maxwell软件- 三相同步电机设计
maxwell 永磁同步电机设计
maxwell 永磁同步电机设计Maxwell永磁同步电机是一种高效、节能、可靠的电动机,广泛应用于工业生产和交通运输领域。
本文将介绍Maxwell永磁同步电机的设计原理和优势。
一、设计原理Maxwell永磁同步电机采用永磁体和电磁线圈两种电磁场相互作用的原理工作。
永磁体产生一个稳定的磁场,而电磁线圈通过通电产生一个可控制的磁场。
当两个磁场相互作用时,产生电磁力,驱动电机转动。
Maxwell永磁同步电机的设计中,关键是确定永磁体的材料和形状,以及电磁线圈的匝数和电流。
永磁体通常采用稀土永磁材料,如钕铁硼磁铁,具有较高的磁能积和矫顽力,可以产生强大的磁场。
而电磁线圈的匝数和电流决定了电磁力的大小和性质。
二、优势1. 高效节能:Maxwell永磁同步电机由于采用永磁体产生磁场,相对于传统的感应电机,没有电磁铁的损耗,转换效率更高。
同时,由于磁场的稳定性,电机的功率因数更高,减少了无功功率的损耗。
2. 高转矩密度:Maxwell永磁同步电机的永磁体产生的磁场强度高,可以产生较大的转矩,相对于同功率的感应电机,体积更小,重量更轻。
这使得Maxwell永磁同步电机在限空场合有更大的优势。
3. 宽工作范围:Maxwell永磁同步电机的设计可以根据不同的工作要求进行优化。
通过合理选择永磁体和电磁线圈的参数,可以使电机在不同负载和转速下都能获得较高的效率和性能。
4. 精密控制:Maxwell永磁同步电机的转速可以通过调节电磁线圈的电流来实现精密控制。
电机的转速响应快,可以适应快速变化的负载要求。
5. 可靠性高:Maxwell永磁同步电机的永磁体不需要外部电源,稳定性高,寿命长。
同时,由于无需感应电流,电机的发热量少,散热效果好,减少了电机的损坏和故障。
三、应用领域Maxwell永磁同步电机广泛应用于工业生产和交通运输领域。
在工业生产中,电机可以用于驱动各种设备和机械,如压缩机、泵、风机等。
在交通运输领域,电机可以用于电动汽车、电动自行车、电动船等交通工具。
maxwell电机仿真实例
maxwell电机仿真实例Maxwell电机仿真是一种对电机进行计算机模拟的技术,其目的是为了优化电机设计、提高电机性能和减少实际试验的成本和时间。
利用仿真软件对电机进行模拟可以更快速地得到设计方案,并且能够对不同参数进行优化,以达到更好的性能。
本文将介绍Maxwell电机仿真的基本原理和实例应用。
1. Maxwell电机仿真的基本原理Maxwell电机仿真是建立在Maxwell电磁场仿真软件基础上的,它是一种采用有限元方法对电机进行建模和分析的技术。
有限元方法是一种数值计算方法,它能够将连续的物理模型离散化为有限个小区域,通过对这些小区域进行求解,得到整个物理系统的行为。
在电机仿真中,有限元方法被用来求解电机内部的电磁场分布、温度分布和电机的性能等。
Maxwell电机仿真的基本原理包括以下几个方面:(1)建立电机模型:首先需要根据实际的电机结构、材料和工作条件等建立电机的几何模型。
这个过程通常使用CAD软件来完成,得到电机的三维结构模型。
(2)设置仿真参数:在建立了电机的几何模型后,需要对仿真参数进行设置,包括材料特性、工作条件、电机结构等各项参数。
这个过程需要根据实际的工程要求和设计需求来进行。
(3)网格划分:对电机的几何模型进行网格划分,将电机离散化为有限个小区域,以便后续的有限元计算。
(4)求解电磁场分布:利用有限元方法对电机进行电磁场分布的求解,得到电机内部的电磁场分布特性。
(5)分析电机性能:根据电磁场分布和电机参数对电机的性能进行分析,包括输出转矩、功率、效率等。
2. Maxwell电机仿真的实例应用Maxwell电机仿真可以应用于各种类型的电机,包括直流电机、交流电机、同步电机和异步电机等。
下面将以某家电机公司的三相异步电机为例,介绍Maxwell电机仿真的实例应用。
(1)建立电机模型:首先,需要在Maxwell软件中建立该三相异步电机的几何模型。
电机结构主要包括定子、转子、风扇、绕组等部件,根据电机实际的结构和尺寸进行建模。
maxwell软件- 调速永磁同步电机
13调速永磁同步电机在用户已经掌握RMxprt 基本使用的前提下,我们将一些过程简化,以便介绍一些更高级的使用。
有关RMxprt 的详细介绍请参考第一部分的章节。
13.1基本原理调速永磁同步电机的转子转速是通过调节输入电压的频率来控制的。
与标准的直流无刷电机不同,这种电机不需要位置传感器。
永磁同步电机的转子上安装永磁体(有内转子与外转子之分),定子上嵌有多相电枢绕组,其极数与转子相同。
永磁同步电机既可用作发电机,也可用作电动机。
当电机工作在电动状态时,定子多相绕组可由正弦交流电源供电或由直流电源经DC/AC 变换来供电。
当电机工作在发电状态时,定子多相绕组为负载提供交流电源。
13.1.1 定子绕组正弦交流电源供电永磁同步电机分析方法与三相凸极同步电机相同,电机既可工作在发电状态也可工作在电动状态,通常采用频域矢量图来分析电机的特性。
电机发电状态矢量图如图13.1a ,电机电动状态矢量图如图13.1b 。
发电机b. 电动机图13.1 同步电机相量图图13.1中,R 1、X d 、X q 分别为定子电枢的电阻、d 轴同步电抗和q 轴同步电抗。
aq1q ad 1d X X X X X X +=+=(13.1)上式中,X 1为电枢绕组漏电抗,X ad 和X aq 分别为d 轴电枢反应电抗和q 轴电枢反应电抗。
以输入电压U 为参考矢量, I 滞后U 的角度为φ, 称φ为功率因数角, 则电流矢量为:ϕ-∠=I I(13.2)令I 滞后E 0的角度为ψ。
则可得d 轴和q 轴的电流为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=ψψcos sin I I I q d I (13.3)所以:qd 1I I -=tan ψ (13.4)13.1.1.1 发电机模型在图13.1a ,OM 所代表的矢量可表示为:)j j (aq 11X X R OM +++=I U (13.5)OM 所代表的矢量可用来确定E 0的位置。
令U 滞后E 0的角度为θ,对于发电机称θ为功角,则角度ψ为θϕψ+=(13.6)对于给定的功角θ,我们有;⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-θθsin cos U U E I I X R R X 0q d q 11d (13.7)求得I d 和I q 为:⎥⎦⎤⎢⎣⎡--+-+=⎥⎦⎤⎢⎣⎡θθθθsin )cos (sin )cos (U X U E R U R U E X X X R 1I I d 0110q qd 21q d(17.8)功率角φ:θψϕ-=(13.9)输出电功率:ϕcos UI 3P 2=(13.10)输入机械功率:)(Fe Cua fw 21P P P P P +++= (13.11)式中P fw 、P Cua 、P Fe 分别为风摩损耗、电枢铜损和铁心损耗输入机械转矩:ω11P T =(13.12)ω为同步角速度rad/s13.1.1.2 电动机模型在图13.1, OM 所代表的矢量可表示为:)j j (aq 11X X R OM ++-=I U (13.5’)OM 所代表的矢量可用来确定E 0的位置。
三相永磁同步电机的设计及仿真优化
【 摘要】在永磁 同步 电机 的工作 原理的基础 上 , 根据 电机参 数的计
算公 式 和 经 验 取 值 , 得 到 了一 台 三 相 永 磁 同 步 电机 的尺 寸 大 小 , 并 简要概括 了参数计算和取值 时的注意事项。通过计 算的电机尺寸 , 利 用 Ma x w e l l 软 件 进 行 永 磁 同步 电机 的 建 模 和 有 限元 仿 真 分 析 , 从 而得 出电机 的相 电压 、 相 电流 、 感应 电动 势 、 气 隙磁 密 波 形及 磁 力 线 分布、 磁 通 密度 分 布 等 。仿 真 结 果 验 证 了 电机 设 计 的 合 理 性 , 为 以 后 永磁 同步 电机 的 设 计及 优 化 提 供 了依 据 。
3 Ma x w e l l 的有 限元 仿 真 分 析 3 . 1 P MS M 在 R Mx p r t 模 块 中 的仿 真 。根 据 已知 的 电 机参 数 , 通 2 P MS M 的 参 数 设 计 过计算可以得出电机的主要 参数 , 再把 电机 的尺寸 等参数 输入 到 电 机 设 计 的 过 程 是 相 当复 杂 的 , 它需 要考虑参数 、 尺 寸 等 多 种 Ma x w e l l 软件 的 R M x p r t 模块 中 , 通过 R M x p r t 模块 的仿真 , 我们可以 因素 , 设计前先 给出一些 已知参数 , ( 1 ) 额定电压 U :6 0 V; ( 2 ) 额 得 出电压波形图基本接近 正弦波 , 气 隙磁 密波形 图基本接 近矩 形 定功率 P :1 . 5 k w; ( 3 ) 额定转 速 n =3 6 0 0÷ ; ( 4 ) 额 定效 率 叼 波, 而 且 两 者 的谐 波 含 量 都 很 小 , 从 这 两 个 曲线 可 以 看 出 电机 设 计 的 比较 合 理 。 0 . 8 5; ( 5 ) 极对数 P=4, 以方便接下来 的计算取值 。 3 . 2 P MS M 在 Ma x w e l l 2 D模 块 中 的仿 真 根 据 上 述 已知 参 数 , 我们 通过公 式计算 和经 验取值 可 以得 出
maxwell软件- 通用电机
18 通用电动机在用户已经掌握RMxprt 的基本使用的基础上,我们将一些过程简化,以便介绍一些更高级的使用。
有关RMxprt 的详细介绍请参考第一部分的章节。
18.1 分析方法对于直流电动机,如果励磁绕组与电枢绕组串联,则是串励电动机。
由于换向系统的存在,电枢电流和励磁电流会同时改变方向,因此当它的端电压方向改变时,产生的电磁转矩的方向也不变。
这就意味着电动机不仅能在直流电源下运行,也能在交流电源下运行,因此串励电动机又称为通用电动机(UniM),或称串激电机。
通用电动机的定子上装有主磁极绕组,主磁极上的励磁绕组产生极性为N 机和S 极交替排列的p 对定子磁场。
励磁线圈既可以由直流电励磁,也可以由交流电励磁。
转子上分布的绕组称为电枢绕组,与换向器相连,换向器跟随转子一起旋转。
电刷与换向器始终保持电连接,当电流经电刷和换向器流入旋转的电枢绕组时,在转子电流和定子磁极产生的磁场的相互作用下产生了电磁转矩。
换向器使电枢绕组磁势在空间分布是固定的,该磁势轴线始终与永磁体产生的磁势轴线垂直。
对于这些电动机来说,换向器起到了机械整流的作用。
通常,在频域范围内分析通用电动机的性能,通用电动机的电压方程为:I I I ZI U )()(j )(af aa e af f a b f a G G M 2L L R R R +++++++==ωω (18.1) 式中,R a 、R f 和R b 分别表示电枢电阻、励磁绕组电阻和电刷接触电阻,L a 、 L f 和M af 分别是电枢自感、励磁绕组自感和二者之间的互感,G aa 和G af 分别是电枢电流和励磁电流对应的感应电动势系数,ω是电枢电流的角频率,ωe 是转子速度(用每秒的电弧度来表示),Z 是等效的输入阻抗。
电感和反电势系数是经线性化处理的非线性参数。
当电刷轴线与q 轴重合时,aa af G M = (18.2) 如果给定转子转度ωe ,电枢电流I 可以通过端电压U 计算:Z UI = (18.3) 输入电功率可以直接通过电压和电流计算得到,如:ϕcos UI P 1=(18.4) 输出功率(机械功率)为:)(Fe Cuf Cua b fw 12P P P P P P P ++++-= (18.5) 式中的P fw 、P b 、P cua 、P cuf 和P Fe 分别表示风摩损耗、电刷压降损耗、电枢铜损耗、励磁绕组铜损耗和铁心损耗。
Maxwell仿真永磁同步电机步骤资料
Ansoft Maxwell 14 永磁同步电机仿真步骤总结
首先是建立一个RMxprt文件,选择电机类型为下图的
Permanent-MagnetSynchronous Motor
只要按照下面的参数输入即可
磁钢材料NTP264H要自己定义
Danper是怎么出来的?要右键”Rotor’ ,选择Insert Danper,就可以了
所有参数输入完毕,现在要定义个求解设置,右键“Analysis”添加一个setup,
模型
绕组的连接如下
求解结果
一键导入到maxwell14 2D瞬态场里去分析即可,右键Analysis setup 的creat Maxwell design ,auto setup 要打勾
导入模型如图,是1/4模型(导入整个模型的方法?加注fragnet 1)
因为是1/4模型,所以要设置一个Symmetry Multiplier ,右键”model”,就可以看到,设置如
下
电机在零负载转矩的起动:点击“model”的树,将其展开,双击Motion setup 作如下设置
为了得到,更好的仿真图像,设置一下仿真时间,双击Solve setup 作如下设置
以下就是在零负载转矩的情况下的得出的各种起动时间图,横轴的时间单位是毫秒(ms)
做完了以上的仿真,再做一个电机在额定负载下的起动过程,把上面的文件复制一下,然
后改一下名称,结果如图然后双击负载的那个,改一个参数就可以,要改的参数,在motion setup里(上面有提到过的)将load Torque 设置成如下就可以,然后开始让电脑开始仿真(Analys all)
结果的图如下。
同步电机永磁电机maxwell分析
三相同步电机分析1. 电流设置问题电流的幅值*sin(2*pi*频率*time+delta)电流极大值:电流有效值*sqrt(2)频率:f=p*n/60 p为转子级对数,即Pr2. 电压的初相位调整根据出来的A相电压调整其位置,对于电压半个周期相位为360/2/Pr,务必使A相的电压满足正弦波形3. 分析时长与步长的控制分析时长选择一到两个周期,周期的计算方法:T=1/f=p*n/60分析步长选择分析时长的1%-2%,此外,每隔一到十个记一次数4. 基于坐标变换的交流磁场磁通密度的调整(-Moving1.Position -初始相位 * PI/180) * 极对数 + PI注意前面要加个负号5. 空载情况下的三个校核要点电流要为零+A相电压从零开始起步+Flux_q=0(磁通变化后)Flux-d是沿磁极正向的磁场强度,Flux-q是垂直于磁场方向的磁场强度,正常情况下,垂直于磁场方向应该为06. 删除现有的结果7. 负载要将电流初相位delta改为零,然后给电流的大小赋值8. 气隙磁密分布情况使用气隙中间的圆线作为参考面,使用场计算器计算B在中心面上的径向与切向分量在result中添加曲线可以在此处更改对应的时间9. 对气隙磁密进行傅里叶分解首先要进行坐标变化,把横坐标变成1,并且注意要用标准单位可以用鼠标划分局部显示傅里叶结果的横坐标是谐波极对数(频率),纵坐标是谐波幅值10. 网格划分问题可以通过画圆圈线手动加密气隙网格密度,画圈之后,将coverlines删除,将自动保留线画完曲线之后再画网格,并通过plotmesh查看11. 矢量场向量曲面积分计算问题在指定的曲线上,当需要插入函数的时候,先将变量以及加减乘除运算符先加上,然后使用积分函数integ 函数,需要注意的是,此处为矢量的线积分,要注意公式的转换·1,一般,极坐标积分可以提出一个r 出来,即:()r f d θθ∫在线积分时就变成了:()l f d θ∫。
基于maxwell的轴向磁通永磁同步电机电磁设计
基于maxwell的轴向磁通永磁同步电机电磁设计Maxwell方程组是电磁学中的基本方程组,它描述了电磁场的本质和规律。
在电机设计中,Maxwell方程组也是不可或缺的工具。
本文将基于Maxwell方程组,探讨轴向磁通永磁同步电机的电磁设计。
轴向磁通永磁同步电机是一种新型的永磁同步电机,它的磁通方向与轴向一致。
相比于传统的永磁同步电机,轴向磁通永磁同步电机具有更高的功率密度和效率。
在电磁设计中,需要考虑电机的磁路和电路两个方面。
首先,考虑电机的磁路设计。
轴向磁通永磁同步电机的磁路由永磁体、定子铁心和转子铁心组成。
在设计磁路时,需要满足以下几个条件:1. 磁路应具有足够的磁导率,以保证磁通的传递和集中。
2. 磁路应具有足够的截面积,以承受电机的磁场和机械载荷。
3. 磁路应具有足够的稳定性,以避免磁通的泄漏和损失。
在满足以上条件的基础上,可以采用有限元分析等方法进行磁路设计。
有限元分析可以模拟电机的磁场分布和磁通密度,从而优化磁路结构和材料选择。
其次,考虑电机的电路设计。
轴向磁通永磁同步电机的电路由定子绕组、转子绕组和电源组成。
在设计电路时,需要满足以下几个条件:1. 定子绕组和转子绕组应具有足够的导体截面积和匝数,以承受电流和磁场的作用。
2. 定子绕组和转子绕组应具有足够的绝缘强度,以避免电气击穿和绝缘老化。
3. 电源应具有足够的电压和电流输出,以满足电机的工作要求。
在满足以上条件的基础上,可以采用电磁场分析等方法进行电路设计。
电磁场分析可以模拟电机的电流分布和电磁场分布,从而优化绕组结构和电源选择。
总之,轴向磁通永磁同步电机的电磁设计需要综合考虑磁路和电路两个方面。
在设计过程中,可以采用有限元分析和电磁场分析等方法,优化磁路结构、材料选择、绕组结构和电源选择,以实现电机的高效、高功率密度和高性能。
maxwell软件- 调速永磁同步电机
13调速永磁同步电机在用户已经掌握RMxprt 基本使用的前提下,我们将一些过程简化,以便介绍一些更高级的使用。
有关RMxprt 的详细介绍请参考第一部分的章节。
13.1基本原理调速永磁同步电机的转子转速是通过调节输入电压的频率来控制的。
与标准的直流无刷电机不同,这种电机不需要位置传感器。
永磁同步电机的转子上安装永磁体(有内转子与外转子之分),定子上嵌有多相电枢绕组,其极数与转子相同。
永磁同步电机既可用作发电机,也可用作电动机。
当电机工作在电动状态时,定子多相绕组可由正弦交流电源供电或由直流电源经DC/AC 变换来供电。
当电机工作在发电状态时,定子多相绕组为负载提供交流电源。
13.1.1 定子绕组正弦交流电源供电永磁同步电机分析方法与三相凸极同步电机相同,电机既可工作在发电状态也可工作在电动状态,通常采用频域矢量图来分析电机的特性。
电机发电状态矢量图如图13.1a ,电机电动状态矢量图如图13.1b 。
发电机b. 电动机图13.1 同步电机相量图图13.1中,R 1、X d 、X q 分别为定子电枢的电阻、d 轴同步电抗和q 轴同步电抗。
aq1q ad 1d X X X X X X +=+=(13.1)上式中,X 1为电枢绕组漏电抗,X ad 和X aq 分别为d 轴电枢反应电抗和q 轴电枢反应电抗。
以输入电压U 为参考矢量, I 滞后U 的角度为φ, 称φ为功率因数角, 则电流矢量为:ϕ-∠=I I(13.2)令I 滞后E 0的角度为ψ。
则可得d 轴和q 轴的电流为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=ψψcos sin I I I q d I (13.3)所以:qd 1I I -=tan ψ (13.4)13.1.1.1 发电机模型在图13.1a ,OM 所代表的矢量可表示为:)j j (aq 11X X R OM +++=I U (13.5)OM 所代表的矢量可用来确定E 0的位置。
令U 滞后E 0的角度为θ,对于发电机称θ为功角,则角度ψ为θϕψ+=(13.6)对于给定的功角θ,我们有;⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-θθsin cos U U E I I X R R X 0q d q 11d (13.7)求得I d 和I q 为:⎥⎦⎤⎢⎣⎡--+-+=⎥⎦⎤⎢⎣⎡θθθθsin )cos (sin )cos (U X U E R U R U E X X X R 1I I d 0110q qd 21q d(17.8)功率角φ:θψϕ-=(13.9)输出电功率:ϕcos UI 3P 2=(13.10)输入机械功率:)(Fe Cua fw 21P P P P P +++= (13.11)式中P fw 、P Cua 、P Fe 分别为风摩损耗、电枢铜损和铁心损耗输入机械转矩:ω11P T =(13.12)ω为同步角速度rad/s13.1.1.2 电动机模型在图13.1, OM 所代表的矢量可表示为:)j j (aq 11X X R OM ++-=I U (13.5’)OM 所代表的矢量可用来确定E 0的位置。
Ansys(Ansoft)MaxwellRMxprt电机仿真入门详细教程
Ansys(Ansoft)MaxwellRMxprt电机仿真入门详细教程最近课题需要使用ANSYS对三相交流感应电机进行一些仿真,关于ANSYS分析的资料网上很多,但感觉对于新手来说最麻烦和最艰难的还是刚开始那个阶段。
之前在网上搜索了一下感觉也没有非常傻瓜的入门教程,后来在外网上找到一个不错的教程(电机建模,电机分析),在这里以文字的方式进行分析总结一下。
在教程中使用的ANSYS版本是18.2,因为需要进行电磁仿真,所以还需要另外安装相应版本的Ansys Electronics Suite。
才能使用教程中的Maxwell和RMxprt模块。
接下来对整个步骤做一下详细的说明。
整个分析过程主要包括两部分:(1)在RMxprt快速建立三相交流电机的仿真模型(2)对模型进行分析(1)建立电机模型Step1:打开ANSYS workbench,并从软件左边拖拽一个RMxprt分析模块到右侧活动窗口,随后双击Setup进入ANSYS电气分析模块。
Step2:在软件左侧项目管理的窗格内,右键点击RMXprtDesign1并在弹出的对话框中选择感应电机。
Step3:随后单机页面上的添加求解步骤按钮,按下图所示设置电机的相关额定参数。
Step4:双击左侧项目栏中的Machine分支,如退所示设置电机的一些基本信息Step5:双击左侧任务栏里的Stator分支,俺如果所示设置定子参数,随后双击Stator目录下的Slot项目,在弹出的菜单栏中取消勾选Autodesign,随后再次双击SLot分支,如图所示设置定子相关参数。
Step6:双击左侧项目栏中Stator分支下的Winding,如下图所示对电机定子绕组进行参数设置Step7:接下来同理先双击Rotor进行转子参数设置,双击Rotor Slot进行转子槽设计,双击Winding进行转子绕组设计Step8:双击左侧任务栏中的Shaft,对电机轴的参数进行设定Step9:完成以上电机参数设置后可以选择页面上的Validate按钮进行参数检查,没有问题的话可以保存,随后点击选项栏里的Analyze All 和 Solution Data,可以查看点击查看所构造点击的一些基本参数。
利用MAXWELL计算三相变压器电感参数
目录1 建模 (1)1.1 创建变压器铁芯框架 (1)1.2创建气隙 (1)1.3 创建线圈 (2)1.4 创建激励电流加载面 (3)1.5创建计算区域 (3)2 设置激励 (4)3设置自适应计算参数 (5)4设置计算参数 (5)4.1设置参数Matrix1 (5)4.2设置参数Matrix2 (6)5 Check & Run (6)6 查看结果 (7)1 建模打开maxwell 14.0 创建一个新的3D设计项目并将求解器设定为Transient 类型,然后将几何尺寸单位设定为in。
1.1 创建变压器铁芯框架先创建一个长方体,然后在其内部创建两个大小相等的,关于Z轴对称的长方体,然后使用Subtract构造出铁芯的基本框架,如图1-1所示。
图1-11.2创建气隙先在铁芯下部创建一个扁平的长方体,同样使用Subtract功能在铁芯下部创建气隙,如图1-2、1-3所示。
图1-2图1-31.3 创建线圈先在最左边铁心柱上创建一个线圈,如图1-4所示。
然后使用Duplicate功能复制得到9个相同的线圈,如图1-5图1-6所示。
图1-4图1-5图1-61.4 创建激励电流加载面选中所有线圈后,选中YZ平面,使用Separate Bodies得到截面,然后在Edit 中选择Delete以删除多余的面。
如图1-7所示。
图1-71.5创建计算区域在Draw中选择Region,X的参数设定为+400,-400;Y的参数设定为+100,-100;Z的参数设定为+150,-150。
2 设置激励选中左边柱上线圈截面,如图2-1所示,然后在Excitations中选择Assign > Current,参数设置如图2-2所示。
在弹出的弹出Add Variable窗口中设置Variable:Mag > Value: 30A。
图2-1图2-2按照同样的方法分别选中中间柱和最右边柱上线圈截面,将激励参数分别设置为如图2-3、2-4所示。
maxwell软件- 常用设置
7 常用设置在RMxprt Maxwell V12中,有些设置对所有电机都是适用的,本章将介绍这些常用设置。
7.1槽型电机中使用的槽型可分为开口槽和闭口槽。
嵌入式电枢绕组槽型通常为开口槽;阻尼绕组和鼠笼绕组槽型可以采用开口槽,也可以采用闭口槽。
槽型可以通过定子(或者转子,阻尼)属性窗口中的槽型属性来指定。
7.1.1 电枢绕组槽型设置电枢绕组槽型的步骤如下:1)点击按钮Slot Type,显示Select Slot Type对话框,如图7.1所示。
图7.1选择电枢绕组槽型2)选择六种槽型中的一种:a)Type 1到Type 4:用于圆导线电枢绕组。
b)Type 5到Type 6:用于扁导线电枢绕组。
只对诸如三相感应电动机,三相同步电动机和直流电机这些大功率电动机可用。
3)点击OK确认,或者点击Cancel关闭Select Slot Type对话框。
注意:当鼠标置于某个槽型选项上时,该槽型的轮廓图将自动出现,并显示该槽型的尺寸变量,如图7.2所示。
a. Type 1b. Type 2c. Type 3d. Type 4e. Type 5f. Type 6图7.2开口槽槽型在如图7.3所示的Slot属性窗口中,槽的所有参数都可以定义。
图7.3 定子槽尺寸1.Auto Design:如果选中,RMxprt将自动设计除槽口尺寸之外的其他所有尺寸,例如Hs2,Bs1和Bs2。
2.Parallel Tooth:平行齿选项,如果选中,将根据齿宽自动设计Bs1和Bs2两个变量。
3.Tooth Width:平行齿的齿宽,Bs1和Bs2将根据齿宽设计。
只有当Parallel Tooth处于选中状态,该选项才可用。
4.Hs0:总是可用。
5.Hs1:当选择槽型1时不可用。
6.Hs2:当Auto Design未选中时可用。
当Auto Design选中时,自动定义。
7.Bs0:当选用槽型6时不可用。
8.Bs1:当Auto Design和Parallel Tooth均未选中时可用。
maxwell软件--三相同步电机设计
10 三相同步电机本章我们将简化RMxprt 一些基本介绍,以便介绍一些更高级的使用。
有关RMxprt 基本操作的详细介绍请参考第一部分的章节。
10.1 分析方法三相凸极同步电机有发电机和电动机之分,两者的结构基本相同。
三相同步发电机是工业、商业以及民用的主要电能来源,它将机械能转化为电能,其转子上装有由直流电励磁的多级绕组,定子上装有三相正弦分布绕组,转子旋转在气隙中产生旋转磁场。
定子上感应出电压,频率为:60pn f /= (10.1)其中p 是极对数,n 是转子的机械转速,单位rpm ,又称为同步转速,电机可以根据负载需要来产生有功功率和无功功率。
通常采用频域矢量图来对电机进行分析,发电机和电动机的矢量图如图10.1所示。
a. 发电机b. 电动机 图10.1 同步电机矢量图图中R 1和X 1分别为电枢绕组电阻和漏电抗,X ad 和X aq 分别为d 轴电枢电抗和q 轴电枢电抗。
相量图中X ad 是经过线性化处理的非线性参数。
以输入电压U 为参考相量,则电流相量为:ϕ-∠=I I (10.2)设功率因数角为φ, 是电压相量U 与电流相量I 的夹角,图中OM 所代表的相量可表示为⎩⎨⎧++-+++=motor for X X R generator for X X R OM aq 11aq 11)j j ()j j (I U I U (10.3)设E 0与U 的夹角为θ,(对于发电机θ称为功率角,对于电动机θ,称为力矩角),则E 0与I 的夹角为θϕψ+=(10.4)d 轴和q 轴电流可分别按下式求出⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=ψψcos sin I I I q d I (10.5) 图中ON 相量代表由d 轴磁链所产生的d 轴反电势。
由磁路空载特性曲线,可确定E 0,X ad 和励磁电流I f1.对于发电机:输出电功率:ϕcos UI 3P 2=(10.6)输入功率(机械功率) :ex Cuf add Fe Cua fw 21P P P P P P P P ++++++=(10.7)式中:P fw ,P Cua ,P Fe ,P add ,P cuf 和P ex 分别为风摩损耗、电枢铜损、铁心损耗、附加损耗、励磁绕组铜损和励磁机损耗输入机械转矩:ω11P T =(10.8)式中ω为同步角速度,单位:rad/s2. 对于电动机:输入电功率:ϕcos UI 3P 1=(10.9)输出机械功率:()ex Cuf add Fe Cua fw 12P P P P P P P P +++++-=(10.10)式中:P fw ,P Cua ,P Fe ,P add ,P cuf 和P ex 分别为风摩损耗、电枢铜损、铁心损耗、附加损耗、励磁绕组铜损和励磁机损耗输出机械转矩:ω22P T =(10.11)电机效率:%100P P 12⋅=η(10.12)10.2 主要特点10.2.1适用于同步电动机和同步发电机凸极同步电动机和发电机结构基本相同,相量关系和计算方法有些差别,输出性能数据也有所不同。
三相异步电机maxwell仿真实例
下面是一个使用Maxwell进行三相异步电机仿真的简单示例:
步骤1:创建电机模型
在Maxwell中,首先需要创建一个电机模型。
可以使用3D 建模工具创建电机的几何形状,并设置电机的材料属性和线圈结构。
步骤2:设置边界条件
在仿真之前,需要设置适当的边界条件。
这通常包括定义电机周围的空气区域、设置导体的电气连接和绝缘等。
步骤3:定义电机的运行参数
定义电机的运行参数,如额定电压、额定频率、额定功率等。
这些参数将用于仿真电机在不同负载和电源条件下的性能。
步骤4:设置仿真参数
设置Maxwell仿真程序的参数,如仿真时间、时间步长等。
这些参数将影响仿真结果的准确性和计算时间。
步骤5:运行仿真
运行仿真程序,Maxwell将根据设置的边界条件、电机几何和运行参数,计算电机的电磁场分布、磁通、转矩等。
步骤6:分析仿真结果
分析仿真结果,可以查看电机的电磁场分布、磁通密度、转矩特性等。
这些结果可以帮助评估电机的性能和效率。
需要注意的是,Maxwell是一款商业软件,需要购买并学习如何使用。
此外,三相异步电机的仿真还涉及到许多细节和参数的设置,需要一定的专业知识和经验。
建议在进行仿真前,先学习Maxwell的使用方法,并深入了解电机的工作原理和相关仿真技术。
MAXWELL实践报告
MAXWELL仿真实践报告学院:电信学院专业:自动化学号:学生:指导教师:陈嵩MAXWELL实践报告题目一:研究永磁同步电机静磁场分布要求:通过查阅资料,对永磁同步电机进行建模,通过本题目熟练掌握复杂模型的建立方法及技巧,并求解电机的平均电磁转矩及场图分布。
例:建立如下模型进行分析一、三相永磁同步电动机电机几何模型三相永磁同步电动机,由定子铁心、定子绕组、永磁体磁极、转子铁心组成。
电机定子内径、外径分别为74mm 和120mm,极数4,定子槽数24。
图1 电机定子冲片模型图2 电机几何模型图二、三相永磁同步电动机电机的材料及激励源对于永磁同步电动机静磁场分析,需要指定以下材料属性:1 、指定气隙Air-gap 材料属性——空气(亦可采用默认材料属性真空);2 、指定绕组coil 材料属性——铜;3 、定义定子铁心Stator 及转子轭yoke 材料属性DW465-50,一种电机常用非线性铁磁材料;4 、定义永磁体材料,命名为P_Mag ,指定给永磁磁极。
(1)DW465-50 硅钢片表1 DW465-50 硅钢片B-H 数据表(2)永磁体材料图3 线性永磁材料退磁曲线(3)加载电流激励源选择A 相四个绕组,A 相绕组电流为36 安培,B 、C 相分别电流相位分别落后与A 相电流相位120 度和240 度,因此其值为18安培。
电流值满足:()02sin max +=ft I I A π ()1202sin max -=ft I I B π ()2402sin max -=ft I I B πHHz f 50=(4) 剖分图图4 模型剖分图三、电磁场仿真分析1、 力矩Ansoft 软件中力矩信息正方向为逆时针方向,图中力矩数值前的负号,代表电机所受力矩为顺时针方向。
另外,Maxwell 2D 进行磁场分析时,Z 轴长度是以1m 深度(depth )进行计算的,即在本文中电机的轴向长度默认为1m ,实际电机铁心长94mm ,因此电机受到的实际力矩应为m N depth T T em ∙=⨯=⨯=3524.0094.07493.3 2、 力转子X 、Y 两方向分力及总的合力()N x F 7997.2= ()N y F 3776.5-= ()N F Mag 0628.6= 3、 电感矩阵表2 电感矩阵绕组中的电感参数,与实际绕组的匝数N 相关,且于Z 轴方向长度(depth )相关,电感矩阵信息中所显示的为单匝,单位长度的电感值,因此实际电感需要按下式计算: 2a L L N depth =⨯⨯4、电机磁力线分布图5 电机磁力线分布5、电机磁通密度云图分布图6 电机磁通密度云图分布四、实践结论利用ansoft软件建立了永磁同步电动机的模型,以及分配了电机各个部分的材料以及设置了线圈的电流激励,并通过软件对电机的转子转矩、磁力线分布、磁通密度分布等进行了求解。
基于maxwell的永磁同步电机静磁场分析实例
12基于 maxwell 的永磁同步电机静磁场分析实例4.2.1 问题描述三相永磁同步电动机,由定子铁心、定子绕组、永磁体磁极、转子铁心组成。
电机定 子内径、外径分别为 74mm 和 120mm ,极数 4,定子槽数 24,电机为对称结构可以建立四 分之一模型,为了使读者更加清晰的了解整个电机模型的建立情况,本例采用整域求解, 问题求解电机的平均电磁转矩及场图分布。
该电机的模型示意图如图 4-1 所示。
图 4-1 4 极 24 槽永磁电机结构示意图通过本问题的分析,读者可以学习掌握 Maxwell 2D 基本几何模型建立方法,激励源 加载、力及力矩参数的设置、永磁材料的定义及简单的场图处理。
Ansoft 软件进行有限元分析的基本步骤如下:1 创建项目及定义分析类型2 建立几何模型3 定义及分配材料4 定义及加载激励源和边界条件5 求解参数设定6 后处理4.2.2 创建项目Step1. 启动 Ansoft 并建立新的项目文件假设用户计算机已经安装了 Microsoft 公司的 Windows 操作系统和 Ansoft 公式的 版本 Maxwell2D/3D 电磁计算软件,用鼠标左键双击桌面上的 Maxwell 12 图 以启动Maxwell ,启动后的Maxwell 12 其界面如图4-2 所示。
124图 4-2 Maxwell 12 启动初始界面Step2. 重命名及保存项目文件在项目管理窗口中右键单击项目名称选择 Rename 命令,输入 PMSM-Magstatic 对项目 文件进行重命名,如图 4-4 ,单击工具栏上 按钮保存此项目文件 ,在项目文件保存目录执行 File/New/ 命令,或者单击工具栏上 按钮新建一个项目文件如图 4-3 所示。
图 4-3 添加新项目界面中就会出现如 PMSM-Magstatic.mxwl 项目文件,图 4-5 所示。
5图 4-4 项目文件重命名界面中就会出现如PMSM-Magstatic.mxwl 项目文件,图4-6 所示。
maxwell软件- 常用设置
7 常用设置在RMxprt Maxwell V12中,有些设置对所有电机都是适用的,本章将介绍这些常用设置。
7.1槽型电机中使用的槽型可分为开口槽和闭口槽。
嵌入式电枢绕组槽型通常为开口槽;阻尼绕组和鼠笼绕组槽型可以采用开口槽,也可以采用闭口槽。
槽型可以通过定子(或者转子,阻尼)属性窗口中的槽型属性来指定。
7.1.1 电枢绕组槽型设置电枢绕组槽型的步骤如下:1)点击按钮Slot Type,显示Select Slot Type对话框,如图7.1所示。
图7.1选择电枢绕组槽型2)选择六种槽型中的一种:a)Type 1到Type 4:用于圆导线电枢绕组。
b)Type 5到Type 6:用于扁导线电枢绕组。
只对诸如三相感应电动机,三相同步电动机和直流电机这些大功率电动机可用。
3)点击OK确认,或者点击Cancel关闭Select Slot Type对话框。
注意:当鼠标置于某个槽型选项上时,该槽型的轮廓图将自动出现,并显示该槽型的尺寸变量,如图7.2所示。
a. Type 1b. Type 2c. Type 3d. Type 4e. Type 5f. Type 6图7.2开口槽槽型在如图7.3所示的Slot属性窗口中,槽的所有参数都可以定义。
图7.3 定子槽尺寸1.Auto Design:如果选中,RMxprt将自动设计除槽口尺寸之外的其他所有尺寸,例如Hs2,Bs1和Bs2。
2.Parallel Tooth:平行齿选项,如果选中,将根据齿宽自动设计Bs1和Bs2两个变量。
3.Tooth Width:平行齿的齿宽,Bs1和Bs2将根据齿宽设计。
只有当Parallel Tooth处于选中状态,该选项才可用。
4.Hs0:总是可用。
5.Hs1:当选择槽型1时不可用。
6.Hs2:当Auto Design未选中时可用。
当Auto Design选中时,自动定义。
7.Bs0:当选用槽型6时不可用。
8.Bs1:当Auto Design和Parallel Tooth均未选中时可用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10 三相同步电机本章我们将简化RMxprt 一些基本介绍,以便介绍一些更高级的使用。
有关RMxprt 基本操作的详细介绍请参考第一部分的章节。
10.1 分析方法三相凸极同步电机有发电机和电动机之分,两者的结构基本相同。
三相同步发电机是工业、商业以及民用的主要电能来源,它将机械能转化为电能,其转子上装有由直流电励磁的多级绕组,定子上装有三相正弦分布绕组,转子旋转在气隙中产生旋转磁场。
定子上感应出电压,频率为:60pn f /= (10.1) 其中p 是极对数, n 是转子的机械转速,单位rpm ,又称为同步转速,电机可以根据负载需要来产生有功功率和无功功率。
通常采用频域矢量图来对电机进行分析,发电机和电动机的矢量图如图10.1所示。
a. 发电机b. 电动机 图10.1 同步电机矢量图图中R 1和X 1分别为电枢绕组电阻和漏电抗,X ad 和X aq 分别为d 轴电枢电抗和q 轴电枢电抗。
相量图中X ad 是经过线性化处理的非线性参数。
以输入电压U 为参考相量,则电流相量为:ϕ-∠=I I(10.2) 设功率因数角为φ, 是电压相量U 与电流相量I 的夹角,图中OM 所代表的相量可表示为⎩⎨⎧++-+++=motor for X X R generator for X X R OM aq 11aq 11)j j ()j j (I U I U (10.3) 设E 0与U 的夹角为θ,(对于发电机θ称为功率角,对于电动机θ,称为力矩角),则E 0与I 的夹角为θϕψ+= (10.4)d 轴和q 轴电流可分别按下式求出⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=ψψcos sin I I I q d I (10.5)图中ON 相量代表由d 轴磁链所产生的d 轴反电势。
由磁路空载特性曲线,可确定E 0,X ad 和励磁电流I f1. 对于发电机:输出电功率:ϕcos UI 3P 2=(10.6) 输入功率(机械功率) :ex Cuf add Fe Cua fw 21P P P P P P P P ++++++= (10.7) 式中:P fw , P Cua ,P Fe ,P add ,P cuf 和P ex 分别为风摩损耗、电枢铜损、铁心损耗、附加损耗、励磁绕组铜损和励磁机损耗输入机械转矩:ω11P T = (10.8)式中ω为同步角速度,单位:rad/s2. 对于电动机:输入电功率:ϕcos UI 3P 1=(10.9) 输出机械功率:()ex Cuf add Fe Cua fw 12P P P P P P P P +++++-= (10.10) 式中:P fw , P Cua ,P Fe ,P add ,P cuf 和P ex 分别为风摩损耗、电枢铜损、铁心损耗、附加损耗、 励磁绕组铜损和励磁机损耗输出机械转矩:ω22P T =(10.11) 电机效率:%100P P 12⋅=η(10.12) 10.2 主要特点10.2.1 适用于同步电动机和同步发电机凸极同步电动机和发电机结构基本相同,相量关系和计算方法有些差别,输出性能数据也有所不同。
故RMxprt 将同步电机分为两个设计模块:同步电动机和同步发电机。
10.2.2 三相绕组的自动排布几乎所有常用的三相和单相,单层和双层,整数槽和分数槽交流绕组都能自动设计。
用户不需要一个接一个的自己定义线圈。
当设计者采用全极式单层绕组时,RMxprt将自动对绕组进行排列,以减少绕组端部长度。
当使用不对称三相绕组时,绕组排列按照最少负序和零序进行优化。
10.2.3 绕组编辑器支持任何单、双层绕组的设计除了利用RMxprt中的绕组自动排列功能,用户也能通过Winding Editor来指定特殊形式的绕组排列。
在Winding Editor(绕组编辑器)中,通过改变每个线圈的相属Phase、匝数Turns、入槽号In Slot和出槽号Out Slot,可排列出任意所需的单、双层绕组分布形式。
10.2.4 气隙磁场分析对于均匀气隙和非均匀气隙(磁极偏心),都能通过许克变换求解气隙磁场的分布。
10.2.5 电势波形和总谐波畸变(THD)分析以气隙磁场波形分析为基础,综合考虑绕组短距、绕组分布、斜槽、绕组联结方式以及负载影响等诸多因数,对线圈和绕组电势波形进行分析,求解电势波形畸变率。
10.2.6 阻尼绕组的瞬态参数分析与感应电机的鼠笼绕组不同,凸极同步电机阻尼绕组处于d轴和q轴差别很大的非均匀磁场中。
因此,阻尼条的联结有多种形式,有每极连接(极间不连接)、全部连接和端板式连接。
1.每极连接(极间不连接)2.全部连接3.端板式连接所有这些复杂情况RMxprt都能进行分析处理,并给出阻尼绕组的动态参数。
10.3 设计三相同步电机这一节, 我们将演示三相同步电动机设计的一般流程。
点击Start>Programs>Ansoft>Maxwell 12>Maxwell 12从桌面进入Maxwell界面。
从RMxprt主菜单条中点击File>New新建一个空白的Maxwell工程文件Project1。
从RMxprt主菜单栏中点击Project>Insert RMxprt Design。
在Select Machine Type 会话框中选择Three-Phase Synchronous Machine,然后点击OK返回RMxprt主窗口。
这样就添加一个新的RMxprt设计。
从RMxprt菜单栏中点击File>Save。
如果想把项目另存为SynM3_6p50Hz538kW.mxwl,可从下拉菜单选择Save As然后点击Save返回RMxprt 主窗口。
(参见3.2.6设置默认的项目路径)分析这个算例,需要做以下几项设置:1. 设置模型单位(参考章节2.3.2.7设置模型单位):2. 配置RMxprt 材料库(参考章节3.4.1配置材料库):3. 编辑线规库(参考章节3.3.2 到3.3.6):当选择Three-Phase Synchronous Machine做为电机模型时,必须输入如下几项:1. General data. (基本性能数据)2. Stator data. (定子数据)3. Rotor data. (转子数据)4. Solution data. (解算数据)可选项:1. 定子和转子中选择添加或去掉阻尼2. 定子和转子中选择添加或去掉通风孔10.3.1 主要性能数据在项目树下双击Machine图标,可显示Properties.对话框。
在如图10.2所示的Machine列表下定义基本性能数据。
1. Machine Type:电机类型。
2. Number of Poles:电机极数。
其值为定子极数的总和(或极对数×2)。
图10.2 基本性能参数3. Frictional Loss:在参考转速下测得的摩擦损耗(由摩擦产生)4. Wind Loss:参考转速下测得的风阻损耗(由空气阻力产生)5 .Reference Speed:所给的参考转速。
点击OK关闭Properties对话框。
10.3.2 定子设计双击项目树中的Machine>Stator图标,显示Properties对话框。
在如图10.3所示的Stator列表中输入定子数据。
图10.3 定子数据1. Outer Diameter:定子外径。
2. Inner Diameter:定子内径。
3. Length:定子铁心的轴向长度。
4. Stacking Factor:定子的迭压系数5. Steel Type:定子铁心材料类型(参考7.3节设置材料类型)6. Number of Slot:定子槽数7. Slot Type:定子槽型(参考7.1.1节槽型)1) 点击Slot Type显示Select Slot Type对话框。
2) 选择一种槽型(有6种类型可用)3) 点击OK关闭Select Slot Type对话框。
8. Lamination Sectors:迭片分区数。
对于大型感应电动机,一个迭片可能由如图10.4所示的几个扇形组合而成,而不是一个整体的圆形迭片。
迭片分区数表示一个迭片由几个这样的扇区组成。
9. Pressboard Thickness:导磁隔板的厚度。
键入0表示为一个非导磁的隔板10. Skew Width:用槽数度量的斜槽宽度点击OK关闭Properties对话框。
图10.4 定子叠片扇形10.3.2.1设计定子槽型双击项目树中的Machine>Stator>Slot图标,显示Properties对话框(参考7.1.1节槽型)。
在如图10.5所示的Slot卷标中定义定子槽型的几何数据。
点击OK关闭Properties对话框。
图10.5 定子槽尺寸10.3.2.2 设计定子绕组双击项目树中的Machine>Stator>Winding图标,显示Properties对话框,其中包含两个列表:Winding和End/Insulation。
10.3.2.2.1 设计定子绕组的线径及材料在如图10.6所示的Winding列表中定义导线、导体和定子绕组1. Winding Layers:绕组层数。
从下拉菜单中选择绕组层数(可选1和2)2. Winding Type:绕组类型(参考7.5.1节的设置交流绕组类型)1) 点击Winding Type显示WINDING Type对话框。
2) 从以下3种绕组类型中选择一种:a. Editorb. Whole Coiledc. Half Coiled3) 点击OK关闭WINDING Type对话框。
图10.6槽绝缘和绕组形式3. Parallel Branches:定子一相绕组的并联支路数4.Conductors per Slot:每槽导体数,槽中每个线圈的匝数与层数的乘积。
输入0,RMxprt会进行自动设计。
5. Coil Pitch:以槽数度量的节距,节距是指一个线圈跨过的槽数目。
例如,如果一个线圈起始边在1号槽,终边在6号槽,则节距为5。
6. Number of Strands:每个导体中导线的并绕根数。
输入0,RMxprt会自动设计根数。
7. Wire Wrap:漆包线的双边漆皮厚度。
输入0后能从导线库中自动获得8. Wire Size:定子绕组导线的直径(输入0,RMxprt会自动设计)。
用户可选择圆导线或扁导线两种型号。
当槽型为1到4时,圆形导线可用(参考7.4.1节设置圆导线)。
当槽型为5或6时,扁导线可用(参考7.4.2节设置扁导线)。
10.3.2.2.2 设计端部绕组和定子绝缘可参考7.5.3节端部绕组和槽绝缘中的详细介绍。
在如图10.7所示的End/Insulation列表中定义绕组端部和槽绝缘。