2020中考数学冲刺专题12 新定义(原卷版)
2020年九年级数学中考二轮专项——新定义类问题(含答案)
2020年中考数学二轮专项——新定义类问题1. (2019湘西州)阅读材料:设a →=(x 1,y 1),b →=(x 2,y 2),如果a → ∥b →,则x 1·y 2=x 2·y 1.根据该材料填空:已知a →=(4,3),b →=(8,m ),且a →∥b →,则m =________.2. (2019株洲改编)从-1,1,2,4四个数中任取两个不同的数(记作a k ,b k )构成一个数组M k ={a k ,b k }(其中k =1,2,…,S ,且将{a k ,b k }与{b k ,a k }视为同一个数组),若满足:对于任意的M i ={a i ,b i }和M j ={a j ,b j }(i ≠j ,1≤i ≤S ,1≤j ≤S )都有a i +b i ≠a j +b j ,则S 的最大值为________.3. (2019成华区二诊)对于实数a ,b ,定义运算“※”如下:a ※b =a 2-ab .例如:5※3=52-5×3=10.若(x +1)※(x -2)=6,则x 的值为________.4. (2019武侯区二诊)定义[x ]表示不超过实数x 的最大整数,例如:[0.82]=0,[6]=6,[-135]=-3,[-7]=-7.若规定:对于实数m ,f (m )=[2-m 3]-[m 5],例如:f (7)=[2-73]-[75]=[-53]-[75]=-2-1=-3.则f (-6)=______.5.(2019锦江区一诊)新定义:[a ,b ,c ]为二次函数y =ax 2+bx +c (a ≠0,a ,b ,c 为实数)的“图象数”.若“图象数”是[m -1,m -2,m -3]的二次函数的图象经过原点,则m =________.6. (2018成都黑白卷)对于两个不相等的实数a 、b ,定义一种新的运算:a @b =ab a +b ,如6@15=6×156+15=31021=107.已知m ,n 是一元二次方程x 2-21x +7=0的两个不相等的实数根,则[(m +n )@mn ]@3=________.7. (2019甘肃省卷)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k =________.8. 定义:如果一元二次方程ax 2+bx +c =0(a ≠0)满足a +b +c =0,那么我们称这个方程为“凤凰方程”.已知ax 2+bx +c =0(a ≠0)是“凤凰方程”,且有两个相等的实数根,则a 与c 的关系是____________.9. (2019贵港)我们定义一种新函数:形如y =|ax 2+bx +c |(a ≠0,且b 2-4ac >0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y =|x 2-2x -3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(-1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x =1;③当-1≤x ≤1或x ≥3时,函数值y 随x 的增大而增大;④当x =-1或x =3时,函数的最小值是0;⑤当x =1时,函数的最大值是4.其中正确结论的个数是____________.第9题图10. (2019都江堰区一诊)定义:平面直角坐标系中,若抛物线y =ax 2上的两点A 、B 满足OA =OB ,且tan ∠OAB =12,那么我们就称线段AB 为该抛物线的“通径”,抛物线y =12x 2的“通径”长为________. 11. (2016成都B 卷24题)实数a ,n ,m ,b 满足a <n <m <b ,这四个数在数轴上对应的点分别是A ,N ,M ,B (如图).若AM 2=BM ·AB ,BN 2=AN ·AB ,则称m 为a ,b 的“黄金大数”,n 为a ,b 的“黄金小数”,当b -a =2时,a ,b 的黄金大数与黄金小数之差m -n =________.第11题图12. (2017成都黑白卷)定义1:在△ABC 中,若顶点A ,B ,C 按逆时针方向排列,则规定它的面积为“有向面积”;若顶点A ,B ,C 按顺时针方向排列,则规定它的面积的相反数为△ABC 的“有向面积”.“有向面积”用S 表示,例如图①中,S △ABC =S △ABC ,图②中,S △ABC =-S △AB C .定义2:在平面内任取一个△ABC 和点P (点P 不在△ABC 的三边所在直线上),称有序数组(S △PBC ,S △PCA ,S △P AB )为点P 关于△ABC 的“面积坐标”,记作P (S △PBC ,S △PCA ,S △P AB ),例如图③中,菱形ABCD 的边长为2,∠ABC =60°,则S △ABC =3,点D 关于△ABC 的“面积坐标”D (S △DBC ,S △DCA ,S △DAB )为D (3,-3,3).在图③中,我们知道S △ABC =S △DBC +S △DAB -S △DCA ,利用“有向面积”,我们也可以把上式表示为:S △ABC =S △DBC +S △DAB +S △DC A .应用新知:如图④,正方形ABCD 的边长为1,点D 关于△ABC 的“面积坐标”是________________.第12题图13. (2017成都B 卷24题)在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P ′(1x ,1y )称为点P 的“倒影点”.直线y =-x +1上有两点A ,B ,它们的倒影点A ′,B ′均在反比例函数y =k x 的图象上,若AB =22,则k =________.14. (2019双流区一诊)若实数m ,n 满足m +n =3mn ,且n ≠0时,就称点P (m ,m n)为“完美点”,若反比例函数y =k x 的图象上存在两个“完美点”A ,B ,且AB =83,则k 的值为________. 15. (2019成都B 卷25题)如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点称为“整点”.已知点A 的坐标为(5,0),点B 在x 轴的上方,△OAB 的面积为152,则△OAB 内部(不含边界)的整点的个数为________.第15题图16. (2015成都B 卷25题) 如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”. 以下关于倍根方程的说法,正确的是________(写出所有正确说法的序号).① 方程x 2-x -2=0是倍根方程;② 若(x -2)(mx +n )=0是倍根方程,则4m 2+5mn +n 2=0;③ 若点(p ,q )在反比例函数y =2x的图象上,则关于x 的方程px 2+3x +q =0是倍根方程;④ 若方程ax 2+bx +c =0是倍根方程,且相异两点M (1+t ,s ),N (4-t ,s )都在抛物线y =ax 2+bx +c 上,则方程ax 2+bx +c =0的一个根为54. 17. (2018成都黑白卷)在边长为1的小正方形组成的方格纸中,每个小正方形的顶点称为“格点”.从一个格点移动到与之相距5的另一个格点的运动称为一次“跳马变换”.例如,在3×3的正方形网格图形中(如图①),从点A 经过一次跳马变换可以到达点B ,C ,D ,E 等处.现有25×25的正方形网格图形(如图②),则从该正方形的顶点M 经过跳马变换到达与其相对的顶点N ,最少需要“跳马变换”________次.第17题图18. (2014成都B 卷23题)在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S ,其内部的格点数记数为N ,边界上的格点数记为L .例如,图中三角形ABC 是格点三角形,其中S =2,N =0,L =6;图中格点多边形DEFGHI 所对应的S ,N ,L 分别是________.经探究发现,任意格点多边形的面积S 可表示为S =aN +bL +c ,其中a ,b ,c 为常数,则当N =5,L =14时,S =________(用数值作答).第18题图19. (2019高新区二诊)规定:经过三角形的一个顶点且将三角形的周长分为相等的两部分的直线叫做该三角形的“等周线”,“等周线”被这个三角形截得的线段叫做该三角形的“等周径”.例如等腰三角形底边上的中线即为它的“等周径”.Rt△ABC中,∠C=90°,AC=4,BC=3,若直线l为△ABC的“等周线”,则△ABC 的所有“等周径”长为________.参考答案1. 6 【解析】a →=(4,3),b →=(8,m ),且a →∥b →,∴4m =24,∴m =6.2. 5 【解析】假设M 1={-1,1},M 2={-1,2},M 3={-1,4},M 4={1,2},M 5={1,4},M 6={2,4},∵-1+1=0,-1+2=1,-1+4=3,1+2=3,1+4=5,2+4=6,∴a i +b i 共有5个不同的值.∵M 3=M 4,∴舍去M 3或M 4.可得S 的最大值为5.3. 1 【解析】由题意得,(x +1)2-(x +1)(x -2)=6,整理得,3x +3=6,解得x =1.4. 4 【解析】根据题意可得,f (-6)=[2+63]-[-65]=[83]-[-65]=2-(-2)=4. 5. 3 【解析】根据题意得y =(m -1)x 2+(m -2)x +m -3,把(0,0)代入得m -3=0,解得m =3. 6. 25【解析】∵m ,n 是一元二次方程x 2-21x +7=0的两个不相等的实数根,∴m +n =21,mn =7.∵a @b =ab a +b ,∴[(m +n )@mn ]@3=(21@7)@3=21×721+7@3=34@3=34×334+3=25. 7. 85或14 【解析】当∠A 为顶角时,则底角∠B =∠C =12(180°-∠A )=50°,此时的特征值k =80°50°=85;当∠A 为底角时,则顶角(∠B 或∠C )=180°-2∠A =20°,此时的特征值k =20°80°=14.综上所述,k 为85或14. 8. a =c 【解析】∵一元二次方程ax 2+bx +c =0(a ≠0)有两个相等的实数根,∴b 2-4ac =0,又∵a +b +c =0,∴将b =-a -c 代入b 2-4ac =0得,(-a -c )2-4ac =0,即(a +c )2-4ac =a 2+2ac +c 2-4ac =a 2-2ac +c 2=(a -c )2=0,∴a =c .9. 4 【解析】当x 2-2x -3=0时,解得x 1=-1,x 2=3,∴图象与x 轴的交点坐标为(-1,0),(3,0),当x =0时y =|-3|=3,∴与y 轴的交点坐标为(0,3),故①正确;∵当x =1-t 时,y =|(1-t )2-2(1-t )-3|=|1-2t +t 2-2+2t -3|=|t 2-4|,当x =1+t 时,y =|(1+t )2-2(1+t )-3|=|1+2t +t 2-2-2t -3|=|t 2-4|,∴当x =1-t 和x =1+t 时,对应的函数值相同,即函数图象关于直线x =1对称,故②正确;由图象可知,当-1≤x ≤1或当x ≥3时,y 随x 的增大而增大,故③正确;∵由图象可知,当x =-1或x =3时,y =0,且是函数的最小值,故④正确;由图象可知,函数无最大值,故⑤错误.综上可知,正确结论的个数是4.10. 2 【解析】由题意得,A 、B 两点关于y 轴对称,设点A 位于第二象限,点A 的坐标为(-2a ,a ),则a =12×(-2a )2,解得a =0(舍去)或a =12,∴点A 的横坐标是-1,则点B 的横坐标是1,∴AB =1-(-1)=2.11. 25-4 【解析】设AN =y ,MN =x ,由题意可知AM 2=BM ·AB ,∴(x +y )2=2(2-x -y ),解得x +y =5-1(负值已舍去);又∵BN 2=AN ·AB ,∴(2-y )2=2y ,解得y =3+5(舍去)或y =3- 5.∴x =x +y -y =25-4.∴m -n =MN =x =25-4.12 . (12,-12,12) 【解析】依题意得S △ABC =S △ABC =12×1×1=12,则点D 关于△ABC 的“面积坐标”D (S △DBC ,S △DCA ,S △DAB )为(12,-12,12). 13. -43【解析】设A 、B 的坐标分别为A (a ,-a +1),B (b ,-b +1),∵AB =22,∴(a -b )2+(-a +1+b -1)2=(22)2,∴a -b =±2,由倒影点的定义得A ′(1a ,11-a ),B ′(1b ,11-b),又∵A ′、B ′都在反比例函数y =k x 的图象上,∴k =1a (1-a )=1b (1-b ),则a (1-a )=b (1-b ),整理得(a -b )(1-a -b )=0,∵a -b =±2,∴1-a -b =0,即a +b =1,解方程组⎩⎪⎨⎪⎧a +b =1a -b =2或⎩⎪⎨⎪⎧a +b =1a -b =-2,得⎩⎨⎧a =32b =-12或⎩⎨⎧a =-12b =32,∴k =1a (1-a )=-43. 14. 13336 【解析】∵m +n =3mn 且n ≠0,∴m n +1=3m ,即m n=3m -1,∴P (m ,3m -1),即“完美点”在直线y =3x -1上,设点A 、B 坐标分别为(x 1,y 1),(x 2,y 2),令k x=3x -1,化简得3x 2-x -k =0,∵AB =83,∴|x 1-x 2|=43,由韦达定理x 1+x 2=33,x 1x 2=-33k ,∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=169,∴13+433k =169,解得k =13336. 15. 4或5或6 【解析】如解图,∵S △AOB =12OA ·y B =12×5·y B =152,∴y B =3.∴点B 在直线y =3上,设AB 与直线y =2交于点D ,与直线y =1交于点F ,OB 与直线y =2交于点C ,与直线y =1交于点E ,则△BCD ∽△BOA ,∴CD OA =13,解得CD =53,∵每两个格点之间的距离为1,∴CD 之间最少有1个格点,最多有2个格点;同理△BEF ∽△BOA ,∴EF OA =23,解得EF =103>3,∴EF 之间最少有3个格点,最多有4个格点,则△OAB 内的格点数可能有1+3=4或1+4=5或2+3=5或2+4=6,即△AOB 内的格点数可能是4或5或6个.第15题解图16. ②③ 【解析】逐个结论分析如下:序号 逐个分析 正误① 方程x 2-x -2=0的两个根是x 1=2,x 2=-1,x 1≠2x 2,不符合题意② 倍根方程的两个根是x 1=2,x 2=-n m ,则2=-2n m ,得n =-m ;或者-n m=4,得n =-4m ,将以上两式分别代入4m 2+5mn +n 2,结果均为0,符合题意√③ ∵点(p ,q )在反比例函数y =2x 的图象上,∴q =2p ,将其代入px 2+3x +q =0中,整理得2x 2+3qx +q 2=0,解得x 1=-q ,x 2=-q 2,∴x 1=2x 2,符合题意√④ 根据抛物线经过点M ,N ,且点M ,N 纵坐标相同,则该抛物线的对称轴为直线x =1+t +4-t 2=2.5,设方程ax 2+bx +c =0的两个根为x 1,x 2,根据题意,得x 1=2x 2或2x 1=x 2,则x 1+x 22=2.5,解得x 1=103,x 2=53或x 1=53,x 2=103,不符合题意17. 18 【解析】如解图①,连接AC ,CF ,则AF =32,∴两次变换相当于向右移动3格,向上移动3格,又∵MN =252,252÷32=253(不是整数),∴按A -C -F 的方向连续变换14次后,相当于向右移动了14÷2×3=21格,向上移动了14÷2×3=21格,此时M 位于如图所示的4×4的正方形网格的点G 处,再按解图②所示的方式变换4次即可到达点N 处,∴从该正方形的顶点M 经过“跳马变换”到达与其相对的顶点N ,最少需要“跳马变换”的次数是14+4=18次.第17题解图18. 7,3,10;11 【解析】由定义结合题图,易得格点多边形DEFGHI 内部格点数N 有3个,边界格点数L 有10个,把多边形DEFGHI 分割为△DEF 、△DFI 、正方形FGHI ,易计算其面积分别为1,2,4,∴格点多边形DEFGHI 的面积为1+2+4=7;由题中所给格点多边形的表达式S =aN +bL +c 中a ,b ,c 为常数,想到如果得到a ,b ,c 的值即可解决题中问题,构造一个特殊的多边形,即面积为1的格点正方形,其S ,N ,L 分别为1,0,4,结合S =2,N =0,L =6;S =7,N =3,L =10两个图形可列方程组为⎩⎪⎨⎪⎧1=4b +c 2=6b +c 7=3a +10b +c ,解得⎩⎪⎨⎪⎧a =1b =12c =-1,∴S =N +12L -1,∴当N =5,L =14时,S =5+12×14-1=11. 19.25或32或655 【解析】当AD 为△ABC 的等周线时,如解图①,设CD =x ,则BD =3-x ,根据题意可得4+x =5+3-x ,解得x =2,在Rt △ACD 中,AD =42+22=25;当BD 为△ABC 的等周线时,如解图②,设CD =x ,则AD =4-x ,根据题意可得3+x =5+4-x ,解得x =3,在Rt △BCD 中,BD =32+32=32;当CD 为△ABC 的等周线时,如解图③,设AD =x ,则BD =5-x ,根据题意可得4+x=3+5-x ,解得x =2,则AD =2,BD =3,过点C 作CN ⊥AB 于点N ,则12AC ·BC =12AB ·CN ,可得CN =125,在Rt △BCN 中,BN =32-(125)2=95,∴ND =BD -BN =3-95=65,在Rt △CND 中,CD =(125)2+(65)2=655.综上所述,△ABC 的所有“等周径”长为25或32或655.第19题解图。
2020年中考数学压轴题型专练:数学新定义题型(含答案)
2020中考数学 压轴题型专练:数学新定义题型(含答案)1.我们规定:若m u r =(a ,b ),n r =(c ,d ),则m u r •n r =ac +bd .如m u r =(1,2),n r =(3,5),则m u r •nr=1×3+2×5=13.(1)已知m u r =(2,4),n r =(2,-3),求m u r •n r ;(2)已知m u r =(x -a ,1),n r =(x -a ,x +1),求y =m u r •n r ,问y =m u r •n r的函数图象与一次函数y =x -1的图象是否有交点,请说明理由.解:(1)∵m u r =(2,4),n r=(2,-3), ∴m u r •n r=2×2+4×(-3)=-8;(2)无交点.理由:∵m u r =(x -a ,1),n r=(x -a ,x +1),∴y =m u r •n r=(x -a )2+(x +1)=x 2-(2a -1)x +a 2+1 ∴y =x 2-(2a -1)x +a 2+1联立方程:x 2-(2a -1)x +a 2+1=x -1, 化简得:x 2-2ax +a 2+2=0, ∵△=b 2-4ac =-8<0,∴方程无实数根,两函数图象无交点.2,T (4,2)=1. (1)求a ,b 的值;(2)若T (m ,m +3)=-1,求m 的值.解:(1)(1,1)2,21a bT --==--即a -b =-2, T (4,2)=42182a b+=+,即2a +b =5,解得a =1,b =3;(2) 根据题意得3(3)12(3)m m m m ++=-++,解得127m =-, 经检验,127m =-是方程的解. 3.一个三位正整数M ,其各位数字均不为零且互不相等.若将M 的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M 的“友谊数”,如:168的“友谊数”为“618”;若从M 的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M 的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132. (1)求证:M 与其“友谊数”的差能被15整除;(2)若一个三位正整数N ,其百位数字为2,十位数字为a 、个位数字为b ,且各位数字互不相等(a ≠0,b ≠0),若N 的“团结数”与N 之差为24,求N 的值.解:(1)由题意可得,设M 为100a +10b +c ,则它的友谊数为:100b +10a +c , (100a +10b +c )-(100b +10a +c )=100a +10b +c -100b -10a -c∴M 与其“友谊数”的差能被15整除;(2)由题意可得,N =2×100+10a +b =200+10a +b ,N 的团结数是:10×2+a +10a +2+10×2+b +10×b +2+10a +b + 10b +a =22a +22b +44,∴22a +22b +44-(200+10a +b )=24,已知a、b为整数,且a≠0,b≠0,a≠b,解得84ab⎧⎨⎩==或18ab⎧⎨⎩==,即N是284或218.4.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0.那么我们称这个方程为“凤凰”方程.(1)已知ax2+bx+c=0(a≠0)是“凤凰”方程.且有两个相等的实数根.试求a与c 的关系;(2)已知关于x的方程m(x2+1)-3x2+nx=0是“凤凰”方程,且两个实数根都是整数.求整数m的值.解:(1)由题意得:a+b+c=0,b=-a-c,∵ax2+bx+c=0(a≠0)有两个相等的实数根,∴△=b2-4ac=0,把b=-a-c代入到b2-4ac=0中得:(-a-c)2-4ac=0,(a-c)2=0,∴a=c;(2)m(x2+1)-3x2+nx=0,(m-3)x2+nx+m=0,当x=1时,2m-3+n=0,n=3-2m,解得因为方程两个实数根都是整数,∴整数m为0或2或4或6.5. 设三个内角的度数分别为α、β、γ,如果其中一个角的度数是另一个角度数的3倍,那么“和谐”,并把满足条件的α、β、γ(β≤γ)称为“和谐”的一组值.例如α=30°,β=60°,γ=90°是“和谐”的一组值.(1)当α=48°,写出以α=48°为其中一个内角的“和谐”的一组值;(2)当α≥135°时,符合条件的“和谐”的值是否只有一组,写出你的判断并用含α的代数式表示β、γ;(3)α为何值时,符合条件的“和谐”的值分别有一组、二组、三组值?请你分别写出对应α的值或范围(直接填在下表中).解:(1)α=48°,β=33°,γ=99°或α=48°,β=16°,γ=116°.(3)α≥135°,45°≤α<135°,0°<α<45°.【解法提示】α≥135°时,只有一组;45°≤α<135°时,有二组;0°<α<45°时,有三组.6. 观察下表:我们把某格中字母相加所得到的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题:多项式”为 ;(2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16. ①求x ,y 的值;②在①的条件下,第n 格的“特征多项式”是否有最小值?若有,求出最小值和相应的n值;若没有,请说明理由.解:(1):16x +9y ;25x +16y ;(n +1)2x +n 2y ;【解法提示】第3格的“特征多项式”为:16x +9y ;第4格的“特征多项式”为:25x +16y ;第n 格的“特征多项式”为:(n +1)2x +n 2y ;(2)①∵第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16,∴根据题意可得:4109416x y x y +-+-⎧⎨⎩==,②有最小值,7.在平面直角坐标系xOy中,定义一种变换:使平面内的点P(x,y)对应的像为P′(ax +by,bx-ay),其中a、b为常数.已知点(2,1)经变换后的像为(1,-8).(1)求a,b的值;(2)已知线段OP=2,求经变换后线段O′P′的长度(其中O′、P′分别是O、P经变换后的像,点O为坐标原点).解:(1)根据题意,得2128a bb a+--⎧⎨⎩==,解得23 ab-⎧⎨⎩==;(2)∵OP=2,点P的坐标是(x,y),∴根据勾股定理知,x2+y2=4.∵O′、P′分别是O、P经变换后的像,点O为坐标原点,∴O′(0,0),P′(2x-3y,-3x-2y),8.定义新运算:(a,b)⊗(c,d)=(ac,bd),(a,b)⊕(c,d)=(a+c,b+d),(a,b)*(c,d)=a2+c2-bd .(1)已知(1,2)⊗(p,q)=(2,-4),分别求出p与q的值;(2)在(1)的条件下,求(1,2)⊕(p,q)的结果.解:(1)∵(a,b)⊗(c,d)=(ac,bd),∴(1,2)⊗(p ,q )=(1×p ,2×q ), ∵(1,2)⊗(p ,q )=(2,-4), ∴p =2,2q =-4, ∴q =-2;(2)∵p =2,q =-2,(a ,b )⊕(c ,d )=(a +c ,b +d ), ∴(1,2)⊕(p ,q ) =(1,2)⊕(2,-2) =(3,0).9.已知抛物线21111y a x b x c =++,22222y a x b x c =++,且满足111222(0,1)a b c k k a b c ===≠,则抛物线12,y y 互为“友好抛物线”. (1)若y 2有最大值8,则y 1也有最大值,这样的说法对吗,为什么? (2)结合二次函数的特点和你对“友好抛物线”的理解,写出至少2条结论. 解:(1)不对.当k >0时,y 1有最大值为8k ; 当k <0时,y 1有最小值为8k .(2)①当a 1与a 2符号相反时其开口方向相反,当| a 1|≠| a 2|时,两抛物线开口大小不同; ②y 1与y 2的对称轴相同;③如果1y 与x 轴有两个不同的交点,则y 2与x 轴也有两个不同的交点(写出2条合理结论即可) 10. 在直角坐标系中,如果二次函数y =ax 2+bx +2(a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,2),且AB =OC ,那么我们称这个二次函数为“和合二次函数”.由;(2)“和合二次函数”y =ax 2+bx +2的图象经过点(-6,2).①求a与b的值;②此函数图象可由抛物线y=ax2经过怎样的平移得到?x轴的交点坐标为A(-4,0),B(-2,0),AB=2,∴AB=OC,(2)①y=ax2+bx+2与x轴交点的横坐标为x1,x2,11.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图①,在△ABC中,AB=AC,顶角A的正对记作sad A,这时sad A=BCAB=底边腰,容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题: (1)sad60°= ,sad90°= ;(2)如图②,已知sin A=35,其中∠A为锐角,试求sad A的值.第11题图解(2)设AB =5a ,BC =3a ,则AC =4a ,如解图,在AB 上取AD =AC =4a ,作DE ⊥AC 于点E ,则DE =AD ·sin A =4a ·35,AE =AD ·cos A =4a ·45,CE =4a 165-a =45a ,CD 5==,∴sad A =5CD AC =.第11题解图12.阅读材料,解答下面问题:如果一个三角形能被经过其顶点的一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形,这条线段为这个三角形的特异线.如图①,△ABC 中,∠A =36°,∠ABC =∠C =72°,BD 平分∠ABC ,△ABC 被分成了两个等腰三角形,即△ABD、△BDC.我们称BD为△ABC的特异线,△ABC为特异三角形.(1)如图②,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC的一条特异线.(2)若△ABC是特异三角形,∠A=30°,∠B为钝角,请在图③、图④中尝试画出△ABC 的两条特异线,并标出∠C的度数,(说明:图形为示意图,只需画出图形,标出角度即可).第12题图解:(1)∵DE是线段AC的垂直平分线,∴EA=EC,即△EAC是等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,即△EAB是等腰三角形,∴AE是△ABC是一条特异线;(2)如解图①,BD是特异线时,如果AB=BD=DC,则∠BDA=∠A=30°,∴∠BDC=150°,∴∠C=15°,如解图②,AD=AB,DB=DC,则∠ADB=∠ABD=75°,∴∠C=37.5°.第12题解图13. 定义,如果一个锐角等腰三角形满足一个角度数是另一个角度数的2倍,那么我们称这个三角形为“智慧三角形”.(1)“智慧三角形”顶角的度数为;(2)如图①,正五边形ABCDE中,对角线AC,BE交于点P.求证:△APE是“智慧三角形”;(3)如图②,六边形ABCDEF中,AB∥DE,BC∥EF,CD∥AF,且∠A=108°,∠B=144°,①求∠D的度数;②求证:AB+BC=DE+EF.第13题图(1)解:36°;【解法提示】分两种情况:①底角度数是顶角度数的2倍时,设顶角度数为x,则底角度数为2x,由三角形内角和定理得:x+2x+2x=180°,解得x=36°,即顶角度数为36°;②顶角度数是底角度数的2倍时,设底角度数为x,则顶角度数为2x,由三角形内角和定理得:x+x+2x=180°,解得x=45°,2x=90°(不合题意);综上所述:“智慧三角形”顶角的度数为36°;(2)证明:∵五边形ABCDE是正五边形,∴AB=AE=BC,∠ABC=∠BAE=108°,∴∠ABE=∠AEB=∠ACB=36°,∴∠PAE=108°-36°=72°,∴∠APE=72°,∴∠APE=∠PAE=2∠AEB,∴AE=PE,∴△APE为智慧三角形;(3)①解:延长FA、CB交于点G,延长AB、DC交于点H,延长CD、FE交于M,如解图所示,∵∠BAF=108°,∠ABC=144°,∴∠BAG=72°,∠ABG=36°,∴∠G=72°,同理:∠H=72°,∵AB∥DE,∴∠CDE=180°-72°=108°;②证明:∵∠G=∠BAG,∴BG=AB,同理:EM=DE,∵BC∥EF,CD∥AF,∴四边形GCMF是平行四边形,∴GC=FM,即BG+BC=EM+EF,∴AB+BC=DE+EF.第13题解图14. 定义:如果三角形有一条边上的中线恰好等于这条边的边长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.(1)请根据定义判断下列命题的真假(请在真命题后的横线内打“√”,假命题后的横线内打“╳”)①等腰直角三角形一定不存在匀称中线.②如果直角三角形是匀称三角形,那么匀称中线一定是较长直角边上的中线.(2)已知:如图①,在Rt△ABC中,∠C=90°,AC>BC,若△ABC是“匀称三角形”,求BC:AC:AB的值;(3)拓展应用:如图②,△ABC是⊙O的内接三角形,AB>AC,∠BAC=45°,将△ABC绕点A逆时针旋转45°得△ADE,点B的对应点为D,连接CD 交⊙O于M,连接AM.①请根据题意用实线在图②中补全图形;②若△ADC是“匀称三角形”,求tan∠AMC的值.第14题图解:(1)√,√;(2)如解图①,∵∠C=90°,AC>BC由(1)可知△ABC的匀称中线是AC边上的中线,设D为AC中点,则BD为匀称中线, 设AC=2a,则CD=a,BD=2a,∵∠C=90°,(3)①补全图形如解图②;②如解图③,∵△ABC绕点A逆时针旋转45°得△ADE,∴∠DAE=∠BAC=45°,AD=AB,∴∠DAC=90°,AD>AC,∵△ADC是匀称三角形,过点C作CH⊥AB于H,则∠AHC=∠BHC=90°,第14题解图解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0,根据以上阅读材料所提供的方法,完成下面的解答:根据2m2-5m-1=0和2n2-5n-1=0的特征,∴m、n是方程2x2-5x-1=0的两个不相等的实数根,。
2020年中考数学二轮复习重要考点精析--新定义型题型-含答案
中考数学二轮复习重要考点精析新定义型题型一、中考专题诠释所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力二、解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.三、中考典例剖析考点一:规律题型中的新定义例1 阅读下面的材料,先完成阅读填空,再按要求答题:sin30°=12,cos30°=2,则sin230°+cos230°= ;①sin45°=2,cos45°=2,则sin245°+cos245°= ;②sin60°=,cos60°=12,则sin260°+cos260°= .③…观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A= .④(1)如图,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想;(2)已知:∠A为锐角(cosA>0)且sinA=35,求cosA.思路分析:①②③将特殊角的三角函数值代入计算即可求出其值;④由前面①②③的结论,即可猜想出:对任意锐角A,都有sin2A+cos2A=1;(1)如图,过点B作BD⊥AC于D,则∠ADB=90°.利用锐角三角函数的定义得出sinA=BD AB ,cosA=ADAB ,则sin2A+cos2A=222BD AD AB +,再根据勾股定理得到BD2+AD2=AB2,从而证明sin2A+cos2A=1;(2)利用关系式sin2A+cos2A=1,结合已知条件cosA >0且sinA=35,进行求解.解:∵sin30°=12,cos30°=3, ∴sin230°+cos230°=(12)2+(3)2=14+34=1;①∵sin45°=2,cos45°=2,∴sin245°+cos245°=(22)2+(22)2=12+12=1;②∵sin60°=32,cos60°=12,∴sin260°+cos260°=(3)2+(12)2=34+14=1.③观察上述等式,猜想:对任意锐角A ,都有sin2A+cos2A=1.④(1)如图,过点B 作BD ⊥AC 于D ,则∠ADB=90°.∵sinA=BD AB ,cosA=ADAB ,∴sin2A+cos2A=(BD AB )2+(ADAB )2=222BD AD AB +,∵∠ADB=90°,∴BD2+AD2=AB2,∴sin2A+cos2A=1.(2)∵sinA=35,sin2A+cos2A=1,∠A为锐角,∴45 =.点评:本题考查了同角三角函数的关系,勾股定理,锐角三角函数的定义,比较简单.对应训练1.我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:23 AO AD=;(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足23AOAD=,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,试探究BCHGAGHSSV四边形的最大值.(1)证明:如答图1所示,连接CO并延长,交AB于点E.∵点O 是△ABC 的重心,∴CE 是中线,点E 是AB 的中点.∴DE 是中位线,∴DE ∥AC ,且DE=12AC . ∵DE∥AC,∴△AOC ∽△DOE ,∴AO AC OD DE =2, ∵AD=AO+OD ,∴AO AD =23.(2)答:点O 是△ABC 的重心.证明:如答图2,作△ABC 的中线CE ,与AD 交于点Q ,则点Q 为△ABC 的重心.由(1)可知,AO AD =23,而AO AD =23,∴点Q 与点O 重合(是同一个点),。
2020年九年级数学中考总复习新定义专题训练测试卷含参考答案及试题解析
2020年九年级数学中考总复习新定义专题训练测试卷一.选择题(共20小题)1.对于有理数x,我们规定{x}表示不小于x的最小整数,如{2.2}=3,{2}=2,{﹣2.5}=﹣2,若{}=3,则x的取值可以是()A.10B.20C.30D.402.定义:在平面直角坐标系中,圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=﹣x+12与x轴、y轴分别交于A,B两点,点P在x轴上,⊙P与l相切,当P在线段OA(点P与点O,A不重台)上运动时,使得⊙P成为整圆的点P个数是()A.3个B.5个C.7个D.9个二.填空题(共20小题)3.定义:在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒数点”.直线y=﹣2x+1上有两点A,B,它们的“倒数点”点A′,B′均在反比例函数的图象上.若AB=,则k=.4.在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为等值点.例如点(1,1).(﹣2,﹣2).(,),…,都是等值点.已知二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个等值点(,),且当m≤x≤3时,函数y=ax2+4x+c﹣(a ≠0)的最小值为﹣9,最大值为﹣1,则m的取值范围是.三.解答题(共60分)5.(10分)对于平面直角坐标系xOy中的点P,Q,给出如下定义:若P,Q为某个三角形的顶点,且边PQ上的高h,满足h=PQ,则称该三角形为点P,Q的“生成三角形”.(1)已知点A(4,0);①若以线段OA为底的某等腰三角形恰好是点O,A的“生成三角形”,求该三角形的腰长;②若Rt△ABC是点A,B的“生成三角形”,且点B在x轴上,点C在直线y=2x﹣5上,则点B的坐标为;(2)⊙T的圆心为点T(2,0),半径为2,点M的坐标为(2,6),N为直线y=x+4上一点,若存在Rt△MND,是点M,N的“生成三角形”,且边ND与⊙T有公共点,直接写出点N的横坐标x N的取值范围.6.(10分)定义:把函数y=(m>0)的图象叫做正值双曲线.把函数y=(m<0)的图象叫做负值双曲线.(1)请写出正值双曲线的两条性质;(2)如图,直线l经过点A(﹣1,0),与负值双曲线y=(m<0)交于点B(﹣2,﹣1).P是射线AB上的一点,过点P作x轴的平行线分别交该负值双曲线于M,N两点(点M在点N的左边).①求直线l的解析式和m的值;②是否存在点P,使得S△AMN=4S△APM?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.7.(10分)【阅读理解】设点P在正方形ABCD内部,当点P到正方形的一条边的两个端点距离相等时,称点P为该边的“等距点”.举例:如图,正方形ABCD中,若P A=PD,则称点P为边AD的“等距点”.【解题运用】已知,点P在边长为a的正方形ABCD内部.(1)设点P是边AD的“等距点”,求证:点P也是边BC的“等距点”;(2)若点P是边BC的“等距点”,连接P A,PB,求△P AB周长的最小值(用含a的式子表示);(3)若点P是边CD的“等距点”,连接PB,PC,PD,当PB=a,且sin∠ADP•sin∠BPC=cos2θ时,求锐角θ的度数.8.(15分)定义:在平面直角坐标系xOy中,对于点P和图形M,如果线段OP与图形M 有公共点时,就称点P为关于图形M的“亲近点”.已知平面直角坐标系xOy中,点A(1,),B(5,),连接AB.(1)在P1(1,2),P2(3,2),P3(5,2)这三个点中,关于线段AB的“亲近点”是;(2)若线段CD上的所有点都是关于线段AB的“亲近点”,点C(t,)、D (t+6,),求实数t的取值范围;(3)若⊙A与y轴相切,直线l:y=过点B,点E是直线l上的动点,⊙E半径为2,当⊙E上所有点都是关于⊙A的“亲近点”时,直接写出点E横坐标n的取值范围.9.(15分)平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C的“最佳三点矩形”.如图2,已知M(4,1),N(﹣2,3),点P(m,n).(1)①若m=1,n=4,则点M,N,P的“最佳三点矩形”的周长为,面积为;②若m=1,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=﹣2x+4上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,且当点M,N,P的“最佳三点矩形”面积为12时,﹣2≤m≤﹣1或1≤m≤3,直接写出抛物线的解析式.2020年九年级数学中考总复习新定义专题训练测试卷参考答案与试题解析一.选择题(共2小题)1.对于有理数x,我们规定{x}表示不小于x的最小整数,如{2.2}=3,{2}=2,{﹣2.5}=﹣2,若{}=3,则x的取值可以是()A.10B.20C.30D.40解:有题意得:,解不等式①得:x>16,解不等式②得:x≤26,不等式组的解集为16<x≤26,20符合x的取值范围.故选:B.2.定义:在平面直角坐标系中,圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=﹣x+12与x轴、y轴分别交于A,B两点,点P在x轴上,⊙P与l相切,当P在线段OA(点P与点O,A不重台)上运动时,使得⊙P成为整圆的点P个数是()A.3个B.5个C.7个D.9个解:∵直线l:y=﹣x+12与x轴、y轴分别交于A、B,∴A(16,0),B(0,12),∴OB=12,OA=16,∴AB==20,∴sin∠BAO==,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=P A,设P(x,0),∴P A=16﹣x,∴⊙P的半径PM=P A=﹣x,∵x为整数,PM为整数,∴x可以取1,6,11,3个数,∴使得⊙P成为整圆的点P个数是3.故选:A.二.填空题(共2小题)3.定义:在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒数点”.直线y=﹣2x+1上有两点A,B,它们的“倒数点”点A′,B′均在反比例函数的图象上.若AB=,则k=﹣.解:如图过点A作AC⊥x轴,过B点作CB⊥y轴,BC交AC于点C∴∠ACB=90°∵直线y=﹣2x+1交x轴,y轴于E点,D点∴E(,0),D(0,1)∴tan∠ODE=∵AC∥OD∴∠CAD=∠ODE∴tan∠CAD=且AB==∴BC=1,AC=2设A(a,﹣2a+1),∴若B点在A点下方,则B(a+1,﹣2a﹣1)若B点在A点上方,则B(a﹣1,﹣2a+3)∵它们的“倒数点”点A′,B′均在反比例函数的图象上∴a=﹣或a=∴A1(,),或A2(,﹣)∴A1'(﹣4,),A2'(,﹣2)∴k=﹣4.在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为等值点.例如点(1,1).(﹣2,﹣2).(,),…,都是等值点.已知二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个等值点(,),且当m≤x≤3时,函数y=ax2+4x+c﹣(a ≠0)的最小值为﹣9,最大值为﹣1,则m的取值范围是﹣1≤m≤1.解:令ax2+4x+c=x,即ax2+3x+c=0,由题意,△=32﹣4ac=0,即4ac=9,又方程的根为=,解得a=﹣2,c=﹣.故函数y=ax2+4x+c﹣=﹣2x2+4x﹣3=﹣2(x﹣1)2﹣1,如图,该函数图象顶点为(1,﹣1),由于函数图象在对称轴x=1左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小,且当m≤x≤3时,函数y=﹣2x2+4x﹣3的最小值为﹣9,最大值为﹣1,∴﹣1≤m≤1,故答案为:﹣1≤m≤1.三.解答题(共5小题)5.对于平面直角坐标系xOy中的点P,Q,给出如下定义:若P,Q为某个三角形的顶点,且边PQ上的高h,满足h=PQ,则称该三角形为点P,Q的“生成三角形”.(1)已知点A(4,0);①若以线段OA为底的某等腰三角形恰好是点O,A的“生成三角形”,求该三角形的腰长;②若Rt△ABC是点A,B的“生成三角形”,且点B在x轴上,点C在直线y=2x﹣5上,则点B的坐标为(1,0),(3,0)或(7,0).;(2)⊙T的圆心为点T(2,0),半径为2,点M的坐标为(2,6),N为直线y=x+4上一点,若存在Rt△MND,是点M,N的“生成三角形”,且边ND与⊙T有公共点,直接写出点N的横坐标x N的取值范围.解:(1)①如图,不妨设满足条件的三角形为等腰△OAR,则OR=AR.过点R作RH ⊥OA于点H,∴OH=HA,∵以线段OA为底的等腰△OAR恰好是点O,A的“生成三角形”,∴RH=OA=4.∴OR=,答:该三角形的腰长为.(2)②如图所示:若A为直角顶点时,点B的坐标为(1,0)或(7,0);若B为直角顶点时,点B的坐标为(1,0)或(3,0)综上,点B的坐标为(1,0),(3,0)或(7,0).(2)由图可得:若N为直角顶点:﹣1﹣≤x N≤0;若M为直角顶点:﹣6≤x N≤﹣2;综上,﹣6≤x N≤0.答:点N的横坐标x N的取值范围为:﹣6≤x N≤0.6.定义:把函数y=(m>0)的图象叫做正值双曲线.把函数y=(m<0)的图象叫做负值双曲线.(1)请写出正值双曲线的两条性质;(2)如图,直线l经过点A(﹣1,0),与负值双曲线y=(m<0)交于点B(﹣2,﹣1).P是射线AB上的一点,过点P作x轴的平行线分别交该负值双曲线于M,N两点(点M在点N的左边).①求直线l的解析式和m的值;②是否存在点P,使得S△AMN=4S△APM?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.解:(1)①当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小;②无论x取何值,y>0;③图象与坐标轴没有交点;④图象分布在第一、二象限,等等;(2)①设直线l的解析式为y=kx+b.∵直线l过点A(﹣1,0)和点B(﹣2,﹣1),∴解得,∴直线l的解析式为y=x+1.∵双曲线y=(m<0)交于点B(﹣2,﹣1),∴m=2×(﹣1)=﹣2,即:m的值为﹣2;②若存在,设点P的坐标为(p,p+1),则点M(,p+1),点N(﹣,p+1).∴S△AMN=|﹣﹣|×|p+1|=2,若点P在线段AB上,则S△APM=(p﹣)×[﹣(p+1)]=(﹣P2﹣P+2).∵S△AMN=4S△APM,∴2=4×(﹣P2﹣P+2),即P2+P﹣1=0.解得p1=,p2=(舍去),若点P与点B重合,△APM不存在;若点P在线段AB的延长线上,则S△APM=(﹣p)×[﹣(p+1)]=(P2+P﹣2).∵S△AMN=4S△APM,∴2=4×(P2+P﹣2),即P2+P﹣3=0.解得p3=,p4=(舍去).故存在点P(,)和(,),使得S△AMN=4S△APM.7.【阅读理解】设点P在正方形ABCD内部,当点P到正方形的一条边的两个端点距离相等时,称点P为该边的“等距点”.举例:如图,正方形ABCD中,若P A=PD,则称点P为边AD的“等距点”.【解题运用】已知,点P在边长为a的正方形ABCD内部.(1)设点P是边AD的“等距点”,求证:点P也是边BC的“等距点”;(2)若点P是边BC的“等距点”,连接P A,PB,求△P AB周长的最小值(用含a的式子表示);(3)若点P是边CD的“等距点”,连接PB,PC,PD,当PB=a,且sin∠ADP•sin∠BPC=cos2θ时,求锐角θ的度数.(1)证明:如图1中,连接PB,PC.∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠CDA=90°,∵P A=PD,∴∠P AD=∠PDA,∴∠BAP=∠CDP,∴△BAP≌△CDP(SAS),∴PB=PC,∴点P也是边BC的“等距点”;(2)如图2中,∵点P是边BC的“等距点”,∴点P在线段BC的垂直平分线上,连接BD交MN于点P,连接P A,此时P A+PB的值最小,即△P AB的周长最小,周长的最小值=AB+P A+PB=AB+PD+PB=AB+BD=a+a.(3)如图3中,∵点P是边CD的“等距点”,∴由(1)可知:点P也是边AB点,∴P A=PB,∵PB=AB=a,∴P A=AB=PB,∴△P AB是等边三角形,∴∠P AB=∠PBA=60°,∵∠DAB=∠CBA=90°,∴∠DAP=∠CBP=30°,∵AD=AP,BP=BC,∴∠ADP=∠APD=∠BPC=∠BCP=75°,∵sin∠ADP•sin∠BPC=cos2θ,∴cos2θ=sin75°•sin75°=cos215°,∴锐角θ=15°.8.定义:在平面直角坐标系xOy中,对于点P和图形M,如果线段OP与图形M有公共点时,就称点P为关于图形M的“亲近点”.已知平面直角坐标系xOy中,点A(1,),B(5,),连接AB.(1)在P1(1,2),P2(3,2),P3(5,2)这三个点中,关于线段AB的“亲近点”是P2和P3;(2)若线段CD上的所有点都是关于线段AB的“亲近点”,点C(t,)、D (t+6,),求实数t的取值范围;(3)若⊙A与y轴相切,直线l:y=过点B,点E是直线l上的动点,⊙E半径为2,当⊙E上所有点都是关于⊙A的“亲近点”时,直接写出点E横坐标n的取值范围.解:(1)如图1:由“亲近点”的定义可以判断OP2与OP3与AB线段有公共点,∴线段AB的“亲近点”是P2与P3,故答案为P2和P3;(2)线段CD上的所有点都是关于线段AB的“亲近点”,∵t+6>t,∴O、A、C在一条直线上,O、B、D在一条直线上,此时线段CD上的所有点都是关于线段AB的“亲近点”,∴=,∴t=3,∴,∴t=,∴≤t≤3;(3)y=过点B,∴b=6,∴y=﹣x+6,如图2:过原点的直线与⊙A相切于点F,连接OA,过点A作AG⊥x轴,∵OA=2,AF=1,∴∠AOF=30°,∵AG=,OG=1,∴∠AOG=60°,∴∠FOG=30°,当⊙E与⊙A的切线相切时,⊙E上所有点都是关于⊙A的“亲近点”,∴OP⊥PE,∵Q(6,0),∴PQ=3,∵⊙E的半径PE=2,∴EQ=5,∴E点横坐标n=6﹣=;如图3:当⊙E与y轴相切时,⊙E上所有点都是关于⊙A的“亲近点”,∴E点横坐标n=2,∴2≤n≤;9.平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C的“最佳三点矩形”.如图2,已知M(4,1),N(﹣2,3),点P(m,n).(1)①若m=1,n=4,则点M,N,P的“最佳三点矩形”的周长为18,面积为18;②若m=1,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=﹣2x+4上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,且当点M,N,P的“最佳三点矩形”面积为12时,﹣2≤m≤﹣1或1≤m≤3,直接写出抛物线的解析式.解:(1)①如图1,画出点M,N,P的“最佳三点矩形”,可知矩形的周长为6+6+3+3=18,面积为3×6=18;故答案为:18,18.②∵M(4,1),N(﹣2,3),∴|x M﹣x N|=6,|y M﹣y N|=2.又∵m=1,点M,N,P的“最佳三点矩形”的面积为24.∴此矩形的邻边长分别为6,4.∴n=﹣1或5.(2)如图2,①易得点M,N,P的“最佳三点矩形”面积的最小值为12;分别将y=3,y=1代入y=﹣2x+4,可得x分别为,;结合图象可知:≤m≤;②当点M,N,P的“最佳三点矩形”为正方形时,边长为6,分别将y=7,y=﹣3代入y=﹣2x+4,可得x分别为﹣,;∴点P的坐标为(﹣,7)或(,﹣3);(3)如图3,设抛物线的解析式为y=ax2+bx+c,经过点(﹣1,1),(1,1),(3,3),∴,,∴,同理抛物线经过点(﹣1,3),(1,3),(3,1),可求得抛物线的解析式为y=﹣,∴抛物线的解析式y=x2+或y=﹣x2+.。
备战2020中考数学一轮专项训练:新定义阅读理解题(含解析)
备战2020中考数学一轮专项训练:新定义阅读理解题前言:“一学就会,一考就废?”,正是因为考试后缺少了这个环节从小学到初中,学生们经历了无数次考试。
通过考试可以检测同学们对知识的理解、掌握情况,提高应试能力。
但对待考试,部分同学只关注自己的分数,而对试卷的分析和总结缺乏重视。
结果常常出现一些题在考试中屡次出现,但却一错再错的情况。
这样,学生们无法从考试中获益,考试也就失去了它的重要意义。
做好试卷分析和总结是十分有必要的。
那么,怎样做好试卷分析呢?我认为,应从下面两点做起:一.失分的原因主要有如下四方面:(1)考试心理:心理紧张,马虎大意;(2)知识结构:知识面窄,基础不扎实;(3)自身能力:审题不清,读不懂题意;(4)解题基本功:答题规范性差。
只有查出、找准原因,才能对症下药,从弱项方面加强训练,以提高成绩。
二.“扭转乾坤”的方法做题的过程中对每一道题要试图问如下几个问题?(1)怎样做出来的?——想解题方法;(2)为什么这样做?——思考解题原理;(3)怎样想到这种方法?——想解题的基本思路;(4)题目体现什么样的思想?——揭示本质,挖掘规律;(5)是否可将题目变化?——一题多变,拓宽思路;(6)题目是否有创新解法?——创新、求异思维。
转变,让我们从一轮复习开始。
按照上面两点认真完成后面练习题。
希望每一位同学经过一轮复习后,能够扭转“一考就废”的局面,最后决胜中考。
1.阅读下列材料,解答下列问题:材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是11的倍数,我们称满足此特征的数叫“网红数”.如:65362,362-65=297=11×27,称65362是“网红数”. 材料二:对任意的自然数p 均可分解为p =100x +10y +z (x ≥0,0≤y ≤9,0≤z ≤9且想,x ,y ,z 均为整数),如:5278=52×100+10×7+8,规定:G (p )= z x x z x x -++-+112)( .(1)求证:任意两个“网红数”之和一定能被11整除;(2)已知:s =300+10b +a ,t =1000b +100a +1142(1≤a ≤7,0≤b ≤5,且a 、b 均为整数),当s +t 为“网红数”时,求G (t )的最大值.(1)证明:设两个“网红数”为mn ,ab (n ,b 分别为mn ,ab 末三位表示的数,m ,a 分别为mn ,ab 末三位之前的数字表示的数), 则n -m =11k 1,b -a =11k 2,∴mn +ab =1001m +1001a +11(k 1+k 2)=11(91m +91a +k 1+k 2). 又∵k 1,k 2,m ,n 均为整数, ∴91m +91a +k 1+k 2为整数,∴任意两个“网红数”之和一定能被11整除.(2)解:s =3×100+10b +a ,t =1000(b +1)+100(a +1)+4×10+2, S +t =1000(b +1)+100(a +4)+10(b +4)+a +2,①当1≤a ≤5时,s +t =))()()((2a 4b 4a 1b ++++, 则))()((2a 4b 4a +++-(b +1)能被11整除, ∴101a +9b +441=11×9a +2a +11b -2b +40×11+1能被11整除, ∴2a -2b +1能被11整除. ∵1≤a ≤5,0≤b ≤5, ∴-7≤2a -2b +1≤11, ∴2a -2b +1=0或11,∴a =5,b =0,∴t =1642,G (1642)=17141,②当6≤a ≤7时,s +t =))()()((2a 4b 6a 2b ++-+, 则))()((2a 4b 6a ++--(b +2)能被11整除, ∴101a +9b -560=11×9a +2a +11b -2b -51×11+1能被11整除, ∴2a -2b +1能被11整除. ∵6≤a ≤7,0≤b ≤5, ∴3≤2a -2b +1≤15, ∴2a -2b +1=11,∴⎩⎨⎧==1b 6a ,⎩⎨⎧==2b 7a ,∴t =2742或3842,G (2742)=28251,G (3842)=39361, 综上,G (t )的最大值为39361.2.若将自然数中能被3整除的数,在数轴上的对应点称为“3倍点”,取任意的一个“3倍点”P ,到点P 距离为1的点所对应的数分别记为a ,b .定义:若数K =a 2+b 2-ab ,则称数K 为“尼尔数”.例如:若P 所表示的数为3,则a =2,b =4,那么K =22+42-2×4=12;若P 所表示的数为12,则a =11,b =13,那么K =132+112-13×11=147,所以12,147是“尼尔数”.(1)请直接判断6和39是不是“尼尔数”,并且证明所有“尼尔数”一定被9除余3; (2)已知两个“尼尔数”的差是189,求这两个“尼尔数”. 解:(1)6不是尼尔数,39是尼尔数.证明:设P 表示的数为3m ,则a =(3m -1),b =(3m +1), K =(3m -1)2+(3m +1)2-(3m -1)(3m +1)=9m 2+3, ∵m 为整数,∴m 2为整数, ∴9m 2+3被9除余3;(2)设这两个尼尔数分别是K 1,K 2,将两个“尼尔数”所对应的“3倍点数”P 1,P 2分别记为3m 1,3m 2. ∴K 1-K 2=9m 12-9m 22=189, ∴m 12-m 22=21,∵m 1,m 2都是整数, ∴m 1+m 2=7,m 1-m 2=3,∴⎩⎨⎧==2m 5m 21, ∴⎩⎨⎧==39k 228k 21.3.若在一个两位正整数 N 的个位数字与十位数字之间添上数字 2 ,组成一个新的三位数,我们称这个三位数为 N 的“诚勤数”,如 34 的“诚勤数”为 324 ;若将一个两位正整数 M 加 2 后得到一个新数,我们称这个新数为 M 的“立达数”,如 34 的“立达数”为 36.(1)求证:对任意一个两位正整数 A ,其“诚勤数”与“立达数”之差能被 6 整除;(2)若一个两位正整数 B 的“立达数”的各位数字之和是 B 的各位数字之和的一半,求 B 的值. 解:(1)设A 的十位数字为a ,个位数字为b ,则A =10a +b ,它的“诚勤数”为100a +20+b ,它的“立达数”为10a +b +2, ∴100a +20+b -(10a +b +2)=90a +18=6(15a +3), ∵a 为整数, ∴15a +3是整数,则“诚勤数”与“立达数”之差能被6整除;(2)设B =10m +n ,1≤m ≤9,0≤n ≤9(B 加上2后各数字之和变小,说明个位发生了进位), ∴B +2=10m +n +2,则B 的“立达数”为10(m +1)+(n +2-10),∴m +1+n +2﹣10=21(m +n ),整理,得m +n =14, ∵1≤m ≤9,0≤n ≤9,∴⎩⎨⎧==6n 8m 、⎩⎨⎧==8n 6m 、⎩⎨⎧==5n 9m 、⎩⎨⎧==9n 5m 、⎩⎨⎧==7n 7m , 经检验:77、86和95不符合题意,舍去, ∴所求两位数为68或59.4.一个正偶数k 去掉个位数字得到一个新数,如果原数的个位数字的2倍与新数之和与19的商是一个整数,则称正偶数k 为“魅力数”,把这个商叫做k 的魅力系数,记这个商为F (k ).如:722去掉个位数字是72,2的2倍与72的和是76,76÷19=4,4是整数,所以722是“魅力数”,722的魅力系数是4,记(722)4F =. (1)计算:(304)(2052)F F +;(2)若m 、n 都是“魅力数”,其中3030101m a =+,40010n b c =++(0≤a ≤9,0≤b ≤9,0≤c ≤9,a 、b 、c 是整数),规定:(,)a cG m n b -=.当()()24F m F n +=时,求(,)G m n 的值.解:(1)∵30+2×4=38,38÷19=2,∴F (304)=2. ∵205+2×2=209,209÷19=11, ∴F (2025)=11. ∴F (304)+F (2052)=13;(2)∵m =3030+101a =3000+100a +30+a ,∴F (m )=19a 23a 10300+++=19a 12303+=15+19a1218+.∵m 是“魅力数”,∴19a1218+是整数.∵0≤a ≤9,且a 是偶数,∴a =0,2,4,6,8.当a =0时,19a 1218+=1918不符合题意.当a =2时,19a 1218+=1942不符合题意. 当a =4时,19a 1218+=1966不符合题意. 当a =6时,19a 1218+=1990不符合题意. 当a =8时,19a 1218+=19114=6符合题意.∴a =8,此时m =3838,F (m )=F (3838)=6+15=21. 又∵F (m )+F (n )=24, ∴F (n )=3. ∵n =400+10b +c ,∴F (n )=19c2b 40++=3,∴b +2c =17,∵n 是“魅力数”,∴c 是偶数, 又∵0≤c ≤9,∴c =0,2,4,6,8. 当c =0时,b =17不符合题意. 当c =2时,b =13不符合题意.当c =4时,b =9符合题意.此时,G (m ,n )=b c a -=948-=94. 当c =6时,b =5符合题意.此时,G (m ,n )=b c a -=568-=52. 当c =8时,b =1符合题意.此时,G (m ,n )=b c a -=188-=0.∵94>52>0,∴G (m ,n )的最大值是94.5.已知一个正整数,把其个位数字去掉,再将余下的数加上个位数字的4倍,如果和是13的倍数,则称原数为“超越数”.如果数字和太大不能直接观察出来,就重复上述过程.如:1131:113+4×1=117,117÷13=9,所以1131是“超越数”;又如:3292:329+4×2=337,33+4×7=61,因为61不能被13整除,所以3292不是“超越数”.(1)请判断42356是否为“超越数” (填“是”或“否”),若ab +4c =13k (k 为整数),化简abc 除以13的商(用含字母k 的代数式表示).(2)一个四位正整数N =abcd ,规定F (N )=|a +d 2﹣bc |,例如:F (4953)=|4+32﹣5×9|=32,若该四位正整数既能被13整除,个位数字是5,且a =c ,其中1≤a ≤4.求出所有满足条件的四位正整数N 中F (N )的最小值. 解:(1)否,4235+4×6=4259,425+4×9=461,46+4×1=50,因为50不能被13整除,所以42356不是超越数. ∵ab +4c =13k ,∴10a +b +4c =13k , ∴10a +b =13k ﹣4c ,∵abc =100a +10b +c =10(10a +b )+c =130k ﹣40c +c =130k ﹣39c =13(10k ﹣3c ),∴13abc=10k ﹣3c ;(2)由题意得d =5,a =c , ∴N =1000a +100b +10c +5, ∵N 能被13整除,∴设100a +10b +c +4×5=13k ,∴101a +10b +20=13k ,且a 为正整数,b ,k 为非负整数, 1≤a ≤4,∴a =2,b =9,k =24 或a =3,b =8,k =31,或a =4,b =7,k =38, ∴F (N )=|2+25﹣18|=9,或F (N )=|3+25﹣24|=4,或 F (N )=|4+25﹣28|=1, ∴F (N )最小值为1.6.一个两位正整数,如果满足各数位上的数字互不相同且均不为,那么称 为“启航数”,将的两个数位上的数字对调得到一个新数.把放在的后面组成第一个四位数,把放在的后面组成第二个四位数,我们把第一个四位数减去第二个四位数后再除以11所得的商记为,例如:时,,.(1)计算 若为“启航数”,是一个完全平方数,求 的值; (2)为“启航数”,其中(1≤b ≤a ≤9,1≤x 、y ≤5,且为整数)规定:,若能被整除,且,求的最大值. 解:(1)F (42)=162,设m =pq (1≤p ≤q ≤9,且p 、q 为整数),则()=81()11pqqp qppqF m p q -=-,∵()F m 完全平方数,∴p q -为完全平方数,n n 0n n 'n 'n n n 'n ()F n 23n =32n '=23323223(23)8111F -==-(42)_____;F =m ()F m ()F m s t 、10,10s a b t x y =+=+y x b a ,,,(,)s tK s t t-=()F s 7()()81162F s F t y +-=(,)K s t∵1≤p ≤q ≤9,且p 、q 为整数, ∴0<p -q ≤8,∴14p q -=或, ∴F (m )=81或324;(2)由题意知:s =ab ,t =xy (1≤b ≤a ≤9,1≤x 、y ≤5,且a b x y 、、、为整数), ∴()81()F s a b =-,()81()F t x y =-,∵()F s 能被7整除,∴81()7a b -为整数,又∵1≤b ≤a ≤9,∴0<a -b ≤8,∴7a b -=,∴9,28,1a b a b ====或, ∴s =92或81.又∵()()81162F s F t y +-=, ∴81(a -b )+81(x -y )-81y =162, ∴2y =x +5,∵1≤x ,y ≤5且x y ≠, ∴1,33,4x y x y ====或, ∴t =13 或34,∴79(92,13)13K =,K (92,34)=3458,68(81,13)13K =,47(81,34)34K =K max =1379.7.若一个三位数,其个位数加上十位数等于百位数,可表示为t =100(x +y )+10y +x (x +y ≤9),则称实数t 为“加成数”,将t 的百位作为个位,个位作为十位,十位作为百位,组成一个新的三位数h .规定q =t ﹣h ,f (m )=9q,例如:321是一个“加成数”,将其百位作为个位,个位作为十位,十位作为百位,得到的数h =213,∴q =321﹣213=108,f (m )=9108=12.(1)当f (m )最小时,求此时对应的“加成数”的值;(2)若f (m )是24的倍数,则称f (m )是“节气数”,猜想这样的“节气数”有多少个,并求出所有的“节气数”.解:(1)∵f (m )=9q,∴当f (m )最小时,q 最小,∵t =100(x +y )+10y +x=101x+110y ,h =100y +10x +x +y =101y +11x ,∴q =t ﹣h =101x+110y ﹣(101y +11x )=9y +90x ,且1≤y ≤9,0≤x ≤9,x 、y 为正整数, 当x =0,y =1时,q =9,此时对应的“加成数”是110; (2)∵f (m )是24的倍数, 设f (m )=24n (n 为正整数),则24n =9q,q =216n ,由(1)知:q =9y +90x =9(y +10x ), ∴216n =9(y +10x ), 24n =y +10x ,(x +y <10)①当n =1时,即y +10x =24,解得:x =2,y =4,则这样的“节气数”是24; ②当n =2时,即y +10x =48,解得:x =4,y =8,x +y =12>10,不符合题意; ③当n =3时,即y +10x =72,解得:x =7,y =2,则这样的“节气数”是72; ④当n =4时,即y +10x =96,解得:x =9,y =6,x +y =15>10,不符合题意; ⑤当n =5时,即y +10x =120,没有符合条件的整数解, 综上,这样的“节气数”有2个,分别为24,72.8.在任意n (n >1且为整数)位正整数K 的首位后添加6得到的新数叫做K 的“顺数”,在K 的末位前添加6得到的新数叫做K 的“逆数”.若K 的“顺数”与“逆数”之差能被17整除,称K 是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568 (填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N ,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N 的值. (2)证明:任意三位或三位以上的正整数K 的“顺数”与“逆数”之差一定能被30整除. (1)解:是;【解法提示】∵361568﹣315668=45900,且45900÷17=2700,∴根据最佳拍档数的定义可知,31568是“最佳拍档数”;故答案为:是设“最佳拍档数”N的十位数字为x,百位数字为y,则个位数字为8﹣x,y≥x,N=5000+100y+10x+8﹣x=100y+9x+5008,∵N是四位“最佳拍档数”,∴50000+6000+100y+10x+8﹣x﹣[50000+1000y+100x+60+8﹣x],=6000+100y+9x+8﹣1000y﹣100x﹣68+x,=5940﹣90x﹣900y,=90(66﹣x﹣10y),∴66﹣x﹣10y能被17整除,①x=2,y=3时,66﹣x﹣10y=34,能被17整除,此时N为5326;②x=3,y=8时,66﹣x﹣10y=﹣17,能被17整除,此时N为5835;③x=5,y=1时,66﹣x﹣10y=51,能被17整除,但x>y,不符合题意;④x=6,y=6时,66﹣x﹣10y=0,能被17整除,此时N为5662;⑤x=8,y=3时,66﹣x﹣10y=28,不能被17整除,但x>y,不符合题意;⑥当x=9,y=4时,66﹣x﹣10y=17,能被17整除,但x>y,不符合题意;综上,所有符合条件的N的值为5326,5835,5662;(2)证明:设三位正整数K的个位数字为x,十位数字为y,百位数字为z,它的“顺数”:1000z+600+10y+x,它的“逆数”:1000z+100y+60+x,∴(1000z+600+10y+x)﹣(1000z+100y+60+x)=540﹣90y=90(6﹣y),∴任意三位正整数K的“顺数”与“逆数”之差一定能被30整除,设四位正整数K的个位数字为x,十位数字为y,百位数字为z,千位数字为a,∴(10000a+6000+100z+10y+x)﹣(10000a+1000z+100y+60+x)=5940﹣900z﹣90y=90(66﹣10z﹣y),∴任意四位正整数K的“顺数”与“逆数”之差一定能被30整除,同理得:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.9.若实数a 可以表示成两个连续自然数的倒数差,即a =n 1-1n +1,那么我们称a 为第n 个“1阶倒差数”,例如21=1-21,∴21是第1个“1阶倒差数”,61=21-31,∴16是第2个“1阶倒差数”.同理,若b =n 1-2n 1+,那么,我们称b 为第n 个“2阶倒差数”.(1)判断132是否为“1阶倒差数”;直接写出第5个“2阶倒差数”;(2)若c ,d 均是由两个连续奇数组成的“2阶倒差数”,且d 1-c 1=22,求c ,d 的值.解:(1)132不是“1阶倒差数”,235;【解法提示】∵32=1×32=2×16=4×8,不是两个连续自然数的积, ∴321不是“1阶倒差数”.第5个“2阶倒差数”为51-71=352.(2)设m 是由两个连续奇数2x -1,2x +1组成的“2阶倒差数”,则m =1x 21--1x 21+=))(()(1x 21x 21x 21x 2-+--+=1x 422-.∵c ,d 是两个连续奇数组成的“2阶倒差数”,∴可设c =1y 422-,d =1z 422-, ∵d 1-c 1=22,∴4z 2-12-4y 2-12=22,即z 2-y 2=11,∴(z +y )(z -y )=11>0,∴z >y .∵11=1×11,∴⎩⎨⎧=-=+1y z 11y z ,解得⎩⎨⎧==6z 5y ,∴c =15422-⨯=299,d =16422-⨯=2143.10.任意一个正整数n ,都可以表示为:n =a ×b ×c (a ≤b ≤c ,a ,b ,c 均为正整数),在n 的所有表示结果中,如果|2b ﹣(a +c )|最小,我们就称a ×b ×c 是n 的“阶梯三分法”,并规定:F (n )=b ca +,例如:6=1×1×6=1×2×3,因为|2×1﹣(1+6)|=5,|2×2﹣(1+3)|=0,5>0,所以1×2×3是6的阶梯三分法,即F (6)=231+=2.(1)如果一个正整数p 是另一个正整数q 的立方,那么称正整数p 是立方数,求证:对于任意一个立方数m ,总有F (m )=2;(2)t 是一个两位正整数,t =10x +y (1≤x ≤9,0≤y ≤9,且x ≥y ,x +y ≤10,x 和y 均为整数),t 的23倍加上各个数位上的数字之和,结果能被13整除,我们就称这个数t 为“满意数”,求所有“满意数”中F (t )的最小值.解:(1)∵m 为立方数,∴设m =q ×q ×q ,∴|2q ﹣(q +q )|=0,∴q ×q ×q 是m 的阶梯三分法,∴F (m )=q qq +=2; (2)由已知,[23(10x +y )+x +y ]能被13整除,整理得:231x +24y 能被13整除,∵231x +24y =13(18x +2y )﹣(3x +2y ),∴3x +2y 能被13整除,∵1≤x ≤9,0≤y ≤9,∴3≤3x +2y ≤45,∵x ,y 均为整数,∴3x +2y 的值可能为13、26或39,①当3x +2y =13时,∵x ≥y ,x +y ≤10,∴x =3,y =2,t =32,∴32的阶梯三分法为2×4×4,∴F (32)=23242=+; ②同理,当3x +2y =26时,可得x =8,y =1或x =6,y =4, ∴t =81或64,∴F (81)=4,F (64)=2; ③同理,当3x +2y =39时,可得x =9,y =6(不合题意舍去),∴综合①②③,F (t )最小值为23.。
2020年中考数学高频重点《新定义问题》专题突破精练精解(含答案)
【中考数学】专题16 新定义问题【达标要求】【知识梳理】1.“新定义”问题的概念及特征“新定义”问题其主要特征是以初中生已学过的知识为出发点,通过类比、引申、拓展给出新的数学概念(数学公式);或将一些能与初中知识相衔接的高中“新知识”,通过阅读材料呈现给初中学生,让他们将这些“新知识”与已学知识联系起来,正确理解其内容、思想和方法,把握其本质,通过类比、猜想、迁移来运用新知识解决实际问题,通过分析近年来中考试卷中出现的这类“新定义”型试题大致分为三种类型:(1)定义“新规则,新运算”型;(2)定义数学新概念型;(3)定义新函数、新知识型.2.“新定义”问题类型和常用解题方法(1)定义“新规则,新运算”型“新规则,新运算”型一般是先通过阅读示例的解题过程,理解方法要点,并体会蕴含其中的数学思想;再由特殊到一般对新方法加以应用,特别是在解决一般情况时要注意题目中看似不经意的限制条件.(2)定义数学新概念型定义数学新概念型在中考试题中一般以中档题出现,能较好的考查学生领悟定义的性质与判定的功能,认真审题、缜密思维的习惯以及对数学知识的综合运用能力、迁移能力和发现探究能力.(3)定义新函数,新知识型定义新函数,新知识型主要考查学生的阅读理解能力,应变能力和创新能力.解这类试题的关键是:正确理解新定义,并将此定义作为解题的依据,同时熟练掌握教学中的基本概念和基本的性质.3. “新定义”问题类型应对策略数学教学也就是数学语言的教学,这是因为数学语言是数学知识和数学思想的载体,数学知识与数学思想最终要通过数学语言表达出来并获得理解、掌握、交流和应用.因此,在平时的教学过程中要从细节中挖掘出数学的本质特征,引领学生找到解决问题的思想方法.在中考复习中,要关注初、高中内容的衔接,对与初中数学知识密切相关,或简单的高中数学问题要尽量关注,适当进行“一题多变”、“一题多解”、“一法多用”的教学活动.【精练精解】1.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c 有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是()A.c<-3 B.c<-2 C.14c D.c<12.从1-,1,2,4四个数中任取两个不同的数(记作,k k a b )构成一个数组{},K k k M a b =(其中1,2,,k S =L ,且将{},k k a b 与{},k k b a 视为同一个数组),若满足:对于任意的{},i i i M a b =和{},(,1,1)j i j M a b i j i S j S =≠≤≤≤≤都有i i j j a b a b +≠+,则S 的最大值( )A .10B .6C .5D .43.已知: [x]表示不超过x 的最大整数,例: [3.9]=3,[−1.8]=−2,令关于k 的函数f(k)=[k+14]−[k4] (k 是正整数),例:f(3)=[3+14]−[34]=1,则下列结论错误..的是( ) A .f(1)=0 B .f(k +4)=f(k) C .f(k +1)≥f(k)D .f(k)=0或14.已知点()00,P x y 到直线y kx b =+的距离可表示为d =,例如:点(0,1)到直线26y x =+的距离d ==y x =和4y x =-之间的距离为_______.5.阅读材料:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(4)(62)(46)(12)10i i i i ++-=++-=-;2(2)(3)6326(1)7i i i i i i i -+=-+-=---=-; 2(4)(4)1616(1)17i i i +-=-=--=; 22(2)4444134i i i i i +=++=+-=+根据以上信息,完成下面计算:2(12)(2)(2)i i i +-+-=_______.6.规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,1),-P 是二次函数214y x =的图象上在第一象限内的任意一点,PQ 垂直直线1y =-于点Q ,则四边形PMNQ 是广义菱形.其中正确的是_____.(填序号)7.如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).8.阅读材料:定义:如果一个数的平方等于﹣1,记为i 2=﹣1,这个数i 叫做虚数单位,把形如a +bi (a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似. 例如计算:(4+i )+(6﹣2i )=(4+6)+(1﹣2)i =10﹣i ; (2﹣i )(3+i )=6﹣3i +2i ﹣i 2=6﹣i ﹣(﹣1)=7﹣i ; (4+i )(4﹣i )=16﹣i 2=16﹣(﹣1)=17; (2+i )2=4+4i +i 2=4+4i ﹣1=3+4i 根据以上信息,完成下面计算: (1+2i )(2﹣i )+(2﹣i )2= 7﹣i .9.已知点P (x 0,y 0)到直线y =kx +b 的距离可表示为d =,例如:点(0,1)到直线y =2x +6的距离d ==.据此进一步可得两条平行线y =x 和y =x ﹣4之间的距离为 2 .10.对任意一个四位数n ,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n 为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a 是另一个正整数b 的平方,则称正整数a 是完全平方数.若四位数m 为“极数”,记D (m )=33m,求满足D (m )是完全平方数的所有m.11.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,比如指数式24=16可以转化为对数式4=log216,对数式2=log525,可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0),理由如下:设log a M=m,log a N=n,则M=a m,N=a n,∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式;(2)求证:log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log69+log68﹣log62=.12.阅读下面的材料:如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.例题:证明函数f(x)=(x>0)是减函数.证明:设0<x1<x2,f(x1)﹣f(x2)=﹣==.∵0<x1<x2,∴x2﹣x1>0,x1x2>0.∴>0.即f(x1)﹣f(x2)>0.∴f(x1)>f(x2).∴函数f(x)═(x>0)是减函数.根据以上材料,解答下面的问题:已知函数f(x)=+x(x<0),f(﹣1)=+(﹣1)=0,f(﹣2)=+(﹣2)=﹣(1)计算:f(﹣3)=,f(﹣4)=;(2)猜想:函数f(x)=+x(x<0)是函数(填“增”或“减”);(3)请仿照例题证明你的猜想.13.阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a 1,排在第二位的数称为第二项,记为a 2,依此类推,排在第n 位的数称为第n 项,记为a n .所以,数列的一般形式可以写成:a 1,a 2,a 3,…,a n ,….一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d 表示.如:数列1,3,5,7,…为等差数列,其中a 1=1,a 2=3,公差为d =2. 根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d 为 ,第5项是 .(2)如果一个数列a 1,a 2,a 3,…,a n …,是等差数列,且公差为d ,那么根据定义可得到:a 2﹣a 1=d ,a 3﹣a 2=d ,a 4﹣a 3=d ,…,a n ﹣a n ﹣1=d ,…. 所以 a 2=a 1+da 3=a 2+d =(a 1+d )+d =a 1+2d , a 4=a 3+d =(a 1+2d )+d =a 1+3d ,……由此,请你填空完成等差数列的通项公式:a n =a 1+( )d . (3)﹣4041是不是等差数列﹣5,﹣7,﹣9…的项?如果是,是第几项?14.一般地,如果x 4=a (a≥0),则称x 为a 的四次方根,一个正数a 的四次方根有两个.它们互为相反数,记为=10,则m=__________.15.对于实数a ,b ,定义运算“◎”如下:a ◎b=(a+b )2﹣(a ﹣b )2.若(m+2)◎(m ﹣3)=24,则m=__________.16.规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二次函数y=x 2的图象上在第一象限内的任意一点,PQ 垂直直线y=-1于点Q ,则四边形PMNQ 是广义菱形.其中正确的是 .(填序号)17.定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A=80°,则它的特征值k= .18. 《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现14在我们来研究另一种特珠的自然数—“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.19.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形;(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上;(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,求邻余线AB的长.20.若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数y=图象与性质.列表:x…﹣3﹣﹣2﹣﹣1﹣0123…y…121012…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:①点A(﹣5,y1),B(﹣,y2),C(x1,),D(x2,6)在函数图象上,则y1y2,x1x2;(填“>”,“=”或“<”)②当函数值y=2时,求自变量x的值;③在直线x=﹣1的右侧函数图象上有两个不同的点P(x3,y3),Q(x4,y4),且y3=y4,求x3+x4的值;④若直线y=a与函数图象有三个不同的交点,求a的取值范围.21.数学活动课上,张老师引导同学进行如下探究:如图1,将长为12cm的铅笔AB斜靠在垂直于水平桌面AE的直尺FO的边沿上,一端A固定在桌面上,图2是示意图.活动一如图3,将铅笔AB绕端点A顺时针旋转,AB与OF交于点D,当旋转至水平位置时,铅笔AB的中点C 与点O重合.数学思考(1)设CD=xcm,点B到OF的距离GB=ycm.①用含x的代数式表示:AD的长是cm,BD的长是cm;②y与x的函数关系式是,自变量x的取值范围是.活动二(2)①列表:根据(1)中所求函数关系式计算并补全表格x(cm)654 3.53 2.5210.50y(cm)00.55 1.2 1.58_____ 2.473 4.29 5.08_____②描点:根据表中数值,继续描出①中剩余的两个点(x,y).③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.22.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.23.如图,平面内的两条直线l1、l2,点A,B在直线l1上,点C、D在直线l2上,过A、B两点分别作直线l 2的垂线,垂足分別为A 1,B 1,我们把线段A 1B 1叫做线段AB 在直线l 2上的正投影,其长度可记作T (AB ,CD )或T (AB ,2l ),特别地线段AC 在直线l 2上的正投影就是线段A 1C .请依据上述定义解决如下问题:(1)如图1,在锐角△ABC 中,AB =5,T (AC ,AB )=3,则T (BC ,AB )= ;(2)如图2,在Rt △ABC 中,∠ACB =90°,T (AC ,AB )=4,T (BC ,AB )=9,求△ABC 的面积;(3)如图3,在钝角△ABC 中,∠A =60°,点D 在AB 边上,∠ACD =90°,T (AD ,AC )=2,T (BC ,AB )=6,求T (BC ,CD ),24.已知平面图形S ,点P 、Q 是S 上任意两点,我们把线段PQ 的长度的最大值称为平面图形S 的“宽距”.例如,正方形的宽距等于它的对角线的长度. (1)写出下列图形的宽距: ①半径为1的圆: ;②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“: ; (2)如图2,在平面直角坐标系中,已知点A (﹣1,0)、B (1,0),C 是坐标平面内的点,连接AB 、BC 、CA 所形成的图形为S ,记S 的宽距为d .①若d =2,用直尺和圆规画出点C 所在的区域并求它的面积(所在区域用阴影表示);②若点C 在⊙M 上运动,⊙M 的半径为1,圆心M 在过点(0,2)且与y 轴垂直的直线上.对于⊙M 上任意点C ,都有5≤d ≤8,直接写出圆心M 的横坐标x 的取值范围.25.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =,y =那么称点T 是点A ,B 的融合点.例如:A(﹣1,8),B(4,﹣2),当点T(x,y)满足x==1,y==2时,则点T(1,2)是点A,B的融合点.(1)已知点A(﹣1,5),B(7,7),C(2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D(3,0),点E(t,2t+3)是直线l上任意一点,点T(x,y)是点D,E的融合点.①试确定y与x的关系式.②若直线ET交x轴于点H.当△DTH为直角三角形时,求点E的坐标.26.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2,22,﹣22}=;②min{sin30°,cos60°,tan45°}=;(2)若M{﹣2x,x2,3}=2,求x的值;(3)若min{3﹣2x,1+3x,﹣5}=﹣5,求x的取值范围.【阅读】数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.【理解】(1)如图1,两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;(2)如图2,n行n列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:n2=1+3+5+7+…+2n﹣1.;【运用】(3)n边形有n个顶点,在它的内部再画m个点,以(m+n)个点为顶点,把n边形剪成若干个三角形,设最多可以剪得y个这样的三角形.当n=3,m=3时,如图3,最多可以剪得7个这样的三角形,所以y=7.①当n=4,m=2时,如图4,y=6;当n=5,m=3时,y=9;②对于一般的情形,在n边形内画m个点,通过归纳猜想,可得y=n+2(m﹣1)(用含m、n的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.27.若一个两位数十位、个位上的数字分别为m,n,我们可将这个两位数记为,易知=10m+n;同理,一个三位数、四位数等均可以用此记法,如=100a+10b+c.【基础训练】(1)解方程填空:①若+=45,则x=2;②若﹣=26,则y=4;③若+=,则t=7;【能力提升】(2)交换任意一个两位数的个位数字与十位数字,可得到一个新数,则+一定能被11整除,﹣一定能被9整除,•﹣mn一定能被10整除;(请从大于5的整数中选择合适的数填空)【探索发现】(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532﹣235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.①该“卡普雷卡尔黑洞数”为495;②设任选的三位数为(不妨设a>b>c),试说明其均可产生该黑洞数.28.(1)阅读理解如图,点A,B在反比例函数y=的图象上,连接AB,取线段AB的中点C.分别过点A,C,B作x 轴的垂线,垂足为E,F,G,CF交反比例函数y=的图象于点D.点E,F,G的横坐标分别为n﹣1,n,n+1(n>1).小红通过观察反比例函数y=的图象,并运用几何知识得出结论:AE+BG=2CF,CF>DF由此得出一个关于,,,之间数量关系的命题:若n>1,则.(2)证明命题小东认为:可以通过“若a﹣b≥0,则a≥b”的思路证明上述命题.小晴认为:可以通过“若a>0,b>0,且a÷b≥1,则a≥b”的思路证明上述命题.请你选择一种方法证明(1)中的命题.29.【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=3.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是(1,2).(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d(O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)30.将在同一平面内如图放置的两块三角板绕公共顶点A旋转,连接BC,DE.探究S△ABC与S△ADE的比是否为定值.(1)两块三角板是完全相同的等腰直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图①)(2)一块是等腰直角三角板,另一块是含有30°角的直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图②)(3)两块三角板中,∠BAE+∠CAD=180°,AB=a,AE=b,AC=m,AD=n(a,b,m,n为常数),S△ABC:S△ADE是否为定值?如果是,用含a,b,m,n的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③)31.我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;(假)②若AD=BE=CF,则六边形ABCDEF是正六边形.(假)32.如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83PD/cm 3.44 2.69 2.00 1.360.96 1.13 2.00 2.83AD/cm0.000.78 1.54 2.30 3.01 4.00 5.11 6.00在PC,PD,AD的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为cm.33.定义:若实数x,y满足x2=2y+t,y2=2x+t,且x≠y,t为常数,则称点M(x,y)为“线点”.例如,点(0,﹣2)和(﹣2,0)是“线点”.已知:在直角坐标系xOy中,点P(m,n).(1)P1(3,1)和P2(﹣3,1)两点中,点P2是“线点”;(2)若点P是“线点”,用含t的代数式表示mn,并求t的取值范围;(3)若点Q(n,m)是“线点”,直线PQ分别交x轴、y轴于点A,B,当|∠POQ﹣∠AOB|=30°时,直接写出t的值.34.定义:(一)如果两个函数y1,y2,存在x取同一个值,使得y1=y2,那么称y1,y2为“合作函数”,称对应x的值为y1,y2的“合作点”;(二)如果两个函数为y1,y2为“合作函数”,那么y1+y2的最大值称为y1,y2的“共赢值”.(1)判断函数y=x+2m与y=是否为“合作函数”,如果是,请求出m=1时它们的合作点;如果不是,请说明理由;(2)判断函数y=x+2m与y=3x﹣1(|x|≤2)是否为“合作函数”,如果是,请求出合作点;如果不是,请说明理由;(3)已知函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,且有唯一合作点.①求出m的取值范围;②若它们的“共赢值”为24,试求出m的值.35.图①,抛物线y=﹣2x2+bx+c过A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.(1)求该抛物线的表达式和对称轴;(2)点D是抛物线对称轴上一动点,当△BCD是以BC为直角边的直角三角形时,求所有符合条件的点D的坐标;(3)如图2,将抛物线在BC上方的图象沿BC折叠后与y轴交与点E,求点E的坐标.【中考数学】专题16 新定义问题【达标要求】【知识梳理】1.“新定义”问题的概念及特征“新定义”问题其主要特征是以初中生已学过的知识为出发点,通过类比、引申、拓展给出新的数学概念(数学公式);或将一些能与初中知识相衔接的高中“新知识”,通过阅读材料呈现给初中学生,让他们将这些“新知识”与已学知识联系起来,正确理解其内容、思想和方法,把握其本质,通过类比、猜想、迁移来运用新知识解决实际问题,通过分析近年来中考试卷中出现的这类“新定义”型试题大致分为三种类型:(1)定义“新规则,新运算”型;(2)定义数学新概念型;(3)定义新函数、新知识型.2.“新定义”问题类型和常用解题方法(1)定义“新规则,新运算”型“新规则,新运算”型一般是先通过阅读示例的解题过程,理解方法要点,并体会蕴含其中的数学思想;再由特殊到一般对新方法加以应用,特别是在解决一般情况时要注意题目中看似不经意的限制条件.(2)定义数学新概念型 定义数学新概念型在中考试题中一般以中档题出现,能较好的考查学生领悟定义的性质与判定的功能,认真审题、缜密思维的习惯以及对数学知识的综合运用能力、迁移能力和发现探究能力.(3)定义新函数,新知识型 定义新函数,新知识型主要考查学生的阅读理解能力,应变能力和创新能力.解这类试题的关键是:正确理解新定义,并将此定义作为解题的依据,同时熟练掌握教学中的基本概念和基本的性质.3. “新定义”问题类型应对策略 数学教学也就是数学语言的教学,这是因为数学语言是数学知识和数学思想的载体,数学知识与数学思想最终要通过数学语言表达出来并获得理解、掌握、交流和应用.因此,在平时的教学过程中要从细节中挖掘出数学的本质特征,引领学生找到解决问题的思想方法. 在中考复习中,要关注初、高中内容的衔接,对与初中数学知识密切相关,或简单的高中数学问题要尽量关注,适当进行“一题多变”、“一题多解”、“一法多用”的教学活动.【精练精解】1.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y=x 2+2x+c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( ) A .c <-3 B .c <-2C .14c <D .c <1【答案】B【解析】 当y=x 时,x=x 2+2x+c ,即为x 2+x+c=0,由题意可知:x 1,x 2是该方程的两个实数根,所以12121x x x x c +=-⎧⎨⋅=⎩,∵x 1<1<x 2,∴(x 1-1)(x 2-1)<0,即x 1x 2-(x 1+x 2) +1<0, ∴c -(-1)+1<0,∴c <-2.又知方程有两个不相等的实数根,故Δ>0, 即12-4c >0,解得:c <14∴c 的取值范围为c <-2 . 2.从1-,1,2,4四个数中任取两个不同的数(记作,k k a b )构成一个数组{},K k k M a b =(其中1,2,,k S =L ,且将{},k k a b 与{},k k b a 视为同一个数组),若满足:对于任意的{},i i i M a b =和{},(,1,1)j i j M a b i j i S j S =≠≤≤≤≤都有i i j j a b a b +≠+,则S 的最大值( )A .10B .6C .5D .4【答案】C【分析】找出i i a b +的值,结合对于任意的{},i i i M a b =和{},(,1,1)j i j M a b i j i S j S =≠≤≤≤≤都有i i j j a b a b +≠+,即可得出S 的最大值.【详解】解:∵110,121-+=-+=,143,123-+=+=,145,246+=+=, ∴i i a b +共有5个不同的值.又∵对于任意的{},i i i M a b =和{},(,1,1)j i j M a b i j i S j S =≠≤≤≤≤都有i i j j a b a b +≠+, ∴S 的最大值为5. 故选:C .3.已知: [x]表示不超过x 的最大整数,例: [3.9]=3,[−1.8]=−2,令关于k 的函数f(k)=[k+14]−[k4] (k 是正整数),例:f(3)=[3+14]−[34]=1,则下列结论错误..的是( ) A .f(1)=0 B .f(k +4)=f(k) C .f(k +1)≥f(k) D .f(k)=0或1【答案】C 【详解】 A. f (1)=[1+14]−[14]=0-0=0,故A 选项正确,不符合题意;B. f (k +4)=[k+4+14]−[k +44]=[1+k +14]−[1+k 4]=[k +14]−[k 4],f (k )=[k +14]−[k 4], 所以f (k +4)=f (k ),故B 选项正确,不符合题意; C. f (k +1)=[k+1+14]−[k +14]=[k +24]−[k +14],f (k )= [k +14]−[k 4], 当k=3时,f (3+1)=[3+24]−[3+14]=0,f (3)= [3+14]−[34]=1,此时f (k +1)<f (k ),故C 选项错误,符合题意; D.设n 为正整数, 当k=4n 时,f (k )=[4n +14]−[4n4]=n -n=0, 当k=4n+1时,f (k )=[4n +24]−[4n +14]=n -n=0, 当k=4n+2时,f (k )=[4n +34]−[4n +24]=n -n=0, 当k=4n+3时,f (k )=[4n +44]−[4n +34]=n+1-n=1, 所以f (k )=0或1,故D 选项正确,不符合题意, 故选C.4.已知点()00,P x y 到直线y kx b =+的距离可表示为d =,例如:点(0,1)到直线26y x =+的距离d ==y x =和4y x =-之间的距离为_______.【答案】【解析】当0x =时,0y x ==,即点(0,0)在直线y x =上, 因为点(0,0)到直线4y x =-的距离为:d === 因为直线y x =和4y x =-平行,所以这两条平行线之间的距离为故答案为5.阅读材料:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(4)(62)(46)(12)10i i i i ++-=++-=-;2(2)(3)6326(1)7i i i i i i i -+=-+-=---=-; 2(4)(4)1616(1)17i i i +-=-=--=; 22(2)4444134i i i i i +=++=+-=+根据以上信息,完成下面计算:2(12)(2)(2)i i i +-+-=_______.【答案】7i -【解析】根据题目材料,可得复数计算方法,先去括号,再进行加减运算. 【详解】解:222(12)(2)(2)24244i i i i i i i i +-+-=-+-++-26i i =--61i =-+7i =-.故答案为:7i -.6.规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,1),-P 是二次函数214y x =的图象上在第一象限内的任意一点,PQ 垂直直线1y =-于点Q ,则四边形PMNQ 是广义菱形.其中正确的是_____.(填序号) 【答案】①②④【解析】①根据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,①正确; ②平行四边形有一组对边平行,没有一组邻边相等,②错误; ③由给出条件无法得到一组对边平行,③错误; ④设点21,4P m m ⎛⎫ ⎪⎝⎭,则(),1Q m -,由勾股定理可得2114PQ MP m ==+,MP PQ =和//MN PQ ,所以四边形PMNQ 是广义菱形.④正确;【详解】①根据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,①正确; ②平行四边形有一组对边平行,没有一组邻边相等,②错误; ③由给出条件无法得到一组对边平行,③错误; ④设点21,4P m m ⎛⎫⎪⎝⎭,则(),1Q m -,∴2114MP m ==+,2114PQ m =+,∵点P 在第一象限, ∴0m >, ∴2114MP m =+, ∴MP PQ =, 又∵//MN PQ ,∴四边形PMNQ 是广义菱形. ④正确;。
中考数学复习重难点与压轴题专题12 新定义型几何图形综合问题(重点突围)(原卷版)
专题12 新定义型几何图形综合问题【中考考向导航】目录【直击中考】 (1)【考向一 与三角形有关的新定义型问题】..................................................................................................... 1 【考向二 与四角形有关的新定义型问题】..................................................................................................... 5 【考向三 三角形与圆综合的新定义型问题】 ................................................................................................. 8 【考向四 四角形与圆综合的新定义型问题】 .. (10)【直击中考】【考向一 与三角形有关的新定义型问题】例题:(2022·江西抚州·统考一模)定义:从三角形(不是等腰三角形)的一个顶点引出一条射线与对边相交,顶点与交点所连线段把这个三角形分割成两个小三角形,如果其中一个为等腰三角形,另一个与原三角形相似,我么就把这条线段叫做这个三角形的“华丽分割线”.例如:如图1,AD 把△ABC 分成△ABD 和△ADC ,若△ABD 是等腰三角形,且△ADC ∽△BAC ,那么AD 就是△ABC 的“华丽分割线”. 【定义感知】(1)如图1,在ABC 中,40B ∠=︒,110BAC ∠=︒,AB=BD .求证:AD 是ABC 的“华丽分割线”. 【问题解决】(2)①如图2,在ABC 中,46B ∠=︒,AD 是ABC 的“华丽分割线”,且ABD △是等腰三角形,则C ∠的度数是________;②如图3,在ABC 中,AB =2,AC =3,AD 是ABC 的“华丽分割线”,且ABD △是以AD 为底边的等腰三角形,求华丽分割线AD 的长.【变式训练】1.(2022·山东济宁·三模)我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad ).如图,在ABC 中,AB =AC ,顶角A 的正对记作sad A ,这时sad BCA AB==底边腰,容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题:(1)sad60︒=___________,sad90︒=___________;(2)如图,已知3sin 5A =,其中A ∠为锐角,试求sad A 的值.2.(2022春·福建龙岩·九年级校考期中)在一个三角形中,如果有两个内角α与β满足290αβ+=︒,那么我们称这样的三角形为“亚直角三角形”.根据这个定义,显然90αβ+<︒,则这个三角形的第三个角为()18090αβ︒-+>︒,这就是说“亚直角三角形”是特殊的钝角三角形.(1)【尝试运用】:若某三角形是“亚直角三角形”,且一个内角为100︒,请求出它的两个锐角的度数; (2)【尝试运用】:如图1,在Rt ABC 中,90ACB ∠=︒,4AC =,8BC =,点D 在边BC 上,连接AD ,且AD 不平分BAC ∠.若ABD △是“亚直角三角形”,求线段AD 的长;(3)【素养提升】:如图2,在钝角ABC 中,90ABC ∠>︒,5AB =,35BC =,ABC 的面积为15,求证:ABC 是“亚直角三角形”.3.(2022秋·江苏常州·九年级校考期中)【理解概念】定义:如果三角形有两个内角的差为90︒,那么这样的三角形叫做“准直角三角形”. (1)已知△ABC 是“准直角三角形”,且90C ∠>︒. ①若60A ∠=︒,则B ∠=______︒; ②若40A ∠=︒,则B ∠=______︒; 【巩固新知】(2)如图①,在Rt ABC △中,9062ACB AB BC ∠=︒==,,,点D 在AC 边上,若ABD △是“准直角三角形”,求CD 的长;【解决问题】(3)如图②,在四边形ABCD 中,58CD CB ABD BCD AB BD =∠=∠==,,,,且ABC 是“准直角三角形”,求BCD △的面积.4.(2022·山东青岛·统考中考真题)【图形定义】 有一条高线相等的两个三角形称为等高三角形.例如:如图①.在ABC 和A B C '''中,,AD A D ''分别是BC 和B C ''边上的高线,且AD A D ''=,则ABC 和A B C '''是等高三角形.【性质探究】 如图①,用ABCS ,A B C S'''分别表示ABC 和A B C '''的面积.则11,22ABC A B C S BC AD S B C A D '''=⋅=''⋅''△△, ∽AD A D ''=∽::ABC A B C S S BC B C ''=''△△. 【性质应用】(1)如图②,D 是ABC 的边BC 上的一点.若3,4BD DC ==,则:ABD ADC S S =△△__________;(2)如图③,在ABC 中,D ,E 分别是BC 和AB 边上的点.若:1:2BE AB =,:1:3CD BC =,1ABC S =△,则BEC S =△__________,CDE S =△_________;(3)如图③,在ABC 中,D ,E 分别是BC 和AB 边上的点,若:1:BE AB m =,:1:CD BC n =,ABCS a =,则CDE S =△__________.【考向二 与四角形有关的新定义型问题】例题:(2022·陕西西安·校考三模)定义:两组邻边分别相等的四边形叫做筝形.(1)问题发现:如图1,筝形ABCD 中,AD CD =,AB CB =,若12AC BD +=,求筝形ABCD 的面积的最大值;(2)问题解决:如图2是一块矩形铁片ABCD ,其中60AB =厘米,90BC厘米,李优想从这块铁片中裁出一个筝形EFGH ,要求点E 是AB 边的中点,点F 、G 、H 分别在BC 、CD 、AD 上(含端点),是否存在一种裁剪方案,使得筝形EFGH 的面积最大?若存在,求出筝形EFGH 的面积最大值,若不存在,请说明理由.【变式训练】1.(2022·吉林长春·校考模拟预测)定义:如果一个四边形的一组对角互余,我们称这个四边形为对角互余四边形.(1)问题1.利用下面哪组图形可以得到一个对角互余四边形( )①两个等腰三角形;②两个等边三角形;③两个直角三角形;④两个全等三角形.(2)如图①,在对角互余四边形ABCD 中,30D ∠=︒,且AC BC ⊥,AC AD ⊥.若1BC =,求四边形ABCD 的面积和周长.(3)问题2.如图②,在对角互余四边形ABCD 中,AB BC =,13BD =,90ABC ADC ∠+∠=︒,8AD =,6CD =,求四边形ABCD 的面积和周长.(4)问题3.如图③,在对角互余四边形ABCD 中,2BC AB =,3sin 5ABC ∠=,90ABC ADC ∠+∠=︒,10BD =,求ACD 面积的最大值.2.(2023春·江西抚州·九年级金溪一中校考阶段练习)【图形定义】有一组邻边相等的凸四边形叫做“等邻边四边形”.【问题探究】(1)如图①,已知矩形ABCD 是“等邻边四边形”,则矩形ABCD ___________(填“一定”或“不一定”)是正方形;(2)如图②,在菱形ABCD 中,120ABC ∠=︒,4AB =,动点M 、N 分别在AD 、CD 上(不含端点),若60MBN ∠=︒,试判断四边形BMDN 是否为“等邻边四边形”?如果是“等邻边四边形”,请证明;如果不是,请说明理由;此时,四边形BMDN 的周长的最小值为___________; 【尝试应用】(3)现有一个平行四边形材料ABCD ,如图③,在ABCD 中,17AB =,6BC =,tan 4B =,点E 在BC 上,且4BE =,在ABCD 边AD 上有一点P ,使四边形ABEP 为“等邻边四边形”,请直接写出此时四边形ABEP的面积可能为的值___________.3.(2022·江西赣州·统考二模)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”.例如:如图①,B C ∠=∠,则四边形ABCD 为“等邻角四边形”.(1)定义理解:以下平面图形中,是等邻角四边形的是___________. ①平行四边形;②矩形;③菱形;④等腰梯形. (2)深入探究:①已知四边形ABCD 为“等邻角四边形”,且120100A B ∠=︒∠=︒,,则D ∠=________.②如图②,在五边形ABCDE 中, DE BC ∥,对角线BD 平分ABC ∠,求证:四边形ABDE 为等邻角四边形.(3)拓展应用:如图③,在等邻角四边形ABCD 中,B C ∠=∠,点P 为边BC 上的一动点,过点P 作PM AB PN CD ⊥⊥,,垂足分别为M ,N .在点P 的运动过程中,PM PN +的值是否会发生变化?请说明理由.【考向三 三角形与圆综合的新定义型问题】例题:(2022·江西上饶·统考一模)定义:如果一个三角形有一个内角的平分线与这个角的对边的夹角是60︒,那么称该三角形为“特异角平分三角形”,这条角平分线称为“特异角平分线”.(1)如图1,ABC 是一个“特异角平分三角形”,AD 是一条“特异角平分线” ①当90C ∠=︒时,试求:AD BD 的值.②在ABC 中,过点D 作DE AB ⊥于点E ,延长至点H ,HE DE =,若:3:3DE AE =,证明:AHE ADC ≌. (2)如图2.BD 是O 的直径,AC 是O 的切线,点C 为切点,AB AC ⊥于点A 且交O 于点H ,连接DH 交BC 于点E ,4BD =,3AB =.试证明DBH △是一个“特异角平分三角形”.【变式训练】1.(2022春·九年级课时练习)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的“好角”.(1)如图1,∽E 是ABC 中∽A 的“好角”,若A α∠=,则E ∠=______;(用含α的代数式表示)(2)如图2,四边形ABCD 内接于O ,点D 是优弧ACB 的中点,直径BF ⊥弦AC ,BF 、CD 的延长线于点G ,延长BC 到点E .求证:∽BGC 是ABC 中∽BAC 的“好角”.(3)如图3,ABC 内接于O ,∽BGC 是ABC 中∽A 的“好角”,BG 过圆心O 交O 于点F ,O 的直径为8,45A ∠=︒,求FG .2.(2022·湖南长沙·长沙市开福区青竹湖湘一外国语学校校考一模)我们不妨定义:有两边之比为1:3的三角形叫敬“勤业三角形”.(1)下列各三角形中,一定是“勤业三角形”的是________;(填序号)①等边三角形;②等腰直角三角形;③含30︒角的直角三角形;④含120︒角的等腰三角形.(2)如图1,∽ABC 是∽O 的内接三角形,AC 为直径,D 为AB 上一点,且2BD AD =,作DE OA ⊥,交线段OA 于点F ,交∽O 于点E ,连接BE 交AC 于点G .试判断∽AED 和∽ABE 是否是“勤业三角形”?如果是,请给出证明,并求出EDBE的值;如果不是,请说明理由; (3)如图2,在(2)的条件下,当AF :FG =2:3时,求BED ∠的余弦值.【考向四 四角形与圆综合的新定义型问题】例题:(2022秋·九年级课时练习)定义:有一个角为45°的平行四边形称为半矩形.(1)如图1,若∽ABCD 的一组邻边AB =4,AD =7,且它的面积为142.求证:∽ABCD 为半矩形. (2)如图2,半矩形ABCD 中,∽ABD 的外心O (外心O 在∽ABD 内)到AB 的距离为1,∽O 的半径=5,求AD 的长.(3)如图3,半矩形ABCD 中,∽A =45° ①求证:CD 是∽ABD 外接圆的切线; ②求出图中阴影部分的面积.【变式训练】1.(2022·浙江宁波·校考模拟预测)定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图1,在“对角互余四边形” ABCD 中, 6.5AD CD BD ==,,9043ABC ADC AB CB ∠+∠=︒==,,,求四边形ABCD 的面积.(2)如图2,在四边形ABCD 中,连接AC ,90BAC ∠=︒,点O 是ACD 外接圆的圆心,连接OA ,OAC ABC ∠∠=.求证:四边形ABCD 是“对角互余四边形”;(3)在(2)的条件下,如图3,已知3AD a DC b AB AC ===,,,连接BD ,求2BD 的值.(结果用带有a ,b 的代数式表示)2.(2022·江苏淮安·统考一模)定义:若一个圆内接四边形的两条对角线互相垂直,则称这个四边形为圆美四边形.(1)请在特殊四边形中找出一个圆美四边形,该四边形的名称是 ;(2)如图1,在等腰Rt ∽ABC 中,∽BAC =90°,经过点A 、B 的∽O 交AC 边于点D ,交BC 于点E ,连接DE ,若四边形ABED 为圆美四边形,则AB DE的值是 (3)如图2,在∽ABC 中,经过点A 、B 的∽O 交AC 边于点D ,交BC 于点E ,连接AE 、BD 交于点F ,若在四边形ABED 的内部存在一点P ,使得∽PBC =∽ADP =α,连接PE 交BD 于点G ,连接P A ,若P A ∽PD ,PB ∽PE . ①试说明:四边形ABED 为圆美四边形;②若2tan 3α=,8PA PE +=,33CD BC =,求DE 的最小值.。
2020届中考数学(真题版)专项练习:新定义与阅读理解题及参考答案
新定义与阅读理解题1.(2019自贡)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①,则2S=2+22+…+22018+22019②,②–①得2S–S=S=22019–1,∴S=1+2+22+…+22017+22018=22019–1.请仿照小明的方法解决以下问题:(1)1+2+22+…+29=__________;(2)3+32+…+310=__________;(3)求1+a+a2+…+a n的和(a>0,n是正整数),请写出计算过程.解:(1)设S=1+2+22+…+29①,则2S=2+22+…+210②,②–①得2S–S=S=210–1,∴S=1+2+22+…+29=210–1;故答案为:210–1;(2)设S=3+3+32+33+34+…+310①,则3S=32+33+34+35+…+311②,②–①得2S=311–1,所以S=1131 2-,即3+32+33+34+ (310)1131 2-;故答案为:1131 2-;(3)设S=1+a+a2+a3+a4+…+a n①,则aS=a+a2+a3+a4+…+a n+a n+1②,②–①得:(a–1)S=a n+1–1,a=1时,不能直接除以a–1,此时原式等于n+1;a≠1时,a–1才能做分母,所以S=111naa+--,即1+a+a2+a3+a4+…+a n=111naa+--.2.(2019随州)若一个两位数十位、个位上的数字分别为m,n,我们可将这个两位数记为mn,易知mn=10m+n;同理,一个三位数、四位数等均可以用此记法,如abc=100a+10b+c.【基础训练】(1)解方程填空:①若2x+3x=45,则x=__________;②若7y–8y=26,则y=__________;③若93t+58t=131t,则t=__________;【能力提升】(2)交换任意一个两位数mn的个位数字与十位数字,可得到一个新数nm,则mn+nm一定能被__________整除,mn–nm一定能被__________整除,mn•nm–mn一定能被__________整除;(请从大于5的整数中选择合适的数填空)【探索发现】(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532–235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.①该“卡普雷卡尔黑洞数”为__________;②设任选的三位数为abc(不妨设a>b>c),试说明其均可产生该黑洞数.解:(1)①∵mn=10m+n,∴若2x+3x=45,则10×2+x+10x+3=45,∴x=2,故答案为:2.②若7y–8y=26,则10×7+y–(10y+8)=26,解得y=4,故答案为:4.③由abc=100a+10b+c,及四位数的类似公式得若93t+58t=131t,则100t+10×9+3+100×5+10t+8=1000×1+100×3+10t+1,∴100t=700,∴t=7,故答案为:7.(2)∵mn+nm=10m+n+10n+m=11m+11n=11(m+n),∴则mn+nm一定能被11整除,∵mn–nm=10m+n–(10n+m)=9m–9n=9(m–n),∴mn–nm一定能被9整除.∵mn•nm–mn=(10m+n)(10n+m)–mn=100mn+10m2+10n2+mn–mn=10(10mn+m2+n2)∴mn•nm–mn一定能被10整除.故答案为:11;9;10.(3)①若选的数为325,则用532–235=297,以下按照上述规则继续计算,972–279=693,963–369=594,954–459=495,954–459=495,…故答案为:495.②当任选的三位数为abc 时,第一次运算后得:100a +10b +c –(100c +10b +a )=99(a –c ), 结果为99的倍数,由于a >b >c ,故a ≥b +1≥c +2, ∴a –c ≥2,又9≥a >c ≥0, ∴a –c ≤9,∴a –c =2,3,4,5,6,7,8,9,∴第一次运算后可能得到:198,297,396,495,594,693,792,891, 再让这些数字经过运算,分别可以得到:981–189=792,972–279=693,963–369=594,954–459–495,954–459=495…, 故都可以得到该黑洞数495.3.(2019衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x 3a c+=,y 3b d+=那么称点T 是点A ,B 的融合点. 例如:A (﹣1,8),B (4,﹣2),当点T (x ,y )满足x 143-+==1,y ()823+-==2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点. (2)如图,点D (3,0),点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点. ①试确定y 与x 的关系式.②若直线ET 交x 轴于点H .当△DTH 为直角三角形时,求点E 的坐标.解:(1)∵17 3 +﹣=2,573+=4,∴点C(2,4)是点A、B的融合点;(2)①由融合点定义知x13=(t+3),y13=(2t+3),则t=3x﹣3,则y13=(6x﹣6+3)=2x﹣1;②要使△DTH为直角三角形,可分三种情况讨论:(i)当∠DHT=90°时,如图1所示,设T(m,2m﹣1),则点E(m,2m+3),由点T是点D,E的融合点得:m32302133m mm+++=-=或,解得:m32=,即点E(32,6);(ii)当∠TDH=90°时,如图2所示,则点T(3,5),由点T是点D,E的融合点得:点E(6,15);(iii)当∠HTD=90°时,该情况不存在;综上所述,符合题意的点为(32,6)或(6,15).4.(2019天水)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.解:(1)四边形ABCD是垂美四边形.理由如下:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)如图1,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AB2+CD2=AO2+BO2+DO2+CO2=AD2+BC2,∴AD2+BC2=AB2+CD2;(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,AG ACGAB CAE AB AE=⎧⎪∠=∠⎨⎪=⎩,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG,BE∴GE2=CG2+BE2-CB2=73,∴GE5.(2019白银)阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.解:延长A1B1至E,使EB1=A1B1,连接EM1、EC1,如图所示:则EB1=B1C1,∠EB1M1=90°=∠A1B1M1,∴△EB1C1是等腰直角三角形,∴∠B1EC1=∠B1C1E=45°,∵N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,∴∠M1C1N1=90°+45°=135°,∴∠B1C1E+∠M1C1N1=180°,∴E、C1、N1三点共线,在△A1B1M1和△EB1M1中,11111111 1111A B EBA B M EBMMB M B=⎧⎪∠=∠⎨⎪=⎩,∴△A1B1M1≌△EB1M1(SAS),∴A1M1=EM1,∠1=∠2,∵A 1M 1=M 1N 1,∴EM 1=M 1N 1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5, ∵∠1+∠6=90°,∴∠5+∠6=90°, ∴∠A 1M 1N 1=180°﹣90°=90°. 6.(2019江西)特例感知(1)如图1,对于抛物线211y x x =--+,2221y x x =--+,2331y x x =--+,下列结论正确的序号是_________;①抛物线1y ,2y ,3y 都经过点(0,1)C ;②抛物线2y ,3y 的对称轴由抛物线1y 的对称轴依次向左平移12个单位得到; ③抛物线1y ,2y ,3y 与直线1y =的交点中,相邻两点之间的距离相等. 形成概念(2)把满足21n y x nx =--+(n 为正整数)的抛物线称为“系列平移抛物线”.知识应用在(2)中,如图2.①“系列平移抛物线”的顶点依次为1P ,2P ,3P ,…,n P ,用含n 的代数式表示顶点n P 的坐标,并写出该顶点纵坐标y 与横坐标x 之间的关系式;②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:1C ,2C ,3C ,…,n C ,其横坐标分别为:1k --,2k --,3k --,…,k n --(k 为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.③在②中,直线1y =分别交“系列平移抛物线”于点1A ,2A ,3A ,…,n A ,连接n n C A ,11n n C A --,判断n n C A ,11n n C A --是否平行?并说明理由.解:(1)①当x =0,1231y y y ===,所以正确;②123,,y y y 的对称轴分别是直线112x =-,21x =-,332x =-,所以正确;③123,,y y y 与1y =交点(除了点C )横坐标分别为–1,–2,–3,所以距离为1,都相等,正确.(2)①2224124n n n y x nx x +⎛⎫=--+=-++ ⎪⎝⎭,所以顶点24,24n n n P ⎛⎫+- ⎪⎝⎭,令顶点n P 横坐标2n x =-,纵坐标244n y +=,22241142n n y x +⎛⎫==-+=+ ⎪⎝⎭, 即:n P 顶点满足关系式21y x =+.②相邻两点之间的距离相等.理由:根据题意得;()2,1n C k n k nk ----+,()211,1n C k n k nk k ---+--++, ∴C n C n –1两点之间的铅直高度=()2211k nk k k nk k --++---+=.C n C n –1两点之间的水平距离=1()1k n k n --+---=.∴由勾股定理得C n C n –12=k 2+1,∴C n C n –1③n n C A 与11n n C A --不平行. 理由:根据题意得:()2,1n C k n k nk ----+,()211,1n C k n k nk k ---+--++,(),1n A n -,()11,1n A n --+.过C n ,C n –1分别作直线y =1的垂线,垂足为D ,E ,所以D (–k –n ,1),E (–k –n +1,1).在Rt △DA n C n 中,tan ∠DA n C n =()2211()n n k nk C D k nk k n A D n k n k---++===+----, 在Rt △EA n –1C n –1中,tan ∠EA n –1C n –1=()22111111(1)n n k nk k C E k nk k k n A E n k n k-----+++-===+--+---+, ∵1k n +-≠k n +,∴tan ∠DA n C n ≠tan ∠EA n –1C n –1,∴n n C A 与11n n C A --不平行.7.(2019济宁)阅读下面的材料:如果函数y =f (x )满足:对于自变量x 的取值范围内的任意x 1,x 2,(1)若x 1<x 2,都有f (x 1)<f (x 2),则称f (x )是增函数;(2)若x 1<x 2,都有f (x 1)>f (x 2),则称f (x )是减函数.例题:证明函数f (x )=6x(x >0)是减函数. 证明:设0<x 1<x 2, f (x 1)–f (x 2)=()212112121266666x x x x x x x x x x ---==. ∵0<x 1<x 2,∴x 2–x 1>0,x 1x 2>0.∴()21126x x x x ->0.即f (x 1)–f (x 2)>0. ∴f (x 1)>f (x 2),∴函数f (x )═6x (x >0)是减函数. 根据以上材料,解答下面的问题:已知函数f (x )=21x+x (x <0), f (–1)=21(1)-+(–1)=0,f (–2)=21(2)-+(–2)=–74. (1)计算:f (–3)=__________,f (–4)=__________;(2)猜想:函数f (x )=21x+x (x <0)是__________函数(填“增”或“减”);(3)请仿照例题证明你的猜想.解:(1)∵f (x )=21x +x (x <0), ∴f (–3)=21(3)-–3=–269,f (–4)=21(4)-–4=–6316, 故答案为:–269,–6316; (2)∵–4<–3,f (–4)>f (–3),∴函数f (x )=21x +x (x <0)是增函数, 故答案为:增;(3)设x 1<x 2<0,∵f (x 1)–f (x 2)=12221211x x x x +--=(x 1–x 2)(1–122212x x x x +) ∵x 1<x 2<0,∴x 1–x 2<0,x 1+x 2<0,∴f (x 1)–f (x 2)<0,∴f (x 1)<f (x 2),∴函数f (x )=21x +x (x <0)是增函数. 8.(2019宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC 中,AB =AC ,AD 是△ABC 的角平分线,E ,F 分别是BD ,AD 上的点.求证:四边形ABEF 是邻余四边形.(2)如图2,在5×4的方格纸中,A ,B 在格点上,请画出一个符合条件的邻余四边形ABEF ,使AB 是邻余线,E ,F 在格点上.(3)如图3,在(1)的条件下,取EF 中点M ,连结DM 并延长交AB 于点Q ,延长EF 交AC 于点N .若N 为AC 的中点,DE =2BE ,QB =3,求邻余线AB 的长.解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FAB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形ABEF即为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,M为EF中点,∴DM=ME.∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴35 QB BDNC CE==,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB =AC =10.9.(2019枣庄)对于实数a 、b ,定义关于“⊗”的一种运算:a ⊗b =2a +b ,例如3⊗4=2×3+4=10.(1)求4⊗(–3)的值;(2)若x ⊗(–y )=2,(2y )⊗x =–1,求x +y 的值.解:(1)根据题中的新定义得:原式=8–3=5;(2)根据题中的新定义化简得:2241x y x y -=⎨+=-⎧⎩①②, ①+②得:3x +3y =1,则x +y =13. 10.(2019河北)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7.则(1)用含x 的式子表示m =__________;(2)当y =–2时,n 的值为__________.解:(1)根据约定的方法可得:m =x +2x =3x ;故答案为:3x ;(2)根据约定的方法即可得x +2x +2x +3=m +n =y .当y =–2时,5x +3=–2.解得x =–1.∴n =2x +3=–2+3=1.11.(2019白银)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k =__________.解:①当∠A 为顶角时,等腰三角形两底角的度数为:218080︒-︒=50°, ∴特征值k =808505︒=︒;②当∠A为底角时,顶角的度数为:180°–80°–80°=20°,∴特征值k=208014︒=︒;综上所述,特征值k为85或14;12.(2019湘西)阅读材料:设a=(x1,y1),b=(x2,y2),如果a∥b,则x1•y2=x2•y1,根据该材料填空,已知a=(4,3),b=(8,m),且a∥b,则m=__________.解:∵a=(4,3),b=(8,m),且a∥b,∴4m=3×8,∴m=6.。
专题12 《数据的收集、整理与描述》(原卷版)七年级下学期数学(人教版)
专题12 数据的收集、整理与描述考点一、统计调查例1、(2020·广西贵港市·中考真题)某校对九年级学生进行“综合素质”评价,评价的结果分为A(优秀)、B(良好)、C(合格)、D(不合格)四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制以下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)B(良好)等级人数所占百分比是______________________;(2)在扇形统计图中,C(合格)等级所在扇形的圆心角度数是___________________;(3)请补充完整条形统计图;(4)若该校九年级学生共1000名,请根据以上调查结果估算:评价结果为A(优秀)等级或B(良好)等级的学生共有多少名?【答案】(1)25%;(2)72°;(3)见解析;(4)700名【分析】(1)扇形统计图中D占10%,结合条形统计图中D有4人,先计算总人数,再求得B的人数,即可解题;(2)计算C等级的人数,再求得C的比例,最后计算其圆心角度数即可;(3)根据(1)中总人数,解得B的人数,作图见解析;(4)计算样本A与B的总人数比例,再估算总体即可【详解】解:(1)4=40 10%,40-18-8-4=10,,10100%=25% 40⨯故答案为:25%;(2)8360=72 40⨯︒︒,故答案为:72°;(3)如图所示:(4)由题意得:1810100070040+⨯=(名),答:评价结果为A等级或B等级的学生共有700名.【点睛】本题考查扇形统计图、条形统计图、用样本估算总体等知识,是重要考点,难度较易,掌握相关知识是解题关键.考点二、直方图例2、(2020·山东济南市·中考真题)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如表格和统计图:请结合上述信息完成下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.【答案】(1)0.1;0.35;(2)见解析;(3)108°;(4)1800名【分析】(1)根据频数分布直方图中不合格的数除总数即可求得a值;同理得出良好的人数,再根据扇形统计图求出优秀的人数即可得出合格的人数,再除总数即可求得b的值.(2)由(1)可得;(3)由(1)得出良好的人数除总人数,再乘360°即可.(4)先求出40个人合格及以上的人数占总人数的频率再乘2000即可解答.【详解】解:(1)根据频数分布直方图可知:a=4÷40=0.1,因为40×25%=10,所以b=(40﹣4﹣12﹣10)÷40=14÷40=0.35,故答案为:0.1;0.35;(2)如图,即为补全的频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是360°×1240=108°;故答案为:108°;(4)因为2000×40-440=1800,所以估计该校学生一分钟跳绳次数达到合格及以上的人数是1800.【点睛】本题主要考查频数与频率,解题关键是熟练掌握频率=频数÷总数.达标检测1.下列事件中,宜采用抽样调查方式的是()A.调查某社区居民购物的付款方式B.对长征五号遥三运载火箭各个零件的检查C.调查某中学九(1)班学生上学的出行方式D.调查某公司五个部门4月份用电量情况2.目标达成度也叫完成率,一般是指个体的实际完成量与目标完成量的比值,树立明确具体的目标,能够帮助人们更好的自我认知,迅速成长.某销售部门有9位员工(编号分别为A-I),下图是根据他们月初制定的目标销售任务和月末实际完成情况绘制的统计图,下列结论正确的是()①E超额完成了目标任务;②目标与实际完成相差最多的是G;③H的目标达成度为100%;④月度达成率超过75%且实际销售额大于4万元的有三个人.A.①②③④B.①③C.① ②③D.②③④3.某校准备为八年级学生开设A,B,C,D,E,F共6门选修课,随机抽取了部分学生对“我最喜欢的一门选修课”进行调查,并将调查结果绘制成如图所示的统计图表(不完整).下列说法正确的是()A.这次被调查的学生人数为480人B.喜欢选修课C对应扇形的圆心角为60°C.喜欢选修课A的人数最少D.这次被调查的学生喜欢选修课F的人数为80人4.如图为某校学生到校方式统计图,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.80人B.125人C.180人D.200人5.某校举办了一次“交通安全知识”测试,王老师从全校学生的答卷中随机地抽取了200名学生的答卷,并将测试成绩分为A,B,C,D四个等级,绘制成如图所示的条形统计图.若该校学生共有1000人,则该校成绩为A的学生人数估计为()A.30B.75C.150D.2006.为了解某校学生今年元宵节期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数分布直方图.已知该校共有1000名学生据此估计,该校元宵节期间参加社团活动时间在8~10小时之间的学生人数大约是()A.360名B.320名C.300名D.280名7.某校有600名七年级学生共同参加每分钟跳绳次数测试,并随机抽取若干名学生成绩统计成频数直方图(如图).若每分钟跳绳次数达到100次以上(包括100次)的学生成绩为“合格”,则参加测试的学生成绩为“合格”的人数约为()A.40B.160C.400D.5608.如图是某校九年级(1)班50名同学体育模拟测试成绩统计图(满分为40分,成绩均为整数),若不低于35分的成绩为合格,则该班此次成绩的合格率是()A.60%B.80%C.44%D.72%9.为了解某校九年级学生的体能情况,随机抽查了该校九年级若干名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的直方图,请根据图示计算,仰卧起坐次数在25~30次的学生人数占被调查学生人数的百分比为()A .10%B .20%C .30%D .40%10.郑州市实施垃圾分类以来,为了调动居民参与垃圾分类的积极性,学府小区开展了垃圾分类积分兑换奖品活动.随机抽取了若干户12月份的积分情况,并对抽取的样本进行了整理得到下列不完整的统计表:根据以上信息可得( ) A .0.2a = B .0.3a =C .0.4a =D .0.5a =二、填空题11.某校共有学生1200人,为了了解学生用手机参与“空中课堂”学习的情况,随机调查了该校400名学生,其中320人用手机参与“空中课堂”学习,由此估计该校用手机参与“空中课堂”学习的人数大约为__人.12.一学校图书馆理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知甲类书有225本,则丙类书有__本.13.以下调查:①了解全班同学每周体育锻炼的时间;②调查某批次汽车的抗撞击能力;③调查新闻联播的收视率.其中,适合全面调查的是__(填序号即可).14.为了解六年级学生掌握游泳技能的情况.在全区六年级7200名学生中,随机抽取了600名学生,结果有240名学生会游泳,那么估计该区会游泳的六年级学生数约为_________人.15.某工厂生产了一批零件共2000件,从中任意抽取了100件进行检查,其中不合格产品2件,则可估计这批零件中约有________件不合格.16.将样本容量为100的样本编制成组号①~⑧的八个组,简况如下表所示:那么第④组的频率是___________.17.在就地过年倡议下,更多游客缩小出游半径,本地游、近郊游、周边游取代异地长线游,成为牛年出行新趋势.某地区对近郊游的住宿环境、餐饮、服务等方面对所住游客进行了综合满意度调查,在甲,乙两个景点都去过的的游客中随机抽取了100人,每人分别对这两个景点进行了评分,统计如下:若小聪要在甲,乙两个景点中选择一个景点,根据表格中数据,你建议她去_________景点(填甲或乙),理由是_________.18.2021年春季各校采取年段错峰用餐,某校为了了解学生在校午餐所需时间,抽取20名学生在校用餐时间,并绘制成频数分布直方图(如图),根据图象信息,预估该校学生平均用餐时间是______分钟.三、解答题19.针对春节期间新型冠状病毒事件,九(1)班学生参加学校举行的“珍惜生命.远离病毒”知识竞赛初赛,赛后班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).根据情况画出的扇形图如图,请解答下列问题:(1)该班总人数为;(2)频数分布表中a=,并补全频数分布直方图中的“A”和“D”部分;(3)扇形统计图中,类别B所在扇形的圆心角是度.(4)全校共有720名学生参加初赛,估计该校成绩“D”(90≤x<100范围内)的学生有多少人?20.在某项针对18~35岁的青年人每天发朋友圈数量的调查中,设一个人的“日均发朋友圈条数”为m,规定:当m≥5时为A级,当3≤m<5时为B级,当0≤m<3时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发朋友圈条数”的调查,所抽青年人的“日均发朋友圈条数”的数据如下:(1)求样本数据中为A级的频率;(2)试估计2000 名18~35 岁的青年人中“日均发朋友圈条数”为A级的人数;(3)若将此次调查的数据绘制成“日均发朋友圈条数的扇形统计图”,则C级所对应扇形的圆心角为度.21.为了解八年级学生参加社会实践活动的情况,某区教育部门随机抽查了本区八年级部分学生,对他们第一学期参加社会实践活动的天数进行统计,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:(1)本次抽查的学生人数为________,图①中的m的值为__________;(2)求统计的这组数据的众数、中位数和平均数;(3)若该区八年级学生有2000人,估计其中参加社会实践活动的时间大于7天的学生人数.22.2020年初我国新冠肺炎疫情牵动全国人民的心某社区积极组织社区居民为疫情地区的人民献爱心活动为了解该社区居民捐款情况,对社区部分捐款户数进行分组统计(统计表如下),数据整理成如图所示的不完整统计图已知A、B两组捐款户数直方图的高度比为1:5,请结合图中相关数据回答下列问题.捐款分组统计表(1)A组的频数是多少?本次调查样本的容量是多少?(2)求出C组的频数并补全直方图;(3)若该社区有500户住户,请估计捐款不少于300元的户数是多少?23.初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将条形统计图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?24.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.某中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有名;(2)补全上面的条形统计图1;(3)计算喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(4)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?。
专题10 新定义型问题(原卷版)-2021年中考数学必考的十五种类型大题夺分技巧再训练
专题10 新定义型问题1.定义一种新运算“⊕”:a⊕b = 2a-b,比如1⊕(-3) =2×1-(-3)=5(1)求(-2)⊕3的值:(2)若3⊕x = (x + 1)⊕5,求x的值;(3)若x⊕1 = 1⊕y,求代数式4x + 2y + 1的值.2.对数运算是高中常用的一种重要运算,它的定义为:如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=log a N,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N 可记为lgN.当a>0,且a≠1,M>0,N>0时,log a(M•N)=log a M+log a N.(1)解方程:log x4=2;(2)求值:log48;(3)计算:(lg2)2+lg2•1g5+1g5﹣20183.阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a1,排在第二位的数称为第二项,记为a2,依此类推,排在第n位的数称为第n项,记为a n.所以,数列的一般形式可以写成:a1,a2,a3,…,a n,….一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示.如:数列1,3,5,7,…为等差数列,其中a1=1,a2=3,公差为d=2.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d为,第5项是.(2)如果一个数列a1,a2,a3,…,a n…,是等差数列,且公差为d,那么根据定义可得到:a2﹣a1=d,a3﹣a2=d,a4﹣a3=d,…,a n﹣a n﹣1=d,….所以a2=a1+da3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=(a1+2d)+d=a1+3d,……由此,请你填空完成等差数列的通项公式:a n=a1+()d.(3)﹣4041是不是等差数列﹣5,﹣7,﹣9…的项?如果是,是第几项?4.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =α,请用含α的代数式表示∠E .(2)如图2,四边形ABCD 内接于⊙O ,AD =BD ,四边形ABCD 的外角平分线DF 交⊙O 于点F ,连结BF 并延长交CD 的延长线于点E .求证:∠BEC 是△ABC 中∠BA C 的遥望角.(3)如图3,在(2)的条件下,连结AE ,AF ,若AC 是⊙O 的直径.①求∠AED 的度数;②若AB =8,CD =5,求△DEF 的面积.5.在平面直角坐标系xOy 中,给出如下定义:若点P 在图形M 上,点Q 在图形N 上,如果PQ 两点间的距离有最小值,那么称这个最小值为图形,M N 的“近距离”,记为,()d M N .特别地,当图形M 与图形N 有公共点时,(,)=0d M N .已知A (-4,0),B (0,4),C (4,0),D (0,-4),(1)d (点A ,点C )=________,d (点A ,线段BD )=________;(2)⊙O 半径为r ,① 当r = 1时,求 ⊙O 与正方形ABCD 的“近距离”d (⊙O ,正方形ABCD );② 若d (⊙O ,正方形ABCD )=1,则r =___________.(3)M 为x 轴上一点,⊙M 的半径为1,⊙M 与正方形ABCD 的“近距离”d (⊙M ,正方形ABCD )<1,请直接写出圆心M 的横坐标 m 的取值范围.6.如果实数a ,b 满足a b ab -=的形式,那么a 和b 就是“智慧数”,用(),a b 表示. 如:由于222233-=⨯,所以22,3⎛⎫ ⎪⎝⎭是“智慧数”. (1)下列是“智慧数”的是 (填序号);① 1.2-和6,② 92和3-,③ 12-和1-. (2)如果()3,☆是“智慧数”,那么“☆”的值为 ;(3)如果(),x y 是“智慧数”,①y 与x 之间的关系式为y = ;②当x >0时,y 的取值范围是 ;③在②的条件下,y 随x 的增大而 (填“增大”,“减小”或“不变”).7.把y ax b =+(其中a 、b 是常数,x 、y 是未知数)这样的方程称为“雅系二元一次方程”当y x =时,“雅系二元一次方程y ax b =+”中x 的值称为“雅系二元一次方程”的“完美值”.例如:当y x =时,雅系二元一次方程”34y x =-化为34x x =-,其“完美值”为2x =.(1)求“雅系二元一次方程”56y x =-+的“完美值”;(2)3x =是“雅系二元一次方程”3y x m =+的“完美值”,求m 的值;(3)“雅系二元一次方程”1y kx =+(0k ≠,k 是常数)存在“完美值”吗?若存在,请求出其“完美值”,若不存在,请说明理由.8.如果关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程x 2+x =0的两个根是x 1=0,x 2=﹣1,则方程x 2+x =0是“邻根方程”.(1)通过计算,判断方程2x 2﹣23x +1=0是否是“邻根方程”?(2)已知关于x 的方程x 2﹣(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程”,求m 的值;(3)若关于x 的方程ax 2+bx +1=0(a ,b 是常数,a >0)是“邻根方程”,令t =12a ﹣b 2,试求t 的最大值.9.阅读理解:给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的一半,则这个矩形是给定矩形的“减半”矩形.如图,矩形1111D C B A 是矩形ABCD 的“减半”矩形.请你解决下列问题:(1)当矩形的长和宽分别为1,7时,它是否存在“减半”矩形?请作出判断,并说明理由.(2)边长为a的正方形存在“减半”正方形吗?如果存在,求出“减半”正方形的边长;如果不存在,请说明理由.10.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,比如指数式24=16可以转化为对数式4=log216,对数式2=log525,可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0),理由如下:设log a M=m,log a N=n,则M=a m,N=a n,∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式;(2)求证:log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log69+log68﹣log62=.11.阅读下面的材料:如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.例题:证明函数f(x)=(x>0)是减函数.证明:设0<x1<x2,f(x1)﹣f(x2)=﹣==.∵0<x1<x2,∴x2﹣x1>0,x1x2>0.∴>0.即f(x1)﹣f(x2)>0.∴f(x1)>f(x2).∴函数f(x)═(x>0)是减函数.根据以上材料,解答下面的问题:已知函数f(x)=+x(x<0),f(﹣1)=+(﹣1)=0,f(﹣2)=+(﹣2)=﹣(1)计算:f(﹣3)=,f(﹣4)=;(2)猜想:函数f(x)=+x(x<0)是函数(填“增”或“减”);(3)请仿照例题证明你的猜想.12.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2,22,﹣22}=;②min{sin30°,cos60°,tan45°}=;(2)若M{﹣2x,x2,3}=2,求x的值;(3)若min{3﹣2x,1+3x,﹣5}=﹣5,求x的取值范围.【阅读】数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.【理解】(1)如图1,两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;(2)如图2,n行n列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:n2=;【运用】(3)n边形有n个顶点,在它的内部再画m个点,以(m+n)个点为顶点,把n边形剪成若干个三角形,设最多可以剪得y个这样的三角形.当n=3,m=3时,如图3,最多可以剪得7个这样的三角形,所以y=7.①当n=4,m=2时,如图4,y=;当n=5,m=时,y=9;②对于一般的情形,在n边形内画m个点,通过归纳猜想,可得y=(用含m、n的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.13,那么称这个三角形为“神奇三角形”.(1)已知:Rt△ABC中,∠ACB=90°.①当AC=BC时,求证:△ABC是“神奇三角形”;②当AC≠BC时,且△ABC是“神奇三角形”,求tan A的值;(2)如图,在△ABC中,AB=AC,CD是AB边上的中线,若∠DCB=45°,求证:△ABC是“神奇三角形”.。
中考数学:新定义创新型综合压轴问题真题+模拟(原卷版北京专用)
中考数学新定义创新型综合压轴问题【方法归纳】新定义"型问题是指在问题中定义了初中数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识进行理解,而后根据新定义进行运算、推理、迁移的一种题型。
它一般分为三种类型:(1)定义新运算;(2)定义初、高中知识衔接"新知识";(3)定义新概念.这类试题考查考生对"新定义"的理解和认识,以及灵活运用知识的能力,解题时需要将"新定义"的知识与已学知识联系起来,利用已有的知识经验来解决问题。
解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。
北京中考最后一题的新定义主要涉及函数与圆的有关新定义问题,属于函数的范畴,已经考过“对应点”、“关联线段”、“平移距离”“闭距离”、“相关矩形”、“反称点”、“有界函数”、“关联点”等新定义。
在平时的教学过程中要从细节中挖掘出数学的本质特征,引领学生找到解决问题的思想方法。
解答这类问题的关键是要读懂题目提供的新知识,理解其本质,把它与已学的知识联系起来,把新的问题转化为已学的知识进行解决。
【典例剖析】【例1】(2022·北京·中考真题)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上,若点P(−2,0),点Q为点P的“对应点”.①在图中画出点Q;OM;②连接PQ,交线段ON于点T.求证:NT=12(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t(1<t<1),若P为⊙O外2一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时直接写出PQ长的最大值与最小值的差(用含t的式子表示)【例2】(2021·北京·中考真题)在平面直角坐标系xOy中,⊙O的半径为1,对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B′C′(B′,C′分别是B,C的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,的横、纵坐标都是整数.在线段B1C1,B2C2,B3C3中,⊙O 的以点A为中心的“关联线段”是______________;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是⊙O的以点A为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC长.【真题再现】1.(2020·北京·中考真题)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦A′B′(A′,B′分别为点A,B的对应点),线段AA′长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦P 1P 2和P 3P 4,则这两条弦的位置关系是 ;在点P 1,P 2,P 3,P 4中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =√3x +2√3上,记线段AB 到⊙O 的“平移距离”为d 1,求d 1的最小值;(3)若点A 的坐标为(2,32),记线段AB 到⊙O 的“平移距离”为d 2,直接写出d 2的取值范围.2(2019·北京·中考真题)在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE⌢上的所有点都在△ABC 的内部或边上,则称DE⌢为△ABC 的中内弧.例如,下图中DE ⌢是△ABC 的一条中内弧.(1)如图,在Rt △ABC 中,AB =AC =2√2,D ,E 分别是AB ,AC 的中点.画出△ABC 的最长的中内弧DE⌢,并直接写出此时DE ⌢的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t >0),在△ABC 中,D ,E 分别是AB ,AC 的中点.①若t =12,求△ABC 的中内弧DE⌢所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧DE⌢,使得DE ⌢所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.3.(2018·北京·中考真题)对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ).已知点A (−2,6),B (−2,−2),C (6,−2).(1)求d (点O ,△ABC );(2)记函数y =kx (−1≤x ≤1,k ≠0)的图象为图形G ,若d (G ,△ABC )=1,直接写出k 的取值范围;(3)⊙T 的圆心为T (t ,0),半径为1.若d (⊙T ,△ABC )=1,直接写出t 的取值范围. 4.(2017·北京·中考真题)在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 存在一点Q ,使得P 、Q 两点间的距离小于或等于1,则称P 为图形M 的关联点.(1)当⊙O 的半径为2时,①在点P 1(12,0),P 2(12,√32),P 3(52,0) 中,⊙O 的关联点是_______________. ②点P 在直线y=-x 上,若P 为⊙O 的关联点,求点P 的横坐标的取值范围.(2)⊙C 的圆心在x 轴上,半径为2,直线y=-x+1与x 轴、y 轴交于点A 、B .若线段AB 上的所有点都是⊙C 的关联点,直接写出圆心C 的横坐标的取值范围.5.(2016·北京·中考真题)在平面直角坐标系xOy 中,点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2),且x 1≠x 2,y 1≠y 2,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).①若点B 的坐标为(3,1)求点A ,B 的“相关矩形”的面积;②点C 在直线x=3上,若点A ,C 的“相关矩形”为正方形,求直线AC 的表达式;(2)⊙O 的半径为,点M 的坐标为(m ,3).若在⊙O 上存在一点N ,使得点M ,N 的“相关矩形”为正方形,求m 的取值范围.6.(2015·北京·中考真题)在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.,0),T(1,√3)关于⊙O的反称点是否存在?若存在,求①分别判断点M(2,1),N(32其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;x+2√3与x轴、y轴分别交于点A,B,若(2)⊙C的圆心在x轴上,半径为1,直线y=﹣√33线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.7.(2014·北京·中考真题)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足−M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(x>0)和y=x+1(−4<x≤2)是不是有界函数?若是有界函数,(1)分别判断函数y=1x求其边界值;(2)若函数y=−x+1(a⩽x⩽b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(−1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值≤t≤1?是t,当m在什么范围时,满足348.(2013·北京·中考真题)对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得∠APB=60°,则称P 为⊙C 的关联点.已知点D (,),E (0,-2),F (,0)(1)当⊙O 的半径为1时,①在点D ,E ,F 中,⊙O 的关联点是 ;②过点F 作直线交y 轴正半轴于点G ,使∠GFO=30°,若直线上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.【模拟精练】一、解答题1.(2022·北京朝阳二模)在平面直角坐标系xOy 中,⊙O 的半径为1,AB =1,且A ,B 两点中至少有一点在⊙O 外.给出如下定义:平移线段AB ,得到线段A ′B ′(A ′,B ′分别为点A ,B 的对应点),若线段A ′B ′上所有的点都在⊙O 的内部或⊙O 上,则线段AA ′长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图1,点A 1,B 1的坐标分别为(-3,0),(-2,0),线段A 1B 1到⊙O 的“平移距离”为___,点A 2,B 2的坐标分别为(-12,√3),(12,√3),线段A 2B 2到⊙O 的“平移距离”为___;(2)若点A,B都在直线y=√3x+2√3上,记线段AB到⊙O的“平移距离”为d,求d的最小值;(3)如图2,若点A坐标为(1,√3),线段AB到⊙O的“平移距离”为1,画图并说明所有满足条件的点B形成的图形(不需证明).2.(2022·北京北京·二模)在平面直角坐标系xOy中,⊙O的半径为1.对于线段PQ给出如下定义:若线段PQ与⊙O有两个交点M,N,且PM=MN=NQ,则称线段PQ是⊙O的“倍弦线”.(1)如图,点A,B,C,D的横、纵坐标都是整数.在线段AB,AD,CB,CD中,⊙O的“倍弦线”是_____________;(2)⊙O的“倍弦线”PQ与直线x=2交于点E,求点E纵坐标y E的取值范围;(3)若⊙O的“倍弦线”PQ过点(1,0),直线y=x+b与线段PQ有公共点,直接写出b的取值范围.3.(2022·北京大兴·二模)在平面直角坐标系xOy中,对于点P和直线y=1,给出如下定义:若点P在直线y=1上,且以点P为顶点的角是45°,则称点P为直线y=1的“关联点”.(1)若在直线x=1上存在直线y=1的“关联点”P.则点P的坐标为_____;(2)过点P(2,1)作两条射线,一条射线垂直于x轴,垂足为A;另一条射线、交x轴于点B,若点P为直线y=1的“关联点”.求点B的坐标;(3)以点O为圆心,1为半径作圆,若在⊙O上存在点N,使得∠OPN的顶点P为直线y=1的“关联点”.则点P的横坐标a的取值范围是________.4.(2022·北京东城·二模)在平面直角坐标系xOy中,对于图形G及过定点P(3,0)的直线l,有如下定义:过图形G上任意一点Q作QH⊥l于点H,若QH+PH有最大值,那么称这个最大值为图形G关于直线l的最佳射影距离,记作d(G,l),此时点Q称为图形G关于直线l的最佳射影点.(1)如图1,已知A(2,2),B(3,3),写出线段AB关于x轴的最佳射影距离d(AB,x轴)=____________;(2)已知点C(3,2),⊙C的半径为√2,求⊙C关于x轴的最佳射影距离d(⊙C,x轴),并写出此时⊙C关于x轴的最佳射影点Q的坐标;(3)直接写出点D(0,√3)关于直线l的最佳射影距离d(点D,l)的最大值.5.(2022·北京·清华附中一模)在平面直角坐标系xOy中,对于两个点P,Q和图形W,如果在图形W上存在点M,N(M,N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对平衡点.(1)如图1,已知点A(0,3),B(2,3);①设点O与线段AB上一点的距离为d,则d的最小值是______,最大值是______;,0),P2(1,4),P3(−3,0)这三个点中,与点O是线段AB的一对平衡点的是______.②在P1(32(2)如图2,已知⊙O的半径为1,点D的坐标为(5,0).若点E(x,2)在第一象限,且点D 与点E是⊙O的一对平衡点,求x的取值范围;(3)如图3,已知点H(−3,0),以点O为圆心,OH长为半径画弧交x的正半轴于点K.点C(a,b)(其中b≥0)是坐标平面内一个动点,且OC=5,⊙C是以点C为圆心,半径为2的圆,若HK上的任意两个点都是⊙C的一对平衡点,直接写出b的取值范围.6.(2022·北京丰台·一模)在平面直角坐标系xOy中,⊙O的半径为1,T(0,t)为y轴上一点,P为平面上一点.给出如下定义:若在⊙O上存在一点Q,使得△TQP是等腰直角三角形,且∠TQP=90°,则称点P为⊙O的“等直点”,△TQP为⊙O的“等直三角形”.如图,点A,B,C,D的横、纵坐标都是整数.(1)当t=2时,在点A,B,C,D中,⊙O的“等直点”是;(2)当t=3时,若△TQP是⊙O“等直三角形”,且点P,Q都在第一象限,求CP的值.OQ 7.(2022·北京市第一六一中学分校一模)在平面直角坐标系xOy中,对于点P和图形W,如果线段OP与图形W无公共点,则称点P为关于图形W的“阳光点”;如果线段OP与图形W有公共点,则称点P为关于图形W的“阴影点”.(1)如图1,已知点A(1,3),B(1,1),连接AB.①在P1(1,4),P2(1,2),P3(2,3),P4(2,1)这四个点中,关于线段AB的“阳光点”是;②线段A1B1∥AB,A1B1上的所有点都是关于线段AB的“阴影点”,且当线段A1B1向上或向下平移时,都会有A1B1上的点成为关于线段AB的“阳光点”,若,A1B1的长为4,且点A1在B1的上方,则点A1的坐标为.(2)如图2,已知点C(1,√3),⊙C与y轴相切于点D,若⊙E的半径为3,圆心E在直线2l:y=−√3x+4√3上,且⊙E的所有点都是关于⊙C的“阴影点”,求点E的横坐标的取值范围;(3)如图3,⊙M的半径为3,点M到原点的距离为5,点N是⊙M上到原点距离最近的点,点Q和T是坐标平面的两个动点,且⊙M上的所有点都是关于△NQT的“阴影点”直接写出△NQT的周长的最小值.8.(2022·北京市第五中学分校模拟预测)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“冰雪距离”,已知O(0,0),A(1,√2),B (m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当m=2√2,n=√2时,如图1,线段BC与线段OA的“冰雪距离”是;②当m=2√2时,线段BC与线段OA的“冰雪距离”是√2,则n的取值范围是;(2)如图2,若点B落在圆心为A,半径为√2的圆上,当n≥√2时,线段BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”始终为√2,线段BC的中点为M.直接写出点M随线段BC运动所走过的路径长.9.(2022·北京市师达中学模拟预测)如果一个圆上所有的点都在一个角的内部或边上,那么称这个圆为该角的角内圆.特别地,当这个圆与角的至少..一边相切时,称这个圆为该角的角内相切圆.在平面直角坐标系xOy中,点E,F分别在x轴的正半轴和y轴的正半轴上.(1)分别以点A(1,0),B(1,1),C(3,2)为圆心,1为半径作圆,得到⊙A,⊙B和⊙C,其中是∠EOF的角内圆的是;(2)如果以点D(t,2)为圆心,以1为半径的⊙D为∠EOF的角内圆,且与直线y=x有公共点,求t的取值范围;(3)点M在第一象限内,如果存在一个半径为1且过点P(2,2√3)的圆为∠EMO的角内相切圆,直接写出∠EOM的取值范围.10.(2021·北京朝阳·二模)在平面直角坐标系xOy中,对于图形Q和∠P,给出如下定义:若图形Q上的所有的点都在∠P的内部或∠P的边上,则∠P的最小值称为点P对图形Q的可视度.如图1,∠AOB的度数为点O对线段AB的可视度.(1)已知点N(2,0),在点M1(0,2√3),M2(1,√3),M3(2,3)中,对线段ON的可视度为360º的点是______.(2)如图2,已知点A(-2,2),B(-2,-2),C(2,-2),D(2,2),E(0,4).①直接写出点E对四边形ABCD的可视度为______°;②已知点F(a,4),若点F对四边形ABCD的可视度为45°,求a的值.11.(2022·北京四中模拟预测)在平面内,对点组A1,A2,...,An和点P给出如下定义:点P与点A1,A2,...,An的距离分别记作d1,d2,...,dn,数组d1,d2,...,dn的中位数称为点P对点组A1,A2,...,An的中位距离.例如,对点组A1(0,0),A2(0,3),A3(4,1)和点P(4,3),有d1=5,d2=4,d3=2,故点P对点组A1,A2,A3的中位距离为4.(1)设Z1(0,0),Z2(4,0),Z304),Y(0,3),直接写出点Y对点组Z1,Z2,Z3的中位距离;(2)设C1(0,0),C2(8,0),C3(6,6),则点Q1(7,3),Q2(3,3),Q3(4,0),Q4(4,2)中,对点组C1,C2,C3的中位距离最小的点是,该点对点组C1,C2,C3的中位距离为;(3)设M(1,0),N(0,√3),T1(t,0),T2(t+2,0),T3(t,2),若线段MN上任意一点对点组T1,T2,T3的中位距离都不超过2,直接写出实数t的取值范围.12.(2020·北京·人大附中模拟预测)在平面直角坐标系xOy中,对于平面中的点P,Q和图形M,若图形M上存在一点C,使∠PQC=90°,则称点Q为点P关于图形M的“折转点”,称△PCQ为点P关于图形M的“折转三角形”(1)已知点A(4,0),B(2,0)①在点Q1(2,2),Q2(1,−√3),Q3(4,−1)中,点O关于点A的“折转点”是______;②点D在直线y=−x上,若点D是点O关于线段AB的“折转点”,求点D的横坐标x D的取值范围;(2)⊙T的圆心为(t,0),半径为3,直线y=x+2与x,y轴分别交于E,F两点,点P为⊙T 上一点,若线段EF上存在点P关于⊙T的“折转点”,且对应的“折转三角形”是底边长为2的等腰三角形,直接写出t的取值范围.13.(2020·北京市陈经纶中学分校三模)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”的对于图形W1和图形W2,若图形W1和图形W2分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形W1和图形W2是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点A(1,0),点C(2,1),①下列四个点P1(0,1),P2(2,2),P3(−12,0),P4(−12,−√32)中,与点A是“中心轴对称”的是________;②点E在射线OB上,若点E与正方形ABC D是“中心轴对称”的,求点E的横坐标x E的取值范围;(2)四边形GHJK的四个顶点的坐标分别为G(−2,2),H(2,2),J(2,−2),K(−2,−2),一次函数y=√3x+b图象与x轴交于点M,与y轴交于点N,若线段与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.14.(2022·北京房山·二模)对于平面直角坐标系xOy中的图形G和点Q,给出如下定义:将图形G绕点Q顺时针旋转90°得到图形N,图形N称为图形G关于点Q的“垂直图形”,例如,图1中线段OD为线段OC关于点O的“垂直图形”.(1)线段MN关于点M(1,1)的“垂直图形”为线段MP.①若点N的坐标为(1,2),则点P的坐标为__________;②若点P的坐标为(4,1),则点N的坐标为__________;(2)E(−3,3),F(−2,3),H(a,0).线段EF关于点H的“垂直图形”记为E′F′,点E的对应点为E′,点的对应点为F′.①求点E′的坐标(用含a的式子表示);②若⊙O的半径为2,E′F′上任意一点都在⊙O内部或圆上,直接写出满足条件的EE′的长度的最大值.15.(2022·北京丰台·xOy中,⊙O的半径为1,A为任意一点,B 为⊙O上任意一点,给出如下定义:记A,B两点间的距离的最小值为p(规定:点A在⊙O上时,p=0),最大值为q,那么把p+q的值称为点A与⊙O的“关联距离”,记作d(A,2⊙O)(1)如图,点D,E,F的横、纵坐标都是整数①d(D,⊙O)=__________;②若点M在线段EF上,求d(M,⊙O)的取值范围;(2)若点N在直线y=√3x+2√3上,直接写出d(N,⊙O)的取值范围;(3)正方形的边长为m,若点P在该正方形的边上运动时,满足d(P,⊙O)的最小值为1,最大值为√10,直接写出m的最小值和最大值.16.(2022·北京平谷·二模)对于平面直角坐标系xOy中的图形P,Q,给出如下定义:M为图形P上任意一点,N为图形Q上任意一点,如果M,N两点间的距离有最小值,那么称这个最小值为图形P,Q间的“非常距离”,记作d(P,Q).已知点A(−2,2),B(2,2),连接AB.(1)d(点O,AB)=;(2)⊙O半径为r,若d(⊙O,AB)=0,直接写出r的取值范围;(3)⊙O半径为r,若将点A绕点B逆时针旋转α°(0°<α<180°),得到点A′.①当α=30°时d(⊙O,A′)=0,求出此时r的值;②对于取定的r值,若存在两个α使d(⊙O,A′)=0,直接写出r的范围.17.(2022·北京密云·二模)对于平面直角坐标系xOy中的点P(2,3)与图形T,给出如下定义:在点P与图形T上各点连接的所有线段中,线段长度的最大值与最小值的差,称为图形T关于点P的“宽距”.(1)如图,⊙O的半径为2,且与x轴分别交于A,B两点.①线段AB关于点P的“宽距”为______;⊙O关于点P的“宽距”为______.②点M(m,0)为x轴正半轴上的一点,当线段AM关于点P的“宽距”为2时,求m的取值范围.(2)已知一次函数y=x+1的图象分别与x轴、y轴交于D、E两点,⊙C的圆心在x轴上,且⊙C的半径为1.若线段DE上的任意一点K都能使得⊙C关于点K的“宽距”为2,直接写出圆心C的横坐标x C的取值范围.18.(2022·北京门头沟·二模)我们规定:如图,点H在直线MN上,点P和点P′均在直线MN的上方,如果HP=HP′,∠PHM=∠P′HN,点P′就是点P关于直线MN的“反射点”,其中点H为“V点”,射线HP与射线HP′组成的图形为“V形”.在平面直角坐标系xOy中,(1)如果点P(0,3) ,H(1.5,0),那么点P关于x轴的反射点P′的坐标为;(2)已知点A(0,a) ,过点A作平行于x轴的直线l.①如果点B(5,3) 关于直线l的反射点B′和“V点”都在直线y=−x+4上,求点B′的坐标和a的值;②⊙W是以(3,2) 为圆心,1为半径的圆,如果某点关于直线l的反射点和“V点”都在直线y=−x+4上,且形成的“V形”恰好与⊙W有且只有两个交点,求a的取值范围.19.(2022·北京东城·一模)对于平面直角坐标系xOy中的点C及图形G,有如下定义:若图形G上存在A,B两点,使得△ABC为等腰直角三角形,且∠ABC=90°,则称点C为图形G的“友好点”.(1)已知点O(0,0),M(4,0),在点C1(0,4),C2(1,4),C3(2,−1)中,线段OM的“友好点”是_______;(2)直线y=−x+b分别交x轴、y轴于P,Q两点,若点C(2,1)为线段PQ的“友好点”,求b 的取值范围;(3)已知直线y=x+d(d>0)分别交x轴、y轴于E,F两点,若线段EF上的所有点都是半径为2的⊙O的“友好点”,直接写出d的取值范围.20.(2022·北京顺义·二模)在平面直角坐标系xOy中,对于点R和线段PQ,给出如下定义:M为线段PQ上任意一点,如果R,M两点间的距离的最小值恰好等于线段PQ的长,则称点R为线段PQ的“等距点”.(1)已知点A(5,0).①在点B1(−3,4),B2(1,5),B3(4,−3),B4(3,6)中,线段OA的“等距点”是______;②若点C在直线y=2x+5上,并且点C是线段OA的“等距点”,求点C的坐标;(2)已知点D(1,0),点E(0,−1),图形W是以点T(t,0)为圆心,1为半径的⊙T位于x轴及x 轴上方的部分.若图形W上存在线段DE的“等距点”,直接写出t的取值范围.21.(2022·北京市十一学校模拟预测)在平面直角坐标系xOy中,给出如下定义:点P为图形G上任意一点,将点P到原点O的最大距离与最小距离之差定义为图形G的“全距”.特别地,点P到原点O的最大距离与最小距离相等时,规定图形G的“全距”为0.(1)已知,点A(−4√2,2),B(2√2,2).①原点O到线段AB上一点的最大距离为_______,最小距离为_______;②当点C的坐标为(0,m)时,且△ABC的“全距”为4,求m的取值范围;(2)已知OM=7,等边△DEF的三个顶点均在半径为3的⊙M上.求△DEF的“全距”d的取值范围.22.(2022·北京房山·二模)对于平面直角坐标系xOy中的图形W1和图形W2.给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N,(点M、N 可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系(1)如图1,点C(√3,0),D(0,−1),E(0,1),点P在线段CE上运动(点P可以与点C,E重合),连接OP,DP.①线段OP的最小值为__________,最大值为__________;线段DP的取值范围是__________;②在点O,点D中,点__________与线段EC满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点F横坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,2为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r的取值范围.23.(2022·北京昌平·二模)在平面直角坐标系xOy中,⊙O的半径为1,对于△ABC和直线l给出如下定义:若△ABC的一条边关于直线l的对称线段PQ是⊙O的弦,则称△ABC是⊙O 的关于直线l的“关联三角形”“关联轴”.(1)如图1,若△ABC是⊙O的关于直线l的“关联三角形”,请画出△ABC与⊙O的“关联轴”(至少画两条);(2)若△ABC中,点A坐标为(2,3),点B坐标为(4,1),点C在直线y=−x+3的图像上,存在“关联轴l”使△ABC是⊙O的关联三角形,求点C横坐标的取值范围;(3)已知A(√3,1),将点A向上平移2个单位得到点M,以M为圆心MA为半径画圆,B,C为⊙M 上的两点,且AB=2(点B在点A右侧),若△ABC与⊙O的关联轴至少有两条,直接写出OC 的最小值和最大值,以及OC最大时AC的长.24.(2022·北京市十一学校二模)对于平面直角坐标系xOy中的图形W,给出如下定义:点P是图形W上任意一点,若存在点Q,使得∠OQP是直角,则称点Q是图形W的“直角点”.(1)已知点A(6,8),在点Q1(5,0),Q2(−2,4),Q3(9,5)中,________是点A的“直角点”;(2)已知点B(-4,4),C(3,4),若点Q是线段BC的“直角点”,求点Q的横坐标n的取值范围;(3)在(2)的条件下,已知点D(m-1,0),E(m,0),以线段DE为边在x轴上方作正方形DEFG.若正方形DEFG上的所有点均为线段BC的“直角点”,求m的取值范围.25.(2022·北京通州·一模)在平面直角坐标系xOy中,给出如下定义:点P为图形G上任意―点,将点P到原点O的最大距离与最小距离之差定义为图形G的“全距”.特别地,点P 到原点O的最大距离与最小距离相等时,规定图形G的“全距”为0.(1)如图,点A(−√3,1),B(√3,1).①原点O到线段AB上一点的最大距离为______,最小距离为______;②当点C的坐标为(0,m)时,且△ABC的“全距”为1,求m的取值范围;(2)已知OM=2,等边△DEF的三个顶点均在半径为1的⊙M上.请直接写出△DEF的“全距”d 的取值范围.26.(2022·北京石景山·一模)在平面直角坐标系xOy中,点P不在坐标轴上,点P关于x 轴的对称点为P1,点P关于y轴的对称点为P2,称△P1PP2为点P的“关联三角形”.(1)已知点A(1,2),求点A的“关联三角形”的面积;(2)如图,已知点B(m,n),⊙T的圆心为T(2,2),半径为2.若点B的“关联三角形”与⊙T 有公共点,直接写出m的取值范围;(3)已知⊙O的半径为r,OP=2r,若点P的“关联三角形”与⊙O有四个公共点,直接写出∠PP1P2的取值范围.27.(2022·北京一七一中一模)已知平面直角坐标系xOy中,对于线段MN及P、Q,若∠MPN= 45°且线段MN关于点P的中心对称线段M′N′恰好经过点Q,则称Q是点P的线段MN−45°对经点.(1)设点A(0,2),①Q1(4,0),Q2(2,2),Q3(2+√7,1),其中为某点P的线段OA−45°对经点的是___________.②选出①中一个符合题意的点Q,则此时所对应的对称中心P的坐标为.③已知B(0,1),设⊙B的半径是r,若⊙B上存在某点P的线段OA−45°对经点,求r的取值范围.(2)已知C(0,t),D(0,−t)(t>0),若点Q(4,0)同时是相异两点P1,P2的线段CD−45°对经点,直接写出t的取值范围.28.(2022·北京大兴·一模)在平面直角坐标系xOy中,⊙O的半径为1,已知点A,过点A 作直线MN.对于点A和直线MN,给出如下定义:若将直线MN绕点A顺时针旋转,直线MN与⊙O有两个交点时,则称MN是⊙O的“双关联直线”,与⊙O有一个交点P时,则称MN是⊙O的“单关联直线”,AP⊙O的“单关联线段”.(1)如图1,A(0,4),当MN与y轴重合时,设MN与⊙O交于C,D两点.则MN是⊙O的“______的值为______;关联直线”(填“双”或“单”);ACAD(2)如图2,点A为直线y=−3x+4上一动点,AP是⊙O的“单关联线段”.①求OA的最小值;②直接写出△APO面积的最小值.29.(2022·北京市燕山教研中心一模)对于平面直角坐标系xOy中的线段PQ,给出如下定义:若存在△PQR使得S△PQR=PQ2,则称△PQR为线段PQ的“等幂三角形”,点R称为线段PQ 的“等幂点”.(1)已知A(2,0).①在点P1(2,4),P2(1,2),P3(−4,1),P4(1,−4)中,线段OA的“等幂点”是____________;②若存在等腰△OAB是线段OA的“等幂三角形”,求点B的坐标;(2)已知点C的坐标为C(2,−1),点D在直线y=x−3上,记图形M为以点T(1,0)为圆心,2为半径的⊙T位于x轴上方的部分.若图形M上存在点E,使得线段CD的“等幂三角形”△CDE 为锐角三角形,直接写出点D的横坐标x D的取值范围.30.(2022·北京平谷·一模)在平面直角坐标系xOy中,⊙O的半径为r,对于平面上任一点P,我们定义:若在⊙O上存在一点A,使得点P关于点A的对称点点B在⊙O内,我们就称点P为⊙O的友好点.(1)如图1,若r为1.①已知点P1(0,0),P2(﹣1,1),P3(2,0)中,是⊙O的友好点的是;②若点P(t,0)为⊙O的友好点,求t的取值范围;(2)已知M(0,3),N(3,0),线段MN上所有的点都是⊙O的友好点,求r取值范围.。
2020年版北京市初三数学分类汇编-新定义
2020年初三上学期期末、新定义1西城.对于给定的△ABC,我们给出如下定义:若点M是边BC上的一个定点,且以M为圆心的半圆上的所有点都在△ABC的内部或边上,则称这样的半圆为BC边上的点M关于△ABC的内半圆,并将半径最大的内半圆称为点M关于△ABC的最大内半圆.若点M是边BC上的一个动点(M不与B,C重合),则在所有的点M关于△ABC的最大内半圆中,将半径最大的内半圆称为BC关于△ABC的内半圆.(1)在Rt△ABC中,∠BAC = 90°,AB = AC = 2,①如图1,点D在边BC上,且CD=1,直接写出点D关于△ABC的最大内半圆的半径长;②如图2,画出BC关于△ABC的内半圆,并直接写出它的半径长;2东城. 如图,在平面直角坐标系xOy 中,过⊙T 外一点P 引它的两条切线,切点分别为M ,N ,若︒<∠≤︒18060MPN ,则称P 为⊙T 的环绕点.(1)当⊙O 半径为1时,①在)2,0(),1,1(),0,1(321P P P 中,⊙O 的环绕点是___________;②直线y =2x +b 与x 轴交于点A ,y 轴交于点B ,若线段AB 上存在⊙O 的环绕点,求b 的取值范围;(2)⊙T 的半径为1,圆心为(0,t ),以)0(33,>m m m )(为圆心,m 33为半径的所有圆构成图形H ,若在图形H 上存在⊙T 的环绕点,直接写出t 的3朝阳.在平面直角坐标系xOy 中,已知点A (0,2),点B 在x 轴上,以AB 为直径作⊙C ,点P 在y 轴上,且在点A 上方,过点P 作⊙C 的切线PQ ,Q 为切点,如果点Q 在第一象限,则称Q 为点P 的离点.例如,图1中的Q 为点P 的一个离点.(1)已知点P (0,3),Q 为P 的离点.①如图2,若B (0,0),则圆心C 的坐标为 ,线段PQ 的长为 ; ②若B (2,0),求线段PQ 的长;(2)已知1≤P A ≤2, 直线l :3y kx k =++(k ≠0).①当k =1时,若直线l 上存在P 的离点Q ,则点Q 纵坐标t 的最大值为 ;②记直线l :3y kx k =++(k ≠0)在11x -≤≤的部分为图形G ,如果图形G 上存在P 的离点,直接写出k 的取值范围.图2图14石景山.在ABC △中,D 是边BC 上一点,以点A 为圆心,AD 长为半径作弧,如果与边BC 有交点E (不与点D 重合),那么称DE 为ABC △的A -外截弧. 例如,右图中DE 是ABC △的一条A -外截弧.在平面直角坐标系xOy 中,已知ABC △存在A -外截弧,其中点A 的坐标为(5,0), 点B 与坐标原点O 重合.(1)在点1(0,2)C ,2(5,3)C -,3(6,4)C ,4(4,2)C 中,满足条件的点C 是 ; (2)若点C 在直线2y x =-上, ①求点C 的纵坐标的取值范围;②直接写出ABC △的A -外截弧所在圆的半径r 的取值范围.5丰台.平面直角坐标系xOy 中有点P 和某一函数图象M ,过点P 作x 轴的垂线,交图象M 于点Q ,设点P ,Q 的纵坐标分别为P y ,Q y .如果P Q y y >,那么称点P 为图象M 的上位点;如果P Q y y =,那么称点P 为图象M 的图上点;如果P Q y y <,那么称点P 为图象M 的下位点.(1)已知抛物线22y x =-.① 在点A (-1,0),B (0,-2),C (2,3)中,是抛物线的上位点的是 ;② 如果点D 是直线y x =的图上点,且为抛物线的上位点,求点D 的横坐标D x 的取值范围; (2)将直线3y x =+在直线3y =下方的部分沿直线3y =翻折,直线3y x =+的其余部分保持不变,得到一个新的图象,记作图象G .⊙H 的圆心H 在x 轴上,半径为1.如果在图象G 和⊙H 上分别存在点E 和点F ,使得线段EF 上同时存在图象G 的上位点,图上点和下位点,求圆心H 的横坐标H x 的取值范围.EDCBA6顺义区.在平面直角坐标系xOy 中,若点P 和点P 1关于x 轴对称,点P 1和点P 2关于直线l 对称,则称点P 2是点P 关于x 轴,直线l 的二次对称点. (1)如图1,点A (0,-1).①若点B 是点A 关于x 轴,直线l 1:x =2的二次对称点,则点B 的坐标为 ; ②点C (-4,1)是点A 关于x 轴,直线l 2:x =a 的二次对称点,则a 的值为 ; ③点D (-1,0)是点A 关于x 轴,直线l 3的二次对称点,则直线l 3的表达式为 ;(2)如图2,⨀O 的半径为2.若⨀O 上存在点M ,使得点M ′是点M 关于x 轴,直线l 4:x = b 的二次对称点,且点M ′在射线x y 3=(x ≥0)上,b 的取值范围是;(3)E (0,t )是y 轴上的动点,⨀E 的半径为2,若⨀E 上存在点N ,使得点N ′是点N 关于x 轴,直线l 5:x y 33=的二次对称点,且点N ′在x 轴上,求t 的取值范围.7大兴区. 在平面直角坐标系xOy中,已知P(a,b),R(c,d)两点,且a≠c,b≠d,若过点P作x轴的平行线,过点R作y轴的平行线,两平行线交于一点S,连接PR,则称△PRS为点P,R,S的“坐标轴三角形”.若过点R作x轴的平行线,过点P作y轴的平行线,两平行线交于一点S',连接PR,则称△RP S'为点R,P,S'的“坐标轴三角形”.右图为点P,R,S的“坐标轴三角形”的示意图.(1)已知点A(0,4),点B(3,0),若△ABC是点A,B,C的“坐标轴三角形”,则点C的坐标为 ;(2)已知点D(2,1),点E(e,4),若点D,E,F的“坐标轴三角形”的面积为3,求e的值.,点M(m,4).若在⨀O上存在一点N,使得点N ,M, G的“坐标轴三角形”为(3)若⨀O的半径为3√22等腰三角形,求m的取值范围.8平谷区.在平面直角坐标系xOy中,有任意三角形,当这个三角形的一条边上的中线等于这条边的一半时,称这个三角形叫“和谐三角形”,这条边叫“和谐边”,这条中线的长度叫“和谐距离”.(1)已知A(2,0),B(0,4),C(1,2),D(4,1),这个点中,能与点O组成“和谐三角形”的点是,“和谐距离”是;(2)连接BD,点M,N是BD上任意两个动点(点M,N不重合),点E是平面内任意一点,△EMN是以MN为“和谐边”的“和谐三角形”,求点E的横坐标t的取值范围;(3)已知⊙O的半径为2,点P是⊙O上的一动点,点Q是平面内任意一点,△OPQ是“和谐三角形”,且“和谐距离”是2,请描述出点Q所在位置.9昌平区.对于平面直角坐标系xOy中,已知点A(-2,0)和点B(3,0),线段AB和线段AB外的一点P,给出如下定义:若45°≤∠APB≤90°时,则称点P为线段AB的可视点,且当P A=PB时,称点P 为线段AB的正可视点.(1)∠如图1,在点P1(3,6),P2(-2,-5),P3(2,2)中,线段AB的可视点是;∠若点P在y轴正半轴上,写出一个满足条件的点P的坐标:__________.(2)在直线y=x+b上存在线段AB的可视点,求b的取值范围;(3)在直线y=-x+m上存在线段AB的正可视点,直接写出m的取值范围.图1 备用图10通州11门头沟.对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:如果点P 为图形M 上任意一点,点Q 为图形N 上任意一点,那么称线段PQ 长度的最小值为图形M ,N 的“近距离”,记作 d (M ,N ).若图形M ,N 的“近距离”小于或等于1,则称图形M ,N 互为“可及图形”.(1)当⊙O 的半径为2时,①如果点A (0,1),B (3,4),那么d (A ,⊙O )=________,d (B ,⊙O )= _________; ②如果直线与⊙O 互为“可及图形”,求b 的取值范围;(2)⊙G 的圆心G 在轴上,半径为1,直线与x 轴交于点C ,与y 轴交于点D ,如果⊙G和∠CDO 互为“可及图形”,直接写出圆心G 的横坐标m 的取值范围.备用图y x b =+x 5y x =-+12房山区如图28-1,已知线段AB 与点P ,若在线段AB 上存在..点Q ,满足PQAB ,则称点P 为线段AB 的“限距点”.图28- (1) 如图28-2,在平面直角坐标系xOy 中,若点)01-(,A ,)01(,B .① 在)20(,C ,)2--2(,D ,)3-1(,E 中,是线段AB 的“限距点”的是________;② 点P 是直线1+=x y 上一点,若点P 是线段AB 的“限距点”,请求出点P 横坐标P x 的取值范围.(2) 在平面直角坐标系xOy 中,点)1(,t A ,)1-(,t B ,直线32+33=x y 与x 轴交于点M ,与y 轴交于点N . 若线段MN 上存在线段AB 的“限距点”,请求出t 的取值范围.13密云区.在平面直角坐标系xOy中,⊙O的半径为r(r>0).给出如下定义:若平面上一点P到圆心O的距离d,满足1322r d r≤≤,则称点P为⊙O的“随心点”.(1)当⊙O的半径r=2时,A(3,0),B(0,4),C(32-,2),D(12,12-)中,⊙O的“随心点”是;(2)若点E(4,3)是⊙O的“随心点”,求⊙O的半径r的取值范围;(3)当⊙O的半径r=2时,直线y=-x+b(b≠0)与x轴交于点M,与y轴交于点N,若线段MN上存在⊙O的“随心点”,直接写出b的取值范围.备用图14海淀.在平面直角坐标系xOy 中,对于点P (a ,b )和实数(0)k k >,给出如下定义:当0ka b +>时,将以点P 为圆心,ka b +为半径的圆,称为点P 的k 倍相关圆.例如,在如图1中,点P (1,1)的1倍相关圆为以点P 为圆心,2为半径的圆.(1)在点P 1(2,1),P 2(1,3-)中,存在1倍相关圆的点是_____,该点的1倍相关圆半径为_______. (2)如图2,若M 是x 轴正半轴上的动点,点N 在第一象限内,且满足∠MON =30°,判断直线ON 与点M 的12倍相关圆的位置关系,并证明.(3)如图3,已知点A 的(0,3),B (1,m ),反比例函数6y x=的图象经过点B ,直线l 与直线AB 关 于y 轴对称.①若点C 在直线l 上,则点C 的3倍相关圆的半径为 .②点D 在直线AB 上,点D 的31倍相关圆的半径为R ,若点D 在运动过程中,以点D 为圆心,hR 为半径的圆与反比例函数6y x=的图象最多有两个公共点,直接写出h 的最大值.图 1图 2图 31.西城.解:(1)①2. ② BC 关于△ABC 的内半圆,如图1, BC 关于△ABC 的内半圆半径为1.(2)过点E 作EF ⊥OE,与直线y x 交于点F ,设点M 是OE 上的动点, i )当点P 在线段OF 上运动时(P 不与O 重合),OE 关于△OEP 的内半圆是以M 为圆心,分别与OP ,PE 相切的半圆,如图2. ∴ 当34≤R ≤1时,t 的取值范围是32≤t ≤3.2东城.解:(1)①23,P P .…………………………2分②半径为1的⊙O 的所有环绕点在以O 为圆心,半径分别为1和2的两个圆之间(如下图阴影部分所示,含大圆,不含小圆).ⅰ)当点B 在y 轴正半轴上时,如图1,图2所示.考虑以下两种特殊情况:线段AB 与半径为2的⊙O 相切时,52=OB ; 当点B 经过半径为1的⊙O 时,1=OB .因为线段AB 上存在⊙O 的环绕点,所以可得b 的取值范围为 521≤<b ; ②当点B 在y 轴负半轴上时,如图3,图4所示.同理可得b 的取值范围为 152-<≤-b .综上,b 的取值范围为521≤<b 或152-<≤-b .………………………5分(3)42≤<-t .………………………7分3朝阳.解:(1)①(0,1);3.②如图,过C 作CM ⊥y 轴于点M ,连接CP ,CQ .∵A (0,2),B (2,0), ∴C (1,1). ∴M (0,1). 在Rt △ACM 中,由勾股定理可得CA =2. ∴CQ =2. ∵P (0,3),M (0,1), ∴PM=2.在Rt △PCM 中,由勾股定理可得PC =5.在Rt △PCQ 中,由勾股定理可得PQ =22-PC CQ =3.(2)①6.②21222-<≤-k 或21222k ≤<+.4石景山.解:(1)2C ,3C ; ………………………… 2分21yxAOB21yxA O B(2)①∵点在直线2y x =-上, 设点的坐标为.当时,过点作轴于点,如图.∴CDB △∽ADC △. ∴.∴.解得,. ∴(4,2)C 或13(,)22C'-.又∵直线2y x =-与y 轴交于点(0,2)-,结合图形,可得点的纵坐标的取值范围是或2C y >. ………………………… 5分 ②. ………………………… 7分 5丰台.解:(1)①A ,C . ………………………………………………………………2分 ②∵点D 是直线y x =的图上点,∴点D 在y x =上.又∵点D 是22y x =-的上位点,∴点D 在y x =与22y x =-的交点R ,S 之间运动.∵22,.y x y x ⎧=-⎨=⎩ ∴111,1.x y =-⎧⎨=-⎩ 222,2.x y =⎧⎨=⎩ …………3分∴点R (1-,1-),S (2,2).∴2D x -1<<. ……………………………………………………………5分(2)32Hx ->或3+2H x -<. ………………………………………………7分(全卷所有题目其他解法参照上述解法相应步骤给分)C C (,2)m m -90BCA ∠=°C CD x ⊥D 2CD BD AD =⋅2(2)(5)m m m -=⋅-14m =212m =C 322C y -<<-55r <≤xy'B DC C A –1123456–1–2–3123图20)图40)图30)0)6顺义.解:(1)① 点B 的坐标为 (4,1) ;………………………………… 1分② a 的值为-2 ; ………………………………… 2分 ③直线l 3的表达式为 y =- x ; …………………………… 3分 (2)如图2,设⨀O 与x 轴的两个交点为1M (-2,0),3M (2,0), 与射线x y 3=(x ≥0)的交点为4M ,则4M 的坐标为(1).4M 关于x 轴的对称点为2M .当点M 在1M 的位置时,b =-1, 当点M 在2M 的位置时,b =1, 当点M 在3M 的位置时,b =1,当点M 在劣弧12M M 上时(如图3),-1≤b ≤1,当点M 在劣弧23M M 上时(如图4),b 的值比1大,当到劣弧23M M 的中点时,达到最大值(如图5),综上,b 的取值范围是-1≤b 5分(3)∵x 轴和直线x y 3=关于直线x y 33=对称, 直线x y 3=和直线y =关于x 轴对称,∠⨀E 只要与直线x y 3=和y =∴t 的取值范围是:-4≤t ≤4. ……………………………………… 7分7大兴.(1)(3,4)…………………………………………………………………….2分 (2) ∵点D (2,1),点E (e ,4), 点D ,E ,F 的“坐标三角形”的面积为3, ∴33221=⨯-=∆e S DEF 22=-e∴4=e 或0=e ,.……………………………4分(3)由点N ,M , G 的“坐标轴三角形”为等腰三角形可得直线MN 为 b x y +=或b x y +-=①当直线MN 为b x y +=时,由于点M 的坐标为(m ,4),可得m =4-b由图可知,当直线MN 平移至与⊙O 相切,且切点在第四象限时,b 取得最小值. 此时直线MN 记为M 1 N 1,其中N 1T 1为直线M 1 N 1与y 轴的交点. ∵△O N 1T 1为等腰直角三角形,O 1N ∴OT 1=22223)223(⎪⎭⎫⎝⎛+=3∴b 的最小值为-3,∴m 的最大值为m =4-b =7………………………………………………5分当直线MN 平移至与⊙O 相切,且切点在第二象限时,b 取得最大值. 此时直线MN 记为M 2 N 2,其中N 2为切点,T 2为直线M 2 N 2与y 轴的交点. ∵△2ON 2T 为等腰直角三角形,2ON ∴2OT =22223)223(⎪⎭⎫ ⎝⎛+=3∴b 的最大值为3,∴m 的最小值为m =4-b =1,∴m 的取值范围是71≤≤m ,…………………………………………6分 ②当直线MN 为b x y +-=时. 同理可得,4-=b m , 当3=b 时,1-=m 当3-=b 时,-7=m∴m 的取值范围是-17-≤≤m .………………………………………7分 综上所述,m 的取值范围是71≤≤m 或17--≤≤m .8平谷解:(1)A ,B 5 ·············································································· 3 (2)1922t -≤≤; ············································································· 5 (3)点Q 在以点O 为圆心,4为半径的圆上;或在以点O 为圆心,3 (7)9昌平.(1)∠线段AB 的可视点是2P ,3P . ……………………………………………………………… 1分 ∠点P 的坐标:P (0,3)(答案不唯一,纵坐标p y 6≤p y ≤6). ………………2分(2)如图,直线与⊙1O 相切时,BD 是⊙1O 直径∴BD =25. ∵BE =23, ∴DE =22. ∴EF =︒45cos DE=4.∴F (0,7) 同理可得,直线与⊙3O 相切时,G (0,-8)∠b 的取值范围是:-8≤b ≤7. …………………5分(3)m 的取值范围:22225-≤≤--m 或32253+≤≤m ………………………………………7分 10通州11门头沟.(本小题满分7分)解:(1)① 1,3;…………………………………………………………………………2分② ∵由题意可知直线与⊙O 互为“可及图形”,⊙O 的半径为2, ∴3OE OF ==.……………………………………………………………3分 ∴32OM ON ==∴ 3232b -≤≤.………………………………………………………5分y x b =+xy–7–6–5–4–3–2–112345678–5–4–3–2–112345FENMO(2)22m -≤≤,522522m -≤≤+…………………………………………7分说明:12房山.(1)① C , E ; …………2分②由题意直线1+=x y 上满足线段AB 的“限距点”的范围 如图28-1所示.点P 在线段MN 上(包括端点)…………3分易求 2-1-=M x …………4分1=N x …………5分∴点P 横坐标P x 的取值范围为: 图28-11≤≤2-1-P x (2)如图28-2,-8=txy –7–6–5–4–3–2–112345678–5–4–3–2–112345C D OG G G G…………6分图28-2如图28-3,2-3=t…………7分图28-3综上所述:2-3≤t ≤8-13密云.(1) A ,C ………………………………2分(2)∵点E (4,3)是⊙O 的“随心点”∴OE =5,即d =5若, ∴r =10 ………………………………3分若 ,………………………………4分∴ ………………………………5分125r =352r =103r =10310r ≤≤(3) ………………7分14海淀.(1)解:P 1,3;(2)解:直线ON 与点M 的21倍相关圆的位置关系是相切.证明:设点M 的坐标为(x ,0),过M 点作MP ⊥ON 于点P ,∴ 点M 的21倍相关圆半径为21x .∴ OM =x .∵∠MON =30°,MP ⊥ON ,∴ MP =2OM =21x .∴ 点M 的21倍相关圆半径为MP .∴直线ON 与点M 的21倍相关圆相切.(3)① 点C 的3倍相关圆的半径是3;② h11b b -≤≤-≤≤或。
数学中考必考十二类大题解法再深化专题12 数学中考新定义型问题(原卷版)
数学中考十八个亮点微专题与必考的十二类大题解法再深化 专题12 数学中考新定义型问题1. 定义一种新的运算:如果0a ≠.则有2||a b aab b -=++-▲,那么1()22-▲的值是( ) A. 3- B. 5 C. 34- D. 32 2.定义新运算“※”:对于实数m ,n ,p ,q .有[m ,p]※[q ,n]=mn+pq ,其中等式右边是通常的加法和乘法运算,例如:[2,3]※[4,5]=2×5+3×4=22.若关于x 的方程[x 2+1,x]※[5﹣2k ,k]=0有两个实数根,则k 的取值范围是( )A .k <且k ≠0B .kC .k 且k ≠0D .k ≥ 3.定义:min{a ,b}=,若函数y =min (x+1,﹣x 2+2x+3),则该函数的最大值为( ) A .0 B .2 C .3 D .44. 函数[]y x =叫做高斯函数,其中x 为任意实数,[]x 表示不超过x 的最大整数.定义{}[]x x x =-,则下列说法正确的个数为( )①[ 4.1]4-=-;②{3.5}0.5=; ③高斯函数[]y x =中,当3y =-时,x 的取值范围是32x -≤<-;④函数{}y x =中,当2.5 3.5x <≤时,01y ≤<.A. 0B. 1C. 2D. 35.定义新运算a b *,对于任意实数a ,b 满足()()1a b a b a b *=+--,其中等式右边是通常的加法、减法、乘法运算,例如43(43)(43)1716*=+--=-=,若x k x *=(k 为实数) 是关于x 的方程,则它的根的情况是( )A. 有一个实根B. 有两个不相等的实数根C. 有两个相等的实数根D. 没有实数根6.在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( )A. y x =-B. 2y x =+C. 2y x =D. 22y x x =- 7.设P (x ,y 1),Q (x ,y 2)分别是函数C 1,C 2图象上的点,当a ≤x ≤b 时,总有﹣1≤y 1﹣y 2≤1恒成立,则称函数C 1,C 2在a ≤x ≤b 上是“逼近函数”,a ≤x ≤b 为“逼近区间”.则下列结论: ①函数y =x ﹣5,y =3x+2在1≤x ≤2上是“逼近函数”;②函数y =x ﹣5,y =x 2﹣4x 在3≤x ≤4上是“逼近函数”;③0≤x ≤1是函数y =x 2﹣1,y =2x 2﹣x 的“逼近区间”;④2≤x ≤3是函数y =x ﹣5,y =x 2﹣4x 的“逼近区间”.其中,正确的有( ) A .②③ B .①④C .①③D .②④ 8.我们约定:(),,a b c 为函数2y ax bx c =++的关联数,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”,若关联数为(),2,2m m --的函数图象与x 轴有两个整交点(m 为正整数),则这个函数图象上整交点的坐标为____________.9.对于实数,m n ,定义运算2*(2)2m n m n =+-.若2*4*(3)a =-,则a =_____. 10.如图,将正整数按此规律排列成数表,则2021是表中第 行第 列.11. 对于任意一个四位数m ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“共生数”.例如:m =3507,因为3+7=2×(5+0),所以3507是“共生数”;m =4135,因为4+5≠2×(1+3),所以4135不是“共生数”.(1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记F (n )=.求满足F (n )各数位上的数字之和是偶数的所有n .12.已知平面图形S ,点P 、Q 是S 上任意两点,我们把线段PQ 的长度的最大值称为平面图形S 的“宽距”.例如,正方形的宽距等于它的对角线的长度.(1)写出下列图形的宽距:①半径为1的圆: ;②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“: ;(2)如图2,在平面直角坐标系中,已知点A (﹣1,0)、B (1,0),C 是坐标平面内的点,连接AB 、BC 、CA 所形成的图形为S ,记S 的宽距为d .①若d =2,用直尺和圆规画出点C 所在的区域并求它的面积(所在区域用阴影表示);②若点C 在⊙M 上运动,⊙M 的半径为1,圆心M 在过点(0,2)且与y 轴垂直的直线上.对于⊙M 上任意点C ,都有5≤d ≤8,直接写出圆心M 的横坐标x 的取值范围.13.我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y 轴对称,则把该函数称之为“T 函数”,其图象上关于y 轴对称的不同两点叫做一对“T 点”.根据该约定,完成下列各题.(1)若点A (1,r )与点B (s ,4)是关于x 的“T 函数”y =的图象上的一对“T 点”,则r = ,s = ,t = (将正确答案填在相应的横线上);(2)关于x 的函数y =kx+p (k ,p 是常数)是“T 函数”吗?如果是,指出它有多少对“T 点”如果不是,请说明理由;(3)若关于x 的“T 函数”y =ax 2+bx+c (a >0,且a ,b ,c 是常数)经过坐标原点O ,且与直线l :y =mx+n (m ≠0,n >0,且m ,n 是常数)交于M (x 1,y 1),N (x 2,y 2)两点,当x 1,x 2满足(1﹣x 1)﹣1+x 2=1时,直线l 是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.14.定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD 是对余四边形,则A ∠与C ∠的度数之和为______;证明:(2)如图1,MN 是O 的直径,点,,A B C 在O 上,AM ,CN 相交于点D .求证:四边形ABCD 是对余四边形;探究:(3)如图2,在对余四边形ABCD 中,AB BC =,60ABC ︒∠=,探究线段AD ,CD 和BD 之间有怎样的数量关系?写出猜想,并说明理由.。
2020年中考数学真题分类训练——专题二十二:新定义与阅读理解题(含答案)
2020年中考数学真题分类训练——专题二十二:新定义与阅读理解题1.(2019天水)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.解:(1)四边形ABCD是垂美四边形.理由如下:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)如图1,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AB2+CD2=AO2+BO2+DO2+CO2=AD2+BC2,∴AD2+BC2=AB2+CD2;(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,AG ACGAB CAE AB AE=⎧⎪∠=∠⎨⎪=⎩,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG2BE2,∴GE2=CG2+BE2-CB2=73,∴GE732.(2019白银)阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM ≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.解:延长A1B1至E,使EB1=A1B1,连接EM1、EC1,如图所示:则EB1=B1C1,∠EB1M1=90°=∠A1B1M1,∴△EB1C1是等腰直角三角形,∴∠B1EC1=∠B1C1E=45°,∵N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,∴∠M 1C 1N 1=90°+45°=135°, ∴∠B 1C 1E +∠M 1C 1N 1=180°, ∴E 、C 1、N 1三点共线,在△A 1B 1M 1和△EB 1M 1中,111111111111A B EB A B M EB MM B M B =⎧⎪∠=∠⎨⎪=⎩,∴△A 1B 1M 1≌△EB 1M 1(SAS ), ∴A 1M 1=EM 1,∠1=∠2,∵A 1M 1=M 1N 1,∴EM 1=M 1N 1,∴∠3=∠4, ∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5, ∵∠1+∠6=90°,∴∠5+∠6=90°, ∴∠A 1M 1N 1=180°﹣90°=90°. 3.(2019江西)特例感知(1)如图1,对于抛物线211y x x =--+,2221y x x =--+,2331y x x =--+,下列结论正确的序号是_________;①抛物线1y ,2y ,3y 都经过点(0,1)C ;②抛物线2y ,3y 的对称轴由抛物线1y 的对称轴依次向左平移12个单位得到; ③抛物线1y ,2y ,3y 与直线1y =的交点中,相邻两点之间的距离相等. 形成概念(2)把满足21n y x nx =--+(n 为正整数)的抛物线称为“系列平移抛物线”.知识应用在(2)中,如图2.①“系列平移抛物线”的顶点依次为1P ,2P ,3P ,…,n P ,用含n 的代数式表示顶点n P 的坐标,并写出该顶点纵坐标y 与横坐标x 之间的关系式;②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:1C ,2C ,3C ,…,n C ,其横坐标分别为:1k --,2k --,3k --,…,k n --(k 为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.③在②中,直线1y =分别交“系列平移抛物线”于点1A ,2A ,3A ,…,n A ,连接n n C A ,11n n C A --,判断n n C A ,11n n C A --是否平行?并说明理由.解:(1)①当x =0,1231y y y ===,所以正确;②123,,y y y 的对称轴分别是直线112x =-,21x =-,332x =-,所以正确;③123,,y y y 与1y =交点(除了点C )横坐标分别为–1,–2,–3,所以距离为1,都相等,正确.(2)①2224124n n n y x nx x +⎛⎫=--+=-++ ⎪⎝⎭,所以顶点24,24n n n P ⎛⎫+- ⎪⎝⎭,令顶点n P 横坐标2n x =-,纵坐标244n y +=,22241142n n y x +⎛⎫==-+=+ ⎪⎝⎭,即:n P 顶点满足关系式21y x =+. ②相邻两点之间的距离相等.理由:根据题意得;()2,1n C k n k nk ----+,()211,1n C k n k nk k ---+--++, ∴C n C n –1两点之间的铅直高度=()2211k nk k k nk k --++---+=.C n C n –1两点之间的水平距离=1()1k n k n --+---=.∴由勾股定理得C n C n –12=k 2+1, ∴C n C n –1=21k +. ③n n C A 与11n n C A --不平行. 理由:根据题意得:()2,1n C k n k nk ----+,()211,1n C k n k nk k ---+--++,(),1n A n -,()11,1n A n --+.过C n ,C n –1分别作直线y =1的垂线,垂足为D ,E ,所以D (–k –n ,1),E (–k –n +1,1). 在Rt △DA n C n 中,tan ∠DA n C n =()2211()n n k nk C D k nkk n A D n k n k---++===+----,在Rt △EA n –1C n –1中,tan ∠EA n –1C n –1=()22111111(1)n n k nk k C E k nk kk n A E n k n k-----+++-===+--+---+,∵1k n +-≠k n +,∴tan ∠DA n C n ≠tan ∠EA n –1C n –1, ∴n n C A 与11n n C A --不平行.4.(2019自贡)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①,则2S=2+22+…+22018+22019②,②–①得2S–S=S=22019–1,∴S=1+2+22+…+22017+22018=22019–1.请仿照小明的方法解决以下问题:(1)1+2+22+…+29=__________;(2)3+32+…+310=__________;(3)求1+a+a2+…+a n的和(a>0,n是正整数),请写出计算过程.解:(1)设S=1+2+22+…+29①,则2S=2+22+…+210②,②–①得2S–S=S=210–1,∴S=1+2+22+…+29=210–1;故答案为:210–1;(2)设S=3+3+32+33+34+…+310①,则3S=32+33+34+35+…+311②,②–①得2S=311–1,所以S=1131 2-,即3+32+33+34+ (310)1131 2-;故答案为:1131 2-;(3)设S=1+a+a2+a3+a4+…+a n①,则aS =a +a 2+a 3+a 4+…+a n +a n +1②, ②–①得:(a –1)S =a n +1–1,a =1时,不能直接除以a –1,此时原式等于n +1;a ≠1时,a –1才能做分母,所以S =111n a a +--,即1+a +a 2+a 3+a 4+…+a n=111n a a +--.5.(2019随州)若一个两位数十位、个位上的数字分别为m ,n ,我们可将这个两位数记为mn ,易知mn =10m +n ;同理,一个三位数、四位数等均可以用此记法,如abc =100a +10b +c .【基础训练】 (1)解方程填空:①若2x +3x =45,则x =__________; ②若7y –8y =26,则y =__________; ③若93t +58t =131t ,则t =__________; 【能力提升】(2)交换任意一个两位数mn 的个位数字与十位数字,可得到一个新数nm ,则mn +nm 一定能被__________整除,mn –nm 一定能被__________整除,mn •nm –mn 一定能被__________整除;(请从大于5的整数中选择合适的数填空) 【探索发现】(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532–235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.①该“卡普雷卡尔黑洞数”为__________;②设任选的三位数为abc(不妨设a>b>c),试说明其均可产生该黑洞数.解:(1)①∵mn=10m+n,∴若2x+3x=45,则10×2+x+10x+3=45,∴x=2,故答案为:2.②若7y–8y=26,则10×7+y–(10y+8)=26,解得y=4,故答案为:4.③由abc=100a+10b+c,及四位数的类似公式得若93t+58t=131t,则100t+10×9+3+100×5+10t+8=1000×1+100×3+10t+1,∴100t=700,∴t=7,故答案为:7.(2)∵mn+nm=10m+n+10n+m=11m+11n=11(m+n),∴则mn+nm一定能被11整除,∵mn–nm=10m+n–(10n+m)=9m–9n=9(m–n),∴mn–nm一定能被9整除.∵mn•nm–mn=(10m+n)(10n+m)–mn=100mn+10m2+10n2+mn–mn=10(10mn+m2+n2)∴mn•nm–mn一定能被10整除.故答案为:11;9;10.(3)①若选的数为325,则用532–235=297,以下按照上述规则继续计算, 972–279=693, 963–369=594, 954–459=495, 954–459=495,… 故答案为:495.②当任选的三位数为abc 时,第一次运算后得:100a +10b +c –(100c +10b +a )=99(a –c ), 结果为99的倍数,由于a >b >c ,故a ≥b +1≥c +2, ∴a –c ≥2,又9≥a >c ≥0, ∴a –c ≤9,∴a –c =2,3,4,5,6,7,8,9,∴第一次运算后可能得到:198,297,396,495,594,693,792,891, 再让这些数字经过运算,分别可以得到:981–189=792,972–279=693,963–369=594,954–459–495,954–459=495…, 故都可以得到该黑洞数495.6.(2019衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x 3a c +=,y 3b d+=那么称点T 是点A ,B 的融合点. 例如:A (﹣1,8),B (4,﹣2),当点T (x ,y )满足x 143-+==1,y ()823+-==2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点. (2)如图,点D (3,0),点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点.①试确定y与x的关系式.②若直线ET交x轴于点H.当△DTH为直角三角形时,求点E的坐标.解:(1)∵17 3 +﹣=2,573+=4,∴点C(2,4)是点A、B的融合点;(2)①由融合点定义知x13=(t+3),y13=(2t+3),则t=3x﹣3,则y13=(6x﹣6+3)=2x﹣1;②要使△DTH为直角三角形,可分三种情况讨论:(i)当∠DHT=90°时,如图1所示,设T(m,2m﹣1),则点E(m,2m+3),由点T是点D,E的融合点得:m32302133m mm+++=-=或,解得:m32=,即点E(32,6);(ii)当∠TDH=90°时,如图2所示,则点T(3,5),由点T是点D,E的融合点得:点E(6,15);(iii)当∠HTD=90°时,该情况不存在;综上所述,符合题意的点为(32,6)或(6,15).7.(2019济宁)阅读下面的材料:如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.例题:证明函数f(x)=6x(x>0)是减函数.证明:设0<x1<x2,f(x1)–f(x2)=()212112121266666x xx xx x x x x x---==.∵0<x1<x2,∴x2–x1>0,x1x2>0.∴()21126x xx x->0.即f(x1)–f(x2)>0.∴f (x 1)>f (x 2),∴函数f (x )═6x (x >0)是减函数. 根据以上材料,解答下面的问题:已知函数f (x )=21x+x (x <0), f (–1)=21(1)-+(–1)=0,f (–2)=21(2)-+(–2)=–74. (1)计算:f (–3)=__________,f (–4)=__________;(2)猜想:函数f (x )=21x+x (x <0)是__________函数(填“增”或“减”); (3)请仿照例题证明你的猜想.解:(1)∵f (x )=21x +x (x <0), ∴f (–3)=21(3)-–3=–269,f (–4)=21(4)-–4=–6316, 故答案为:–269,–6316; (2)∵–4<–3,f (–4)>f (–3),∴函数f (x )=21x+x (x <0)是增函数, 故答案为:增;(3)设x 1<x 2<0,∵f (x 1)–f (x 2)=12221211x x x x +--=(x 1–x 2)(1–122212x x x x +) ∵x 1<x 2<0,∴x 1–x 2<0,x 1+x 2<0,∴f (x 1)–f (x 2)<0,∴f (x 1)<f (x 2),∴函数f (x )=21x+x (x <0)是增函数. 8.(2019宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC 中,AB =AC ,AD 是△ABC 的角平分线,E ,F 分别是BD ,AD 上的点. 求证:四边形ABEF 是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FAB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形ABEF即为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,M为EF中点,∴DM=ME.∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴3 5QB BDNC CE==,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.9.(2019枣庄)对于实数a、b,定义关于“⊗”的一种运算:a⊗b=2a+b,例如3⊗4=2×3+4=10.(1)求4⊗(–3)的值;(2)若x⊗(–y)=2,(2y)⊗x=–1,求x+y的值.解:(1)根据题中的新定义得:原式=8–3=5;(2)根据题中的新定义化简得:2241x yx y-=⎨+=-⎧⎩①②,①+②得:3x+3y=1,则x+y=13.10.(2019河北)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7.则(1)用含x 的式子表示m =__________;(2)当y =–2时,n 的值为__________.解:(1)根据约定的方法可得:m =x +2x =3x ;故答案为:3x ;(2)根据约定的方法即可得x +2x +2x +3=m +n =y .当y =–2时,5x +3=–2.解得x =–1.∴n =2x +3=–2+3=1.11.(2019白银)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k =__________.解:①当∠A 为顶角时,等腰三角形两底角的度数为:218080︒-︒=50°, ∴特征值k =808505︒=︒; ②当∠A 为底角时,顶角的度数为:180°–80°–80°=20°,∴特征值k =208014︒=︒; 综上所述,特征值k 为85或14; 12.(2019湘西)阅读材料:设a r =(x 1,y 1),b r =(x 2,y 2),如果a r ∥b r ,则x 1•y 2=x 2•y 1,根据该材料填空,已知a r =(4,3),b r =(8,m ),且a r ∥b r ,则m =__________.解:∵a r =(4,3),b r =(8,m ),且a r ∥b r ,∴4m =3×8,∴m =6.。
2020年中考数学专题汇编 新定义型、阅读理解型问题(含解析)
新定义型、阅读理解型问题一、选择题1.(2020·遵义)构建几何图形解决代数问题是“数形结合“思想的重要性,在计算tan15°时,如图,在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15°=ACCD12tan22.5°的值为( ) A .+1 B .- 1 C .D .12{答案}B{解析}本题考查阅读理解能力,要求能用类比的方法解决问题.如图,在Rt △ACB 中,∠C =90°,∠ABC =45°,延长CB 使BD =AB ,连接AD ,得∠D =22.5°,所以tan 22.5°=ACCD-1.故选B .2.(2020·河南)定义运算:m ☆n =21mn mn .例如: 4☆2=4×22-4×2-1=7.则1☆x =0方程的根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根 {答案}A{解析}由定义新运算可得210x x ,∴△=411-14-1-2+=⨯⨯)()(=5>0,所以方程有两个不相等的实数根,因此本题选A .3.(2020·枣庄)对于实数a 、b ,定义一种新运算“⊗”为:21a b a b ⊗=-,这里等式右边是实数运算.例如:21113138⊗==--.则方程()2214⊗-=--x x 的解是( ) A .x =4 B .x =5 C .x =6 D .x =7{答案}B{解析}根据新定义运算,把方程转化为分式方程.因为211(2)(2)4x x x ⊗-==---,所以原方程可转化为12144x x =---,解得x =5.经检验,x =5是原方程的解. 4.(2020·淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为"幸福数".下列数中为"幸福数"的是( )A.205B.250C.502D.520{答案} D{解析}设较小的奇数为x ,较大的为x +2,根据题意列出方程,求出解判断即可.D设较小的奇数为x ,较大的为x +2,根据题意得:(x +2)2﹣x 2=(x +2﹣x )(x +2+x )=4x +4, 若4x +4=205,即x =2014,不为整数,不符合题意; 若4x +4=250,即x =2464,不为整数,不符合题意; 若4x +4=502,即x =4984,不为整数,不符合题意; 若4x +4=520,即x =129,符合题意. 故选:D .5.(2020·随州)将关于x 的一元二次方程0=q +px -x 2变形为q -px x 2=,就可以将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,又如=-=⋅=)(23q px x x x x …,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:0=1-x -x 2,且x >0,则3x +2x -x 34的值为( )A.51-B.53-C.51+D.53+ {答案}C{解析}本题考查了降次法、整体代入法、整式的化简求值,一元二次方程的解法.解答过程如下: ∵0=1-x -x 2,∴1x x 2+=,∴3x +2x -x 34=3x +1)2x (x -)1(x 2++=3x +2x -2x -12x x 22++=3x +x -12=3x +1)(x -1+ =3x +1-x -1=2x ,∵0=1-x -x 2,且x >0,∴x=251+,∴原式=2×251+=51+.因此本题选C . 6.(2020·潍坊)若定义一种新运算:(2)6(2)a b a b a b ab ab 例如:31312⊗=-=;545463⊗=+-=.则函数(2)(1)y x x =+⊗-的图象大致是( )A. B. C. D.{答案}A{解析}本题考查了一次函数的图象,在新定义下,求出函数关系式是解题的关键.根据(2)6(2)a b a b a bab ab ,可得当22(1)x x 时,4x ≤,分两种情况当4x ≤时和当4x >时, (2)(1)(2)(1)213x x x x x x ,即:3y =; 当4x >时,(2)(1)(2)(1)621625x x xx xx x ,即:25y x =-,∴20k =>,∴当4x >时,25y x =-,函数图像y 随x 的增大而增大,A 选项符合题意,故选:A .7.(2020·恩施)在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是( ).A. 1-B. 1C. 0D. 2{答案}C{解析}根据题目中给出的新定义运算规则进行运算:2211☆=+-=+x x x ,又21x =☆,∴11x +=,∴0x =.故选:C .二、填空题8.(2020·衢州)定义(1)a b a b =+※,例如232(31)248=⨯+=⨯=※,则(1)x x -※的结果为 .{答案}21x -{解析}解析:根据题中的新定义得:(1)x x -※=(1)(1+1)x x -⋅-=21x -.9.(2020·枣庄)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S 可用公式S =a +21b -1(a 是多边形内的格点数,b 是多边形边界上的格点数)计算,这个公式称为“皮克(Pick )定理”.如图给出了一个格点五边形,则该五边形的面积S =________.{答案}6{解析}直接利用所给的公式计算即可.由图可知,五边形内部格点有4个,故a =4;五边形边上格点有6个,故b =6.∴S =a +21b -1=4+21×6-1=6. 10.(2020·乐山)我们用符号[x ]表示不大于x 的最大整数.例如:[1.5]=1,[-1.5]=-2,那么:(1)当-1<[x ]≤2时,x 的取值范围是________;(2)当-1≤x <2时,函数y =x 2-2a [x ]+3的图象始终在函数y =[x ]+3的图象下方,则实数a 的范围是________.{答案}(1)0≤x ≤3;(2)a <-1或a ≥32.{解析}(1)根据符号[x ]表示不大于x 的最大整数,得到-1<[x ]≤2时[x ]=0,1,2;当[x ]=0时,0≤x <1;当[x ]=1时,1≤x <2;当[x ]=2时,2≤x <3;从而x 的取值范围是0≤x <3;(2)本题可根据题意构造新函数,采取自变量分类讨论的方式判别新函数的正负,继而根据函数性质反求参数.令y 1=x 2-2a [x ]+3,y 2=[x ]+3,y 3=y 2-y 1,由题意可知:y 3=-x 2+(2a +1)[x ]>0时,函数y =x 2-2a [x ]+3的图象始终在函数y =[x ]+3的图象下方. ①当-1≤x <0时,[x ]=-1,y 3=-x 2-(2a +1),此时y 3随x 的增大而增大,故当x =-1时,y 3有最小值-2a -2>0,得a <-1;②当0≤x <1时,[x ]=0,y 3=-x 2,此时y 3≤0;③1≤x <2时,[x ]=1,y 3=-x 2+(2a +1),此时y 3随x 的增大而减小,故当x =2时,y 3有最小值2a -3≥0,得a ≥32;综上所述,a <-1或a ≥32.11.(2020·青海)对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下: a ⊕b,如:3⊕212⊕4=______. {答案{解析}依题意可知12⊕4.12.(2020·宜宾)定义:分数nm (m ,n 为正整数且互为质数)的连分数123111a a a +++(其中a 1,a 2,a 3,…,为整数,且等式右边的每个分数的分子都为1),记作nm△11a +21a +31a +…, 例如:719=1197=1527+=11275+=112215++=1121152++=11211122+++,719的连分数为11211122+++,记作719△12+11+12+12,则 △11+12+13. {答案}710{解析}根据连分数的定义列式计算即可解答.11+12+13△111123++=11173+=1317+=1107=710.三、解答题13.(2020·宁波)(本题14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =a ,请用含a 的代数式表示∠E .(2)如图2,四边形ABCD 内接于⊙O ,AD =BD ,四边形ABCD 的外角平分线DF 交⊙O 于点F ,连结BF 并延长交CD 的延长线于点E .求证:∠BEC 是△ABC 中∠BAC 的遥望角. (3)如图3,在(2)的条件下,连结AE ,AF ,若AC 是⊙O 的直径. ①求∠AED 的度数;②若AB =8,CD =5,求△DEF 的面积.{解析}(1)根据外角的性质及角平分线的概念求解;(2)根据圆内按四边形的性质,同弧或等弧所对圆周角的性质分别证明BE 、CE 为△ABC 的内角及外角平分线即可; (3)①连结CF ,根据遥望角的性质及同弧所对圆周角的性质证明∠BEC =∠FAD ,再由△FDE ≌△FDA 证明AD =DE ,最后由等腰直角三角形的性质求得∠AED 的度数;②作AG⊥BE于点G,FM⊥CE于点M,根据相似三角形的判定证明△EGA∽△ADC,由相似三角形的性质及勾股定理求得△ACD边长,进而求得△DEF的面积.{答案}24.解:(1)∵BE平分∠ABC,CE平分∠ACD.∴∠E=∠ECD-∠EBD=12(∠ACD-∠ABC)=12∠A=12a(2)如图,延长BC到点T.∵四边形FBCD内接于⊙O,∴∠FDC+∠FBC=180°,又∵∠FDE+∠FDC=180°,∴∠FDE=∠FBC,∵DF平分∠ADE,∴∠ADF=∠FDE,∵∠ADF=∠ABF,∴∠ABF=∠FBC,∴BE是∠ABC的平分线,∵AD=BD,∴∠ACD=∠BFD,∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图,连结CF.∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠FAD,∴∠BEC=∠FAD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=AD,∵∠AED=∠DAE,∵AC是⊙O的直径∴∠ADC=90°,∴∠AED+∠DAE=90°,∴∠AED=∠DAE=45°.②如图,过点A作AG⊥BE于点G,过点F作FM⊥CE于点M.∵AC是⊙O的直径,∴∠ABC=90°,∵BE平分∠ABC,∴∠FAC=∠EBC=12∠ABC=45°,∵∠AED=45°,∴∠AED=∠FAC,∵∠FED=∠FAD,∴∠AED-∠FED=∠FAC-∠FAD,∴∠AEG=∠CAD,∴∠EGA=∠ADC=90°,∴△EGA∽△ADC,∴AE:AC=AG:CD∵在Rt△ABG中,AG=22AB=42,在Rt△ADE中,AE=2AD,∴AD:AC=45,在Rt△ADC中,AD2+DC2=AC2,∴设AD=4x,AC=5x,则有(4x)2+52=(5x)2,∴x=53,∴ED=AD=203,∴CE=CD+DE=353,∵∠BEC=∠FCE,∴FC=FE,∵FM⊥CE,∴EM=12CE=356,∴DM=DE-EM=56,∵∠FDM=45° ,∴FM=DM=56,∴S△DEF=12DE·FM=259.14.(2020·黔西南州)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是________;A.矩形 B.正五边形C.菱形 D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:________(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形,其中真命题的个数有()个;A.0 B.1 C.2 D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.{解析}本题考查了新定义“旋转对称图形”.(1)根据旋转对称图形的定义进行判断;(2)先分别求每一个图形中的旋转角,然后再进行判断;(3)根据旋转对称图形的定义进行判断;(4)利用旋转对称图形的定义进行设计.{答案}解:(1)B(2)(1)(3)(5)(3)C(4)如答图:15.(2020·重庆B卷)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数——“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.{解析}本题是一道新定义问题,正确理解“好数”是解题的关键.(1)根据“好数”的定义进行判断即可;(2)设n=100a+10b+c,根据“好数”的定义可知6≤a≤9,1≤b≤4,1≤c≤9.由题意,得a=b+5①,a+b=mc②,将①代入,得2b+5=mc.所以2b+5,m,c都为奇数,进而分类讨论求解即可.{答案}解:(1)312是“好数”,675不是“好数”.理由如下:312是“好数”,因为3,1,2都不为0,且3+1=4,4能被2整除;675不是“好数”,因为6+7=13,13不能被5整除.(2)设n =100a +10b +c (a ,b ,c 为整数且6≤a ≤9,1≤b ≤4,1≤c ≤9). 由题意,得a +b =mc (m 为正整数),a =b +5,∴2b +5=mc . 又∵2b +5为奇数,∴m ,c 同时为奇数.当b =1时,a =6,mc =7,则m =7,c =1或m =1,c =7,此时“好数”有2个:611,617;当b =2时,a =7,mc =9,则m =9,c =1或m =1,c =9或m =3,c =3,此时“好数”,3个:721,729,723; 当b =3时,a =8,mc =11,则m =11,c =1,此时“好数”有1个:831; 当b =4时,a =9,mc =13,则m =13,c =1,此时“好数”有1个:941; 所以共有“好数”2+3+1+1=7(个).综上所述,百位数字比十位数字大5的所有“好数”共有7个.16.(2020·北京)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB =1.给出如下定义:平移线段AB ,得到⊙O 的弦A ´B ´(A´,B´分别为点A ,B 的对应点),线段AA ´长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12P P 和34PP ,则这两条弦的位置关系是 ;在点1234,,,P P P P 中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B都在直线y +上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值; (3)若点A 的坐标为32,2⎛⎫⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.{解析}(1)根据圆的性质及“平移距离”的定义填空即可;(2)过点O 作OE ⊥AB 于点E ,交弦CD 于点F ,分别求出OE 、OF 的长,由1d OE OF =-得到1d 的最小值;(3)线段AB 的位置变换,可以看作是以点A 32,2⎛⎫⎪⎝⎭为圆心,半径为1的圆,只需在⊙O 上都存在两条对应线段A ´B ´和A ´´B ´´ ,满足它们平行且相等,由平移距离可知,AA ´的长度的最小值即为平移距离,因此当且仅当AA ´=AA´´时,平移距离最大(否则谁小取谁){答案}解: (1)平行;P 3;(2)如图,线段AB在直线y =+上,平移之后与圆相交,得到的弦为CD ,CD ∥AB ,过点O 作OE ⊥AB 于点E ,交弦CD 于点F ,OF ⊥CD ,令0y =,直线与x 轴交点为(-2,0),直线与x 轴夹角为60°,∴2sin 60OE ︒==.由垂径定理得:OF ==,∴1d OE OF =-=;(3)线段AB 的位置变换,可以看作是以点A 32,2⎛⎫⎪⎝⎭为圆心,半径为1的圆,只需在⊙O 内找到与之平行,且长度为1的弦即可;点A 到O的距离为52AO ==. 如图,平移距离2d 的最小值即点A 到⊙O 的最小值:53122-=;如图,由平移距离可知,AA ´的长度的最小值即为平移距离,因此当且仅当AA ´=AA´´时,平移距离最大,如图所示:由题意可知:△AA ´O ≌△AA ´´O ,可得∠AOA ´´=120°,在Rt △A ´OC 中,A ´C,所以AA ´.∴232d ≤≤.17.(2020·常州)(10分)如图1,⊙I 与直线a 相离,过圆心I 作直线a 的垂线,垂足为H ,且交⊙I 于P 、Q 两点(Q 在P 、H 之间).我们把点P 称为⊙I 关于直线a 的“远点”,把PQ ·PH 的值称为⊙I 关于直线a 的“特征数”.(1)如图2,在平面直角坐标系xOy 中,点E 的坐标为(0,4),半径为1的⊙O 与两坐标轴交于点A 、B 、C 、D .①过点E 画垂直于y 轴的直线m ,则⊙O 关于直线m 的“远点”是点________(填“A ”“B ”“C ”或“D ”),⊙O 关于直线m 的“特征数”为________;②若直线n 的函数表达式为y =3x +4,求⊙O 关于直线n 的“特征数”;(2)在平面直角坐标系xOy ,直线l 经过点M (1,4),点F 是坐标平面内一点,以F 为圆心,2为半径作⊙F .若⊙F 与直线l 相离,点N (-1,0)是⊙F 关于直线l 的“远点”,且⊙F 关于直线l 的“特征数”是45,求直线l 的函数表达式.{答案}解:(1)根据定义得⊙O 关于直线m 的远点是D ;(2)如图1,圆O 关于直线m 的特征数为DB ×DE =[1-(-1)]·[4-(-1)]=2×5=10. ②如图2,过O 点作OA 1⊥直线n 于A 1,延长A 1O 交圆O 于点B 1,设4y =+ 与y 轴交于点C 1,∴OC 1=4∵k∴直线4y =+与x 轴的所夹锐角为60°. ∴∠A 1C 1O =90°-60°=30° 在Rt △A 1C 1O 中,A 1O =12C 1O =2 ∵OB 1=1,∴⊙O 关于直线n 的特征数=2B 1O ×A 1B 1=2(2+1)=6 (2)如图3,设过M 的直线l 解析式为y =k 1x +b 1∴4=k 1+b 1,即k 1=4-b 1,∴l 的解析式为y =(4-b 1)x +b 1 设⊙F 与NF 所在直线交D 1,NF 的延长线交y =k 1x +b 1于E 1 ∵⊙F,∴NF =FD 1∵⊙F 关于直线l 的“特征数”是 ∴ND 1·NE 1=1NE =即1NE 由点N 到直线l的距离公式得1NE ==∴b 1=7或113 经检验,b 1=7或113都是原方程的解,且符合题意. 当b 1=7时,k 1=-3,此时直线l 的函数表达式为y =-3x +7.当b1=113时,k1=13此时直线l的函数表达式为11137y x=+.综上所述,此时直线l的函数表达式为y=-3x+7或11137y x=+.图1 图2图3{解析}本题是新定义问题,直接应用定义就可以求出原点和特征数;(2)过点过O点作OA1⊥直线n于A1,延长A1O交圆O于点B1,然后求出B1O和A1B1的值后即可求出特征值;(3)如图3,先根据特征数和半径的值,求出点N到直线的距离,直线l要经过点M,又要到N l的解析式.18.(2020·山西)阅读与思考下面是小宇同学的数学日记,请仔细阅读,并完成相应的任务.任务:(1)填空:“办法一”依据的一个数学定理是;(2) 根据“办法二”的操作过程,证明∠RCS =90°; (3)①尺规作图:请在图③的木板上,过点C 作出AB 的垂线( 在木板上保留作图痕迹,不写作法);②说明你的作法所依据的数学定理或基本事实(写出一个即可) .{解析}本题考查作图在实际中的应用.(1)由作图方法可知“办法一”依据的一个数学定理是勾股定理的逆定理;(2)由“办法二”可知: QR =QC ,QS =QC ,根据等边对等角得∠QCR =∠QRC ,∠QCS =∠QSC ,根据三角形内角和定理可得结论. (3)①图略;②答案不唯一.第20题图③ABCx 年x 月x 日 星期日 没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB ,现根据木板的情况,要过AB 上的一点C ,作出AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB 上量出CD = 30cm ,然后分别以D ,C 为圆心,以50cm 与40cm 为半径画圆弧,两弧相交于点E ,作直线CE ,则∠DCE 必为90°.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M ,N 两点,然后把木棒斜放在木板上,使点M 与点C 重合,用铅笔在木板上将点N 对应的位置标记为点Q ,保持点N 不动,将木棒绕点N 旋转,使点M 落在AB 上,在木板上将点M 对应的位置标记为点R .然后将RQ 延长,在延长线上截取线段QS =MN ,得到点S ,作直线SC ,则∠RCS =90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也{答案}解:(1)勾股定理的逆定理(或如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形) .(2)解:证明:由作图方法可知: QR =QC ,QS =QC , ∴∠QCR =∠QRC ,∠QCS =∠QSC . 又∵∠SRC +∠RCS +∠RSC =180°,∴∠QCR +∠QCS +∠QRC + ∠QSC = 180°.. ∴2 (∠QCR +∠QCS )= 180°.∴∠QCR +∠QCS =90°. 即∠RCS = 90°.. (3)①如图,直线CP 即为所求,作图正确..②答案不唯一,如:三边分别相等的两个三角形全等(或SSS );等腰三角形顶角的平分线、底边上的高、底边上的中线重合(或等腰三角形三线合");到条线段两个端点距离相等的点,在这条线段的垂直平分线上等.……(8分)19.(2020·湖北荆州)阅读下列“问题”与“提示”后,将解方程的过程补充完整,求出x 的值. 【问题】解方程:2224250x x xx【提示】可以用“换元法”解方程. t (t ≥0),则有222xx t ,原方程可化为:2450t t【续解】229t{解析}在解无理方程时最常用的方法是换元法,一般方法是通过观察确定用来换元的式子.本题用来换元t ,其两边分别平方后有222xx t ,这样原方程可变形为关于t 的一元二次方程,即可求得t 的值,再根据所设条件对t 的值进行讨论后作出取舍,即可求出x 的值. {答案}解:【续解】229t ∴23t ,即11t ,25t第20题图④∵220t x x ,∴221t x x ,则有221x x ,配方,得:212x解得:112x ,212x经检验:112x ,212x 是原方程的根.20.(2020·怀化)定义:对角线互相垂直且相等的四边形叫做垂等四边形. (1)下面四边形是垂等四边形的是 ;(填序号) ①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD 中,AD ∥BC ,AC ⊥BD ,过点D 作BD 垂线交BC 的延长线于点E ,且∠DBC =45°,证明:四边形ABCD 是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD 内接于⊙O 中,∠BCD =60°.求⊙O 的半径.{答案}解:(1)①平行四边形的对角线互相平分但不垂直和相等,故不是垂等四边形; ②矩形对角线相等但不垂直,故不是垂等四边形; ③菱形的对角线互相垂直但不相等,故不是垂等四边形; ④正方形的对角线互相垂直且相等,故正方形是垂等四边形; 故选:④;(2)∵AC ⊥BD ,ED ⊥BD , ∴AC ∥DE , 又∵AD ∥BC ,∴四边形ADEC 是平行四边形, ∴AC =DE , 又∵∠DBC =45°,∴△BDE 是等腰直角三角形, ∴BD =DE ,∴BD =AC , 又∵BD ⊥AC ,∴四边形ABCD 是垂等四边形; (3)如图,过点O 作OE ⊥BD ,∵四边形ABCD 是垂等四边形, ∴AC =BD ,又∵垂等四边形的面积是24, ∴12AC •BD =24,解得,AC =BD =4√3, 又∵∠BCD =60°, ∴∠DOE =60°,设半径为r ,根据垂径定理可得: 在△ODE 中,OD =r ,DE =2√3, ∴r =DEsin60°=2√332=4,∴⊙O 的半径为4.{解析}本题是一道圆的综合题,主要考查了平行四边形的性质、菱形的性质、矩形的性质、正方形的性质、新定义、圆周角定理、垂径定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用新定义解答问题.(1)根据垂等四边形的性质对每个图形判断即可;(2)根据已知条件可证明四边形ACED 是平行四边形,即可得到AC =DE ,再根据等腰直角三角形的性质即可得到结果;(3)过点O 作OE ⊥BD ,根据面积公式可求得BD 的长,根据垂径定理和锐角三角函数即可得到⊙O 的半径.21. (2020·张家界)阅读下面材料:对于实数,a b ,我们定义符号min{,}a b 的意义为:当a b <时,min{,}a b a =;当a b 时,min{,}a b b =,如:min{4,2}2,min{5,5}5-=-=.根据上面的材料回答下列问题: (1)min{1,3}-=______; (2)当2322min ,233x x x -++⎧⎫=⎨⎬⎩⎭时,求x 的取值范围. (1)﹣1 ;(2)x≥134{解析}本题考查的是一元一次不等式的应用,根据题意理解新定义的计算公式是解题的关键. (1)比较大小,即可得出答案; (2)根据题意判断出2x 3x+223-≥解不等式即可判断x 的取值范围. {答案}解:(1)由题意得min{1,3}-=﹣1 故答案为:﹣1; (2)由题意得:2x 3x+223-≥ 3(2x -3)≥2(x+2) 6x -9≥2x+4 4x≥13 X≥134∴x 的取值范围为x≥134. 22.(2020·长沙)我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图像上关于原点对称的两点叫做一对“H 点”,根据该约定,完成下列各题(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号中打“√”,不是“H 函数”的打“×” ①x y 2=( ) ②()0≠m xmy =( ) ③13-=x y ( ) (2)若点A (1,m )与点B (n ,-4)关于x 的“H 函数”()02≠a c bx ax y ++=的一对“H 点”,且该函数的对称轴始终位于直线x =2的右侧,求a ,b ,c 的值或取值范围;(3)若关于x 的“H 函数”c bx ax y 322++=(a ,b ,c 是常数)同时满足下列两个条件:①0=++c b a ,②()()0322<++-+a b c a b c ,求该“H 函数”截x 轴得到的线段长度的取值范围.{解析}本题考查了审题能力,二次函数的性质、图形和系数的关系等.(1)正比函数是原点对称图形,所以①是“H 函数”,反比例函数一定是原点对称图形,所以②是“H 函数”,而最后③的图形是直线,但是不原点对称,所以③不是“H 函数”;(2)先求出A (1,4),B (-1,-4),根据二次函数的性质就能知道图像的开口向下,把A (1,4),B (-1,-4),代入关系式,加上对称轴公式,就能得到4=a +b +c ,-4=a-b +c , ab2->2,用代入消元法解出结果即可;(3)与(2)的方法近似,根据题意先设一对“H 点”(m ,n )和(-m ,-n )代入,再加上题里给的关系式0=++c b a ,()()0322<++-+a b c a b c ,这样随不能求出具体数,但是能够得到系数之间的数量关系,这样这问求的()21221241x x x x x x -+=-,就能进行化简求值a c a b x x 342221⨯⎪⎭⎫ ⎝⎛-=-,最后要找到最大与最小值即可. {答案}答案 (1)√,√,×(2)解:由題意得A , B 两点关于原点对称 ∴A (1,4),B (-1,-4)又∵函数的对称轴始终位于直线x =2的右侧, ∴A ,B 两点都在对称轴左侧,y 随x 的增大而增大, ∴a <0将A ,B 两点代入原方程可得: 4=a +b +c , -4=a -b +c 解得 b =4,a =-c 又∵ab2->2 ∴-1<a <0 ∵a =-c∴-1<-c <0,解得 0<c <1 又∵a ≠0,∴c ≠0綜上所述: b =4,-1<a <0,0<c <1(3)当y =0时,y =ax 2+2bx +3c 可化为ax 2+2bx +3c =0, ()21221241x x x x x x -+=-当在x 轴有两个交点时,(2b )2-4×a ×3c ≥0,x 1+x 2=ab 2-,x 1·x 2=a c 3∴a ca b x x 342221⨯⎪⎭⎫ ⎝⎛-=-,∵0=++c b a ,∴3234221++=-⎪⎭⎫ ⎝⎛a b x x又∵()()0322<++-+a b c a b c ,解得-3<ab<1 ∵这是关于x 的“H 函数”,∴设(m ,n )和(-m ,-n )代入y =ax 2+2bx +3c 中 可得n =am 2+2bm +3c ,-n =am 2-2bm +3c ,两式相加得2am 2+6c =0, ∵m 2>0,∴ac26->0,又∵0=++c b a ,∴a b >-1,∴-1<a b <1,∵3234221++=-⎪⎭⎫ ⎝⎛a b x x ∴2<21x x -<7223. (2020·湘潭)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边△ABC 的重心为点O ,求△OBC 与△ABC 的面积. (2)性质探究:如图(二),已知△ABC 的重心为点O ,请判断OD OA 、OBC ABCSS是否都为定值?如果是,分别求出这两个定值:如果不是,请说明理由.(3)性质应用:如图(三),在正方形ABCD 中,点E 是CD 的中点,连接BE 交对角线AC 于点M .①若正方形ABCD 的边长为4,求EM 的长度; ②若1CMES=,求正方形ABCD 的面积.{解析}(1)连接DE ,利用相似三角形证明12OD AO =,运用勾股定理求出AD 的长,运用三角形面积公式求解即可;(2)根据(1)的证明可求解; (3)①证明△CME ∽△ABM 得12EM BM =,再运用勾股定理求出BE 的长即可解决问题; ②分别求出S △BMC 和S △ABM 即可. {答案}(1)连接DE ,如图,∵点O 是△ABC 的重心,AD ∴,BE 是BC,A C 边上的中线,D E ∴,为BC ,AC 边上的中点,DE ∴为△ABC 的中位线,//DE AB ∴,12DE AB =, ∴~ODE OAB ,12OD DE OA AB ∴==, 2AB ∴=,1BD =AD ∴=,OD =,11222OBCSBC OD ∴=⨯⨯=⨯=11222ABCSBC AD =⋅⋅=⨯=; (2)由(1)可知,12OD OA =是定值; 112132OBC ABCBC OD S OD S AD BC AD ⋅===⋅是定值; (3)①∵四边形ABCD 是正方形,//CD AB ∴,4AB BC CD ÷==,∴CMEAMBEM CEBM AB∴= ∵E 为CD的中点,122CE CD ∴==BE ∴==12EM BM ∴= 13EM BE ∴=,即EM = ②∴1CMES =,且12ME BM = ∴2BMCS =,∵12ME BM =,∴214CME AMB S ME SBM ⎛⎫== ⎪⎝⎭, ∴4S4AMB CME S ==, 246ABC BMC ABM S S S ∴=+=+=, 又ADC ABC S S =△△∴6ADC S =.∴正方形ABCD 的面积为:6+6=12.24.(2020·内江)我们知道,任意一个正整数x 都可以进行这样的分解:x m n =⨯(m ,n 是正整数,且m n ≤),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n ⨯是x 的最佳分解.并规定:()m f x n=. 例如:18可以分解成118⨯,29⨯或36⨯,因为1819263->->-,所以36⨯是18的最佳分解,所以()311862f ==. (1)填空:()6________f =;()9_________f =;(2)一个两位正整数t (10t a b =+,19a b ≤≤≤,a ,b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t 的最大值; (3)填空:①()22357_____________f ⨯⨯⨯=;②()32357_____________f ⨯⨯⨯=;③()42357_____________f ⨯⨯⨯=;④()52357_____________f ⨯⨯⨯=.{答案}解:(1)6=1×6=2×3,∵6−1>3−2,∴()6f =23;9=1×9=3×3,∵9−1>3−3, ∴()9f =1,故答案为:23;1; (2)由题意可得:交换后的数减去交换前的数的差为:10b +a−10a−b =9(b−a )=54,∴b−a =6,∵1≤a≤b≤9,∴b =9,a =3或b =8,a =2或b =7,a =1, ∴t 为39,28,17;∵39=1×39=3×13,∴()39f =313;28=1×28=2×14=4×7, ∴()28f =47;17=1×17,∴()11717f =;∴()f t 的最大值47. (3)①∵22357⨯⨯⨯=20×21∴()220235721f ⨯⨯⨯=;②32357⨯⨯⨯=28×30∴()3281423573015f ⨯⨯⨯==; ③∵42357⨯⨯⨯=56×30∴()4301523575628f ⨯⨯⨯==; ④∵52357⨯⨯⨯=56×60∴()5561423576015f ⨯⨯⨯==,故答案为:20141514,,,21152815. {解析}本题考查了因式分解的应用;理解题意,从题目中获取信息,列出正确的代数式,再由数的特点求解是解题的关键.(1)6=1×6=2×3,由已知可求()6f =23;9=1×9=3×3,由已知可求()9f =1; (2)由题意可得:交换后的数减去交换前的数的差为:10b +a−10a−b =9(b−a )=54,得到b−a =6,可求t 的值,故可得到()f t 的最大值;(3)根据()m f x n=的定义即可依次求解.25.(2020·通辽)用※定义一种新运算:对于任意实数m 和n ,规定m ※n =m 2n ﹣mn ﹣3n ,如:1※2=12×2﹣1×2﹣3×2=﹣6. (1)求(﹣2(2)若3※m ≥﹣6,求m 的取值范围,并在所给的数轴上表示出解集.{解析}(1)根据定义进行列式计算;(2)根据定义列出不等式,再进行求解,然后把解集在数轴上表示出来.{答案}解:(1)(-2(-2)223(2)∵3※m =32 m -3 m -3 m =3 m ,又∵3※m ≥﹣6,∴3 m ≥﹣6,得m ≥﹣2.在数轴上表示如下:26.(7分)(2020•呼和浩特)“通过等价变换,化陌生为熟悉,化未知为已知”是数学学习中解决问题的基本思维方式,例如:解方程x ﹣=0,就可以利用该思维方式,设=y ,将原方程转化为:y 2﹣y =0这个熟悉的关于y 的一元二次方程,解出y ,再求x ,这种方法又叫“换元法”.请你用这种思维方式和换元法解决下面的问题.已知实数x,y满足,求x2+y2的值.解:令xy=a,x+y=b,则原方程组可化为:,整理得:,②﹣①得:11a2=275,解得:a2=25,代入②可得:b=4,∴方程组的解为:或,x2+y2=(x+y)2﹣2xy=b2﹣2a,当a=5时,x2+y2=6,当a=﹣5时,x2+y2=26,因此x2+y2的值为6或26.27.(9分)(2020•遂宁)阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y=x2﹣4x+3的旋转函数.(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为旋转函数,求(m+n)2020的值.(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.解:(1)由y=x2﹣4x+3函数可知,a1=1,b1=﹣4,c1=3,∵a1+a2=0,b1=b2,c1+c2=0,∴a2=﹣1,b2=﹣4,c2=﹣3,∴函数y=x2﹣4x+3的“旋转函数”为y=﹣x2﹣4x﹣3;(2)∵y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,∴,解得:,∴(m+n)2020=(﹣2+3)2020=1.(3)证明:当x=0时,y=2(x﹣1)(x+3))=﹣6,∴点C的坐标为(0,﹣6).当y=0时,2(x﹣1)(x+3)=0,解得:x1=1,x2=﹣3,∴点A的坐标为(1,0),点B的坐标为(﹣3,0).∵点A,B,C关于原点的对称点分别是A1,B1,C1,∴A1(﹣1,0),B1(3,0),C1(0,6).设过点A1,B1,C1的二次函数解析式为y=a(x+1)(x﹣3),将C1(0,6)代入y=a(x+1)(x﹣3),得:6=﹣3a,解得:a=﹣2,过点A1,B1,C1的二次函数解析式为y=﹣2(x+1)(x﹣3),即y=﹣2x2+4x+6.∵y=2(x﹣1)(x+3)=2x2+4x﹣6,∴a1=2,b1=4,c1=﹣6,a2=﹣2,b2=4,c2=6,∴a1+a2=2+(﹣2)=0,b1=b2=4,c1+c2=6+(﹣6)=0,∴经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.。
(精品)2020中考数学三轮复习——新定义与材料阅读练习(完整版)
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
loga(M•N)=logaM+logaN(a>0,a≠1,M>0,N>0),理由如下: 设 logaM=m,logaN=n,则 M=am,N=an, ∴M•N=am•an=am+n,由对数的定义得 m+n=loga(M•N) 又∵m+n=logaM+logaN ∴loga(M•N)=logaM+logaN 根据阅读材料,解决以下问题: (1)将指数式 34=81 转化为对数式;
8/9
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
AB BC CD AD
∴
A1B1
=
B1C1
=
C1D1
=
A1D1
,∠ADC=∠A1D1C1,∠A=∠A1,∠ABC=
∠A1B1C1,∠BCD=∠B1C1D1,
∴四边形 ABCD 与四边形 A1B1C1D1 相似.
(3)如图 2 中,
∵四边形 ABCD 与四边形 EFCD 相似,∴ DE = EF , AE AB
∴∠ABG=∠AEC,又∠AEC+∠AME=90°, ∴∠ABG+∠AME=90°,即 CE⊥BG, ∴四边形 CGEB 是垂美四边形, 由(2)得,CG2+BE2=CB2+GE2,
∵AC=4,AB=5,∴BC=3,CG=4 2 ,BE=5 2 , ∴GE2=CG2+BE2-CB2=73,∴GE= 73 .
所以 S= 311 −1 , 2
即 3+32+33+34+…+310= 311 −1 ; 2
故答案为: 311 −1 ; 2
2020中考数学冲刺练习-第02讲 新定义理解问题--含解析
2020数学中考冲刺专项练习【难点突破】着眼思路,方法点拨, 疑难突破;新定义问题:是指题目提供一定的材料,或介绍一个新概念,或给出一种解法等,在理解材料的基础上,获得探索解决问题的方法,从而加以运用,解决问题. 这类问题一般由“阅读材料”和“提出问题”两个部分组成.解决此类题的步骤: ①理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;②重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况;③类比新定义中的概念、原理、方法,解决题中需要解决的问题。
解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。
类型1:方法模拟型,该类题目是指通过阅读所给材料,将得到的信息通过观察、分析、归纳、类比,作出合理的推断,大胆的猜测,从中获取新的思想、方法或解题途径,进而运用归纳与类比的方法来解答题目中所提出的问题.类型2:新知识学习型,这类题目就是由阅读材料给出一个新的定义、运算等,涉及的知识可能是以后要学到的数学知识,也有可能是其他学科的相关内容,然后利用所提供的新知识解决所给问题.解答这类问题的关键是要读懂题目提供的新知识,理解其本质,把它与已学的知识联系起来,把新的问题转化为已学的知识进行解决.类型3:信息处理型,这类题目主要是根据提供的表格,从中获得信息,并结合题意进行解答,这就需要我们将表格内容转化为数学信息或者已知条件。
类型4:阅读操作型,这类题目就是由阅读材料给出一个新的定义、运算等,涉及的知识可能是以后要学到的数学知识,也有可能是其他学科的相关内容,然后利用所提供的新知识解决所给问题.解答这类问题的关键是要读懂题目提供的新知识,理解其本质,把它与已学的知识联系起来,把新的问题转化为已学的知识进行解决.【名师原创】原创检测,关注素养,提炼主题;【原创1】2018年某省积极推进乡村规划和特色小城镇建设,各市地将结合本地实际,因地制宜培育一到三个设施完善、特色鲜明的典型示范镇,全面推进特色小城镇建设。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020中考数学冲刺专题12新定义【考点1】明确条件、原理、方法得出结论【例1】(2019•房山区二模)对于平面直角坐标系xOy 中的点P 和C e ,给出如下定义:若C e 上存在点A ,使得30APC ∠=︒,则称P 为C e 的半角关联点. 当O e 的半径为1时,(1)在点1(2D ,1)2-,(2,0)E ,F 中,O e 的半角关联点是 ;(2)直线:2l y =-交x 轴于点M ,交y 轴于点N ,若直线l 上的点(,)P m n 是O e 的半角关联点,求m 的取值范围.【变式1-1】(2018•平谷区二模)对于平面直角坐标系xOy 中的点P 和M e ,给出如下定义:若M e 上存在两个点A ,B ,使2AB PM =,则称点P 为M e 的“美好点”.(1)当M e 半径为2,点M 和点O 重合时,1点1(2,0)P -,2(1,1)P ,3(2,2)P 中,O e 的“美好点”是 ;2点P 为直线y x b =+上一动点,点P 为O e 的“美好点”,求b 的取值范围;(2)点M 为直线y x =上一动点,以2为半径作M e ,点P 为直线4y =上一动点,点P 为M e 的“美好点”,求点M 的横坐标m 的取值范围.【考点2】运用类比、归纳、分类讨论等解决问题【例2】(2018•东城区二模)研究发现,抛物线214y x =上的点到点(0,1)F 的距离与到直线:1l y =-的距离相等.如图1所示,若点P 是抛物线214y x =上任意一点,PH l ⊥于点H ,则PF PH =. 基于上述发现,对于平面直角坐标系xOy 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线214y x =的关联距离;当24d 剟时,称点M 为抛物线214y x =的关联点. (1)在点1(2,0)M ,2(1,2)M ,3(4,5)M ,4(0,4)M -中,抛物线214y x =的关联点是 ; (2)如图2,在矩形ABCD 中,点(,1)A t ,点(1,3)C t + ①若4t =,点M 在矩形ABCD 上,求点M 关于抛物线214y x =的关联距离d 的取值范围; ②若矩形ABCD 上的所有点都是抛物线214y x =的关联点,则t 的取值范围是 .【变式2-1】(2019•东城区一模)在平面直角坐标系xOy 中,对于P 、Q 两点给出如下定义:若点P 到x 、y 轴的距离中的最大值等于点Q 到x 、y 轴的距离中的最大值,则称P 、Q 两点为“等距点”,如图中的P 、Q 两点即为“等距点”.(1)已知点A 的坐标为(3,1)-①在点(0,3)E 、(3,3)F -、(2,5)G -中,点A 的“等距点”是 ;②若点B 在直线6y x =+上,且A 、B 两点为“等距点”,则点B 的坐标为 ; (2)直线:3(0)l y kx k =->与x 轴交于点C ,与y 轴交于点D .①若11(1,)T t -、22(4,)T t 是直线l 上的两点,且1T 、2T 为“等距点”,求k 的值;②当1k =时,半径为r 的O e 上存在一点M ,线段CD 上存在一点N ,使得M 、N 两点为“等距点”,直接写出r 的取值范围.1.(2019•门头沟区二模)对于平面直角坐标系xOy 中的动点P 和图形N ,给出如下定义:如果Q 为图形N上一个动点,P ,Q 两点间距离的最大值为max d ,P ,Q 两点间距离的最小值为min d ,我们把max min d d +的值叫点P 和图形N 间的“和距离”,记作(,)d P N . (1)如图1,正方形ABCD 的中心为点O ,(3,3)A . ①点O 到线段AB 的“和距离” (,)d O AB = ;②设该正方形与y 轴交于点E 和F ,点P 在线段EF 上,(,)7d P ABCD =,求点P 的坐标.(2)如图2,在(1)的条件下,过C ,D 两点作射线CD ,连接AC ,点M 是射线CD 上的一个动点,如果(,)6d M AC <+M 点横坐标t 取值范围.2.(2019•海淀区二模)对于平面直角坐标系xOy 中的两个图形M 和N ,给出如下定义:若在图形M 上存在一点A ,图形N 上存在两点B ,C ,使得ABC ∆是以BC 为斜边且2BC =的等腰直角三角形,则称图形M 与图形N 具有关系(,)M N ϕ.(1)若图形X 为一个点,图形Y 为直线y x =,图形X 与图形Y 具有关系(,)X Y ϕ,则点1P ,2(1,1)P ,3(2,2)P -中可以是图形X 的是 ;(2)已知点(2,0)P ,点(0,2)Q ,记线段PQ 为图形X .①当图形Y 为直线y x =时,判断图形X 与图形Y 是否既具有关系(,)X Y ϕ又具有关系(,)Y X ϕ,如果是,请分别求出图形X 与图形Y 中所有点A 的坐标;如果不是,请说明理由;②当图形Y 为以(,0)T t 为半径的T e 时,若图形X 与图形Y 具有关系(,)X Y ϕ,求t 的取值范围.3.(2019•西城区二模)对于平面内的MAN ∠及其内部的一点P ,设点P 到直线AM ,AN 的距离分别为1d ,2d ,称12d d 和21dd 这两个数中较大的一个为点P 关于MAN ∠的“偏率”.在平面直角坐标系xOy 中, (1)点M ,N 分别为x 轴正半轴,y 轴正半轴上的两个点. ①若点P 的坐标为(1,5),则点P 关于MON ∠的“偏率”为 ;②若第一象限内点(,)Q a b 关于MON ∠的“偏率”为1,则a ,b 满足的关系为 ;(2)已知点(4,0)A ,(2B,,连接OB ,AB ,点C 是线段AB 上一动点(点C 不与点A ,B 重合).若点C 关于AOB ∠的“偏率”为2,求点C 的坐标;(3)点E ,F 分别为x 轴正半轴,y 轴正半轴上的两个点,动点T 的坐标为(,4)t ,T e 是以点T 为圆心,半径为1的圆.若T e 上的所有点都在第一象限,且关于EOF ∠t 的取值范围.4.(2019•东城区二模)对于平面直角坐标系xOy 中的图形P 和直线AB ,给出如下定义:M 为图形P 上任意一点,N 为直线AB 上任意一点,如果M ,N 两点间的距离有最小值,那么称这个最小值为图形P 和直线AB 之间的“确定距离”,记作(,)d P AB . 已知(2,0)A ,(0,2)B . (1)求d (点O ,直线)AB ;(2)T e 的圆心为(,0)T t ,半径为1,若(,)1d T AB e …,直接写出t 的取值范围;(3)记函数y kx =,(11,0)x k -≠剟的图象为图形Q .若(,)1d Q AB =,直接写出k 的值.5.(2019•石景山区二模)对于平面直角坐标系xOy 中的点P ,Q ,给出如下定义:若P ,Q 为某个三角形的顶点,且边PQ 上的高h ,满足h PQ =,则称该三角形为点P ,Q 的“生成三角形”. (1)已知点(4,0)A ;①若以线段OA 为底的某等腰三角形恰好是点O ,A 的“生成三角形”,求该三角形的腰长;②若Rt ABC ∆是点A ,B 的“生成三角形”,且点B 在x 轴上,点C 在直线25y x =-上,则点B 的坐标为 ;(2)T e 的圆心为点(2,0)T ,半径为2,点M 的坐标为(2,6),N 为直线4y x =+上一点,若存在Rt MND ∆,是点M ,N 的“生成三角形”,且边ND 与T e 有公共点,直接写出点N 的横坐标N x 的取值范围.6.(2019•平谷区二模)如图,在平面直角坐标系xOy 中,点P 是C e 外一点,连接CP 交C e 于点Q ,点P 关于点Q 的对称点为P ',当点P '在线段CQ 上时,称点P 为C e “友好点”.已知(1,0)A ,(0,2)B ,(3,3)C (1)当O e 的半径为1时,①点A ,B ,C 中是O e “友好点”的是 ;②已知点M 在直线2y =+ 上,且点M 是O e “友好点”,求点M 的横坐标m 的取值范围;(2)已知点D ,连接BC ,BD ,CD ,T e 的圆心为(,1)T t -,半径为1,若在BCD ∆上存在一点N ,使点N 是T e “友好点”,求圆心T 的横坐标t 的取值范围.7.(2019•怀柔区二模)在平面直角坐标系xOy 中,对于两个点A ,B 和图形ω,如果在图形ω上存在点P ,(Q P ,Q 可以重合),使得2AP BQ =,那么称点A 与点B 是图形ω的一对“倍点”. 已知O e 的半径为1,点(0,3)B . (1)①点B 到O e 的最大值,最小值;②在1(5,0)A ,2(0,10)A ,3A 这三个点中,与点B 是O e 的一对“倍点”的是 ;(2)在直线y x b =+上存在点A 与点B 是O e 的一对“倍点”,求b 的取值范围; (3)正方形MNST 的顶点(,1)M m ,(1,1)N m +,若正方形上的所有点与点B 都是O e 的一对“倍点”,直接写出m 的取值范围.8.(2019•朝阳区二模)1(1,)2M --,1(1,)2N -是平面直角坐标系xOy 中的两点,若平面内直线MN 上方的点P 满足:4590MPN ︒∠︒剟,则称点P 为线段MN 的可视点.(1)在点11(0,)2A ,21(,0)2A ,3A ,4(2,2)A 中,线段MN 的可视点为 ;(2)若点B 是直线12y x =+上线段MN 的可视点,求点B 的横坐标t 的取值范围; (3)直线(0)y x b b =+≠与x 轴交于点C ,与y 轴交于点D ,若线段CD 上存在线段MN 的可视点,直接写出b 的取值范围.9.(2019•顺义区二模)对于平面直角坐标系xOy 中的任意两点1(M x ,1)y ,2(N x ,2)y ,给出如下定义:点M 与点N 的“折线距离”为:1212(,)||||d M N x x y y =-+-.例如:若点(1,1)M -,点N (2,2)-,则点M 与点N 的“折线距离”为:(d M ,)|12||1(2)|336N =--+--=+=. 根据以上定义,解决下列问题: (1)已知点P (3,2)-.①若点(2,1)A --,则(,)d P A = ; ②若点(,2)B b ,且(,)5d P B =,则b = ;③已知点(,)C m n 是直线y x =-上的一个动点,且(,)3d P C <,求m 的取值范围.(2)F e 的半径为1,圆心F 的坐标为(0,)t ,若F e 上存在点E ,使(,)2d E O =,直接写出t 的取值范围.10.(2019•北京)在ABC ∆中,D ,E 分别是ABC ∆两边的中点,如果¶DE 上的所有点都在ABC ∆的内部或边上,则称¶DE为ABC ∆的中内弧.例如,图1中¶DE 是ABC ∆的一条中内弧.(1)如图2,在Rt ABC ∆中,AB AC ==D ,E 分别是AB ,AC 的中点,画出ABC ∆的最长的中内弧¶DE,并直接写出此时¶DE 的长; (2)在平面直角坐标系中,已知点(0,2)A ,(0,0)B ,(4C t ,0)(0)t >,在ABC ∆中,D ,E 分别是AB ,AC 的中点.①若12t =,求ABC ∆的中内弧¶DE所在圆的圆心P 的纵坐标的取值范围; ②若在ABC ∆中存在一条中内弧¶DE,使得¶DE 所在圆的圆心P 在ABC ∆的内部或边上,直接写出t 的取值范围.。