力学性能培训资料

合集下载

力学性能试验培训课件

力学性能试验培训课件


趋势分析
03
根据试验数据的趋势,预测材料的未来性能变化,为设计和应
用提供参考。
05 力学性能试验的常见问题与解决方案
试验数据偏差大
总结词
准确性与客观性是力学性能试验的关键,试验数据偏差大往 往是由于操作不规范、仪器设备误差、环境因素失控等因素 导致的。
详细描述
在试验过程中,应严格遵守操作规程,确保试样制备符合标 准要求;同时,对仪器设备进行定期检定和校准,以减少误 差;在试验过程中,应严格控制环境因素,如温度、湿度等 ,以保证试验数据的准确性。

屈服强度
屈服强度是材料在屈服点以下的应力-应变 曲线上的最大应力值。它反映了材料抵抗 塑性变形的能力。
塑性变形
塑性变形是材料在受力超过其弹性极限后 发生的不可逆变形。它反映了材料在承受 超过其弹性极限的应力时的适应能力。
试验结果评估
01
02
03
数据处理
对试验数据进行整理、分 析和处理,以消除异常值 和误差,确保数据的准确 性和可靠性。
质量控制的关键
通过对材料进行力学性能试验,可以 检测材料的缺陷和不足,及时发现并 解决问题,提高产品质量和可靠性。
力学性能试验的历史与发展
历史
力学性能试验起源于古代的工程实践,随着材料科学和技术的发展,逐渐形成了 系统的试验方法和理论。
发展
近年来,随着计算机技术和数值模拟方法的进步,力学性能试验逐渐向高精度、 高效率、自动化方向发展。同时,试验研究与理论分析、计算机模拟相结合,为 材料科学和工程实践提供了更为全面的数据支撑和理论指导。
目的
通过对材料进行力学性能试验,可以 评估材料的强度、硬度、韧性、耐磨 性等性能指标,进而用于产品设计、 选材和质量控制等方面。

力学性能试验培训

力学性能试验培训
数据分析
根据试验数据,可以计算出材料的弹性模量、屈服强度、抗拉强度等力学参数。通过对这 些参数的分析,可以评估材料的力学性能并对其进行优化设计。此外,通过对试验数据的 比较和分析,还可以研究不同材料之间的性能差异和相似性。
05
材料冲击试验
材料冲击试验的原理及目的
原理
材料冲击试验是通过在规定条件下对试样施加冲击负荷,观察其断裂过程中 的形变和断裂行为,以评估材料的力学性能和结构安全性。
力学性能试验在产品设计中的应用
在产品设计中,了解材料的力学性能对于产品的结构设计和 安全性能至关重要。通过力学性能试验,可以获取材料的各 项力学性能指标,为产品的结构设计提供依据,确保产品的 安全性和可靠性。
例如,在设计一款新型桥梁时,需要通过拉伸试验、弯曲试 验和压缩试验等手段,了解所用钢材的力学性能指标,如抗 拉强度、屈服强度、伸长率等,为桥梁的结构设计提供依据 ,确保桥梁的安全性和稳定性。
材料冲击试验的试验过程及数据分析
试验过程
在规定的冲击条件下,对试样施加冲击负荷,记录冲击过程中的力和位移变化, 以及试样的断裂形态和断裂时间等数据。
数据分析
通过对试验过程中采集的数据进行分析,可以得出材料的冲击韧性、断裂强度等 力学性能指标,并对其力学性能进行评估和比较。
06
力学性能试验的应用与案例分析
VS
标准
力学性能试验应遵循相关的国际、国家和 行业标准,以确保试验结果的准确性和可 比性。例如,ASTM、ISO、GB等标准体 系中包含了大量的力学性能试验标准,涉 及材料和构件的力学性能测试方法、试样 制备、数据处理等方面。
力学性能试验的常用设备及工具
常用设备
力学性能试验常用的设备包括万能材料试验机、疲劳试验机、硬度计、冲击 试验机等。这些设备可以完成各种不同类型的力学性能试验,如拉伸、压缩 、弯曲、冲击、硬度等。

力学性能说课稿

力学性能说课稿

力学性能说课稿标题:力学性能说课稿引言概述:力学性能是指材料在外力作用下产生的各种变形和破坏的性质,是评价材料工程性能的重要指标之一。

在材料科学与工程学科中,力学性能的研究和评价对于材料的选择、设计和应用具有重要意义。

本文将从力学性能的定义、分类、测试方法、影响因素和应用等方面进行详细介绍。

一、力学性能的定义1.1 弹性性能:材料在受力后能恢复原状的能力。

1.2 塑性性能:材料在受力后发生永久变形的能力。

1.3 破坏性能:材料在受到过大外力作用时发生破坏的能力。

二、力学性能的分类2.1 静态力学性能:包括拉伸性能、压缩性能、弯曲性能等。

2.2 动态力学性能:包括冲击性能、疲劳性能、动态强度等。

2.3 热力学性能:包括热膨胀性能、热导率等。

三、力学性能的测试方法3.1 拉伸试验:用于评价材料的强度和韧性。

3.2 压缩试验:用于评价材料在受压状态下的性能。

3.3 冲击试验:用于评价材料在受到冲击载荷时的破坏行为。

四、力学性能的影响因素4.1 材料的组织结构:晶粒大小、晶粒取向等。

4.2 加工工艺:热处理、冷加工等对力学性能的影响。

4.3 环境条件:温度、湿度等环境因素对力学性能的影响。

五、力学性能的应用5.1 材料选择:根据应用场景选择合适的材料。

5.2 设计优化:通过优化结构设计提高材料的力学性能。

5.3 质量控制:通过对力学性能的测试和监控,确保产品质量符合要求。

总结:力学性能作为材料工程中的重要指标,对于材料的选择、设计和应用具有重要意义。

通过对力学性能的定义、分类、测试方法、影响因素和应用等方面的深入了解,可以更好地评价和利用材料的性能,推动材料科学与工程领域的发展。

力学性能试验培训课件(PPT 81张)

力学性能试验培训课件(PPT 81张)

• 冲击试验试样尺寸:
2019/2/18
Prof. Wang Bin, Testing Center, SRIM
10
焊接冲击试样
• 焊接接头取样方法:焊接接头冲击试验时,试
样缺口位置应按要求开在焊缝、熔合线或热影 响区,缺口轴线应垂直焊缝表面。 • 焊接接头冲击试样的热影响区缺口位置:其缺 口轴线与熔合线的距离 t 应由产品技术条件规 定 • 焊缝金属冲击试样 • 热影响区冲击试样
2019/2/18 Prof. Wang Bin, Testing Center, SRIM 7
冲击试样
• V型缺口冲击试样
• U型缺口冲击试样
• 小尺寸冲击试样
• 冲击试样的加工
2019/2/18
Prof. Wang Bin, Testing Center, SRIM
8
夏比缺口试样尺寸
V型缺口 缺口角度 缺口半径 缺口底部粗糙度 缺口厚度(深度) 试样厚度 试样宽度 试样长度 试样半长度
3个试样冲击功平均值标准值 小于标准值的试样最多一个 每个单个试验值不小于标准值的70%。
2019/2/18
术语及定义
• 冲击吸收功:规定形状和尺寸的试样在冲击试
验力一次作用下折断时所吸收的功 • 脆性断面率:脆性断口面积占试样断口总面积 的百分率 • 冲击吸收功-温度曲线:在一系列不同温度的冲 击试验中,冲击吸收功与试验温度的关系曲线 • 韧脆转变温度:在一系列不同温度的冲击试验 中,冲击吸收功急剧变化或断口韧性急剧转变 的温度区域
2019/2/18 Prof. Wang Bin, Testing Center, SRIM 4
冲击试验的应用
• 作为韧性指标,为设计选材和研制新型

金属材料知识培训

金属材料知识培训
2、过冷奥氏体的等温冷却转变 (2)转变产物的组织与性能
上贝氏体组织金相图
三、钢在冷却时的组织转变
2、过冷奥氏体的等温冷却转变 (2)转变产物的组织与性能 350~230℃: B下; 50~60Fe3C细片状
针叶状
B下 =过饱和碳 α-Fe针叶状 + Fe3C细片状
热 加
连续冷却
等温冷却 时间
三、钢在冷却时的组织转变
2、过冷奥氏体的等温冷却转变 (1) TTT曲线(C曲线)- Time,Temperature,Transformation
三、钢在冷却时的组织转变
2、过冷奥氏体的等温冷却转变 (1) TTT曲线(C曲线)----共析碳钢
C 曲线的分析
⑴ 转变开始线与纵坐标之间的距离为孕 育期。
k :断裂强度 此时试样断裂。
2. 弹性极限e和屈服强度s :
• 弹性极限是表征开始塑性变形的抗力。 • 严格说:是表征微量塑性变形的抗力。 • 测出的弹性极限受测量精度影响,为便 于比较,规定残余伸长应力。 • 规定以残余伸长为0.01%的应力作为规 定残余伸长应力,记作0.01
• 除退火或热轧的低碳钢和中碳钢等少数 合金有屈服现象外,大多数金属合金都 没有屈服点。 • 规定产生0.2%残余伸长的应力作为屈服 强度,以0.2表示。 • 0.2的测量方法同上,采用图解法。
特点:
(1)存在由于均匀切变引起的宏观形状改变,可在预先制备的抛光试样 表面上出现浮突现象。
(2)相变不需要通过扩散,新相和母相的化学成分相同。 (3)新相和母相之间存在一定的晶体学位向关系。 (4)某些材料发生非扩散相变时,相界面移动速度极快,可接近声速。
热处理基本知识
• 热处理是将工件在介质中加热到一定温度并保温 一定时间,然后以一定速率冷却,以改变金属的 组织结构,从而改变其性能。例如增加或降低金 属材料的强度、硬度、韧性、塑性等。

混凝土物理力学性能

混凝土物理力学性能

混凝土物理力学性能试验方法标准培训试题
分数:
一、填空题(20分)
1、混凝土物理力学性能试验方法标准代号为(GB/T 50081-2019 )于(2019-12-01 )起实施。

2、本标准适用于(建设工程)中混凝土的物理力学性能,本标准不适用于(水利水电工程)中的(全级配混凝土)和(碾压混凝土)。

3、试验环境相对湿度不应小于(50% )。

4、试验仪器设备应具备(有效期内)的(计量检定)或(校准证书)。

二、术语解释(20分)
1、混凝土:
以水泥、骨料和水为主要原材料,根据需要加入矿物掺合料和外加剂等材料,按一定配合比,经拌合、成型、养护等工艺制作的、硬化后具有强度的工程材料。

2、抗压强度:
立方体试件单位面积上所能承受的最大压力。

3、劈裂抗拉强度:
立方体试件或圆柱体试件上下表面中间承受均布压力劈裂破坏时,压力作用的竖向平面内产生近似均布的极限拉应力。

4、抗折强度:
混凝土试件小梁承受弯矩作用折断破坏时,混凝土试件表面所承受的极限拉应力。

二、简答题(30分)
1、分别写出抗压强度、抗折强度的计算公式
四、简答题(30分
1、写出抗压强度的试验步骤
2、写出抗折强度试验的主要仪器设备答:1.压力试验机;
2.抗折试验装置;。

力学性能培训

力学性能培训

第一节 拉伸试验拉伸试验是在单向应力状态下,温度恒定、以及静载作用下进行的. 拉伸试验是材料力学性能测试中最常用的试验方法之一,拉伸试验简单易行, 试样制备简单, 测量数据精确,能够清楚地反映出材料受力后所发生的弹性、塑性与断裂三个变形阶段的基本特性,通过拉伸试验可以得到材料的基本力学性能指标,如弹性模量E、泊松比μ、规定塑性延伸强度R P、屈服强度、包括上屈服强度R e H和下屈服强度R e L、抗拉强度R m、断后伸长率A 、断面收缩率Z 、应变硬化指数(n值)和塑性应变比(r值)等。

拉伸试验所得到的上述强度指标和塑性指标,对于工程设计及合理选材,优选工艺、研制新材料、合理使用现有材料和改善其力学性能、采购、验收,质量控制、安全评估都有着很重要的应用价值和参考价值, 因此,很多产品都要测定材料的拉伸性能,并直接以拉伸试验的结果为依据来判定合格与否。

另外,拉伸试验可以揭示材料的基本力学行为规律,也是研究材料力学性能的基本试验方法。

因此,各个国家和国际标准化组织都制定了完善的拉伸试验标准,将拉伸试验列为力学试验中最基本、最重要的试验项目。

我国2009年颁布了国家标准GB/T228.1-2009《金属材料 拉伸试验第1部分:室温试验方法》,该标准等效采用Metallic materials-Tensile testing-Method of test at ambient temperature (ISO/FDIS6892-1:2008,MOD )国际标准,与拉伸试验有关的标准还有:GB/T22315-2008金属材料弹性模量试验方法GB/T4338-2006金属材料 高温拉伸试验方法GB/T13239-2006金属材料 低温拉伸试验方法GB/T5027-2007金属薄板和薄带塑性应变比(r值)试验方法GB/T5028-2009金属薄板和薄带拉伸应变硬化指数(n值)试验方法GB/T8170-2008数字修约规则GB/T16865-1997变形铝、镁及其合金加工制品拉伸试验用试样GB/T10573-1989有色金属细丝拉伸试验方法GB/T228.4-2009金属材料 拉伸试验第4部分:液氦试验方法3.1.1 拉伸试验的范围、术语及定义GB/T228.1-2009《金属材料拉伸试验室温试验方法》适用于金属材料室温拉伸性能的测定。

建筑力学与结构之轴向拉伸与压缩培训课件

建筑力学与结构之轴向拉伸与压缩培训课件

拉伸时大。
b
铸铁拉应力图
压缩时的强度极限b是拉伸 时的4—5倍。
铸铁常作为受压构件使用。 铸铁破坏时断口与轴线成450。
第五节 拉压杆的强度条件及应用
一、许用应力与安全系数
(1)极限应力(危险应力、失效应力):构件发生破坏或产
生过大变形而不能安全工作时的最小应力值。“ ” (2)许用应力:构件安全工作时的最大应力。“[]”
横向 线应变:
a a
杆件在轴向拉(压)变形时,横向尺寸的改变 量称为横向变形。
a a1 a
符号: 拉伸时为负值;压缩时为正值。
第三节 轴向拉(压)杆的变形、虎克定律
三、泊松比
当杆件的变形在弹性范围内时,材料的横向线应变 与纵向线应变的比值的绝对值是一个常数,称为材料的 横向变形系数或泊松比,即
第一节 轴向拉伸和压缩时的内力
二、轴向拉(压)杆的内力及内力图
➢ 分析内力最基本的方法是截面法。
➢截面法计算内力的步骤:
①将构件沿需要求内力的位置用假设截面截开,把构 件分为两部分,取其中一部分为研究对象;
②画研究对象的受力图时,另一部分对研究对象的作 用力用内力来代替;
③根据研究对象的平衡条件列平衡方程求解内力。
第三章 轴向拉伸与压缩
• 第一节 轴向拉伸和压缩时的内力 • 第二节 轴向拉(压)杆横截面上的应力
目 • 第三节 轴向拉(压)杆的变形、虎克定律 录 • 第四节 材料在拉伸和压缩时的力学性能
• 第五节 拉(压)杆的强度条件及应用 • 第六节 拉(压)杆连接部分的强度计算
第三章 轴向拉伸与压缩
➢ 物体的简化模型,根据具体情形可分为刚体和变形体。
解: max
FN max A

力学性能说课稿

力学性能说课稿

力学性能说课稿标题:力学性能说课稿引言概述:力学性能是指材料在受力作用下的力学行为,它直接影响着材料的使用性能和工程应用。

在材料科学与工程学科中,力学性能是一个重要的研究方向,通过对材料的力学性能进行分析和测试,可以更好地了解材料的性能特点,指导材料的设计和应用。

本文将从材料的力学性能概念、分析方法、测试技术、影响因素和应用领域等方面进行详细介绍。

一、力学性能的概念1.1 弹性模量:弹性模量是材料在受力作用下的变形能力,是衡量材料刚度的重要指标。

1.2 屈服强度:材料在受力作用下开始产生塑性变形的临界点,是材料反抗外力的能力。

1.3 断裂韧性:材料在受力作用下发生断裂的能力,是材料抗破坏能力的重要指标。

二、力学性能的分析方法2.1 线性弹性分析:通过建立材料的应力-应变关系,分析材料在弹性阶段的力学性能。

2.2 塑性分析:研究材料在超过屈服强度后的塑性变形行为,分析材料的塑性性能。

2.3 断裂分析:通过研究材料的断裂韧性和断裂机制,分析材料的破坏行为。

三、力学性能的测试技术3.1 拉伸试验:通过施加拉力来测试材料的弹性模量、屈服强度和断裂韧性等力学性能。

3.2 压缩试验:通过施加压力来测试材料在受压状态下的力学性能。

3.3 弯曲试验:通过施加弯曲力来测试材料的弯曲强度和断裂韧性等力学性能。

四、影响力学性能的因素4.1 材料的组织结构:材料的晶粒大小、晶界密度、位错密度等组织结构对力学性能有重要影响。

4.2 温度和环境条件:温度和环境条件对材料的力学性能有明显影响,如高温会降低材料的强度和韧性。

4.3 加工工艺:材料的加工工艺会影响其组织结构和晶粒大小,进而影响力学性能。

五、力学性能的应用领域5.1 材料设计:通过对材料的力学性能进行分析,可以指导材料的设计和选择,提高材料的性能。

5.2 工程应用:在工程领域中,对材料的力学性能要求严格,力学性能的好坏直接影响着工程的安全和可靠性。

5.3 新材料研发:对新材料的力学性能进行研究,可以为新材料的研发和应用提供重要参考。

力学性能试样培训ppt课件

力学性能试样培训ppt课件
5
1.取样部位
一 试样的一般要求
表1 45号钢取样部位对拉伸性能的影响
尺寸
d=40mm
d=45mm
d=50mm
d=60mm
部位
中心 1/4
中心 1/4
中心 1/4
中心 1/4
Rm/MPa A/%
649
671
679
702
785
801
584
603
26.0 24.2 12.8 10.2
6.2
8.0
27.1 25.7
对于宽度等于或小于20mm的不带头试样,除非产品标准中 另有规定,原始标距应等于50mm。
29
其余
图1
表B.1 矩形横截面比例试样 单位为毫米
b0
r
L0
k=5.65
Lc
试样
带头
不带头 编号
L0
k=11.3
Lc
带头
Lc 不带头
10
P1
P01
12.5
5.65 S0 ≥L0+b0/2
12
图A7 在六角钢上切取冲击样坯的位置
13
W 代 表 宽 度
t 代 表 厚 度
图A8 在矩形截面条钢上切取拉伸样坯的位置
14
图A9 在矩形截面条钢上切取冲击样坯的位置
15
图A10 在钢板上切取拉伸样坯的位置
16
图A11 在钢板上切取冲击样坯的位置
17
L 代 表 纵 向 取 样
T 代 表 横 向 取 样
图A12 在钢管上切取拉伸及弯曲样坯的位置
18
图A13 在钢管上切取冲击样坯的位置
19
图A14 在方形钢管上切取拉伸及弯曲样坯的位置 20

工程材料学-材料的力学性能培训课件

工程材料学-材料的力学性能培训课件

1. 布氏硬度( Brinell-hardness )
布氏硬度计
用于测定硬度不高的 金属材料。主要有铸 铁、有色金属、低合 金结构钢、结构调质 钢等。
1. 布氏硬度( Brinell-hardness )
测定原理:
用一定大小的载荷P,把直 径为D的淬火钢球压入被测金 属的表面,保持一定的时间后 卸除载荷,用金属压痕的表面 积,除载荷所得的商值即为布 氏硬度值。
比强度 30~37 23~36 90~111
3. 塑性指标:
塑性变形: 不可恢复的永久变形。塑性是表征材料断
裂前具有塑性变形的能力。
断后伸长率δ(δ5、δ10):
断后试样标距伸长量与原始标距之比的百分率,
即: LK L0 100%
L0
δ < 2 ~ 5% 属脆性材科
δ≈ 5 ~ 10% 属韧性材料
1.2.1 拉伸试验
3.均匀塑形变形阶段(曲线de段)
在此阶段中,试样的一部分产生塑性变形,虽 然这一部分截面减小,使此处承受负荷能力下 降。但由于变形强化的作用而阻止塑性变形在 此处继续发展,使变形推移到试样的其它部位。 这样、变形和强化交替进行,就使试样各部位 产生了宏观上均匀的塑性变形。曲线上的d点是 屈服阶段结束点也是加工硬化开始点。
1.2.1 拉伸试验
1.弹性变形阶段(曲线ob段)
在弹性变形阶段内的oa段,试样的伸长与外力 成正比例直线关系,即每增加一定外力,就对 应一定的伸长量,因此,oa段也称为线弹性变 形阶段。一旦外力超过曲线上的a点时,正比例 关系就破坏了。而该点对应的外力Fp称为比例 变形的极限外力。ab段为弹性变形的非线性阶 段,此阶段很短,一般不容易观察到。
1. 弹性指标:

金属材料及热处理知识(技师)

金属材料及热处理知识(技师)

金属材料及热处理培训资料(技师)1.金属材料的力学性能包括哪些?答:力学性能包括:强度、刚度、塑性、硬度、冲击韧性和疲劳强度。

2.什么是疲劳现象?如何提高疲劳极限?答:疲劳现象:机械零件在交变应力作用下,虽然所承受的应力低于材料的屈服点,但经过长时间的工作后产生裂纹或突然发生完全断裂的现象。

提高疲劳极限的方法: 1).在零件结构设计中尽量避免尖角、缺口和截面突变。

2).提高零件表面加工质量。

3).对材料表面进行强化处理。

3.什么是加工硬化?它有哪些利弊?答:加工硬化:随着塑性变形程度的增加,金属材料的强度、硬度提高,而塑性、韧性下降的现象。

优点:是强化金属材料的手段;是工件能够成型的重要因素。

缺点:给再次成型造成困难;耐蚀性下降。

4.掌握碳钢及合金钢的分类和牌号含义。

5.合金元素在钢中的主要作用有哪些?答:(1)强化铁素体;(2)形成合金碳化物;(3)细化晶粒;(4)提高钢的淬透性;(5)提高钢的回火稳定性。

6. 高速钢的主要特性是什么?答:高速钢具有高硬度、高耐磨性和高红硬性。

当其切削刃的温度在600℃以下时,仍能保持其高硬度和高耐磨性。

7. 铸铁有哪些性能特点?答:1. 优良的切削加工性;2. 铸造性能好;3. 减磨性及耐磨性很高;4. 优异的消振性;5. 低的缺口敏感性。

8.掌握铸铁的分类和牌号含义。

9.常规热处理方法有哪四种?它们的目的是什么?答:10.什么是调质处理?目的是什么?哪类钢适合进行调制处理?答:淬火+高温回火的热处理工艺称为调质处理。

目的:为了获得材料良好的综合力学性能。

调质处理适合用于中碳钢。

11.工厂常用的防锈方法有哪些?答:浸防锈油油封;吹砂;惰性气体封存;喷漆;氧化处理。

12. 淬火易产生哪些缺陷?答:过热和过烧;氧化和脱碳;变形和开裂;硬度不足;软点。

13.为什么铝合金广泛用于航空工业生产?答:因为纯铝具有银白色金属光泽,密度小(2.72 ),熔点低(660.4℃), 导电、导热性能优良。

力学性能教案

力学性能教案

力学性能教案引言:力学性能是研究物体在外力作用下的变形、运动、力的大小和方向等物理量的学科。

力学性能的学习对于理解和应用力学原理具有重要的意义。

本教案将介绍力学性能的基本概念和相关实验内容,旨在培养学生对力学性能的理解和应用能力。

一、教学目标:1. 理解力学性能的基本概念和分类;2. 掌握力学性能实验的基本步骤和方法;3. 培养学生对力学性能的观察、分析和判断能力;4. 培养学生的团队协作和实验操作技能。

二、教学重点和难点:1. 力学性能的基本概念和分类;2. 力学性能实验的基本步骤和方法。

三、教学内容:1. 力学性能的基本概念力学性能是指物体在外力作用下的响应和性能表现。

主要包括以下几个方面:1.1 强度:物体在外力作用下抵抗破坏的能力。

常用强度指标有极限强度、屈服强度和抗拉强度等;1.2 刚度:物体在受力后产生的变形与受力之间的关系。

常用刚度指标有弹性模量和切割模量等;1.3 韧性:物体在断裂前可以吸收的能量。

常用韧性指标有断裂韧性和冲击韧性等;1.4 疲劳性能:物体在循环载荷作用下耐久性能的指标。

常用疲劳性能指标有疲劳寿命和循环载荷下的变形等。

2. 力学性能实验2.1 实验目的通过实验,观察、测量和分析不同材料和结构的力学性能,加深对力学性能的理解。

2.2 实验仪器和材料(根据实际情况列举相关的实验仪器和材料)2.3 实验步骤(根据实验的具体内容列举相关的实验步骤)2.4 实验数据处理和分析根据实验数据,计算和比较不同材料和结构的力学性能指标,探讨其差异和原因。

四、教学方法:1. 讲授法:通过教师讲解的方式,介绍力学性能的基本概念和实验内容;2. 实验操作法:组织学生进行力学性能实验,培养学生的实验操作技能;3. 案例分析法:通过分析实际案例,帮助学生更好地理解力学性能的应用和意义;4. 讨论交流法:组织学生进行小组讨论,共同解决实验中的问题和困惑。

五、教学评估:1. 实验报告:学生根据实验结果撰写实验报告,评估学生对力学性能实验的理解和应用能力;2. 课堂讨论:评估学生对力学性能概念和实验内容的理解程度;3. 学习反馈:通过问卷调查等方式,评估学生对教学内容和教学方法的反馈意见。

水泥物理力学性能检验培训试题(含答案)

水泥物理力学性能检验培训试题(含答案)

一、单选题(总分40 分,每题2 分)1. 测定水泥密度所用的液体介质为:(B )(A)花生油;(B)无水煤油;(C)酒精;(D)汽油2. 水泥密度测试时,应称取水泥试样(D )g。

(A)20g;(B)40g;(C)50g;(D)60g。

3. 通常表示水泥抗折强度的单位为:(C )(A)mPa;(B)KPa;(C)MPa;(D)kN。

4. 当粉煤灰硅酸盐水泥的流动度小于180mm 时,须以(C )的整数倍将水灰比调整至胶砂流动度不小于180mm。

(A)0.01;(B)0.02;(C)0.1;(D)0.2。

5. 水泥以抽取实物试样的检验结果为验收依据时,取样数量为(C )kg。

(A)6;(B)20;(C)12;(D)24。

6. 雷氏夹的制成材料为(A)。

(A)铜质材料;(B)铁质材料;(C)锌质材料;(D)合金材料。

7. 测定水泥密度时,试验结果取两次测定结果的算术平均值,两次测定结果之差不得超过(B )。

(A)0.01 g/cm3;(B)0.02 g/cm3 ;(C)0.05 g/cm3;(D)0.1 g/cm38. 煮沸法是测(D )所用的方法。

(A)细度;(B)标准稠度需水量;(C)凝结时间;(D)安定性。

9. 凝结时间试验中,盛装水泥净浆的试模深度为(B )(A)30mm±1mm;(B)40mm±1mm;(C)50mm±1mm;(D)57mm±1mm。

10. 中国ISO标准砂可以单级分包装,也可以各级预配合,并以(C)量的塑料袋混合包装。

(A)1350g±1g;(B)1350g±2g;(C)1350g±5g;(D)1350g±10g。

11. 水泥胶砂流动度测定方法标准的代号为:(D)(A)GB/T2419-2004 ;(B)GB/T2419-2006;(C)GB/T2419-2012;(D)以上都不是。

12. 强度等级为42.5R 的硅酸盐水泥的3d 抗折强度应(B )。

力学性能说课稿

力学性能说课稿

力学性能说课稿标题:力学性能说课稿引言概述:力学性能是指材料在外力作用下的变形和破坏特性,是评价材料质量和可靠性的重要指标。

在工程设计和生产过程中,了解材料的力学性能对于确保产品的质量和安全至关重要。

一、材料的强度特性1.1 强度概念:材料的强度是指在外力作用下,材料抵抗破坏的能力。

1.2 抗拉强度:材料在拉伸过程中所能承受的最大拉力。

1.3 抗压强度:材料在受压过程中所能承受的最大压力。

二、材料的韧性特性2.1 韧性概念:材料在受外力作用下,能够发生塑性变形而不破坏的能力。

2.2 断裂韧性:材料在受冲击载荷作用下,能够吸收冲击能量的能力。

2.3 延展性:材料在拉伸过程中能够发生大变形而不断裂的能力。

三、材料的硬度特性3.1 硬度概念:材料抵抗局部变形和划伤的能力。

3.2 洛氏硬度:通过在材料表面施加一定压力,测量材料的硬度。

3.3 布氏硬度:通过在材料表面施加一定压力,测量材料的硬度。

四、材料的脆性特性4.1 脆性概念:材料在受外力作用下,会迅速发生破裂而不发生明显的塑性变形。

4.2 断裂韧性:材料在受冲击载荷作用下,会迅速发生破裂。

4.3 脆性转变温度:材料在低温下变得更加脆性的温度。

五、材料的疲劳特性5.1 疲劳概念:材料在受交变载荷作用下,逐渐发生损伤和疲劳破坏的过程。

5.2 疲劳极限:材料在一定次数的交变载荷下能够承受的最大应力。

5.3 疲劳寿命:材料在特定应力水平下能够承受的循环次数。

结论:通过对材料的力学性能进行全面了解,可以有效指导工程设计和生产过程中的材料选择和使用,确保产品的质量和安全性。

力学性能的评估是材料科学中的重要研究方向,也是工程领域不可或缺的一部分。

力学性能试验培训课件

力学性能试验培训课件

试验步骤
详细介绍试样制备、安装、调整、 测试和数据处理的完整流程。
数据分析
介绍如何根据测试数据计算材料的 弹性模量、屈服强度和抗拉强度等 力学性能指标。
压缩试验
试验原理
试验设备
介绍材料在压缩过程中的力学行为和基本物 理概念,如弹性极限、屈服点、抗压强度等 。
详细描述压缩试验机的结构、工作原理和操 作方法。
误差估计
对测量数据的误差进行估计,以评估测量结果的可靠性和精度。
误差修正
根据误差估计结果,对测量数据进行修正,以提高测量结果的准 确性和精度。
04
力学性能试验设备与操作规程
试验机类型及组成
试验机的基本类型
包括拉伸、压缩、弯曲、剪切、疲劳等。
试验机的组成
试验机主要由主机、控制系统、测量系统、附属设备和试样组成。
试验步骤
数据分析
详细介绍试样制备、安装、调整、测试和数 据处理的完整流程。
介绍如何根据测试数据计算材料的弹性模量 、屈服强度和抗压强度等力学性能指标。
弯曲试验
试验原理
介绍材料在弯曲过程中的力学行为 和基本物理概念,如弹性极限、屈 服点、抗弯强度等。
试验设备
详细描述弯曲试验机的结构、工作 原理和操作方法。
05
力学性能试验标准与规范
国家标准
1
GB/T 228.1-2010金属材料拉伸试验 第1部分 :室温试验方法
2
GB/T 228.2-2015金属材料拉伸试验 第2部分 :高温试验方法
3
GB/T 228.3-2010金属材料拉伸试验 第3部分 :蠕变、持久和高温蠕变试验总则
行业标准
HB 5145-1996金属材料室温拉伸试验方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节 拉伸试验拉伸试验是在单向应力状态下,温度恒定、以及静载作用下进行的. 拉伸试验是材料力学性能测试中最常用的试验方法之一,拉伸试验简单易行, 试样制备简单, 测量数据精确,能够清楚地反映出材料受力后所发生的弹性、塑性与断裂三个变形阶段的基本特性,通过拉伸试验可以得到材料的基本力学性能指标,如弹性模量E、泊松比μ、规定塑性延伸强度R P、屈服强度、包括上屈服强度R e H和下屈服强度R e L、抗拉强度R m、断后伸长率A 、断面收缩率Z 、应变硬化指数(n值)和塑性应变比(r值)等。

拉伸试验所得到的上述强度指标和塑性指标,对于工程设计及合理选材,优选工艺、研制新材料、合理使用现有材料和改善其力学性能、采购、验收,质量控制、安全评估都有着很重要的应用价值和参考价值, 因此,很多产品都要测定材料的拉伸性能,并直接以拉伸试验的结果为依据来判定合格与否。

另外,拉伸试验可以揭示材料的基本力学行为规律,也是研究材料力学性能的基本试验方法。

因此,各个国家和国际标准化组织都制定了完善的拉伸试验标准,将拉伸试验列为力学试验中最基本、最重要的试验项目。

我国2009年颁布了国家标准GB/T228.1-2009《金属材料 拉伸试验第1部分:室温试验方法》,该标准等效采用Metallic materials-Tensile testing-Method of test at ambient temperature (ISO/FDIS6892-1:2008,MOD )国际标准,与拉伸试验有关的标准还有:GB/T22315-2008金属材料弹性模量试验方法GB/T4338-2006金属材料 高温拉伸试验方法GB/T13239-2006金属材料 低温拉伸试验方法GB/T5027-2007金属薄板和薄带塑性应变比(r值)试验方法GB/T5028-2009金属薄板和薄带拉伸应变硬化指数(n值)试验方法GB/T8170-2008数字修约规则GB/T16865-1997变形铝、镁及其合金加工制品拉伸试验用试样GB/T10573-1989有色金属细丝拉伸试验方法GB/T228.4-2009金属材料 拉伸试验第4部分:液氦试验方法3.1.1 拉伸试验的范围、术语及定义GB/T228.1-2009《金属材料拉伸试验室温试验方法》适用于金属材料室温拉伸性能的测定。

但对于小横截面尺寸的金属产品,例如金属箔、超细丝和毛细管等的拉伸试验需要相关方的协议。

GB/T228.1-2009《金属材料拉伸试验第1部分:室温试验方法》采用下列术语及定义:1) 标距 L测量伸长用的试样圆柱或棱柱部分的长度。

2) 原始标距 L 0室温下施力前的试样标距。

3) 断后标距 L u在室温下将断后的两部分试样紧密地对接在一起,保证两部分的轴线位于同一条直线上,测量试样断裂后的标距。

4) 平行长度 L c试样平行缩减部分的长度。

注:平行长度的概念被未加工试样夹持部分之间的距离取代。

5) 伸长试验期间任一时刻原始标距的增量。

6) 伸长率原始标距的伸长与原始标距L o 之比的百分率。

7) 残余伸长率卸除指定的应力后,伸长相对于原始标距L o 的百分率。

8) 断后伸长率 A断后标距的残余伸长(L u -L 0)与原始标距(L 0)之比的百分率。

注:对于比例试样,若原始标距不为 5.65)10S (为平行长度的原始横截面积),符号A 应附以下脚注说明所使用的比例系数,例如,A 0S 11.3表示原始标距为11.30S 的断后伸长率。

对于非比例试样,符号A 应附以下脚注说明所使用的原始标距,以毫米(mm )表示,例如,表示原始标距为80mm 的断后伸长率。

mm A 801)π04565.5S S =9) 引伸计标距L e用引伸计测量试样延伸时所使用试样引伸计起始标距长度。

注:对于测定屈服强度和规定强度性能,建议L e 应尽可能跨越试样平行长度。

理想的 L e 应大于L 0/2但小于约0.9L c 。

这将保证引伸计能检测到发生在试样上的全部屈服。

最大力时或在最大力之后的性能,推荐L e 等于L 0或近似等于L 0,但测定断后伸长率时L e 应等于L 0。

10) 延伸试验期间任一给定时刻引伸计标距L e 的增量。

11) 延伸率用引伸计标距L e 表示的延伸百分率 12) 残余延伸率试样施加并卸除应力后引伸计标距的增量与引伸计标距L e 之比的百分率。

13) 屈服点延伸率 A e呈现明显屈服(不连续屈服)现象的金属材料,屈服开始至均匀加工硬化开始之间引伸计标距的延伸与引伸计标距L e 之比的百分率。

见图3.7。

14) 最大力总延伸率 A g t最大力时原始标距的总延伸(弹性延伸加塑性延伸)与引伸计标距L e之比的百分率。

见图3.1。

15) 最大力塑性延伸率 A g最大力时原始标距的塑性延伸与引伸计标距L e 之比的百分率。

见图3.1。

16) 断裂总延伸率A t 断裂时刻原始标距的总延伸(弹性延伸加塑性延伸)与引伸计标距L e 之比的百分率。

见图3.1。

17) 试验速率a) 应变速率 eL e & 用引伸计标距测量时单位时间的应变增加值。

e L b) 平行长度应变速率的估计值 L c根据横梁分离速率和试样平行长度L c 计算的试样平行长度的应变单位时间内的增加值。

c) 横梁位移速率 νc单位时间的横梁位移。

d) 应力速率 R& 单位时间应力的增加。

注:应力速度只用于方法B 试验的弹性阶段。

18) 断面收缩率 Z断裂后试样横截面积的最大缩减量(S o -S u )与原始横截面积S o 之比的百分率:100×−=o uoS S S Z 19) 最大力 F m对于无明显屈服(不连续屈服)的金属材料,为试验期间的最大力。

对于不连续屈服的金属材料,在加工硬化开始之后,试样所承受的最大力。

注:见图3.8a)和3.8b)。

20) 应力 R试验期间任一时刻的力除以试样原始横截面积S o 之商。

注1:此应力指的是工程应力。

注2:在后续标准文本中,符号“力”和“应力”或“延伸”,“延伸率”和“应变”分别用于各种情况(如图中的坐标轴标识所示,或用于解释不同力学性能的测定)。

然而,对于曲线上一已定义点的总描述和定义,“力”和“应力”或“延伸”,“延伸率”和“应变”相互之间是可以互换的。

21) 抗拉强度R m相应最大力(F m)的应力。

22) 屈服强度当金属材料呈现屈服现象时,在试验期间达到塑性变形发生而力不增加的应力点。

应区分上屈服强度和下屈服强度。

a) 上屈服强度R e H试样发生屈服而力首次下降前的最大应力。

见图3.2。

b) 下屈服强度R e L在屈服期间,不计初始瞬时效应时的最小应力。

见图3.2。

c) 规定塑性延伸强度R p塑性延伸率等于规定的引伸计标距L e百分率时对应的应力。

注:使用的符号应附下脚标说明所规定的塑性延伸率,例如,R p0.2,表示规定塑性延伸率为0.2%时的应力。

见图3.3。

d) 规定总延伸强度R t总延伸率等于规定的引伸计标距L e百分率时的应力。

注:使用的符号应附下脚标说明所规定的总延伸率,例如R t0.5,表示规定总延伸率为0.5%时的应力。

见图3.4。

e) 规定残余延伸强度R r卸除应力后残余延伸率等于规定的原始标距L o或引伸计标距L e百分率时对应的应力。

注:使用的符号应附下脚标说明所规定的残余延伸率。

例如R r0.2,表示规定残余延伸率为0.2%时的应力。

见图3.5。

23) 断裂当试样发生完全分离时的现象。

R-应力e-延伸率Δe-平台范围A:断后伸长率(从引伸计的信号测得或直接从试样上测得)Ag:最大力塑性延伸率Agt:最大力总延伸率At:断裂总延伸率Rm:抗拉强度m E:应力-延伸率曲线上弹性部分的斜率图3.1延伸的定义拉伸试验所用的符号和说明见表3.1表3.1符号和说明符号单位说明试样a o, T a mm 矩形横截面试样原始厚度或原始管壁厚度b o mm 矩形横截面试样平行长度的原始宽度或管的纵向剖条宽度或扁丝原始宽度d o mm 圆形横截面试样平行长度的原始直径或圆丝原始直径或管的原始内径D o mm 管原始外直径L o mm 原始标距L'o mm 测定A的原始标距w nL c mm 平行长度L e mm 引伸计标距L t mm 试样总长度d u mm 圆形横截面试样断裂后缩颈处最小直径。

L u mm 断后标距L 'u mm 测量A w n 的断后标距 S o mm 2原始横截面积S umm 2断后最小横截面积 k -比例系数 Z %断面收缩率 伸 长A %断后伸长率 A w n %无缩颈塑性伸长率 A e %屈服点延伸率 A g %最大力F m 塑性延伸率 A gt %最大力F m 总延伸率 A t %断裂总延伸率 错找用源。

m误!未到引L mm 最大力总延伸△L f mm 断裂总延伸速 率e &L es-1应变速率e&L c s -1平行长度估计的应变速率 v cmm -1横梁分离速率s R& MPa 应力速率s -1力F m N最大力 屈服强度- 规定强度 – 抗拉强度R e HMPa b 上屈服强度 R e LMPa 下屈服强度 R m MPa 抗拉强度R p MPa规定塑性延伸强度 R r MPa规定残余延伸强度 R t MPa 规定总延伸强度 E MPa b 弹性模量m MPa应力-延伸率曲线在给定试验时刻的斜率 m E MPa 应力-延伸率曲线弹性部分的斜率ca用于钢管产品标准的符号 b1MPa = 1 N/mm c如果使用最佳条件(高分辨力,平均引伸计,良好的试样对中),应力-延伸率曲线的弹性部分的斜率值接近弹性模量值。

R 应力e 延伸率a 初始瞬时效应Re H上屈服强度Re L 下屈服强度图3.2.不同类型曲线的上屈服强度下屈服强度R应力e延伸率1规定塑性延伸率R P:规定塑性延伸强度图3.3 规定塑性延伸强度R应力e延伸率1规定总延伸率R t:规定总延伸强度图3.4规定总延伸强度R应力e延伸率1规定残余延伸率R r:规定残余延伸强度图3.5规定残余延伸强度Y-应力e-延伸率1-规定塑性延伸率R P:规定塑性延伸强度图3.6 规定塑性延伸强度a)水平线法b)回归线法R应力e 延伸率a 经过均匀加工硬化前最后最小值点的水平线b 经过均匀加工硬化前屈服范围的回归线c 均匀加工硬化开始处曲线的最高斜率线A e:屈服点延伸率R e H: 上屈服强度图3.7 屈服点延伸率A e的不同评估方法c)应力-延伸率状态的特殊情况(见注1)图解:R应力e延伸率R e H:上屈服强度R m:抗拉强度注1:呈现图8 c)应力-延伸率状态的材料,按照拉伸标准无确定的抗拉强度。

相关文档
最新文档