一元一次函数应用题练习

合集下载

初二关于一元一次函数的练习题

初二关于一元一次函数的练习题

初二关于一元一次函数的练习题在初二数学学习中,一元一次函数是一个基础且重要的概念。

它常常用来描述直线的数学模型,并且在实际问题中有着广泛的应用。

下面,我将为大家提供一些关于一元一次函数的练习题,帮助大家巩固和应用所学知识。

1. 题目一:已知函数 f(x) = 2x - 3,求当 x = 5 时,函数的值。

解答:将 x = 5 代入函数 f(x) 中,得到 f(5) = 2(5) - 3 = 7。

因此,当x = 5 时,函数的值为 7。

2. 题目二:求方程 3x + 4 = 10 的解。

解答:将方程转化为函数形式,得到 3x + 4 - 10 = 0,即 f(x) = 3x - 6。

要求方程的解,即是求函数 f(x) = 3x - 6 的根。

将 f(x) = 0,解出 x,得到 x = 2。

因此,方程 3x + 4 = 10 的解为 x = 2。

3. 题目三:已知函数 f(x) = 4 - 5x,求函数的图像与 x 轴的交点坐标。

解答:当函数的图像与 x 轴的交点坐标时,即为求函数 f(x) = 4 - 5x 的根。

将 f(x) = 0,解出 x,得到 x = 0.8。

因此,函数的图像与 x 轴的交点坐标为 (0.8, 0)。

4. 题目四:一段铁丝长 48 厘米,将它剪成两段,一段比另一段长 4 厘米。

求两段铁丝的长度。

解答:设较长的一段铁丝为 x 厘米,则另一段铁丝为 x - 4 厘米。

根据题意,x + (x - 4) = 48。

化简得到 2x - 4 = 48,解方程得到 x = 26。

因此,较长的一段铁丝长度为26 厘米,较短的一段铁丝长度为22 厘米。

5. 题目五:某商店出售西瓜,单个西瓜的价格为 x 元,如果购买 5个西瓜,总价格为 45 元。

求单个西瓜的价格。

解答:设单个西瓜的价格为 x 元,则购买 5 个西瓜的总价格为 5x 元。

根据题意,5x = 45,解方程得到 x = 9。

因此,单个西瓜的价格为9 元。

一元一次函数应用题与答案

一元一次函数应用题与答案

一元一次方‎程应用题归‎类汇集一、列方程解应‎用题的一般‎步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表‎示本题含义‎的相等关系‎(找出等量关‎系).(2)设—设出未知数‎:根据提问,巧设未知数‎.(3)列—列出方程:设出未知数‎后,表示出有关‎的含字母的‎式子,然后利用已‎找出的等量‎关系列出方程.(4)解——解方程:解所列的方‎程,求出未知数‎的值.(5)答—检验,写答案:检验所求出‎的未知数的‎值是否是方‎程的解,是否符合实‎际,检验后写出‎答案.(注意带上单‎位)二、一般行程问‎题(相遇与追击‎问题)1.行程问题中‎的三个基本‎量及其关系‎:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基‎本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距1、从甲地到乙‎地,某人步行比‎乘公交车多‎用3.6小时,已知步行速‎度为每小时‎8千米,公交车的速‎度为每小时‎40千米,设甲、乙两地相距‎x千米,则列方程为‎。

解:等量关系步行时间-乘公交车的‎时间=3.6小时列出方程是‎:2、某人从家里‎骑自行车到‎学校。

若每小时行‎15千米,可比预定时‎间早到15‎分钟;若每小时行‎9千米,可比预定时‎间晚到15‎分钟;求从家里到‎学校的路程‎有多少千米‎?解:等量关系⑴速度15千‎米行的总路‎程=速度9千米‎行的总路程‎⑵速度15千‎米行的时间‎+15分钟=速度9千米‎行的时间-15分钟提醒:速度已知时‎,设时间列路‎程等式的方‎程,设路程列时‎间等式的方‎程。

方法一:设预定时间‎为x小/时,则列出方程‎是:15(x-0.25)=9(x+0.25)方法二:设从家里到‎学校有x千‎米,则列出方程‎是:3、一列客车车‎长200米‎,一列货车车‎长280米‎,在平行的轨‎道上相向行‎驶,从两车头相‎遇到两车车‎尾完全离开‎经过16秒‎,已知客车与‎货车的速度‎之比是3:2,问两车每秒‎各行驶多少‎米?提醒:将两车车尾‎视为两人,并且以两车‎车长和为总‎路程的相遇‎问题。

一元一次方程应用题(6)

一元一次方程应用题(6)

一、解答题(共15小题)1、一个底面半径为4cm,高为10cm的圆柱形烧杯中装满水.把烧杯中的水倒入底面半径为1cm的圆柱形试管中,刚好倒满试管.试管的高为多少cm?2、小红:昨天我们8个人去凤凰山公园玩,买门票花了260元,小明:哦,门票挺贵的,听说成人票每张40元,孩子票每张20元,是吗?小红:哼,是的,那你猜猜我们去了几个大人,几个小孩子?小明:去了…根据以上的对话,你能用列方程的知识帮助小明回答小红的提问吗?3、某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比定货任务少100套,如果每天生产23套服装,就可超过订货任务20套,问这批服装的定货任是多少套原计创几天完成?4、如图所示,甲、乙两人在环形跑道上练习跑步,已知环形跑道一圈长400米,乙每秒钟跑6米,甲的速度是乙的倍.(1)如果甲、乙在跑道上相距8米处同时反向出发,那么经过多少秒两人首次相遇?(2)如果甲在乙前面8米处同时同向出发,那么经过多少秒两人首次相遇?5、甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙车队数比甲车队车数的2倍还多1辆,应从甲车队调多少辆车到乙车队?6、某空调厂的装配车间原计划用2个月时间(每月30天计),每天组装150台空调.(1)从组装空调开始,每天组装的台数m(单位:台/天)与生产的时间t(单位:天)之间有怎样的函数关系?(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?7、金石中学有A、B两台复印机,用于印刷学习资料和考试试卷.学校举行期末考试,数学试卷如果用复印机A、B单独复印,分别需要90分钟和60分钟.在考试时为了保密需要,不能过早提前印刷试卷,学校决定在考试前由两台复印机同时复印.(1)两台复印机同时复印,共需多少分钟才能印完?(2)在复印30分钟后B机出了故障,暂时不能复印,此时离发卷还有13分钟.请你算一下,如果由A机单独完成剩下的复印任务,会不会影响按时发卷考试?(3)B机经过紧急抢修,9分钟后修好恢复使用,请你再算算,学校能否按时发卷考试?8、小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和为84,你知道我是几号出去的吗”小王说:“我假期到舅舅家去住了七天,日期数的和再加上月份数也是84,你能猜出我是几月几号回家的吗”试列出方程,解答小赵与小王的问题.9、暑假,某校初一年级(1)班组织学生去公园游玩,该班有50名同学组织了划船活动,如图是划船须知.(1)他们一共租了10条船,并且每条船都坐满了人,那么大、小船各租了几只?(2)他们租船一共花了多少元钱?10、某水果批发商欲将A市的一批水果运往B市销售,有火车和汽车两种运输工具,运输过程中的损耗均为160元(1)如果汽车的总支出费用比火车费用多960元,你知道A市与B市之间的路程是多少千米吗?请你列方程解答;(2)如果A市与C市之间的距离为S千米,要想将这批水果运往C市销售.选择哪种运输工具比较合算呢说明你的理由.11、将连续的奇数1,3,5,7,9…,排成如图的数表,问:(1)十字框中的五个数的和与15有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于2009吗?若能,请求出这五个数;若不能,请说明理由.12、初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,摩托车从甲地,运货汽车从乙地,同时,同向出发,两车几小时相遇?请你将这道作业题补充完整并列出方程解答.13、一水池装有甲、乙、丙三个水管,甲、乙是进水管,丙是放水管,分别单独开放甲、乙水管各需45分钟和60分钟注满水池,单独打开丙水管,90分钟可放完一池水,现三管一齐开放,多少分钟可以注满水池?14、列方程解应用题:甲、乙两车同时从A城去B城,甲车每小时行35千米,乙车每小时行40千米,结果乙比甲提前半小时到达B城.问A、B两城间的路程有多少千米?15、某服装厂接受了一批校服订货任务,按计划天数进行生产,如果每天平均生产20套,就比订货任务少生产100套,如果每天平均生产23套,就可超过订货任务20套,问原计划多少天完成?这批服装订货任务是多少套?答案与评分标准一、解答题(共15小题)1、一个底面半径为4cm,高为10cm的圆柱形烧杯中装满水.把烧杯中的水倒入底面半径为1cm的圆柱形试管中,刚好倒满试管.试管的高为多少cm?考点:一元一次方程的应用。

一元一次函数练习题带答案

一元一次函数练习题带答案

一元一次函数练习题带答案1.下面哪个点在函数y=1x+1的图象上A. B.C. D.2.下列函数中,y是x的正比例函数的是A.y=2x-1 B.y=xC.y=2x D.y=-2x+13.一次函数y=-5x+3的图象经过的象限是A.一、二、三B.二、三、四C.一、二、四D.一、三、四4.若一次函数y=x-k的图象经过第二、三、四象限,则k的取值范围是A.k>3B.0 填空题1.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,?该函数的解析式为_________.2.若点在正比例函数y=kx的图象上,则此函数的解析式为________.3.已知一次函数y=-x+a与y=x+b的图象相交于点,则a+b=_________.解答题1.根据下列条件,确定函数关系式:y与x成正比,且当x=9时,y=16;y=kx+b的图象经过点和点.2.如图所示的折线ABC?表示从甲地向乙地打长途电话所需的电话费y 与通话时间t之间的函数关系的图象写出y与t?之间的函数关系式.通话2分钟应付通话费多少元?通话7分钟呢?一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y 与x之间的函数关系式为y=8x y=2x+6y=8x+6y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k 不经过一象限二象限三象限四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是164.若甲、乙两弹簧的长度y与所挂物体质量x之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为y1>y y1=y2y1 5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,?则有一组a,b的取值,使得下列4个图中的一个为正确的是6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k 不经过第象限.一二三四7.一次函数y=kx+2经过点,那么这个一次函数y随x的增大而增大y随x的增大而减小图像经过原点图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在第一象限第二象限第三象限第四象限9.要得到y=-33x-4的图像,可把直线y=-x.2 向左平移4个单位向右平移4个单位向上平移4个单位向下平移4个单位10.若函数y=x+x2中的y与x成正比例,则m的值为 m>-11 m>m=- m=4411.若直线y=3x-1与y=x-k的交点在第四象限,则k 的取值范围是.k1 k>1或k 12.过点P直线,使它与两坐标轴围成的三角形面积为5,?这样的直线可以作4条条条 1条13.已知abc≠0,而且a?bb?cc?a=p,那么直线y=px+p 一定通过 ??cab第一、二象限第二、三象限第三、四象限第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y -4 -4 15.在直角坐标系中,已知A,在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有1个个个个16.一次函数y=ax+b的图象过点,交x轴于,交y轴于,若p为质数,q为正整数,那么满足条件的一次函数的个数为01 无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k的交点为整点时,k的值可以取2个个个个18.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取2个个个个19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,;乙上山的速度是1a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点2A出发,时间为t,离开点A的路程为S,?那么下面图象中,大致表示甲、乙二人从点A出发后的时间t与离开点A的路程S?之间的函数关系的是20.若k、b是一元二次方程x2+px-│q│=0的两个实根,在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过第1、2、4象限第1、2、3象限第2、3、4象限第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.2.已知一次函数y=x+m-3的图像经过第一,第三,第四象限,则m的取值范围是________.3.某一次函数的图像经过点,且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________.5.函数y=-3x+2的图像上存在点P,使得P?到x?轴的距离等于3,?则点P?的坐标为__________.6.过点P且与直线y=x+1平行的一次函数解析式为_________.7.y=2x与y=-2x+3的图像的交点在第_________象限. 8.某公司规定一个退休职工每年可获得一份退休金,?金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年,他的退休金比原来的多q元,那么他每年的退休金是表示______元.9.若一次函数y=kx+b,当-3≤x≤1时,对应的y值为1≤y≤9,?则一次函数的解析式为________.10.设直线kx+y-1=0与两坐标所围成的图形的面积为Sk,那么S1+S2+…+S2008=_______. 11.据有关资料统计,两个城市之间每天的电话通话次数T?与这两个城市的人口数m、n以及两个城市间的距离d有T=kmn的关系.?现测得A、B、C三个城市2d的人口及它们之间的距离如图所示,且已知A、B两个城市间每天的电话通话次数为t,那么B、C两个城市间每天的电话次数为_______次.三、解答题1.已知一次函数y=ax+b的图象经过点A与B.求一次函数的解析式,并在直角坐标系内画出这个函数的图象;如果中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.写出y与x之间的函数关系式;如果x的取值范围是1≤x≤4,求y的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.?小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;;小明回家后,?测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y与所用的时间x之间关系的函数图象.根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?求小明出发两个半小时离家多远??求小明出发多长时间距家12千米?5.已知一次函数的图象,交x轴于A,交正比例函数的图象于点B,且点B?在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,?求正比例函数和一次函数的解析式. 6.如图,一束光线从y轴上的点A出发,经过x轴上点C反射后经过点B,求光线从A点到B点经过的路线的长.一次函数经典试题及答案汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,10.若把这一过程中汽车的行驶路程s看作时间t的函数,其图像可能是函数的意义 A1、小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O-A-B-C和线段OD分别表示两人离学校的路程s 与所经过的时间t之间的函数关系,请根据图象回答下列问题:小聪在天一阁查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟。

初中数学一元一次方程精选试题(含答案和解析)

初中数学一元一次方程精选试题(含答案和解析)

初中数学一元一次方程精选试题(含答案和解析)一.选择题1.(2018·湖北省恩施·3分)一商店在某一时间以每件120元的价格卖出两件衣服.其中一件盈利20%.另一件亏损20%.在这次买卖中.这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元.根据利润=销售收入﹣进价.即可分别得出关于x、y的一元一次方程.解之即可得出x、y的值.再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元.根据题意得:120﹣x=20%x.y﹣120=20%y.解得:x=100.y=150.∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.2.(2018湖南省邵阳市)(3分)程大位是我国明朝商人.珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著.详述了传统的珠算规则.确立了算盘用法.书中有如下问题:一百馒头一百僧.大僧三个更无争.小僧三人分一个.大小和尚得几丁.意思是:有100个和尚分100个馒头.如果大和尚1人分3个.小和尚3人分1个.正好分完.大、小和尚各有多少人.下列求解结果正确的是()A.大和尚25人.小和尚75人 B.大和尚75人.小和尚25人C.大和尚50人.小和尚50人 D.大、小和尚各100人【分析】根据100个和尚分100个馒头.正好分完.大和尚一人分3个.小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100.大和尚分得的馒头数+小和尚分得的馒头数=100.依此列出方程即可.【解答】解:设大和尚有x人.则小和尚有(100﹣x)人.根据题意得:3x+=100.解得x=25则100﹣x=100﹣25=75(人)所以.大和尚25人.小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用.关键以和尚数和馒头数作为等量关系列出方程.二.填空题1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)某公司积极开展“爱心扶贫”的公益活动.现准备将6000件生活物资发往A.B两个贫困地区.其中发往A区的物资比B区的物资的1.5倍少1000件.则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据发往A.B两区的物资共6000件.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据题意得:x+1.5x﹣1000=6000.解得:x=2800.∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018•上海•4分)方程组的解是..【分析】方程组中的两个方程相加.即可得出一个一元二次方程.求出方程的解.再代入求出y即可.【解答】解:②+①得:x2+x=2.解得:x=﹣2或1.把x=﹣2代入①得:y=﹣2.把x=1代入①得:y=1.所以原方程组的解为..故答案为:..【点评】本题考查了解高次方程组.能把二元二次方程组转化成一元二次方程是解此题的关键.三.解答题1.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.2.(2018•海南•8分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护.截至2017年底.全省建立国家级、省级和市县级自然保护区共49个.其中国家级10个.省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据国家级、省级和市县级自然保护区共49个.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据题意得:10+x+5+x=49.解得:x=17.∴x+5=22.答:省级自然保护区有22个.市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018湖南张家界5.00分)列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(员).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.。

一元一次函数应用题与答案

一元一次函数应用题与答案

一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。

解:等量关系步行时间-乘公交车的时间=3.6小时列出方程是:2、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系⑴速度15千米行的总路程=速度9千米行的总路程⑵速度15千米行的时间+15分钟=速度9千米行的时间-15分钟提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。

方法一:设预定时间为x小/时,则列出方程是:15(x-0.25)=9(x+0.25)方法二:设从家里到学校有x千米,则列出方程是:3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。

等量关系:快车行的路程+慢车行的路程=两列火车的车长之和设客车的速度为3x米/秒,货车的速度为2x米/秒,则16×3x+16×2x=200+2804、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

一元一次函数应用题

一元一次函数应用题

一元一次函数应用题
一元一次函数在我们的日常生活中应用十分广泛,以下是数学网整理的`函数的应用能力提升训练题,希望对考生有帮助。

1.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得最大利润为().
A.45.606万元
B.45.6万元
C.45.56万元
D.45.51万元
解析依题意可设甲销售x辆,则乙销售(15-x)辆,总利润S=L1+L2,则总利润S=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30=-0.15(x-10.
2)2+0.1510.22+30(x0),当x=10时,Smax=45.6(万元).
答案B
2.(12分)为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的如意卡与便民卡在某市范围内每月(30天)的通话时间x(分)与通话费y(元)的关系分别如图、所示.
(1)分别求出通话费y1,y2与通话时间x之间的函数关系式;
(2)请帮助用户计算,在一个月内使用哪种卡便宜?
解(1)由图象可设y1=k1x+29,y2=k2x,把点B(30,35),C(30,15)分别代入y1,y2得k1=,k2=.
y1=x+29,y2=x.
(2)令y1=y2,即x+29=x,则x=96.
当x=96时,y1=y2,两种卡收费一致;
当x96时,y1y2,即使用便民卡便宜;
当x96时,y1
函数的应用能力提升训练题及答案的所有内容就是这些,更多精彩内容请持续关注数学网。

一次函数的应用专项练习30题有答案

一次函数的应用专项练习30题有答案

一次函数的应用专项练习30题(有答案)1.向一个空水池注水,水池蓄水量y(米3)与注水时间x(小时)之间的函数图象如图所示.(1)第20小时时蓄水量为_________ 米3;(2)水池最大蓄水量是_________ 米3;(3)求y与x之间的函数关系式.2.小王的父母经营一家饲料店,拟投入a元购入甲种饲料,现有两种方案:①如果月初出售这批甲种饲料可获利8%,并用本金和利润再购入乙种饲料,到月底售完又获利10%;②如果月底出售这批甲种饲料,可获利20%,但要付仓储费600元.(1)分别写出方案①、②获利金额的表达式;(2)请你根据小王父母投入资金的多少,定出可多获利的方案.3.某工厂现在年产值是15万元,计划以后每年增加2万元,设x年后的年产值为y(万元).(1)写出y与x之间的关系式;(2)用表格表示当x从0变化到5(每次增加1)y的对应值;(3)求10年后的年产值?4.我们知道海拔一定高度的山区气温随着海拔高度的增加而下降.小明暑假到去旅游,沿途他利用随身所带的测量仪器,测得以下数据:1400 1500 1600 1700 …海拔高度x(m)气温y(°C)32.00 31.40 30.80 30.20 …(1)现以海拔高度为x轴,气温为y轴建立平面直角坐标系,根据提供的数据描出各点;(2)已知y与x的关系是一次函数关系,求出这个关系式;(3)若小明到达天都峰时测得当时的气温是29.24°C.求天都峰的海拔高度.5.如图,l1,l2分别表示一种白炽灯和一种节能灯的费用y与照明时间x(h)的函数图象,假设两种灯的使用寿命都是2000h,照明效果一样.(费用=灯的售价+电费,单位:元)(1)根据图象分别求出l1,l2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?6.某物流公司的快递车和货车每天沿同一公路往返于A、B两地,快递车比货车多往返一趟.图表示快递车与货车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B 地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.(1)两车在途中相遇的次数为_________ 次;(直接填入答案)(2)求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时.7.某农户有一水池,容量为10立方米,中午12时打开进水管向水池注水,注满水后关闭水管同时打开出水管灌溉农作物,当水池中的水量减少到1立方米时,再次打开进水管向水池注水(此时出水管继续放水),直到再次注满水池后停止注水,并继续放水灌溉,直到水池中无水,水池中的水量y(单位:立方米)随时间x(从中午12时开始计时,单位:分钟)变化的图象如图所示,其中线段CD所在直线的表达式为y=﹣0.25x+33,线段OA所在直线的表达式为y=0.5x,假设进水管和出水管每分钟的进水量和出水量都是固定的.(1)求进水管每分钟的进水量;(2)求出水管每分钟的出水量;(3)求线段AB所在直线的表达式.8.为发展电信事业,方便用户,电信公司对移动采取不同的收费方式,其中“如意卡”无月租,每通话一分钟收费0.25元,“便民卡”收费信息如图(1)分别求出两种卡在某市围每月(30天)的通话时间x(分钟)与通话费y(元)之间的函数关系式.(2)请你帮助用户计算一下,在一个月使用哪种卡便宜.9.如图是甲、乙两人去某地的路程S(km)与时间t(h)之间的函数图象,请你解答下列问题:(1)甲去某地的平均速度是多少?(2)甲出发多长时间,甲、乙在途中相遇?10.如图,在甲、乙两同学进行400米跑步比赛中,路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OAB和线段OC,请根据图上信息回答下列问题:(1)_________ 先到达终点;(2)第_________ 秒时,_________ 追上_________ ;(3)比赛全程中,_________ 的速度始终保持不变;(4)写出优胜者在比赛过程中所跑的路程s(米)与时间t(秒)之间的函数关系式:_________ .11.甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)当x=2.8时,甲、乙两组共加工零件_________ 件;乙组加工零件总量a的值为_________ .(3)加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱?12.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象提供的信息解答下列问题:(1)甲队在0≤x≤6的时间段,挖掘速度为每小时_________ 米;乙队在2≤x≤6的时间段,挖掘速度为每小时_________ 米;请根据乙队在2≤x≤6的时间段开挖的情况填表:时间(h) 2 3 4 5 630 50乙队开挖河渠(m)(2)①请直接写出甲队在0≤x≤6的时间段,y甲与x之间的关系式;②根据(1)中的表中规律写出乙队在2≤x≤6的时间段,y乙与x之间的关系式;(3)在(1)的基础上,如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到每小时12米,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?13.百舟竞渡,激悄飞扬,端午节期间,龙舟比赛在九龙江举行.甲、乙两支龙舟队在比赛时的路程y(米)与时间x(分钟)的函数关系的图象如图所示,根据图象解答下列问题:(1)出发后1.5分钟,_________ 支龙舟队处于领先位置(填“甲”或“乙“);(2)_________ 支龙舟队先到达终点(填“甲“或“乙”),提前_________ 分钟到达;(3)求乙队加逨后,路程y(米)与时问分钟)之间的函数关系式,并写出自变x的取值围.14.在人才招聘会上,某公司承诺:录用后第一年的月工资为2000元,以后每年的月工资比上一年的月工资增加300元,一年按12个月计算.(1)如果某人在该公司连续工作x年,他在第x年后的月工资是y元,写出y与x的关系式.(2)如果这个人期望第五年的工资收入超过4万元,那么他是否应该在该公司应聘?15.褚向同学乘车从学校出发回家,他离家的路程y(km)与所用时间x(时)之间的关系如图所示.(1)求y与x之间的关系式;(2)求学校和褚向同学家的距离.16.某软件公司开发出一种图书管理软件,前期投入的各种费用总共50000元,之后每售出一套软件,软件公司还需支付安装调试费用200元,设销售套数x(套).(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.(2)该公司计划以400元每套的价格进行销售,并且公司仍要负责安装调试,试问:软件公司售出多少套软件时,收入超出总费用?17.甲和乙上山游玩,甲乘坐缆车,乙步行,两人相约在山顶的缆车终点会合.已知乙行走到缆车终点的路程是缆车到山顶的线路长的2倍,甲在乙出发后50min才乘上缆车,缆车的平均速度为180m/min.设乙出发xmin后行走的路程为ym.图中的折线表示乙在整个行走过程中y与x的函数关系.(1)乙行走的总路程是_________ m,他途中休息了_________ min.(2)①当50≤x≤80时,求y与x的函数关系式;②当甲到达缆车终点时,乙离缆车终点的路程是多少?18.经理到家果园里一次性采购一种水果,他俩商定:经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)如果采购量x满足20≤x≤40,求y与x之间的函数关系式;(2)已知家种植水果的成本是2 800元/吨,经理的采购量x满足20≤x≤40,那么当采购量为多少时,家在这次买卖中所获的利润w最大?最大利润是多少?19.某移动通讯公司开设了“全球通”和“神舟行”两种通讯业务,收费标准见下表:通讯业务月租费(元)通话费(元/分钟)全球通50 0.4神舟行0 0.6某用户一个月通话x分钟,“全球通”和“神舟行”的收费分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)在通话时间相同的情况下,你认为该用户应选择哪种通讯业务更为合算?20.某长途汽车客运站规定,乘客可以免费携带一定质量的行,但超过该质量则需交纳行费,已知行费y(元)是行质量x(千克)的一次函数.现在黄明带了60千克的行,交了行费5元,王华带了78千克的行,交了8元.(1)写出y与x之间的函数关系式;(2)旅客最多可以免费携带多少千克的行?21.某长途汽车客运站规定,乘客可免费携带一定质量的行,但超过该质量则需要购买行票,且行费y(元)是行质量x(千克)的一次函数,如图所示.(1)求y与x之间的函数关系式.(2)最多可免费携带多少质量的行?22.小明从A地出发向B地行走,同时小聪从B地出发向A地行走.如图所示,线段l1、l2分别表示小明、小聪离B地的距离y(km)与已用时间x(h)之间的关系.观察图象,回答以下问题:(1)出发_________ (h)后,小明与小聪相遇,此时两人距离B地_________ (km);(2)求小聪走1.2(h)时与B地的距离.23.某公司生产一种新产品,前期投资300万元,每生产1吨新产品还需其他投资0.3万元,如果生产这一产品的产量为x吨,每吨售价为0.5万元.(1)设生产新产品的总投资y1万元,试写出y1与x之间的函数关系式和定义域;(2)如果生产这一产品能盈利,且盈利为y2万元,求y2与x之间的函数关系式,并写出定义域;(3)请问当这一产品的产量为1800吨时,该公司的盈利为几万元?24.根据市场调查,某厂家决定生产一批产品投放市场,安排750名工人计划10天完成a件的生产量.(1)按计划,该厂平均每天应生产产品多少件?(用含a的式子表示)(2)该厂按计划生产几天后,该厂家又抽调了若干名工人支援生产,同时,通过技术革新等手段使每位工人的工作效率比原计划每位工人的工作效率提高25%,结果提前完成任务,图中折线表示实际工作情况.求厂家又抽调了多少名工人支援生产?25.某公司库存挖掘机16台,现在运往甲、乙两地支援建设,每运一台到甲、乙两地的费用分别是500元和300元.设运往甲地x台挖掘机,运这批挖掘机的总费用为y元.(1)写出y与x之间的函数关系式;(2)如果公司决定将这16台挖掘机平均分配给甲、乙两地,求此次运输的总费用;(3)如果公司决定按运输费用平均分配这16台挖掘机,求此时运输的总费用又是多少.26.A市和B市各有机床12台和6台,现运往C市10台,D市8台.若从A市运1台到C市、D市各需要4万元和8万元,从B市运1台到C市、D市各需要3万元和5万元.(1)设B市运往C市x台,求总费用y关于x的函数关系式;(2)若总费用不超过90万元,问共有多少种调运方法?(3)求总费用最低的调运方法,最低费用是多少万元?27.某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2060万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:A B成本(万元/套)25 28售价(万元/套)30 34(1)该公司如何建房获得利润最大?(2)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?(注:利润=售价﹣成本)28.某工厂研制一种新产品并投放市场,根据市场调查的信息得出这种新产品的日销售量y(万件)与销售的天数x(天)的关系如图所示.根据图象按下列要求作出分析:(1)求开始时,不断上升的日销售量y(万件)与销售天数x(天)的函数关系式;(2)已知销售一件产品获利0.9元,求在该产品日销售量不变期间的利润有多少万元.29.两种移动计费方式如下:全球通神州行月租费15元/月0本地通话费0.10元/分0.20元/分(1)一个月某用户在本地通话时间是x分钟,请你用含有x的式子分别写出两种计费方式下该用户应该支付的费用.(2)若某用户一个月本地通话时间是5个小时,你认为采用哪种方式较为合算?(3)小王想了解一下一个月本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下.30.为了学生的健康,学校课桌、课凳的高度都是按一定的关系科学设计的,小明对学校所添置的一批课桌、课凳进行观察研究,发现他们可以根据人的身长调节高度,于是,他测量了一套课桌、课凳上相对的四档高度,得到如下数据:档次/高度第一档第二档第三档第四档凳高x/cm 37.0 40.0 42.0 45.0桌高y/cm 70.0 74.8 78.0 82.8(1)小明经过数据研究发现,桌高y是凳高x的一次函数,请你求出这个一次函数的解析式(不要求写出x的取值围).(2)小明回家后,量了家里的写字台和凳子,凳子的高度是41厘米,写字台的高度是75厘米,请你判断它们是否配套.一次函数的应用30题参考答案:1.(1)由图形可知,当x=20时,y=1000,∴第20小时时蓄水量为1000米3.(2)由图形可知,当x=230时,y=4000,∴水池最大储水量为4000米3.(3)由图形可知,x=20为图象的拐点,①当0<x<20时:为正比例函数,设y1=kx1,过点(20,1000),∴k=50,∴y1=50x1,(0<x<20).②当20≤x ≤30时,设y2=k1x2+b,过点(20,1000)和(30,4000),∴代入方程式中,求解为k1=300,b=﹣5000,∴y2=300x2﹣5000,(20≤x≤30)2.(1)方案①获利a(1+8%)•(1+10%)﹣a=0.188a 方案②a•20%﹣600=0.2a﹣600(2)当0.188a=0.2a﹣600时,解得:a=50000.当a=50000元时,获利一样多;当a高于50000元时,第二种方案获利多一些;当a低于50000元时,第一种方案获利多一些3.(1)依题意,得y=15+2x;(2)列表如下:x 0 1 2 3 4 5y 15 17 19 21 23 25(3)当x=10时,y=15+2×10=35,即10年后的年产值为35万元4.(1)描点:(2)设解析式为y=kx+b,把点(1400,32),(1500,31.4)分别代入可得:,解得:,所以此一次函数关系式为:y=﹣x+40.4;(3)当y=29.24时,有:x+40.4=29.24,解得:x=,即山巅的海拔为:米5.(1)设l1、l2的解析式分别为y1=k1x+b1,y2=k2x+b2,由图象,得,,解得:,.故l1的解析式为:y1=x+2,l2的解析式为:y2=x+20(2)由题意,得x+2=x+20,解得x=1000.故当照明1000小时时两种灯的费用相等6.(1)由图象得:两车在途中相遇的次数为4次.故答案为:4;(2)由题意得:快递车的速度为:400÷4=100,货车的速度为:400÷8=50,∴200÷50=4,600÷100=6∴E(6,200),C(7,200).如图,设直线EF的解析式为y=k1x+b1,∵图象过(10,0),(6,200),∴,∴k1=﹣50,b1=500,∴y=﹣50x+500①.设直线CD的解析式为y=k2x+b2,∵图象过(7,200),(9,0),∴,∴k1=﹣100,b 1=900,∴y=﹣100x+900②.解由①,②组成的方程组得:,解得:,∴最后一次相遇时距离A地的路程为100km,货车从A 地出发了8小时.7.(1)∵线段OA所在直线的表达式为y=0.5x,∴x=1时,y=0.5,则求出进水管每分钟的进水量为0.5立方米.(2)∵线段CD所在直线的表达式为y=﹣0.25x+33,∴10=﹣0.25x+33,解得:x=92,0=﹣0.25x+33,解得:x=132,∵132﹣92=40(分钟),∴10÷40=0.25,则求出出水管每分钟的出水量为0.25立方米.(3)对于C来说,纵坐标为10,代入y=﹣0.25x+33中得:10=﹣0.25x+33,解得:x=92,点A的纵坐标为10,代入y=0.5x中得到x=20,故A(20,10),设从B到C经过了a分钟,则:(0.5﹣0.25)a=10﹣1=9,解得:a=36,∴B的横坐标为92﹣36=56,故B(56,1).设AB 解析式为y=kx+b(k≠0),将A,B坐标代入得:,解得:,即直线AB 解析式为8.(1)设便民卡每月的通话时间与费用之间的关系为y2=kx+b,根据图象得:,解得:,故使用如意卡每月的费用与时间之间的关系式为:y1=0.25x;“便民卡”y与x之间的函数关系式为:y2=0.2x+12.(2)当y1>y2时,0.25x>0.2x+12,解得:x>240;当y1=y2时,0.25x=0.2x+12,解得:x=240当y1<y2时,0.25x<0.2x+12,解得x<240.故当x<240时使用如意卡划算些,当x=240时,两种收费一样划算,当x>240时.使用便民卡划算些9.(1)利用图表得出甲所行驶的总路程为:30千米,行驶时间为:3小时,故甲去某地的平均速度是:30÷3=10千米/时;(2)由图象得出:直线CD经过点(3,30),(1,0)代入s=kt+b,得:,解得:,故直线CD解析式为:s=15t﹣15,由图象得出s=15千米时两人相遇,则15=15t﹣15,解得:t=2.故甲出发2小时,甲、乙在途中相遇10.依题意,得(1)乙先到达终点;(2)第40秒时,乙追上甲;(3)比赛全程中,乙的速度始终保持不变;(4)乙的速度为:400÷50=8,∴S=8t(0≤t≤50).故答案为:(1)乙;(2)40,乙,甲;(3)乙;(4)S=8t (0≤t≤50)11.(1)∵图象经过原点及(6,360),∴设解析式为:y=kx,∴6k=360,解得:k=60,∴y=60x(0<x≤6);(2)∵乙2小时加工100件,∴乙的加工速度是:每小时50件,∴2.8小时时两人共加工60×2.8+50×2=268(件),∴乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.∴更换设备后,乙组的工作速度是:每小时加工50×2=100件,a=100+100×(4.8﹣2.8)=300;(3)乙组加工的零件的个数y与时间x的函数关系式为y=50x(0≤x≤2)y=100(2<x≤2.8)y=100x﹣(2.8<x≤4.8)∵当2.8<x≤4.8时,60x+100x﹣=230×2,得x=4,∴再经过4小时恰好装满第2箱12.(1)甲:60÷6=10;乙:(50﹣30)÷(6﹣2)=20÷4=5;30+5(3﹣2)=35,30+5(4﹣2)=40,30+5(5﹣2)=45,∴表格容依次填35、40、45;(3分)(2)①∵甲图象经过点(0,0)(6,60),∴设y甲与x之间的关系式是y甲=ax,则6a=60,解得a=10,∴y甲与x之间的关系式是:y甲=10x,(5分)②∵图象经过点(2,30)(6,50),∴设y乙与x之间的关系式是y乙=kx+b,则,解得,∴y乙与x之间的关系式是:y乙=30+5(x﹣2)=5x+20;(7分)(3)设甲队从开挖到完工所挖河渠的长度为z米,由题意得=(9分)解得z=110,∴甲队从开挖到完工所挖河渠的长度为110米.13.(1)当x=1.5时,甲对应的函数图象在乙的图象的上方,所以甲支龙舟队处于领先位置.故答案为甲;(2)乙比赛用时4.5分,甲用时5分,所以乙支龙舟队先到达终点,比甲提前0.5分钟到达.故答案为乙,0.5;(3)设乙队加逨后,路程y(米)与时间(分钟)之间的函数关系式为y=kx+b,把(2,300)和(4.5,1050)代入得,2k+b=300,4.5k+b=1050,解得k=300,b=﹣300,∴y=300x﹣300(2≤x≤4.5)14.(1)由题意得y=2000+300(x﹣1)=1700+300x;(2)把x=5代入y=1700+300n=3200(元),3200×12=38400(元).∵38400元<40 000元,∴他不可以到该公司应聘15.(1)设y与x的关系式为y=kx+b,有函数的图象可知点(3,40),(5,0),则,解得:所以y与x的关系式为y=﹣20x+100;(2)当x=0时,y=100,所以学校与褚向同学的距离为100千米.16.(1)设总费用y(元)与销售套数x(套),根据题意得到函数关系式:y=50000+200x.(2)设软件公司至少要售出x套软件才能收入超出总费用,则有:400x>50000+200x解得:x>250.答:软件公司至少要售出251套软件才能收入超出总费用17.(1)由图象得:乙行走的总路程是:3600米,他途中休息了20分钟.故答案为:3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b.根据题意得:,解得:,∴y与x的函数关系式为:y=55x﹣800②缆车到山顶的路线长为3600÷2=1800(m),缆车到达终点所需时间为1800÷=10(min).甲到达缆车终点时,乙行走的时间为10+50=60(min).把x=60代入y=55x﹣800,得y=55×60﹣800=2500.所以,当甲到达缆车终点时,乙离缆车终点的路程是:3600﹣2500=1100(m)18.(1)当20≤x≤40时,设y与x之间的函数关系式:y=kx+b,∵当x=20时,y=8000,当x=40时,y=4000∴,,∴y=﹣200x+12000;(2)当20≤x≤40时,w=(y﹣2800)x=﹣200x2+9200x=﹣200(x﹣23)2+105800,∴当x=23时,w有最大值,是105800,当采购量为23吨时,家在这次买卖中所获的利润w最大,最大利润是105800元19.(1)利用图表直接得出:y1=0.4x+50;y2=0.6x;(2)当y1=y2,即0.4x+50=0.6x时,解得:x=250;当y1<y2,即0.4x+50<0.6x时,解得:x>250;当y1>y2,即0.4x+50>0.6x时,解得:x<250;答:通话时间为250分钟时,两种通讯业务一样,当通话时间为大于250分钟时,全球通业务合算,当通话时间为小于250分钟时,神舟行业务合算20.(1)设行费y(元)关于行质量x(千克)的一次函数关系式为y=kx+b,由题意得,解得k=,b=﹣5,∴该一次函数关系式为;(2)∵,解得x≤30,∴旅客最多可免费携带30千克的行.答:(1)行费y (元)关于行质量x(千克)的一次函数关系式为;(2)旅客最多可免费携带30千克的行21.(1)设一次函数y=kx+b,∵当x=60时,y=6,当x=80时,y=10,∴,解之,得,∴所求函数关系式为y=x﹣6(x≥30);(2)当y=0时,x﹣6=0,所以x=30,故旅客最多可免费携带30kg行.22.(1)由函数图象可以得出l1、l2的交点坐标是(0.6,2.4),故出发0.6小时后,小明与小聪相遇,此时两人距B地2.4,(2)设l2的解析式为y=kx,由题意,得2.4=0.6k,k=4则l2的解析式为y=4x.当x=1.2时,y=4.8答:小聪走1.2(h)时与B地的距离是4.8(km).故答案为:0.6,2.4.23.(1)由题意,得y1=0.3x+300,定义域为x>0.(2)由题意,得y2=0.5x﹣0.3x﹣300,y2=0.2x﹣300;定义域为x>1500;(3)当x=1800时,y2=0.2×1800﹣300=60.故当这一产品的产量为1800吨时,该公司的盈利为60万元24.(1)由题意,得该厂平均每天应生产产品的件数为:件,故答案为:;(2)设厂家又抽调了x名工人支援生产,由题意及图象得:×2+(1+25%)(750+x)×6=a,解得:x=50.答:厂家又抽调了50名工人支援生产25.(1)设运往甲地x台挖掘机,运这批挖掘机的总费用为y元,则:y=500x+300(16﹣x)=200x+4800;(2)当x=8时,y=200x+4800=1600+4800=6400;(3)依题意有500x=300(16﹣x),解得:x=6,当x=6时,y=200x+4800=1200+4800=6000.26.(1)设B市运往C市x台,则运往D市(6﹣x)台,A市运往C市(10﹣x)台,运往D市(x+2)台,由题意得:y=4(10﹣x)+8(x+2)+3x+5(6﹣x),y=2x+86.(2)由题意得:,解得:0≤x≤2,∵x为整数,∴x=0或1或2,∴有3种调运方案.当x=0时,从B市调往C市0台,调往D市6台.从A市调往C 市10台,调往D市2台,当x=1时,从B市调往C市1台,调往D市5台.从A市调往C 市9台,调往D市3台,当x=2时,从B市调往C市2台,调往D市4台.从A市调往C 市8台,调往D市4台,(3)∵y=2x+86.∴k=2>0,∴y随x的增大增大,∴当x最小为0时,y最小,∴运费最小的调运方案是:从B市调往C市0台,调往D市6台,从A市调往C市10台,调往D市2台.y最小=86万元27.(1)设建A型的住房x套,B型的住房(80﹣x)套,利润为y,根据题意得:,解得:48≤x≤50.利润y=(30﹣25)x+(34﹣28)(80﹣x)=480﹣x.∵y随x的增加而减小,∴x=48时利润最大,即建A型住房48套,B型住房32套.(2)利润y=480+(a﹣1)x.当a>1时,x=50时利润y最大,即建A型住房50套,B型住房30套.当a=1时,建A型住房48到50之间即可.当0<a<1时,x=48时利润最大,即建A型48套,建B型32套28.(1)设开始时,不断上升的日销售量y(万件)与销售天数x (天)的函数关系式为y=kx,由图象得:3=60k,k=,故y与x之间的函数关系式为:y=x(0≤x≤60);(2)由图象得日销售量不变期间的销量为:3万件.则利润为:3×0.9=2.7万元29.(1)全球通:15+0.1x,神州行:0.2x;(2)5小时=300分钟,全球通:15+0.1×300=45(元),神州行:0.2×300=60(元),∴应选择全球通;(3)∵两种计费方式的收费一样多,∴0.2x=15+0.1x,解得:x=150,答:一个月本地通话时间为150分钟时,两种计费方式的收费一样多30.(1)设一次函数的解析式为:y=kx+b,将x=37,y=70;x=42,y=78代入y=kx+b,得,解得,∴y=1.8x+10.8;(2)当x=41时,y=1.8×41+10.8=84.6,∴家里的写字台和凳子不配套.。

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(水费电费问题)训练(含解析)

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(水费电费问题)训练(含解析)

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(水费电费问题)训练a a(3)如果丙用户某月用水量为吨,则丙该月应缴交水费多少元?(用含的式子表示,并化简)参考答案:1.(1)(2)(3)小林家在11月份的用电量为305度.【分析】本题考查的是列代数式,一元一次方程的应用.(1)由可得此时单价为每度元,利用总价等于单价乘以数量即可得到答案;(2)由小林家月份用电度,可得此时分两段计费,其中度每度元,超过部分度,每度元,从而可得答案;(3)设小林家在月份的用电量为度,由,可得,再列方程,解方程可得答案.【详解】(1)解:∵,∴小林家4月份应付的电费(元).故答案为:90;(2)解:∵小林家6月份用电度,∴小林家6月份应付的电费元,故答案为:;(3)解:设小林家在11月份的用电量为x 度,∵,∴.根据题意得:,解得:.答:小林家在11月份的用电量为305度.2.(1)40,102(2)160(3),,(4)居民丁12月用电460度,见解析90()0.863x -180<210,0.56(x 210x >)2100.5()210x -0.811x 2100.5105181⨯=<210x >0.863181x -=180210<1800.5=90⨯()210x x >()()2100.5+0.82101050.81680.863x x x ⨯-=+-=-()0.863x -2100.5105181⨯=<210x >0.863181x -=305x =0.5x ()0.6515x -()0.7535x -【分析】本题考查一元一次方程的应用,理解题意,正确列出代数式是解题的关键.(1)根据某地对居民用户用电收费标准作如下规定列式即可求出答案;(2)根据某地对居民用户用电收费标准作如下规定列式即可求出答案;(3)根据某地对居民用户用电收费标准作如下规定列式并化简即可求出答案;(4)先判断出居民丁在12月份用电范围,再列方程即可解决问题.【详解】(1)解:,∴居民甲9月份应缴纳电费:(元),,∴居民乙10月份应缴纳电费:(元),故答案为:40,102;(2),∴居民丙11月份应缴纳电费:(元),故答案为:160;(3)当x 不超过100度,需交电费:元;当x 超过100度不超过200度,需交电费:(元),如果超过200度,需交电费:(元),故答案为:,,;(4)由(2)可知,该月用电超过200度,故,解得,答:居民丁12月用电460度.3.(1)的值为;(2)该用户用水35立方米.【分析】本题主要考查了一次函数的应用.(1)根据题意列出关于a 的方程,解方程即可;(2)先判断用水量超过30立方米,然后列出关于x 方程,解方程即可.【详解】(1)解:由题意,得,解得.80100< 800.540⨯=100180200<< ()1000.50.65180100102⨯+⨯-=260200> ()()0.51000.652001002602000.75160⨯+⨯-+-⨯=0.5x ()5010006506515x ..x +-⨯=-()()0510006520010020007507535..x ..x ⨯+⨯-+-⨯=-0.5x ()06515.x -()07535.x -07535310.x -=460x =a 2.981029.8a = 2.98a =答:的值为;(2)解:∵用水30立方米时,水费为,∴,∴,解得.答:该用户用水35立方米.4.(1)60(2)当时,这个月应缴纳电费为:元,当时,这个月应缴纳电费为:元,(3)九月份应缴电费127元,十月份用电225度.【分析】本题考查列代数式以及一元一次方程的应用,注意分类讨论缴费情况,本题还涉及代入求值问题.(1)根据,结合电费=单价×度数,列式求值即可,(2)根据“如果每月每户用电不超过150度,那么每度电元;如果该月用电超过150度,那么超过部分每度电元”分别讨论和时,这个月应缴纳的电费,列出关于a 的整式,(3)令,代入(2)中的代数式中即可求出九月份应缴电费;根据可得十月份电费超过150度,据此列方程计算即可.【详解】(1)解:根据题意得:(元),答:这个月应缴纳电费60元,(2)当时,这个月应缴纳电费为:元,当时,这个月应缴纳电费为:元;(3)当,应缴费为:(元)∵,∴十月份电费超过150度,根据题意可得,解得:,答:九月份应缴电费127元,十月份用电225度.a 2.9830 2.9889.4109.4⨯=<30x >()()30 2.9830 2.98 1.02109.4x ⨯+-⨯+=35x =150a 0≤≤0.5a 150a >()0.845a -120150<0.50.8150a ≤150a >215a =0.845a -0.515075135⨯=<0.512060⨯=150a 0≤≤0.5a 150a >()()0.51500.81500.845a a ⨯+-=-215a =2150.845127⨯-=0.515075135⨯=<0.845135a -=225a =5.(1)36.5(2)31吨【分析】(1)根据题意列式求解即可;(2)首先判断李强家六月份用水量超过吨而没有超过吨,然后设小强家六月份用了吨水,根据题意列出方程,求解即可获得答案.【详解】(1)解:根据题意,可得王明家要交水费;(2)解:∵,∴李强家六月份用水量超过吨而没有超过吨,设李强家六月份用了吨水,根据题意,可得,解得 ,所以,李强家六月份用了31吨水.【点睛】本题主要考查了列代数式以及一元一次方程的应用,理解题意,弄清数量关系是解题关键.6.(1)120(2)九月份共用电320千瓦时,应交电费是144元【分析】(1)根据题中所给的关系,分情况讨论:若每月用电量超过a 千瓦时,找到等量关系,然后列出方程求出a ;若每月用电量没有超过a 千瓦时,再求解看是否符合题意;(2)先设九月份共用电x 千瓦时,从中找到等量关系,然后列出方程求出x 的值,进一步得到应交电费是多少元.【详解】(1)解:根据题意可得:若每月用电量没有超过a 千瓦时,则共交电费,不符合题意;则八月用电量超过a 千瓦时,则解得:;2040x 1.320(1.30.8)(20)49.1x ⨯++⨯-=()()1.320 1.30.8252036.5⨯++⨯-=1.320(1.30.8)(4020)6849.1⨯++⨯-=>2040x 1.320(1.30.8)(20)49.1x ⨯++⨯-=31x =0.41405657.6⨯=≠0.40.4120%(140)57.6a a +⨯-=120a =答:a 为120;(2)解:设九月份共用电x 千瓦时,解得:∴元,答:九月份共用电320千瓦时,应交电费是144元.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思, 根据题目给出的条件,找出合适的等量关系列出方程, 再求解.7.(1)元(2)度【分析】(1)根据收费标准,列式计算即可求出老王家10月份应交电费;(2)设老王家去年6月份的用电量为度,由电费的平均价为元可得出,根据收费标准结合总电价=单价×数量,即可得出关于的一元一次方程,解之即可得出结论.【详解】(1)解:依题意可得:(元),答:老李家今年10月份需交电费235元;(2)解:设老李家今年11月份的用电量为度,因为,所以今年11月份老李家用电量是多于400度,依题意得,解得,答:老李家今年11月份的用电量为560度.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)找准等量关系,正确列出一元一次方程.8.(1)2.3(2)28立方米【分析】(1)根据题意即可求出的值;(2)首先判定用水量的范围,然后根据不超过22立方米的水费超过22立方米的水费列出的一元一次方程,求出的值.0.450.41200.4120%(120)x x =⨯+⨯⨯-320x =0.45320144⨯=235560y 0.70400y >y 2400.6(380240)0.65235⨯+-⨯=y 0.650.700.90<<2400.6(400240)0.65(400)0.900.70y y ⨯+-⨯+-⨯=560y =a +71=x x【详解】(1)由题意得:,解得:.(2)设用户的用水量为立方米,因为用水22立方米时,水费为:,所以用水量,所以,解得:,答:该用户7月份用水量为28立方米.【点睛】此题考查了一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,找到所需的等量关系.9.(1)78元;1100元(2),;(3)450吨【分析】(1)根据两种付费的标准分别计算,即可;(2)根据两种付费的标准分别求出结论;(3)设该单位用水为x 吨,根据题意,列出一元一次方程,求出其解即可.【详解】(1)解:若用水吨,水费元;若用水吨,水费元,故答案是:,;(2)由题意,得当用水量小于等于300吨,水费元;当用水量大于300吨,水费;∴故答案为:,;(3)设该单位用水x 吨,当时,,解得(舍去)当时,,解得2046a =2.3a =x 22 2.350.671⨯=<22x >()()22 2.322 2.3 1.171x ⨯+-+=28x =3x 4300x -2602603780=⨯=35033005041100=⨯+⨯=780110013y x =()300343004300x x ⨯+-=-24300y x =-3x 4300x -300x ≤31500x =500x =300x >43001500x -=450x =若某月该单位缴纳水费元,则该单位这个月用水吨.【点睛】此题考查了一元一次方程的实际运用,理解题意,利用基本数量关系列出代数式或方程是解决问题的关键.10.(1)该用户10月份应该缴纳水费元;(2)该用户11月份用水;(3)该用户12月份实际应该缴纳水费76元.【分析】(1)根据表中数据即可得出;(2)先判断11月份是否超过,再根据等量关系列出方程求解即可;(3)先判断12月份是否超过,再列方程求出实际用水量,最后算出水费即可.【详解】(1)解:根据表中数据可知, 每月不超过,实际每立方米收水费 (元),10月份某用户用水量为,不超过,∴该用户10月份应该缴纳水费(元),(2)由(1)知实际每立方米收水费3元, ,∴11月份用水量超过了,设11月份用水量为,根据题意列方程得, ,解得,答:该用户11月份用水;(3)由(1)知实际每立方米收水费3元, ,∴水表12月份出故障时收费按没有超过计算,设12月份实际用水量为,根据题意列方程得,,解得,(元),答:该用户12月份实际应该缴纳水费76元.【点睛】本题主要考查一元一次方程的应用,理解题意,根据等量关系列出方程是解题的关键.150045054325m 320m 320m 320m 2.050.80.153++=318m 320m 18354⨯=2036080⨯=<320m 3m x ()()20320 3.050.80.1580x ⨯+-⨯++=25x =325m 203=60>54⨯320m 3m x ()3125%54x ⨯-=24x =()()2032420 3.050.80.1576⨯+-⨯++=11.(1)A 企业十月份用水70吨(2)若,则B 企业八月份应缴元水费,若,则B 企业八月份应缴元水费.【分析】(1)首先计算出用水40吨时的水费,该市A 企业十月份用水超过40吨,然后设A 企业十月份用水x 吨,由分段缴费列出方程求解即可;(2)该市B 企业八月份用水m 吨,由分段缴费列出代数式即可.【详解】(1)∵,∴该市A 企业十月份用水超过40吨,设A 企业十月份用水x 吨,根据题意得:,解得,答:A 企业十月份用水70吨;(2)若,则B 企业八月份应缴(元)水费,若,则B 企业八月份应缴元水费.【点睛】本题考查了一元一次方程的应用,解决本题的关键是要分段缴费.12.(1)47元(2)(3)12立方米【分析】(1)根据分段收费标准列式计算即可;(2)设每月用水为n 立方米(),列式为,再化简即可;(3)先判断用水超过了10立方米,再结合(2)列方程,再解方程即可.【详解】(1)解:(元)(2)当时,费用为(3)∵用水10立方米的费用为:(元),而,∴,解得,答:小颖家11月份共用水12立方米.40m ≤2m 40m >(2.416)m -40(1.80.2)80152⨯+=<40(1.80.2)(40)(2.20.2)152x ⨯++-⨯+=70x =40m ≤(1.80.2)2m m +=40m >40(1.80.2)(2.20.2)(40)(2.416)m m ⨯+++-=-3.59n ->10n ()2.610 3.510n ⨯+⨯-()2.610 3.5161047⨯+⨯-=10n >()2.610 3.510 3.59n n ⨯+⨯-=-10 2.626⨯=2633<3.5933n -=12n =【点睛】此题主要考查了列代数式,一元一次方程的应用,关键是正确理解题意,理清题目中的收费方式.13.(1)(2)(3)【分析】(1)根据题意,每户每月用水不超过吨时,水价为元/吨,则当时,应交水费元;(2)当时,用含的代数式表示该户这个月交水费为元;(3)根据题意,列出方程,解方程即可求解.【详解】(1)根据题意,每户每月用水不超过吨时,水价为元/吨;∴当时,用含的代数式表示该户这个月应交水费元,故答案为:(2)当时,用含的代数式表示该户这个月交水费为(元),故答案为:(3)因为,所以小明家用水肯定超过10吨,设用水为吨,根据题意得,解得,即小明家这个月用水15吨.【点睛】本题考查了列代数式,一元一次方程的应用,根据题意列出代数式与一元一次方程是解题的关键.14.(1)小明家八月份应交244元电费(2)该户居民该月应交电费元(3)小刚家该月用电340度【分析】(1)根据小明家八月份共用电450度,分三档计算应交电费,相加即可求解;(2)根据,分别表示出一、二档应交电费,相加后进行化简即可求解;1.2x()1.86x -1510 1.210x ≤1.2x 10x >x ()10 1.210 1.8x ⨯+-⨯10 1.210x ≤x 1.2x 1.2x10x >x ()10 1.210 1.8 1.86x x ⨯+-⨯=-()1.86x -2112>x ()1.21010 1.821x ⨯+-⨯=15x =()0.5511a -220420a <≤(3)设小刚家该月用电x 度,先计算÷用电220度、420度时费用,得到,再列方程,解方程即可求解.【详解】(1)解:(元).答:小明家八月份应交244元电费;(2)解:.答:该户居民该月应交电费元;(3)解:设小刚家该月用电x 度,当用电220度时,应交电费(元),当用电420度时,应交电费(元),因为,所以,所以,解得.答:小刚家该月用电340度.【点睛】本题考查了一元一次方程的应用,分段计费问题,理解题意中分段计费的收费方式是解题关键.15.(1)(2)30立方米【分析】(1)根据时的水费标准,列出方程,即可求解;(2)根据题意可得,再根据超出22立方米的部分水费单价为元/立方米,列出方程,即可求解.【详解】(1)解:根据题意得:,解得:.答:a 的值为;(2)解:设该户居民四月份的用水量为x 立方米.∵,,∴.220420x <<()()2200.54202200.554504200.811011024244⨯+-⨯+-⨯=++=()2200.52200.550.5511a a ⨯+-⨯=-()0.5511a -2200.5110⨯=()2200.54202200.55110110220⨯+-⨯=+=110176220<<220420x <<0.5511176x -=340x =2.422x ≤22x >()1.1a +1843.2a =2.4a = 2.422 2.452.8⨯=52.880.8<22x >根据题意得:,解得:.答:该户居民七月份的用水量为30立方米.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.(1)元,元;(2)490分钟;(3)250分钟.【分析】(1)利用通话费用=月租费+超时加收通话费标准×超时的时间,即可用含的代数式表示出甲和乙的通话费用;(2)根据甲、乙的通话费用相同,即可得出关于的一元一次方程,解之即可;(3)当时,设甲、乙的通话时间均为t 分钟,分为三种情况讨论,即可得出关t 的一元一次方程,解之即可.【详解】(1)解:依题意得:甲的通话费用为元,乙的通话费用为元,(2)解:依题意得:,解得,答:乙的通话时间为490分钟.(3)解:当时,设甲、乙的通话时间均为t 分钟,当时,甲的费用为58元,乙的费用为88元,不符合题意;当时,,解得;当 时,,无解;甲和乙在10月份通话时间和通话费用都一样,则通话时间为250分钟,故答案为:250分钟.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是要读懂题意找出等量关系才能正确列出方程.()()22 2.422 2.4 1.180.8x ⨯+-⨯+=30x =1(0.313)t +2(0.317)t -12t t 、2t 12t t =0150t ≤<,150350350t t ≤<,>11580.3(150)(0.313)t t +-=+22880.3(350)(0.317)t t +-=-20.3170.339013t -=⨯+2490t =12t t =0150t ≤<150350t ≤<0.31388t +=250t =350t >0.3130.317t t +=-∴17.(1)6月份需交水费为30元;(2)7月份张老师需交水费61元;(3)①当a ≤16时,需交水费2.5a 元;②当16<a ≤30时,需交水费(3.5a -16)元;(4)张老师家9月份的用水量是28吨.【分析】(1)首先得出6月份的用水量12吨,应分一段交费,再利用已知表格中数据求出答案;(2)根据题意,7月份的用水是22吨应分两段交费,利用已知表格中数据求出答案;(3)分两种情况讨论,①当a ≤16时,②当16<a ≤30时,求出答案;(4)首先根据9月份交费判断该月用水量位于16~30吨之间,应分两段交费,设出未知数,列出算式即可解答.【详解】(1)解:∵12<16,∴2.5×12=30(元),答:6月份需交水费为30元;(2)解:∵30>22>16,∴16×2.5+(22-16)×3.5=61,答:7月份张老师需交水费61元;(3)解:根据题意,a 不超过30,∴分两种情况:①当a ≤16时,需交水费2.5a 元;②当16<a ≤30时,需交水费,2.5×16+(a -16)×3.5=(3.5a -16)元;(4)解:∵用水量是16吨时水费为40元,用水量是30吨时水费为89元,且89>82>40,∴应该分两段交费,设9月份所用水量为a 吨,依据题意可得:3.5a -16=82;解得:a =28;答:张老师家9月份的用水量是28吨.【点睛】此题主要考查了一元一次方程的应用以及列代数式,正确表示出水费的总额是解题的关键.18.(1)92.5元;(2)当时,当月所付水费金额为元;当时,当月所付水费金额为030x <… 2.5x 30x >()3.530x -元;(3)50立方米.【分析】(1)根据收费标准计算即可;(2)分两种情况:不超过30m 3,超过30m 3,进行讨论即可求解;(3)根据等量关系:不超过30立方米的单价×30+超过30立方米的单价×超过30立方米的用水量=平均水费单价×王鹏家12月份的用水量,依此列出方程求解即可.【详解】(1)解:根据题意,得答:他上个月应交水费92.5元.(2)解:当时,当月所付水费金额为元当时,当月所付水费金额为(3)解:根据题意,得解得答:王鹏家12月份用水50立方米.【点睛】本题考查了一元一次方程的应用,列代数式,解题关键是要读懂题目的意思,根据题目给出的条件,由水费找出合适的等量关系列出方程,再求解.19.(1)m =1.5;n =2.5(2)该用户12月份应缴水费34.5元;(3)当时,应缴水费是1.5x (元);当时,应缴水费是(元).【分析】(1)先根据11月份的用水情况列方程求出m ,再根据10月份的用水情况列方程求出n 即可;(2)根据用水收费标准列式计算即可;(3)分时和时两种情况,分别根据用水收费标准列式即可;【详解】(1)解:该用户11月份用水16立方米小于18立方米,所以(元/立方米),10月份用水24立方米超过18立方米,所以有:,解得:(元/立方米);()30 2.53530 3.592.5⨯+-⨯=030x <… 2.5x 30x >()()30 2.530 3.5 3.530x x ⨯+-⨯=-3.530 2.9x x-=50x =18x ≤18x > 2.518x -18x ≤18x >2416 1.5m =÷=()18 1.5241842n ⨯+-=2.5n =(2),答:该用户12月份应缴水费34.5元;(3)由题意得:当时,应缴水费是1.5x (元),当时,应缴水费是(元).【点睛】本题考查了一元一次方程的应用,有理数混合运算的应用以及列代数式,正确理解用水收费标准是解题的关键.20.(1)16;(2)23;(3)当时,元;当时,元;当时, 元.【分析】(1)根据月用水量,求解即可;(2)设用水量为吨,当时,根据题意列方程求解;(3)根据的取值范围,分三种情况,讨论求解即可.【详解】(1)解:甲当月需缴交的水费为(元),故答案为:(2)设乙用户的用水量为吨,由题意可得:∴解得答:乙用户用水量为吨;(3)当时,丙该月应缴交水费为(元);当时,丙该月应缴交水费为(元)当时,丙该月应缴交水费为(元)【点睛】本题主要考查了列代数式,把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式,解题的关键是理解题意.()18 1.52118 2.534.5⨯+-⨯=18x ≤18x >()18 1.518 2.5 2.518x x ⨯+-⨯=-020a <≤ 1.6a 2030a <≤()2.416a -30a >()3.240a -x 20x 30<≤a 10 1.616⨯=16x 20x 30<≤1.620 2.4(20)39.2x ⨯+⨯-=23x =23020a <≤ 1.6a 2030a <≤ 1.620 2.4(20)(2.416)x a ⨯+⨯-=-30a > 1.620 2.410 3.2(30)(3.240)x a ⨯+⨯+⨯-=-。

专题 解一元一方程计算题(50题)(解析版)

专题  解一元一方程计算题(50题)(解析版)

七年级上册数学《第三章一元一次方程》专题训练解一元一次方程计算题(50题)步骤依据具体做法注意事项等式的性质2方程两边同时乘各分母的最小公倍数.(1)不要漏乘不含分母的项.(2)当分子是多项式时,去分母后应将分子作为一个整体加上括号.乘法分配律、去括号法则先去小括号,再去中括号,最后去大括号(也可以先去大括号,再去中括号,最后去小括号).(1)不要漏乘括号里的任何一项.(2)不要弄错符号.等式的性质1把含未知数的项移到方程的一边,常数项移到方程的另一边.(1)移项一定要变号.(2)不移的项不要变号.合并同类项法则系数相加,字母及字母的指数不变,把方程化成ax =b (a ≠0)的形式.未知数的系数不要弄错.等式的性质2在方程ax =b (a ≠0)的两边同除以a (或乘),得到方程的解为x=.不要将分子、分母的位置颠倒.1.(2022秋•宁津县校级期中)解下列方程:(1)﹣3x+3=1﹣x﹣4x;(2)﹣4x+6=5x﹣3;【分析】(1)根据解一元一次方程——移项合并同类项进行计算即可;(2)根据解一元一次方程——移项合并同类项进行计算即可.【解答】解:(1)移项得﹣3x+x+4x=1﹣3,合并得2x=﹣2,系数化为1得x=﹣1;(2)移项得﹣4x﹣5x=﹣3﹣6,合并得﹣9x=﹣9,系数化为1得x=1.【点评】本题考查解一元一次方程——移项合并同类项,掌握一元一次方程的解法是解决此题的关键.2.(2023秋•洛阳期中)解下列方程:(1)−3=12+1;(2)9+3x=4x+3.【分析】(1)先去分母,然后移项,合并同类项即可;(2)通过移项,合并同类项,系数化为1解方程即可.【解答】解:(1)原方程去分母得:2x﹣6=x+2,移项得:2x﹣x=2+6,合并同类项得:x=8;(2)原方程移项得:3x﹣4x=3﹣9,合并同类项得:﹣x=﹣6,系数化为1得:x=6.【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.3.(2023秋•西丰县期中)解方程:(1)3x﹣2=4+2x;(2)6x﹣7=9x+8.【分析】(1)根据等式的性质,移项、合并同类项即可;(2)根据等式的性质,移项、合并同类项系数化为1即可.【解答】解:(1)移项,得3x﹣2x=4+2,合并同类项,得x=6.(2)移项,得6x﹣9x=7+8,合并同类项,得﹣3x=15,系数化1,得x=﹣5.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的基本步骤是解题的关键.4.(2023秋•郧阳区期中)解方程:(1)2x﹣x+3=1.5﹣2x;(2)7x+2=5x+8.【分析】利用解一元一次方程的步骤:移项,合并同类项,系数化为1解各方程即可.【解答】解:(1)原方程移项得:2x﹣x+2x=1.5﹣3,合并同类项得:3x=﹣1.5,系数化为1得:x=﹣0.5;(2)原方程移项得:7x﹣5x=8﹣2,合并同类项得:2x=6,系数化为1得:x=3.【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.5.(2022秋•莲湖区校级月考)解方程:(1)3x﹣2=5x﹣4;(2)2x+3(x﹣1)=2(x+3).【分析】(1)根据解一元一次方程的步骤,移项,合并同类项,最后将x的系数化为1即可求解.(2)根据解一元一次方程的步骤,先去括号,然后移项,合并同类项,最后将x的系数化为1即可求解.【解答】解:(1)3x﹣2=5x﹣4移项得,3x﹣5x=2﹣4,合并同类项得,﹣2x=﹣2,将x的系数化为1得,x=1.(2)2x+3(x﹣1)=2(x+3)去括号得,2x+3x﹣3=2x+6,移项得,2x+3x﹣2x=6+3,合并同类项得,3x=9,将x的系数化为1得,x=3.【点评】本题主要考查一元一次方程的解法,掌握解方程的基本步骤是解题的关键.6.(2023秋•青秀区校级期中)解下列方程:(1)3x+6=31﹣2x;(2)1−8(14+0.5p=3(1−2p.【分析】根据一元一次方程的解法,经历去括号、移项、合并同类项以及系数化为1进行计算即可.【解答】解:(1)移项得,3x+2x=31﹣6,合并同类项得,5x=25,两边都除以5得,x=5;(2)去括号得,1﹣2﹣4x=3﹣6x,移项得,﹣4x+6x=3+2﹣1,合并同类项得,2x=4,两边都除以2得,x=2.【点评】本题考查解一元一次方程,掌握一元一次方程的解法,理解去括号、移项、合并同类项以及系数化为1的依据是正确解答的前提.7.(2023秋•西城区校级期中)解下列方程:(1)3x﹣4=2x+8;(2)5﹣2x=3(x﹣2).【分析】(1)移项,合并同类项即可;(2)去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣4=2x+8,移项,得3x﹣2x=8+4,合并同类项,得x=12;(2)5﹣2x=3(x﹣2),去括号,得5﹣2x=3x﹣6,移项,得﹣2x﹣3x=﹣6﹣5,合并同类项,得﹣5x=﹣11,系数化成1,得x=115.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.8.(2023秋•海珠区校级期中)解方程:(1)x+5=8;(2)3x+4=5﹣2x;(3)8(2x﹣1)﹣(x﹣1)=﹣2(2x﹣1).【分析】根据一元一次方程的解法,经历去括号、移项、合并同类项以及系数化为1等过程,进而求出未知数x的值即可.【解答】解:(1)移项得,x=8﹣5,合并同类项得,x=3;(2)移项得,3x+2x=5﹣4,合并同类项得,5x=1,两边都除以5得,x=15;(3)去括号得,16x﹣8﹣x+1=﹣4x+2,移项得,16x﹣x+4x=2﹣1+8,合并同类项得,19x=9,两边都除以19得,x=919.【点评】本题考查解一元一次方程,掌握一元一次方程的解法和步骤是正确解答的前提,理解去括号、移项、合并同类项以及系数化为1的做法的依据是正确解答的关键.9.(2023秋•重庆期中)解方程:(1)2x﹣6=﹣3x+9;(2)−32−1=−+1.【分析】根据一元一次方程的解法,依次进行移项、合并同类项以及系数化为1进行计算即可.【解答】解:(1)移项得,2x+3x=9+6,合并同类项得,5x=15,两边都除以5得,x=3;(2)移项得,32x﹣x=﹣1﹣1,合并同类项得,12x=﹣2,两边都乘以2得,x=﹣4.【点评】本题考查解一元一次方程,掌握一元一次方程的解法步骤是正确解答的前提.10.(2023秋•新吴区校级期中)解下列方程:(1)3(2x﹣1)=5﹣2(x+2);(2)2(x﹣2)﹣3(4x﹣1)=5(1﹣x).【分析】根据解一元一次方程的步骤解答即可.【解答】解:(1)6x﹣3=5﹣2x﹣4,6x+2x=5﹣4+3,8x=4,x=12;(2)2x﹣4﹣12x+3=5﹣5x,2x﹣12x+5x=5+4﹣3,﹣5x=6,x=−65.【点评】本题考查解一元一次方程,理解并熟练掌握解一元一次方程的步骤是解题的关键.11.(2022秋•陵城区期末)解方程(1)18(x﹣1)﹣2x=﹣2(2x﹣1);(2)3K110−1=5K74.【分析】(1)先去括号,再移项、合并同类项、系数化为1即可;(2)先去分母,再去括号、移项、合并同类项、系数化为1即可.【解答】解:(1)去括号得,18x﹣18﹣2x=﹣4x+2,移项得,18x﹣2x+4x=2+18,合并同类项得,20x=20,x的系数化为1得,x=1;(2)去分母得,2(3y﹣1)﹣20=5(5y﹣7)去括号得,6y﹣2﹣20=25y﹣35,移项得,6y﹣25y=﹣35+20+2,合并同类项得,﹣19y=﹣13,x的系数化为1得,y=1319.【点评】本题考查的是解一元一次方程,熟知去分母、去括号、移项、合并同类项、系数化为1是解一元一次方程的一般步骤是解题的关键.12.(2023秋•九龙坡区校级期中)解下列一元一次方程:(1)3x+4=2﹣x;(2)1−r12=1−25.【分析】根据一元一次方程的解法,经过去分母、去括号、移项、合并同类项以及系数化为1进行解答即可.【解答】解:(1)移项得,3x+x=2﹣4,合并同类项得,4x=﹣2,两边都除以4得,x=−12;(2)两边都乘以10得,10﹣5(x+1)=2(1﹣2x),去括号得,10﹣5x﹣5=2﹣4x,移项得,5x﹣4x=10﹣5﹣2,合并同类项得,x=3.【点评】本题考查解一元一次方程,掌握一元一次方程的解法是正确解答的前提.13.(2022秋•青川县期末)解下列方程:(1)2x﹣(x+10)=3x+2(x+1);(2)K12−2K13=+1.【分析】(1)根据去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程;(2)根据去分母、去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程.【解答】解:(1)2x﹣(x+10)=3x+2(x+1),去括号,得2x﹣x﹣10=3x+2x+2,移项,得2x﹣x﹣3x﹣2x=2+10,合并同类项,得﹣4x=12,系数化为1,得x=﹣3;(2)K12−2K13=+1,去分母,得3(x﹣1)﹣2(2x﹣1)=6x+6,去括号,得3x﹣3﹣4x+2=6x+6,移项,得3x﹣4x﹣6x=6+3﹣2,合并同类项,得﹣7x=7,系数化为1,得x=﹣1.【点评】本题考查解一元一次方程的解法,掌握解一元一次方程的步骤,使方程逐渐向x=a形式转化是解题关键.14.(2022秋•安次区校级月考)解方程:(1)3x﹣4(x+1)=6﹣2(2x﹣5);(2)0.3K0.10.2−2r93=−8.【分析】(1)按照去括号,移项,合并同类项,系数化为1的步骤解方程即可;(2)按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可.【解答】解:(1)3x﹣4(x+1)=6﹣2(2x﹣5)去括号得:3x﹣4x﹣4=6﹣4x+10,移项得:3x﹣4x+4x=6+10+4,合并同类项得:3x=20,系数化为1得;=203;(2)0.3K0.10.2−2r93=−8整理得:3K12−2r93=−8,去分母得:3(3x﹣1)﹣2(2x+9)=﹣48,去括号得:9x﹣3﹣4x﹣18=﹣48,移项得:9x﹣4x=﹣48+18+3,合并同类项得:5x=﹣27,系数化为1得;=−275.【点评】本题主要考查了解一元一次方程,熟知解一元一次方程的步骤是解题的关键.15.(2022秋•工业园区校级月考)解方程:(1)5(x﹣1)=8x﹣2(x+1);(2)3K14−1=5K76.【分析】(1)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)5(x﹣1)=8x﹣2(x+1)去括号得:5x﹣5=8x﹣2x﹣2,移项得:5x﹣8x+2x=﹣2+5,合并得:﹣x=3,解得:x=﹣3;(2)3K14−1=5K76去分母得:3(3x﹣1)﹣12=2(5x﹣7),去括号得:9x﹣3﹣12=10x﹣14,移项得:9x﹣10x=3+12﹣14,合并得:﹣x=1,解得:x=﹣1【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.16.(2022秋•青川县期末)解下列方程:(1)2x﹣(x+10)=3x+2(x+1);(2)K12−2K13=+1.【分析】(1)根据去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程;(2)根据去分母、去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程.【解答】解:(1)2x﹣(x+10)=3x+2(x+1),去括号,得2x﹣x﹣10=3x+2x+2,移项,得2x﹣x﹣3x﹣2x=2+10,合并同类项,得﹣4x=12,系数化为1,得x=﹣3;(2)K12−2K13=+1,去分母,得3(x﹣1)﹣2(2x﹣1)=6x+6,去括号,得3x﹣3﹣4x+2=6x+6,移项,得3x﹣4x﹣6x=6+3﹣2,合并同类项,得﹣7x=7,系数化为1,得x=﹣1.【点评】本题考查解一元一次方程的解法,掌握解一元一次方程的步骤,使方程逐渐向x=a形式转化是解题关键.17.(2022秋•平桥区校级月考)解方程:(1)8y﹣3(3y+2)=6;(2)r12−1=2+2−4.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:8y﹣9y﹣6=6,移项得:8y﹣9y=6+6,合并同类项得:﹣y=12,系数化为1得:y=﹣12;(2)方程两边同时乘4得:2(x+1)﹣4=8+(2﹣x),去括号得:2x+2﹣4=8+2﹣x,移项得:2x+x=8+2﹣2+4,合并同类项得:3x=12,系数化为1得:x=4.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法和步骤是解题的关键.18.(2022秋•汉阳区期末)解方程:(1)4x+3(2x﹣3)=12﹣(x+4);(2)3r22−1=2K14−2r15.【分析】(1)去括号、移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【解答】解:(1)4x+3(2x﹣3)=12﹣(x+4),去括号得:4x+6x﹣9=12﹣x﹣4,10x﹣9=8﹣x,移项得:10x+x=9+8,合并同类项得:11x=17,系数化1得:x=1711;(2))3r22−1=2K14−2r15,去分母得:10(3x+2)﹣20=5(2x﹣1)﹣4(2x+1),去括号得:30x+20﹣20=10x﹣5﹣8x﹣4,移项得:30x﹣10x+8x=﹣5﹣4﹣20+20,合并得:28x=﹣9,化系数为1得:x=−928.【点评】本题考查一元一次方程的解法,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.19.(2023秋•蜀山区校级期中)解方程.(1)3(x﹣7)+5(x﹣4)=15;(2)5r16=9r18−1−3.【分析】(1)根据去括号、移项、合并同类项、系数化1计算即可.(2)根据去分母、去括号、移项、合并同类项、系数化1计算即可.【解答】解:(1)去括号得:3x﹣21+5x﹣20=15,移项、合并同类项得:8x=56,系数化1得:x=7.(2)去分母得:4(5y+1)=3(9y+1)﹣8(1﹣y),去括号得:20y+4=27y+3﹣8+8y,移项、合并同类项得:﹣15y=﹣9,系数化1得:=35.【点评】本题考查解一元一次方程,熟练掌握一元一次方程的解法是解答本题的关键.20.(2023秋•裕安区校级期中)解方程:(1)2(x﹣1)=2﹣5(x+2);(2)5r12−6r24=1.【分析】(1)方程去括号,移项,合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣2=2﹣5x﹣10,移项得:2x+5x=2﹣10+2,合并得:7x=﹣6,解得:x=−67;(2)去分母得:2(5x+1)﹣(6x+2)=4,去括号得:10x+2﹣6x﹣2=4,移项得:10x﹣6x=4﹣2+2,合并得:4x=4,解得:x=1.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并,把未知数系数化为1,求出解.20.(2023秋•越秀区校级期中)解方程:(1)3x+20=4x﹣25;(2)2K13=1−2K16.【分析】根据解一元一次方程的步骤,依次经过去分母,去括号、移项、合并同类项、系数化为1求出未知数x的值即可.【解答】解:(1)移项得,4x﹣3x=20+25,合并同类项得,x=45;(2)两边都乘以6得,2(2x﹣1)=6﹣(2x﹣1),去括号得,4x﹣2=6﹣2x+1,移项得,4x+2x=6+1+2,合并同类项得,6x=9,两边都除以6得,x=32.【点评】本题考查解一元一次方程,掌握一元一次方程的解法是正确解答的关键.21.(2023秋•工业园区校级期中)解方程:(1)3=1+2(4﹣x);(2)1−K56=r12.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)去括号,可得:3=1+8﹣2x,移项,可得:2x=1+8﹣3,合并同类项,可得:2x=6,系数化为1,可得:x=3.(2)去分母,可得:6﹣(x﹣5)=3(x+1),去括号,可得:6﹣x+5=3x+3,移项,可得:﹣x﹣3x=3﹣6﹣5,合并同类项,可得:﹣4x=﹣8,系数化为1,可得:x=2.【点评】此题主要考查了解一元一次方程的方法,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.22.(2023秋•富川县期中)解方程:(1)3(x﹣1)﹣4=2(1﹣3x);(2)K74−5r82=1.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【解答】解:(1)3(x﹣1)﹣4=2(1﹣3x),3x﹣3﹣4=2﹣6x,3x+6x=2+3+4,9x=9,x=1;(2)K74−5r82=1,x﹣7﹣2(5x+8)=4,x﹣7﹣10x﹣16=4,x﹣10x=4+16+7,﹣9x=27,x=﹣3.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解题的关键.23.(2022秋•丰都县期末)解下列方程:(1)2(x+3)=3(x﹣3);(2)K40.2−2.5=K30.05.【分析】(1)按解一元一次方程的步骤求解即可;(2)利用分数的基本性质先去分母,再按解一元一次方程的步骤求解即可.【解答】解:(1)去括号,得2x+6=3x﹣9,移项,得2x﹣3x=﹣6﹣9,合并同类项,得﹣x=﹣15,系数化为1,得x=15.(2)K40.2−2.5=K30.05,5(K4)5×0.2−2.5=20(K3)0.05×20,5(x﹣4)﹣2.5=20x﹣60,5x﹣20﹣2.5=20x﹣60,﹣15x=﹣37.5,x=2.5.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.24.(2023秋•天河区校级期中)解方程:(1)4x=3x+7;(2)r12−2K13=1.【分析】(1)方程移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)移项得:4x﹣3x=7,合并同类项得:x=7;(2)去分母得:3(x+1)﹣2(2x﹣1)=6,去括号得:3x+3﹣4x+2=6,移项得:3x﹣4x=6﹣3﹣2,合并同类项得:﹣x=1,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.25.(2023秋•南岗区校级期中)解方程:(1)2(x+6)=3(x﹣1);(2)K72−1+3=1.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项,据此求出方程的解即可.【解答】解:(1)去括号,可得:2x+12=3x﹣3,移项,可得:2x﹣3x=﹣3﹣12,合并同类项,可得:﹣x=﹣15,系数化为1,可得:x=15.(2)去分母,可得:3(x﹣7)﹣2(1+x)=6,去括号,可得:3x﹣21﹣2﹣2x=6,移项,可得:3x﹣2x=6+21+2,合并同类项,可得:x=29.【点评】此题主要考查了解一元一次方程的方法,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.26.(2023秋•武昌区期中)解方程:(1)2x+10=2(2x﹣1);(2)K35−r42=−2.【分析】(1)去括号、移项、合并同类项、系数化为1,解出x的值即可;(2)去分母、去括号、移项、合并同类项、系数化为1,解出x的值即可.【解答】解:(1)2x+10=2(2x﹣1),去括号得:2x+10=4x﹣2,移项得:2x﹣4x=﹣2﹣10,合并同类项得:﹣2x=﹣12,系数化为1得:x=6;(2)K35−r42=−2.去括号得:2(x﹣3)﹣5(x+4)=﹣20,去括号得:2x﹣6﹣5x﹣20=﹣20,移项得:2x﹣5x=﹣20+20+6,合并同类项得:﹣3x=6,系数化为1得:x=﹣2.【点评】本题考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.27.(2023秋•金安区校级期中)解下列方程:(1)3x+5=5x﹣7;(2)3K23=r26−1.【分析】(1)方程移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)移项合并得:2x=12,解得:x=6;(2)去分母得:6x﹣4=x+2﹣6,移项合并得:5x=0,解得:x=0.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.28.(2023秋•西城区校级期中)解方程:(1)3x﹣4=2x+5;(2)K34−2r12=1.【分析】(1)移项,合并同类项即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣4=2x+5,移项,得3x﹣2x=5+4,合并同类项,得x=9;(2)K34−2r12=1,去分母,得x﹣3﹣2(2x+1)=4,去括号,得x﹣3﹣4x﹣2=4,移项,得x﹣4x=4+3+2,合并同类项,得﹣3x=9,系数化成1,得x=﹣3.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.29.(2022秋•枣阳市期末)解方程:(1)2K13−10r16=2r14−1;(2)0.7−0.17−0.20.03=2.【分析】(1)按解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,求解即可;(2)先利用分数的基本性质,把分子、分母化为整数,再按解一元一次方程的一般步骤求解即可.【解答】解:去分母,得4(2x﹣1)﹣2(10x+1)=3(2x+1)﹣12,去括号,得8x﹣4﹣20x﹣2=6x+3﹣12,移项,得8x﹣20x﹣6x=3﹣12+4+2,合并,得﹣18x=﹣3,系数化为1,得x=16.(2)原方程可变形为:107−17−203=2,去分母,得30x﹣7(17﹣20x)=42,去括号,得30x﹣119+140x=42,移项,得30x+140x=119+42,合并,得170x=161,系数化为1,得x=161170.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.30.(2022秋•虎丘区校级月考)解方程:(1)2K13=2r16−2;(2)2K50.6−3r10.2=10.【分析】(1)去分母,去括号,移项,合并同类项可得结果;(2)去分母,去括号,移项,合并同类项可得结果.【解答】解:(1)2K13=2r16−2,去分母得,2(2x﹣1)=2x+1﹣2×6,去括号得,4x﹣2=2x+1﹣12,移项得,4x﹣2x=1﹣12+2,合并同类项得,2x=﹣9,系数化为1得,=−92;(2)2K50.6−3r10.2=10,去分母得,2x﹣5﹣3(3x+1)=6,去括号得,2x﹣5﹣9x﹣3=6,移项得,2x﹣9x=6+5+3,合并同类项得,﹣7x=14,系数化为1得,x=﹣2.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.31.(2023秋•鼓楼区期中)解方程:(1)2x﹣2(3x+1)=6;(2)r12−1=2−33.【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)2x﹣2(3x+1)=6,去括号,得2x﹣6x﹣2=6,移项,得2x﹣6x=6+2,合并同类项,得﹣4x=8,系数化成1,得x=﹣2;(2)r12−1=2−33,去分母,得3(x+1)﹣6=2(2﹣3x),去括号,得3x+3﹣6=4﹣6x,移项,得3x+6x=4﹣3+6,合并同类项,得9x=7,系数化成1,得x=79.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.32.(2022秋•连云港期末)解下列方程:(1)3(x+2)=5x;(2)r12−2=K34.【分析】(1)先去括号移项,然后合并后把x的系数化为1即可;(2)先去分母,再去括号,然后移项、合并后把x的系数化为1即可.【解答】解:(1)3(x+2)=5x,3x+6=5x,3x﹣5x=﹣6,﹣2x=﹣6,x=3;(2)r12−2=K34,2x+2﹣8=x﹣3,2x﹣x=﹣3﹣2+8,x=3.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.33.(2022秋•射阳县校级期末)解方程:(1)2(x﹣2)=3x﹣7;(2)K12−2r36=1.【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次方程;(2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次方程即可求解.【解答】解:(1)2(x﹣2)=3x﹣7,去括号,得:2x﹣4=3x﹣7,移项,得:2x﹣3x=﹣7+4,合并同类项,得:﹣x=﹣3,系数化为1:x=3;(2)K12−2r36=1,去分母,得:3(x﹣1)﹣(2x+3)=6,去括号,得:3x﹣3﹣2x﹣3=6,移项,得:3x﹣2x=6+3+3,合并同类项,得:x=12.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是解题的关键.34.(2022秋•硚口区期中)解方程:(1)2﹣3(x+1)=1﹣2(1+0.5x);(2)3+K12=3−2K13.【分析】(1)根据去括号、移项、合并同类项、化系数为1的步骤解一元一次方程即可;(2)根据去分母、去括号、移项、合并同类项、化系数为1的步骤解一元一次方程即可.【解答】解:(1)去括号,得2﹣3x﹣3=1﹣2﹣x,移项、合并同类项,得﹣2x=0,化系数为1,得x=0,∴原方程的解为x=0;(2)去分母,得18x+3(x﹣1)=18﹣2(2x﹣1),去括号,得18x+3x﹣3=18﹣4x+2,移项、合并同类项,得25x=23,化系数为1,得=2325,∴原方程的解为=2325.【点评】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤并正确求解是解答的关键.35.(2022秋•湖北期末)解方程:(1)2﹣(4﹣x)=6x﹣2(x+1);(2)r32−1=2−5−4.【分析】(1)通过去括号、移项、合并同类项、系数化成1,几个步骤进行解答;(2)通过去分母、去括号、移项、合并同类项、系数化成1,几个步骤进行解答.【解答】(1)解:去括号,得,2﹣4+x=6x﹣2x﹣2,移项,得,x﹣6x+2x=﹣2﹣2+4,合并同类项,得,﹣3x=0,系数化为1,得,x=0;(2)去分母得:2(x+3)﹣4=8x﹣(5﹣x),去括号得:2x+6﹣4=8x﹣5+x,移项得:2x﹣8x﹣x=﹣5﹣6+4,合并得:﹣7x=﹣7,解得:x=1.【点评】本题考查了解一元一次方程,解题关键是熟记解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化成1.36.(2023春•太康县期中)解方程:(1)3x﹣5=2x+3;(2)1−K32=2+3+2.【分析】(1)移项,合并同类项即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣5=2x+3,移项得:3x﹣2x=3+5,合并同类项得:x=8;(2)1−K32=2+3+2,去分母得:6﹣3(x﹣3)=2(2+x)+12,去括号得:6﹣3x+9=4+2x+12,移项得:﹣3x﹣2x=4+12﹣6﹣9,合并同类项得:﹣5x=1,系数化成1得:x=−15.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.37.(2022秋•万源市校级期末)解方程(1)4﹣3(2﹣x)=5x(2)K22−1=r13−r86.【分析】(1)方程去括号,移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)方程去括号得:4﹣6+3x=5x,移项合并得:2x=﹣2,解得:x=﹣1;(2)去分母得:3(x﹣2)﹣6=2(x+1)﹣(x+8),去括号得:3x﹣6﹣6=2x+2﹣x﹣8,移项合并得:2x=6,解得:x=3.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.38.(2023秋•五华区校级期中)解方程:(1)7x+2(3x﹣3)=20;(2)2K13=3r52−1.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x的系数化为1即可.【解答】解:(1)去括号得,7x+6x﹣6=20,移项得,7x+6x=20+6,合并同类项得,13x=26,x的系数化为1得,x=2;(2)去分母得,2(2x﹣1)=3(3x+5)﹣6,去括号得,4x﹣2=9x+15﹣6,移项得,4x﹣9x=15﹣6+2,合并同类项得,﹣5x=11,x的系数化为1得,x=−115.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解题的关键.39.(2023•开州区校级开学)解方程:(1)5x+34=2x+534;(2)K20.2=r10.5.【分析】(1)按照解一元一次方程的步骤:移项,合并同类项,系数化为1,进行计算即可解答;(2)先把分母的系数化为整数,然后再按照解一元一次方程的步骤进行计算,即可解答.【解答】解:(1)5x+34=2x+534,5x﹣2x=534−34,3x=5,x=53;(2)K20.2=r10.5,5x﹣10=2x+2,5x﹣2x=2+10,3x=12,x=4.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.40.(2023秋•镇海区校级期中)解方程:(1)3(20﹣y)=6y﹣4(y﹣11);(2)0.4r30.2−2=0.45−0.3.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:60﹣3y=6y﹣4y+44,移项合并得:5y=16,解得:y=3.2;(2)去分母得:1.2x+9﹣1.2=0.9﹣2x,移项合并得:3.2x=﹣6.9,解得:x=−6932.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.41.(2022秋•张店区期末)解方程:(1)3(y﹣7)﹣5(4﹣y)=15;(2)r20.4−2K10.2=−0.5.【分析】(1)去括号,移项合并同类项,系数化为1即可得到答案;(2)去分母,去括号,移项合并同类项,系数化为1即可得到答案.【解答】解:(1)去括号得,3y﹣21﹣20+5y=15,移项得,3y+5y=15+21+20,合并同类项可得,8y=56系数化为1得,y=7;(2)去分母可得,10(x+2)﹣20(2x﹣1)=﹣2,去括号得,10x+20﹣40x+20=﹣2,移项得,10x﹣40x=﹣2﹣20﹣20,合并同类项得,﹣30x=﹣42,系数化为1得,=75.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.42.(2022秋•莲湖区校级月考)解方程:(1)K32−2r13=1.(2)r12−3K14=1.【分析】(1)去分母、去括号、移项、合并同类项、系数化为1即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1即可求解.【解答】解:(1)K32−2r13=1,3(x﹣3)﹣2(2x+1)=6,3x﹣9﹣4x﹣2=6,3x﹣4x=6+9+2,﹣x=17,x=﹣17;(2)r12−3K14=1,2(x+1)﹣(3x﹣1)=4,2x+2﹣3x+1=4,﹣x=4﹣2﹣1,x=﹣1.【点评】本题考查了解一元一次方程,解答本题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a的形式转化.43.解下列方程:(1)2r13−10r16=1;(2)4K1.50.5−5K0.80.2=1.2−0.1.【分析】(1)利用等式的性质先去分母,再求解一元一次方程;(2)利用分数的基本性质去分母后,再解一元一次方程.【解答】解:(1)2r13−10r16=1,去分母,得2(2x+1)﹣(10x+1)=6,去括号,得4x+2﹣10x﹣1=6,移项,得4x﹣10x=6﹣2+1,合并同类项,得﹣6x=5,系数化为1,得x=−56;(2)4K1.50.5−5K0.80.2=1.2−0.1.去分母,得2(4x﹣1.5)﹣5(5x﹣0.8)=10(1.2﹣x),去括号,得8x﹣3﹣25x+4=12﹣10x,移项,得8x﹣25x+10x=12+3﹣4,合并同类项,得﹣7x=11,系数化为1,得x=−117.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤,灵活运用等式的性质和分数的性质去分母是解决本题的关键.44.解方程;(1)2K366−33−23=−1﹣x;(2)K10.2−r10.05=3.【分析】(1)利用等式的性质去分母后,求解一元一次方程;(2)利用分数的性质去分母后,求解一元一次方程.【解答】解:(1)2K366−33−23=−1﹣x,去分母,得2x﹣36﹣2(33﹣2x)=6(﹣1﹣x),去括号,得2x﹣36﹣66+4x=﹣6﹣6x,移项,得2x+4x+6x=﹣6+36+66,合并同类项,得12x=96,系数化为1,得x=8;(2)K10.2−r10.05=3.去分母,得5(x﹣1)﹣20(x+1)=3,去括号,得5x﹣5﹣20x﹣20=3,移项,得5x﹣20x=3+5+20,合并同类项,得﹣15x=28系数化为1,得x=−2815.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤,灵活运用等式的性质和分数的性质去分母是解决本题的关键.45.(2023春•周口月考)解方程:(1)34[2(+1)+13p=3;(2)3−2K83=−r54.【分析】(1)按照解一元一次方程的步骤,进行计算即可解答;(2)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【解答】解:(1)34[2(+1)+13p=3,32(x+1)+14x=3x,6(x+1)+x=12x,6x+6+x=12x,6x+x﹣12x=﹣6,﹣5x=﹣6,x=1.2;(2)3−2K83=−r54,36﹣4(2x﹣8)=﹣3(x+5),36﹣8x+32=﹣3x﹣15,﹣8x+3x=﹣15﹣36﹣32,﹣5x=﹣83,x=835.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.46.(2022秋•文登区期末)解方程:(1)4﹣2(x+4)=2(x﹣1);(2)13(+7)=25−12(−5);(3)0.3K0.40.2+2=0.5K0.20.3.【分析】(1)去括号,移项,合并同类项,系数化为1,求解即可;(2)去分母,去括号,移项,合并同类项,系数化为1,求解即可;(3)分母化为整数,去分母,去括号,移项,合并同类项,系数化为1,求解即可.【解答】解:(1)4﹣2(x+4)=2(x﹣1),去括号得:4﹣2x﹣8=2x﹣2,移项得:2x+2x=4﹣8+2,合并同类项得:4x=﹣2,系数化为1得:x=−12;(2)13(+7)=25−12(−5),去分母得:10(x+7)=12﹣15(x﹣5),去括号得:10x+70=12﹣15x+75,移项得:10x+15x=12+75﹣70,合并同类项得:25x=17,系数化为1得:x=1725;(3)0.3K0.40.2+2=0.5K0.20.3,分母化为整数得:3K42+2=5K23,去分母得:3(3x﹣4)+12=2(5x﹣2),去括号得:9x﹣12+12=10x﹣4,合并同类项得:9x=10x﹣4,移项、合并同类项得:x=4.【点评】本题考查了解一元一次方程,解题的关键是熟练掌握一元一次方程的解题步骤.47.解下列方程:(1)(5x﹣2)×30%=(7x+8)×20%;(2)34[43(14−1)+8]=73+23;(3)4K1.50.5−5K0.80.2=1.2−0.1.【分析】(1)方程去括号,移项,合并同类项,即可求出解;(2)方程去括号,去分母,移项,合并同类项,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)(5x﹣2)×30%=(7x+8)×20%,去括号得:15x﹣6=14x+16,移项得:15x﹣14x=16+6,合并同类项得:x=22;(2)34[43(14−1)+8]=73+23;去括号得:14x﹣1+6=73+23,去分母得:3x+60=28+8x,移项得:3x﹣8x=28﹣60,合并同类项得:﹣5x=﹣32,解得:x=325;(3)4K1.50.5−5K0.80.2=1.2−0.1.去分母得:2(4x﹣1.5)﹣5(5x﹣0.8)=10(1.2﹣x),去括号得:8x﹣3﹣25x+4=12﹣10x,移项得:8x﹣25x+10x=12﹣4+3,合并同类项得:﹣7x=11,解得:x=−117.【点评】此题考查了解一元一次方程,解决本题的关键是掌握解一元一次方程的步骤,为:去分母,去括号,移项合并,把未知数系数化为1,求出解.48.(2023春•朝阳区校级月考)解下列方程:(1)2x﹣19=7x+6;(2)4(x﹣2)﹣1=3(x﹣1);(3)K12=23+1;(4)2K13−10r112=2r14−1.【分析】(1)方程移项,合并同类项,把x系数化为1,即可求出解;(2)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项,合并同类项,把m系数化为1,即可求出解;(4)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)移项得:2x﹣7x=6+19,合并同类项得:﹣5x=25,解得:x=﹣5;(2)去括号得:4x﹣8﹣1=3x﹣3,移项得:4x﹣3x=﹣3+8+1,合并同类项得:x=6;(3)去分母得:3(m﹣1)=4m+6,去括号得:3m﹣3=4m+6,移项得:3m﹣4m=6+3,合并同类项得:﹣m=9,解得:m=﹣9;(4)去分母得:4(2x﹣1)﹣(10x+1)=3(2x+1)﹣12,去括号得:8x﹣4﹣10x﹣1=6x+3﹣12,移项得:8x﹣10x﹣6x=3﹣12+4+1,合并同类项得:﹣8x=﹣4,解得:x=0.5.【点评】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.49.(2023秋•香坊区校级月考)解方程:(1)3x﹣8=x+4;(2)1﹣3(x+1)=2(1﹣0.5x);(3)16(3−6)=25x﹣3;(4)3K14−1=5K76.【分析】(1)按照解一元一次方程的步骤:移项,合并同类项,系数化为1,进行计算即可解答;(2)按照解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1,进行计算即可解答;(3)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答;(4)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【解答】解:(1)3x﹣8=x+4,3x﹣x=4+8,2x=12,x=6;(2)1﹣3(x+1)=2(1﹣0.5x),1﹣3x﹣3=2﹣x,﹣3x+x=2+3﹣1,﹣2x=4,x=﹣2;。

一次函数应用题

一次函数应用题

一次函数应用题1.已知XXX现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套。

已知做一套M型号的时装需要A种布料6米,B种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1.1米,B种布料0.4米,可获利润50元。

设生产N种型号的时装套数为$x$,用这批布料生产这两种型号的时装所获总利润为$y$元。

1) $y$与$x$的函数关系式为:$$y=45(80-x)\cdot\frac{70-6x}{6}+50x\cdot\frac{52-0.4x}{0.4}$$其中,第一项是生产M型号时装所获利润,第二项是生产N型号时装所获利润。

自变量$x$的取值范围为$0\leq x\leq 52/0.4=130$,因为B种布料的数量有限制。

2) 当生产N型号的时装为$20$套时,所获利润最大,最大利润为$y_{\max}=3850$元。

2.某市电话的月租费是$20$元,可打$60$次免费电话(每次$3$分钟),超过$60$次后,超过部分每次$0.13$元。

1) $y$与$x$的函数关系式为:$$y=\begin{cases}20.& x\leq 60 \\20+0.13(x-60)。

& x>60end{cases}$$2) 月通话$50$次的电话费为$20$元,月通话$100$次的电话费为$23$元。

3) 设该月通话次数为$t$,则$$y=\begin{cases}20.& t\leq 60 \\20+0.13(t-60)。

& t>60end{cases}$$解得$t=60+5(y-20)$,代入$y=27.8$得$t=98$次。

3.荆门火车货运站现有甲种货物$1530$吨,乙种货物$1150$吨,安排用一列货车将这批货物运往广州,这列货车可挂A、B两种不同规格的货厢$50$节,已知用一节A型货厢的运费是$0.5$万元,用一节B型货厢的运费是$0.8$万元。

解一元一次函数专项练习题

解一元一次函数专项练习题

解一元一次函数专项练习题一元一次函数是数学中的基础概念,掌握解一元一次函数的方法对于研究数学和解决实际问题都非常重要。

以下是一些专项练题,帮助加深对一元一次函数的理解和掌握。

1. 解方程:3x + 7 = 16解法:首先将方程转化为一元一次函数的标准形式:ax + b = c。

由题可知,a = 3,b = 7,c = 16。

将数值代入一元一次函数的解法中,解出 x 的值:3x + 7 = 16=> 3x = 16 - 7=> 3x = 9=> x = 9 / 3=> x = 3所以,方程3x + 7 = 16 的解为 x = 3。

2. 解方程:4(x + 2) - 3 = 5x + 1解法:首先将方程转化为一元一次函数的标准形式:ax + b = c。

由题可知,a = 4,b = -3,c = 5x + 1。

将数值代入一元一次函数的解法中,解出 x 的值:4(x + 2) - 3 = 5x + 1=> 4x + 8 - 3 = 5x + 1=> 4x + 5 = 5x + 1=> 4x - 5x = 1 - 5=> -x = -4=> x = -4 / -1=> x = 4所以,方程4(x + 2) - 3 = 5x + 1 的解为 x = 4。

3. 解方程:2(3x - 1) + 5 = 3(x + 2) - 4x解法:首先将方程转化为一元一次函数的标准形式:ax + b = c。

由题可知,a = 2,b = 5,c = 3(x + 2) - 4x。

将数值代入一元一次函数的解法中,解出 x 的值:2(3x - 1) + 5 = 3(x + 2) - 4x=> 6x - 2 + 5 = 3x + 6 - 4x=> 6x + 3 = 3 + 6=> 6x = 9=> x = 9 / 6=> x = 1.5所以,方程2(3x - 1) + 5 = 3(x + 2) - 4x 的解为 x = 1.5。

(含答案解析)一次函数应用题“行程问题”典型例题20题

(含答案解析)一次函数应用题“行程问题”典型例题20题
(1)根据图象信息,当t=________分钟时甲乙两人相遇,甲的速度为________米/分钟;
(2)求出线段AB所表示的函数表达式.
18.一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整后提速行驶至乙地.它们行驶的路程y(km)与时间x(h)的对应关系如图11所示.
(1)甲、乙两地相距多远?小轿车中途停留了多长时间?
3.在一条笔直的公 路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:
(1)请写出甲的骑行速度为米/分,点M的坐标为;
(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,
∴他离家的路程y=4000﹣300x,
自变量x的范围为0≤x≤ ,
(3)由图象可知,两人相遇是在小玲改变速度之前,
∴4000﹣300x=200x
解得x=8
∴两人相遇时间为第8分钟.
故答案为(1)4000,100;(2)y=4000﹣300x,0≤x≤ ;(3)第8分钟.
(1)求第一班车离入口处的路程 (米)与时间 (分)的函数表达式.
(2)求第一班车从人口处到达塔林所需的时间.
(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)
(含答案解析)一次函数应用题“行程问题”典型例题20题
学校:___________姓名:___________班级:___________考号:___________

初二一元一次函数练习题

初二一元一次函数练习题

1.已知一次函数,若随着的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以内的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。

那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为和的两个电阻,其两端电压关于电流强度的函数图象如图,则阻值(A)>(B)<(C)=(D)以上均有可能4.若函数( 为常数)的图象如图所示,那么当时,的取值范围是A、B、C、D、5.下列函数中,一次函数是().(A)(B)(C)(D)6.一次函数y=x+1的图象在().(A)第一、二、三象限(B)第一、三、四象限(C)第一、二、四象限(D)第二、三、四象限7.将直线y=2x向上平移两个单位,所得的直线是A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)8.如图,已知点A的坐标为(1,0),点B在直线上运动,当线段AB最短时,点B的坐标为A.(0,0)B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l/的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-210.直线y=kx+1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,1)11.如图,在△ABC中,点D在AB上,点E在AC上,若∠ADE=∠C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y= xC.y= xD.y= x12.下列函数中,是正比例函数的为A.y=B.y=C.y=5x-3D.y=6x2-2x-113如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为,运动的距离为.下面表示与的函数关系式的图象大致是()三、填空题1.若正比例函数y=mx(m≠0)和反比例函数y= (n≠0)的图象都经过点(2,3),则m=______,n=_________.2.如果函数,那么3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程与经过的时间之间的函数关系.请根据图象填空:出发的早,早了小时,先到达,先到小时,电动自行车的速度为km/h,汽车的速度为km/h.6.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图3,当打出电话150分钟时,这两种方式电话费相差元.7.若一次函数y=ax+1―a中,y随x的增大而增大,且它的图像与y轴交于正半轴,则|a―1|+ =。

一次函数题30道计算题

一次函数题30道计算题

一次函数题30道计算题一次函数是数学中非常基础的一个概念,也是初中数学中重点学习的内容之一。

一次函数也被称为一元一次方程,它的一般形式为y=ax+b,其中a和b是已知的常数。

下面将给出30道与一次函数相关的计算题,并附上解答。

1. 计算函数y=3x+2中当x取1、2、3时的y值。

解答:当x=1时,y=3*1+2=5;当x=2时,y=3*2+2=8;当x=3时,y=3*3+2=11。

2. 求一条经过点(2,5)且与直线y=3x+1平行的直线的方程。

解答:平行于y=3x+1的直线的斜率与y=3x+1的斜率相等,所以该直线的斜率也为3。

由已知点(2,5)和斜率3,可以得到方程为y=3x-1。

3. 若函数y=kx-3与直线y=2x+4平行,求直线y=kx-3的斜率k。

解答:平行于y=2x+4的直线的斜率与y=2x+4的斜率相等,所以k=2。

4. 若函数y=3x-2与直线y=4x-5垂直,求直线y=3x-2的斜率。

解答:两条直线垂直时,它们的斜率积为-1,所以3*(4)=-1,解得斜率为-1/3。

5. 已知一次函数y=-2x+1,求函数与x轴的交点。

解答:函数与x轴的交点,即y=0,代入函数方程得-2x+1=0,解得x=1/2。

因此,函数与x轴的交点是(1/2, 0)。

6. 若函数y=2x+3与x轴相交于点(2,0),求函数的截距。

解答:函数与x轴相交时,y=0,代入函数方程得2x+3=0,解得x=-3/2。

因此,函数的截距为-3/2。

7. 已知一次函数y=4x-6与y轴相交于点(0,-6),求函数的截距。

解答:函数与y轴相交时,x=0,代入函数方程得y=-6。

因此,函数的截距为-6。

8. 已知一次函数y=3x-2,求函数与y轴的交点。

解答:函数与y轴相交时,x=0,代入函数方程得y=-2。

因此,函数与y轴的交点是(0, -2)。

9. 求过点(1,3)且平行于x轴的直线的方程。

解答:平行于x轴的直线与x轴的斜率为0,所以方程为y=3。

一元一次函数应用题练习

一元一次函数应用题练习

一次函数应用题练习姓名1、A市和B各有机床12台和6台,现运往C市10台,D市8台,若从A市运一台到C市,D市各需要4万元和8万元,从B市运一台到C市,D市各需3万元和5万元。

(1)设B市运往C市X台,求总费用Y关于X的函数关系式;(2)若总费用不超过95万元,问共有多少种调运方法?(3)求总费用最低的调运方法,最低费用是多少万元?2、某蔬菜生产基地计划由25个劳动力承包60亩地,种植甲乙丙三种不同的蔬菜,规定每个劳动力只种一种蔬菜,且甲种蔬菜必种,经测算这些不同品种的蔬菜每亩所需的劳动力和预计产值如下应怎样安排才能使每亩地都能种上蔬菜,所有劳动力都有工作,且预计产值达最高,最高产值是多少?3.为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费,设某户每月用水量为X(立方米),应交水费为Y(元)。

(1)分别写出用水未超过7立方米和多于7立方米时,y与x间的函数关系式;(2)如果某单位共有用户50户,某月共交水费541.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?4、某日通过某公路收费站的汽车中,共有3000辆次缴了通行费,其中大车每辆次缴通行费10元,小车每辆次缴通行费5元。

(1)设这一天小车缴通行费的辆次为X,总的通行费收入为Y元,试写出Y关于X的函数关系式。

(2)若估计缴费的3000辆次汽车中,大车不少于20%且不大于40%,试求该收费站这一天费总数的范围。

5、某人有一批货物的成本为X元,如果他将这批货物5月1出售,可获利200元,然后将本利都存入银行,已知银行存款的月息为2%,6月1日他从银行中全部取出本利,设他共获利Y元。

(1)写出Y(元)与X(元)之间的函数关系式。

(2)如果这批货物6月1日出售,可获利220元,但要付保管费5元,试问这批货物成本多少元时,5月1日出售比6月1日出售获利多。

一元一次函数路程应用题

一元一次函数路程应用题

一元一次函数路程应用题
1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?
(2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?。

一元一次函数练习题(推荐文档)

一元一次函数练习题(推荐文档)

一、选择题1、下列函数中,自变量x的取值范围选取错误的是()A.y=2x2中,x取全体实数 B.中,x取x≠-1的实数C.中,x取x≥2的实数 D.中,x取x≥-3的实数2、下列各组函数中,表示同一函数的是()A. B.C. D.3、在平面直角坐标系中,给出下面四个点,其中在函数y=2x-1上的点是() A.(-1,-1) B.(-2,-5)C.(2,-3) D.(4,9)4、图象一定经过原点的函数是()A.y=3x-2 B.C. D.5、一个函数的图象都在第一、二象限内,那么这个函数的值()A.都是正数 B.都是负数C.都是非负数 D.可正、可负或为零6、求下列函数自变量的取值范围.(1)(2)(3)7、已知一次函数y=(m+3)x+(4-n).(1)m为何值时,y随x的增大而减小?(2)n为何值时,函数图象与y轴的交点在x轴下方?(3)m、n为何值时,函数的图象与直线y=x+2平行?8、的油箱中的余油量Q(升)是它行驶的时间t(小时)的一次函数.某天该汽车外出,刚开始行驶时,油箱中有油60升,行驶了4小时后,发现已耗油20升.(1)求:油箱中的余油Q(升)与行驶时间t (小时)的函数关系式.(2)求:这个实际问题中时间t的取值范围,并在直角坐标系中画出此函数图象.(3)从开始算起,如果汽车每小时行驶40千米,当油箱中余油20升时,该汽车行驶了多少千米?9、已知一次函数y=(3-K)x-2K2+18.(1)K为何值时,它的图象经过原点?(2)K为何值时,它的图象经过点(0,-2)?(3)K为何值时,它的图象平行于直线y=-x?10、已知一次函数y1=(a2-4)x+1-a与y2=(a2-2)x+a2-3解析式中的常数项互为相反数,求这两个一次函数的解析式.11、(1)若函数y=(k+1)x+k2-1是正比例函数,则k的值为()A.0B.1C.±1D.-1(2)已知是正比例函数,且y随x的增大而减小,则m的值为_____________.(3)当m=_______时,函数是一次函数.12、两个一次函数y1=mx+n,y2=nx+m,它们在同一坐标系中的图象可能是图中的()13、已知直线y=kx+b过点A(-1,5),且平行于直线y=-x+2.(1)求直线的解析式;.(2)B(m,-5)在这条直线上,O为原点,求m的值及S△AOB。

一元一次函数练习题及答案

一元一次函数练习题及答案

一元一次函数练习题及答案精品文档一元一次函数练习题及答案1(下面哪个点在函数y=1x+1的图象上A( B(C( D(2(下列函数中,y是x的正比例函数的是A(y=2x-1 B(y=xC(y=2x D(y=-2x+13(一次函数y=-5x+3的图象经过的象限是A(一、二、三B(二、三、四C(一、二、四D(一、三、四4(若一次函数y=x-k的图象经过第二、三、四象限,则k的取值范围是A(k>3B(0 填空题1(已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,?该函数的解析式为_________(2(若点在正比例函数y=kx的图象上,则此函数的解析式为________(3(已知一次函数y=-x+a与y=x+b的图象相交于点,则a+b=_________(解答题1(根据下列条件,确定函数关系式:y与x成正比,且当x=9时,y=16;y=kx+b的图象经过点和点(2(如图所示的折线ABC?表示从甲地向乙地打长途电1 / 10精品文档话所需的电话费y 与通话时间t之间的函数关系的图象写出y与t?之间的函数关系式(通话2分钟应付通话费多少元,通话7分钟呢,一次函数与一元一次方程练习题一、选择题1(直线y=3x+9与x轴的交点是A(B(C(D(2(直线y=kx+3与x轴的交点是,则k的值是A( B( C(- D(-33(已知直线y=kx+b与直线y=3x-1交于y轴同一点,则b的值是A(1 B(-1C(11 D(-34(已知直线AB?x轴,且点A的坐标是,则直线y=x与直线AB的交点是A(B(C(D(15、已知点,都在直线y=- x+2上,则y1 y2大小关系是y1 >y2y1 =y y1 6.已知一次函数y=ax+4与y=bx-2的图象在x轴上相交于同一点,则的值是114- - 27、一次函数y=ax+b,若a+b=1,则它的图象必经过点A、 B、 C、 D、2 / 10精品文档8. 如图,直线y?kx?b与x轴交于点,则y>0时,x的取值范围是A、x>,B、x>0C、x 9.无论m为何实数,直线y?x?2m与y??x?4的交点不可能在A.第一象限B第二象限C.第三象限D.第四象限10(若函数y=x2+x是正比例函数,则m的值为A(m>1111 B(m= C(m 11(若一次函数y=x-k的图象经过第二、三、四象限,则k 的取值范围是A(k> B(0 12(已知一次函数的图象与直线y=-x+1平行,且过点,那么此一次函数的解析式为A(y=-x-B(y=-x-C(y=-x+10 D(y=-x-1二、填空题1(直线y=3x+6与x轴的交点的横坐标x的值是方程2x+a=0的解,则a?的值是______(2(已知直线y=2x+8与x轴和y轴的交点的坐标分别是_______、_______(?与两条坐标轴围成的三角形的面积是__________(3(已知关于x的方程mx+n=0的解是x=-2,则直线y=mx+n与x?轴的交点坐标是________(4(方程3x+2=8的解是__________,则函数y=3x+2在自变量x等于_________?时的函数值是8(2m?3是正比例函数,则常数m的值是..若函数y=x3 / 10精品文档6.y=x?1?1中x的取值范围是x?37.当y=2x+2与y=x+1有相同的函数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数应用题练习
姓名
1、A市和B各有机床12台和6台,现运往C市10台,D市8台,若从A市运一台到C
市,D市各需要4万元和8万元,从B市运一台到C市,D市各需3万元和5万元。

(1)设B市运往C市X台,求总费用Y关于X的函数关系式;
(2)若总费用不超过95万元,问共有多少种调运方法?
(3)求总费用最低的调运方法,最低费用是多少万元?
2、某蔬菜生产基地计划由25个劳动力承包60亩地,种植甲乙丙三种不同的蔬菜,规定每个劳动力只种一种蔬菜,且甲种蔬菜必种,经测算这些不同品种的蔬菜每亩所需的劳动力和预计产值如下表:
,且预计产值达最高,最高产值是多少?
3.为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费,设某户每月用水量为X(立方米),应交水费为Y(元)。

(1)分别写出用水未超过7立方米和多于7立方米时,y与x间的函数关系式;
(2)如果某单位共有用户50户,某月共交水费541.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?
4、某日通过某公路收费站的汽车中,共有3000辆次缴了通行费,其中大车每辆次缴通行费10元,小车每辆次缴通行费5元。

(1)设这一天小车缴通行费的辆次为X,总的通行费收入为Y元,试写出Y关于X的函数关系式。

(2)若估计缴费的3000辆次汽车中,大车不少于20%且不大于40%,试求该收费站这一天费总数的范围。

5、某人有一批货物的成本为X元,如果他将这批货物5月1出售,可获利200元,然后将本利都存入银行,已知银行存款的月息为2%,6月1日他从银行中全部取出本利,设他共获利Y元。

(1)写出Y(元)与X(元)之间的函数关系式。

(2)如果这批货物6月1日出售,可获利220元,但要付保管费5元,试问这批货物成本多少元时,5月1日出售比6月1日出售获利多。

相关文档
最新文档