴∴∴∴由得∴对恒成立令则由得∴在上单调递减在单调递增∴∴故答案为:【点睛】本题主要考查利用导数研究函数的 解析:(],21e -∞-【分析】先利用换元法求出()f x ,然后再用分离变量法,借助函数的单调性解决问题. 【详解】解:由题意可设()xf x e x t -+=,则()xf x e x t =-+,∵()xf f x e x e ⎡⎤-+=⎣⎦,∴()ttf t e t t e e =-+==,∴1t =,∴()1xf x e x =-+,∴()1xf x e '=-,由()()f x f x ax '+≥得11x x e x e ax -++-≥,∴21xe a x≤-对()0,x ∈+∞恒成立,令()21xe g x x =-,()0,x ∈+∞,则()()221'x e x g x x-=, 由()'0g x =得1x =,∴()g x 在()0,1上单调递减,在()1,+∞单调递增, ∴()()121g x g e ≥=-, ∴21a e ≤-,故答案为:(],21e -∞-. 【点睛】本题主要考查利用导数研究函数的最值,考查利用函数的单调性解决恒成立问题,属于中档题.26.【分析】设函数利用导数结合可得在上单调递减将化为可解得结果【详解】即为设函数则所以在上单调递减又因为所以不等式可化为即所以故解集为故答案为:【点睛】本题考查了构造函数利用导数判断单调性考查了利用函数 解析:()4,+∞【分析】 设函数()()3f xg x x=,利用导数结合()()3f x f x x '<可得()g x 在()0,∞+上单调递减,将()31016f x x -<化为()()4g x g <可解得结果. 【详解】()()3f x f x x '<即为()()30xf x f x '-<,设函数()()3f x g x x=, 则()()()()()3264330f x x f x x xf x f x g x x x''⋅-⋅-'==<,所以()g x 在()0,∞+上单调递减,又因为()44f =,所以()()3414416f g ==,不等式()31016f x x -<可化为()3116f x x <,即()()4g x g <,所以4x >,故解集为()4,+∞.4,+∞.故答案为:()【点睛】本题考查了构造函数,利用导数判断单调性,考查了利用函数的单调性解不等式,属于中档题.。
第三章_可测函数的知识要点与复习自测
第三章_可测函数的知识要点与复习自测第一部分:可测函数的定义与性质可测函数是指在测度空间上定义的函数,具有一些特定的性质。
1.可测函数的定义:设(X,Σ)和(Y,τ)分别是两个测度空间,函数f:X→Y是一个可测函数,如果对于任意的τ-可测集合B,其逆像f^{-1}(B)是一个Σ-可测集合,则称函数f是可测函数。
2.可测函数的性质:a.可测函数的逆像性质:对任意的可测函数f:X→Y和任意的测度空间(E,ρ),f^{-1}(A)是X上的可测集合。
b.可测函数的常值性质:对任意的可测函数f:X→Y,如果存在一个常数c∈Y,使得f(x)=c,那么f是可测函数。
c.可测函数的运算性质:对于任意的可测函数f:X→Y和g:X→Y,以下函数也是可测函数:-f+g:点对点的函数加法。
-f-g:点对点的函数减法。
- cf:常数与函数的乘积。
-f*g:点对点的函数乘法。
-,f,:函数的绝对值。
d.可测函数的复合性质:对于任意的可测函数f:X→Y和可测函数g:Y→Z,复合函数g∘f:X→Z也是一个可测函数。
3.可测函数的构造:利用可测函数的性质,我们可以通过一系列操作构造出更多的可测函数。
常见的构造方法有:a.四则运算法则:通过函数的加法、减法、乘法、除法来构造新的可测函数。
b.极限运算法则:通过函数的极限操作来构造新的可测函数。
c.特殊函数构造法则:通过利用特殊函数的性质来构造新的可测函数,如指示函数、标准分段函数等。
第二部分:复习自测1.什么是可测函数?可测函数的定义是什么?可测函数是指在测度空间上定义的函数,具有一些特定的性质。
可测函数的定义是:设(X,Σ)和(Y,τ)分别是两个测度空间,函数f:X→Y是一个可测函数,如果对于任意的τ-可测集合B,其逆像f^{-1}(B)是一个Σ-可测集合,则称函数f是可测函数。
2.可测函数的常值性质是什么?可测函数的常值性质指的是,对任意的可测函数f:X→Y,如果存在一个常数c∈Y,使得f(x)=c,那么f是可测函数。
可测函数的定义及其简单性质
E[
f
可测,
a g ]
任取x E[ f ag],则f (x) a g(x)
从而r Q,使f (x) r a g(x)
即x
(
rQ
E[
f
r ]
E[
g
ar
]
)
任取x E[ f ag],则f (x) a g(x)
从而r Q, 使f (x) r a g(x)
⑶几乎处处收敛: 记作 fn f a.e.于E (almost everywhere)
E[ fn f ] 0
即:去掉某个零测度集,在留下的集合上处处收敛
⑷几乎一致收敛:记作 fn f a.u.于E (almost uniformly)
即:去掉某个小(任意小)测度集,在留下的集合上一致收敛
第三章 可测函数
第一节 可测函数的定义及其简单性质
新的积分(Lebesgue积分,从分割值域入手)
yi
Ei {x : yi1 f (x) yi}
yi-1
yi1 i yi
用 mEi 表示 Ei 的“长度”
n
(L)
[ a ,b ]
f
( x)dx
lim
0
i 1
{x| f( g(x))>a}= (f g)-1((a,+∞)) = g-1(f-1((a,+∞)))
f-1((a,+∞)) = i (ai ,bi )
g
1
(i (ai
,
bi
))
(
i
g
1
((ai
,
bi
)))
高考一轮复习第3章三角函数解三角形第1讲任意角和蝗制及任意角的三角函
第一讲 任意角和弧度制及任意角的三角函数
知识梳理·双基自测
知识点一 角的有关概念
(1)从运动的角度看,角可分为正角、负角和零角.
(2)从终边位置来看,角可分为象限角与轴线角.
(3)若β与α是终边相同的角,则β用α表示为β=2kπ+α,k∈Z.
知识点二 弧度制及弧长、扇形面积公式
知识点三 任意角的三角函数
(1)定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sin α=y,cos α=x,tan α= (x≠0).
(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是点(1,0).如图中有向线段MP,OM,AT分别叫做角α的正弦线,余弦线和正切线.
[解析]由角α的终边过点P 得sin α=- ,所以sin(α+π)=-sin α= .
考点突破·互动探究
考点一 角的基本概念——自主练透
例1 (1)若角θ的终边与 角的终边相同,则在区间[0,2π)内终边与 角的终边相同的角为 , , .
(2)若角α的顶点为坐标原点,始边在x轴的非负半轴上,终边在直线y=- x上,则角α的取值集合是( D )
考点三 三角函数的定义——多维探究
角度1 定义的直接应用
例3 (1)(2020·北京海淀期中)在平面直角坐标系xOy中,点A的纵坐标为2,点C在x轴的正半轴上.在△AOC中,若cos∠AOC=- ,则点A的横坐标为( A )
A.- B.
C.-3D.3
(2)若角θ的终边经过点P(- ,m)(m≠0)且sin θ= m,则cos θ的值为- .
所以 终边在第三象限,综上, 的终边在第一或三象限.故选A、C.
可测函数及其性质
E[ f
a] E[ f
a 1]
n1
n
当(1)成立时,得E[ f a 1]是可测集,从而E[ f a] n
也是可测集 f (x)是可测函数
条件(1)和f (x)是可测函数等价。
E[a f b] E[ f a] I E[ f b]
当 | f (x) | ,E[ f a] U E[a f a n]
s
E[ f a] E [ f a] i1 i
定理2: 可测函数类关于四则运算封闭
即:若f(x),g(x)是E上的可测函数,则对任意的有限实数α, α f(x) ,f(x)+g(x) , f(x) -g(x) , 1/f(x),f(x)g(x) , f(x)/g(x),
|f(x)|仍为E上的可测函数。 引理:设 f 与g 为E上的可测函数,则 E[ f g]与E[ f g]都是可测集。
E
G
E
E E[ fa],ຫໍສະໝຸດ 令G UU
(
x,
)
x
xE[ f a]
则G为开集,为可测集,且
G I E ( U U (x,x )) I E
xE[ f a]
U (U (x,x ) I E) E[ f a]
xE[ f a]
反之,G= U U (x,x ) G E[ f a]
xE[ f a]
E[ f a] G I E[ f a] G I E,
E[ f 0] U E[ f 1/ a], a 0
(4)先证f 2是可测函数。( a 0) R,
E[ f 2 a] E[ f a ] U E[ f a ], 所以E[ f 2 a]是可测集。
a(<0) R, E[ f 2 a] E, 所以E[ f 2 a]是可测集,
数学一轮复习第三章函数及其图象第2节一次函数的图象与性质试题
——教学资料参考参考范本——数学一轮复习第三章函数及其图象第2节一次函数的图象与性质试题______年______月______日____________________部门课标呈现 指引方向1.结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式。
2.会利用待定系数法确定一次函数的表达式。
3.能面出一次函数的图象,根据一次函数的图象和表达式()探索并理解和时,图象的变化情况。
b kx y +=0≠k 0>k 0<k 4.理解正比例函数。
5.体会一次函数与二元一次方程的关系。
考点梳理 夯实基础 1.一次函数的定义(1)一次函数的一般形式是( 。
正比例函数的一般形式是() 。
b kx y +=0≠k kx y =0≠k(2)正比例函数是特殊的一次函数,一次函数包含正比例函数。
2.一次函数的图象及性质(1)正比例函数()的图象是经过点(0,0)和(1,) 的一条直线;一次函数()的图象是经过(,)和(,)两点的一条直线。
kxy =0≠k k b kx y +=0≠k kb-00b (2) -次函数()的图象与性质b kx y +=0≠k3.两直线的位置关系(设两直线,):111b x k y +=222b x k y += (1)两直线平行: ();21k k =21b b ≠ (2)两直线垂直:。
121-=⋅k k 4.用待定系数法求一次函数解析式:(1)关键:确定一次函数()中的字母与的值。
b kx y +=0≠k k b (2)步骤:①设一次函数表达式;②根据已知条件将,的对应值代人表达式;x y ③解关于,的方程或方程组;k b ④确定表达式。
5.一次函数与一元一次方程,一元一次不等式和二元一次方程组的关系(1) -次函数与一元一次方程:一次函数()的图象与轴交点的横坐标是时一元一次方程的解,与轴交点的纵坐标是时一元一次方程的解。
b kx y +=0≠k x 0=y y 0=x (2) -次函数与一元一次不等式:()或()的解集即一次函数图象位于轴上方或下方时相应的取值范围,反之也成立。
高中数学 第三章 概率 3.2 古典概型自我小测 新人教B版必修3(2021年最新整理)
高中数学第三章概率3.2 古典概型自我小测新人教B版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章概率3.2 古典概型自我小测新人教B版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章概率3.2 古典概型自我小测新人教B版必修3的全部内容。
高中数学第三章概率 3.2 古典概型自我小测新人教B版必修3 1.一套五卷选集,随机地放到书架上,共有120种放法.则各册自左至右或自右至左恰成1,2,3,4,5顺序的概率为()A.错误!B.错误!C.错误! D。
错误!2.从1,2,3,4,…,30这30个数中任意摸出一个数,则事件“是偶数或能被5整除的数"的概率是( )A。
错误! B。
错误! C。
错误! D。
错误!3.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为x,y,则log2x y=1的概率为()A.错误!B.错误! C。
错误! D.错误!4.若以连续掷两枚骰子分别得到的点数m,n作为点P的坐标,则点P落在x2+y2=9内的概率为()A.错误! B。
错误! C.错误! D。
错误!5.在200瓶饮料中,有4瓶已过保质期,从中任取一瓶,则取到的是已过保质期的概率是( ) A.0.2 B.0.02 C.0.1 D.0。
016.(2013浙江高考,文12)从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于__________.7.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.8.在一次问题抢答的游戏中,要求答题者在问题所列出的4个答案中找出唯一正确的答案.其抢答者不知道正确答案便随意说出了其中的一个答案,则这个答案恰好是正确答案的概率是________.9.甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.(1)求取出的两个球上标号为相邻整数的概率;(2)求取出的两个球上标号之和能被3整除的概率.10.(2013湖南高考,文18)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近"作物株数X之间的关系如下表所示:米.(1)完成下表,并求所种作物的平均年收获量;(248 kg的概率.参考答案1.解析:一套五卷的选集,放到书架上共有120种不同放法,由于是随机摆放,故这120种结果出现的可能性都相等.而各册自左至右或自右至左恰成1,2,3,4,5的顺序的事件只有两种可能,即n=120,m=2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 可测函数的知识要点与复习自测一、可测函数的定义的知识要点:◇ 体会可测函数从简单到一般的定义思想,并能根据这一思想,按可测集上的简单函数到非负可测函数再到一般可测函数的程序,正确写出可测函数的定义。
◇ 掌握简单函数的四则运算性和复合运算性,并理解复合运算性中为什么必须要求内层函数是简单函数,才能保证复合之后的函数是简单函数。
◇ 掌握非负可测函数与简单函数的极限关系(即非负可测函数的定义),仔细体会刻画非负可测函数的测度特征的特征定理的证明过程,掌握此定理证明中通过对值域区间作不交区间分解(即2101[0,]{[,)}[,]22m m m m k k k m -=++∞=⋃⋃+∞),再借助逆象集导出可测集E 的有限不交可测分解的方法,即2101[0()][()][()]22m m m m k k k E E x f x E x f x E x f x m -=+=≤≤+∞=⋃≤<⋃≥,并能根据这样的分解将非负可测函数()f x 具体表示成一列单调递增非负简单函数列{()m x ϕ}的极限,即()lim ()m m f x x ϕ→∞=,其中1,[()]0,1,,21222(),[()]m m m mm k k k x E x f x k m x m x E x f x m ϕ⎧+∈≤<=-⎪=⎨⎪∈≥⎩。
◇ 掌握一般可测函数的定义及等价条件,并能根据定义及等价条件证明一些具体实函数的可测性(比如:零测集上的任何实函数;可测集上的连续函数;1R 上的区间上的单调函数等),并能正确说明可测集上的简单函数和非负可测函数也是一般可测函数定义下的可测函数;◇ 能根据可测函数的定义及等价定义中所涉及的逆象集的可测性证明1R 上的区间,开集,闭集,Borel 集在可测函数下的逆象集仍为可测集。
复习自测题:1、证明:(1)设nE R ⊂为可测集,()f x 为E 上的非负简单函数,(,)p G f E 表示()f x 在E 上的下方图形,则(,)p G f E 为1n R+上的可测集,并给出(,)p mG f E 的一个计算公式; (2)设nE R ⊂为可测集,()f x 为E 上的非负可测函数,(,)p G f E 表示()f x 在E 上的下方图形,则(,)p G f E 为1n R+上的可测集,并给出(,)p mG f E 的一个计算公式。
2、证明:可测集上的简单函数和非负可测函数也是一般可测函数定义下的可测函数。
3、(1)设nE R ⊂,1,()0,\E nx E x x R Eχ∈⎧=⎨∈⎩(nx R ∈)为E 的示性函数,证明:()E x χ为n R 上的可测函数⇔E 为n R 中的可测集;(2)利用(1)据理说明:设nE R ⊂为可测集,()f x 为E 上的非负简单函数(或非负可测函数),11(,)n p G f E E R R +⊂⨯⊂表示()f x 在E 上的下方图形,则()()(,)11,,(,)(,)0,,\(,)pp Gf E p x y G f E x y x y E R G f E χ∈⎧⎪=⎨∈⨯⎪⎩,()1,x y E R ∈⨯, 为11n E R R +⨯⊂上的可测函数。
4、设nE R ⊂为可测集,()f x 为E 上的可测函数,证明: (1)对1R 上的任意区间I ,1()f I -为nR 上的可测集;(2)对1R 上的开集G 和闭集F ,1()f G -和1()f F -为nR 上的可测集; (3)对1R 上的G δ型集G 和F σ型集F ,1()f G -和1()f F -为nR 上的可测集; (4)对1R 上的Borel 集G ,1()f G -为nR 上的可测集。
5、(1)设nE R ⊂为可测集,()f x 为E 上的实函数,证明:()f x 为E 上的可测函数⇔对任意,a b R ∈,a b <,()E x a f x b ⎡≤<⎤⎣⎦和()E x f x ⎡=+∞⎤⎣⎦都是nR 中的可测集; 提示:1()()()1()().k E x a f x E x a f x E x f x E x a k f x a k E x f x ∞=⎡≤⎤=⎡≤<+∞⎤⋃⎡=+∞⎤⎣⎦⎣⎦⎣⎦⎛⎫=⎡+-≤<+⎤⎡=+∞⎤ ⎪⎣⎦⎣⎦⎝⎭ (2)设nE R ⊂为可测集,()f x 为E 上的几乎处处有限的实函数,证明:()f x 为E 上的可测函数⇔对任意,a b R ∈,a b <,()E x a f x b ⎡≤<⎤⎣⎦是nR 中的可测集。
6、证明:零测集上的任何实函数;可测集上的连续函数;1R 上的区间上的单调函数都是可测函数。
7、设nE R ⊂为可测集,且mE <+∞,()f x 为E 上几乎处处有限的可测函数, (1)证明:对任意0ε>,存在可测子集E E ε⊂,使得()f x 在E ε上有界,且()\m E E εε<;(2)利用(1)和可测集与闭集的关系进一步证明:对任意0ε>,存在闭子集E E ε⊂,使得()f x 在E ε上有界,且()\m E E εε<。
提示:1()()k E x f x E x f x k ∞=⎡⎤⎡⎤=+∞=>⎣⎦⎣⎦ ,()E x f x k ⎡⎤>⎣⎦单调递减。
二、可测函数的基本性质的知识要点:◇ 掌握可测函数的基本性质,并能熟练地利用性质来判断一些函数的可测性; ◇ 掌握一般几乎处处有限的可测函数与简单函数列的极限关系,并体会此关系在讨论可测函数与连续函数之间关系(Lusin 定理)中的作用。
利用可测函数的定义和等价条件◇ 归纳判断函数可测性的常用方法利用可测函数的基本性质复习自测题:1、利用可测函数的子集性和并集性证明:(1)设()f x 定义在(,)a b 上,若对任意的0ε>,()f x 为[,]a b εε+-上可测函数,则()f x 必为(,)a b 上的可测函数;(2)设nE R ⊂为可测集,()f x 为E 上的可测函数,则(),[()0]()sgn ()0,[()0](),[()0]f x x E x f x f x f x x E x f x f x x E x f x ⎧∈>⎪=∈=⎨⎪-∈<⎩,为E 上的可测可测函数;2、利用可测函数列的极限性证明:(1)若一元实函数()f x 在(,)-∞+∞上可导,则导函数()f x '必为(,)-∞+∞上的可测函数;(2)若将(1)中的“(,)-∞+∞”改为“有限开区间(,)a b ”,则如何证明()f x '仍为(,)a b 上的可测函数。
3、设nE R ⊂为可测集,()f x 为E 上的有限可测函数,()F u 为1G R ⊂上的连续函数,且()f E G ⊂,则[]()()F f x F f x = 为E 上的可测函数。
4、设nE R ⊂为可测集,()f x 为E 上的有限可测函数,(,)F x y 为1n R +上实函数,满足:(1)对任意固定的x E ∈,(,)F x y 为y 的连续函数, (2)对于任意固定的1y R ∈,(,)F x y 为E 上的可测函数 证明:(,())F x f x 为E 上的可测函数。
三、可测函数列几乎处处收敛与一致收敛之间的关系(叶果洛夫定理)的知识要点:◇ 能正确的写出叶果洛夫定理,理解并掌握叶果洛夫定理的条件和结论;注意体会定理中的条件在定理证明中的作用,体会导致定理结论成立的关键条件,即0ε∀>,lim [()()]0k n k n m E x f x f x ε∞→∞=⋃-≥=,明白为什么叶果洛夫定理中“mE <+∞”和“可测函数列中每一项函数以及它的极限函数都要求是几乎处处有限的”这两个条件都是不可缺少的条件的原因。
◇ 叶果洛夫定理中导致结论成立的关键条件:0ε∀>,lim [()()]0k n k n m E x f x f x ε∞→∞=⋃-≥=,除了能导致定理的结论成立外,为什么还能导出lim ()()..→∞=n n f x f x a e 于E 以及()()n f x f x ⇒于E ,进而明白条件: 0ε∀>,lim [()()]0k n k n m E x f x f x ε∞→∞=⋃-≥=,实际上是(1)lim ()()..→∞=n n f x f x a e 于E ,(2)()()n f x f x ⇒于E ,(3){}()n f x 在E 上本性一致收敛于()f x ,这三者之间的纽带。
◇ 掌握叶果洛夫定理结论在应用中便于应用的两种细致形式: 设E 为可测集,且mE <+∞,()n f x (1,2,n = ),()f x 都是E 上几乎处处有限的可测函数,若lim ()()..→∞=n n f x f x a e 于E ,则(1)存在E 的一列可测子集{}n E ,使得在每个n E 上,{}()n f x 一致收敛于()f x ,且()1\n m E E n <,进而1\0n n m E E ∞=⎛⎫= ⎪⎝⎭;(2)存在E 的一列单调递增的可测子集{}n E ,使得在每个n E 上,{}()n f x 一致收敛于()f x ,且()1\n m E E n <,进而1\0n n m E E ∞=⎛⎫= ⎪⎝⎭。
◇ 能正确的写出叶果洛夫定理的逆定理,并掌握叶果洛夫定理的逆定理的证明,并体会叶果洛夫定理结论的细致形式在证明中所起的作用(实际上叶果洛夫定理的逆定理的证明方法也是证明一个函数列几乎处处收敛时所采用的常用方法)。
◇ 能根据叶果洛夫定理以及它的逆定理据理说明:在mE <+∞的条件下, (1)lim ()()..k k f x f x a e →∞=于E ,(2)关键条件:0ε∀>,lim [()()]0k n k nm E x f x f x ε∞→∞=⋃-≥=,(3)叶果洛夫定理结论:{}()k f x 在E 上本性一致收敛于()f x , 三者之间的关系是等价关系。
复习自测题:1、利用叶果洛夫定理证明:设nE R ⊂为可测集,且mE <+∞,()()1,2,k f x k = ,()f x 都是E 上几乎处处有限的可测函数,若lim ()()..k k f x f x a e →∞=于E ,则对任意0ε>,存在可测子集E E ε⊂,使得{}()k f x 在E ε上一致有界,且()\m E E εε<;提示:利用“二”中的自测题的第6题和叶果洛夫定理。
2、设nE R ⊂为可测集,()()1,2,k f x k = ,()f x 都是E 上几乎处处有限的可测函数,若0ε∀>,lim [()()]0k n k nm E x f x f x ε∞→∞=⋃-≥=,则lim ()()..k k f x f x a e →∞=于E 。