独立性检验原理
3.2 独立性检验
(3)两个临界值:3.841与6.635.
经过对χ2统计量分布的研究,已经得到了 两个临界值:3.841与6.635。
当根据具体的数据算出的χ2>3.841时,有 95%的把握说事件A与事件B有关; 当χ2>6.635时,有99%的把握说事件A与事 件B有关; 当χ2<3.841时,认为事件A与事件B无关;
对于人力资源部的研究项目,根据上述数 据能得出什么结论?
解:这是一个2×2列联表的独立性检验问 题,由公式
189(54 63 32 40) 2 2 10.759 94 95 86 103
因为10.759>6.635,所以有99%的把握说: 员工“工作积极”与“积极支持企业改革” 是有关的。可以认为企业的全体员工对待 企业改革的态度与其工作积极性是有关的。
也应该比较小。 (2)卡方统计量: 为了消除样本对上式的影响,通常用卡方 2 2 (观测值 预期值) )来进行估 统计量(χ 预期值 计.
卡方χ2统计量公式:
2
n n11n22 n12 n21 n1 n 2 n1n2
2
用它的大小可以决定是否拒绝原来的统计 假设H0,如果算出的χ2值较大,就拒绝 H0,也就是拒绝“事件A与事件B无关”, 从而就认为它们是有关的了
因为1.780<3.841,我们没有理由说“心脏 搭桥手术”与“又发生过心脏病”有关, 可以认为病人又发作心脏病与否跟他做过 何种手术无关。
3.某大型企业人力资源部为了研究企业员 工工作积极性和对待企业改革态度的关系, 随机抽取了189名员工进行调查,所得的数 据如下表所示:
工作积极 工作一般 合计 积极支持企业 改革 54 32 86 不太赞成企业 改革 40 63 103 合计 94 95 189
《独立性检验》
《独立性检验》一、内容与内容解析《独立性检验》为新课标教材中新增加的内容. 虽然本节是新增内容,理论比较复杂,教学时间也不长(1-2课时),但由于它贴近实际生活,在整个高中数学中,地位不可小视.在近几年各省新课标高考试题中,本节内容屡屡出现,而且多以解答题的形式呈现,其重要性可见一斑.该内容是前面学生在《数学3》(必修)中的统计知识的进一步应用,并与本册课本前面提到的事件的独立性一节关系紧密,此外还涉及到与《数学2-2》(选修)中讲到的“反证法”类似的思想.本小节的知识内容如右图。
“独立性检验”是在考察两个分类变量之间是否具有相关性的背景下提出的,因此教材上首先提到了分类变量的概念,并给出了考察两个分类变量之间是否相关的一种简单的思路,即借助等高条形图的方法,随后引出相对更精确地解决办法——独立性检验。
独立性检验的思想,建立在统计思想、假设检验思想(小概率事件在一次试验中几乎不可能发生)等基础之上,通常按照如下步骤对数据进行处理:明确问题→确定犯错误概率的上界α及2K 的临界值0k →收集数据→整理数据→制列联表→计算统计量2K 的观测值k →比较观测值k 与临界值0k 并给出结论.本节的重点内容是通过实例让学生体会独立性检验的基本思想,掌握独立性检验的一般步骤.二、目标与目标解析本节课的教学目标是主要有:1.理解分类变量(也称属性变量或定性变量)的含义,体会两个分类变量之间可能具有相关性;2.通过对典型案例(吸烟和患肺癌有关吗?)的探究,了解独立性检验(只要求2×2列联表)的基本思想、方法、步骤及应用。
3.鼓励学生体验用多种方法(等高条形图法与独立性检验法)解决同一问题,并对各种方法进行比较。
4.让学生对统计方法有更深刻的认识,体会统计方法应用的广泛性,进一步体会科学的严谨性(如统计可能犯错误,原因可能是收集的数据样本容量小或样本采集不合理,也可能是理论上的漏洞,如在一次实验中,我们假设小概率事件不发生,这一点本身就值得质疑). 其中第2条是重点目标,也是《课程标准》中明确指出的教学要求之一. 三、教学问题诊断分析基于对学生已有数学水平的分析,在本节新学内容时,有以下几点是初学者不易理解或掌握的:1.2K 的结构比较奇怪,来的也比较突然,学生可能会提出疑问.关于这个问题的处理,要首先利用好前面对“比例”或者两个分类变量“独立”的分析。
独立性检验原理
独立性检验原理独立性检验是统计学中一项非常重要的工具,它用于检验样本数据是否来自于一个符合特定分布的总体,或者来自于不同总体。
在实际应用中,独立性检验可以帮助我们判断数据之间是否存在相关性,以及是否可以进行进一步的统计分析。
本文将介绍独立性检验的原理及其常见的应用。
首先,我们来了解一下独立性检验的原理。
独立性检验通常基于两个变量之间的关系展开,其中一个变量被认为是自变量,另一个变量被认为是因变量。
我们的目标是通过收集样本数据来判断这两个变量之间是否存在某种关联。
在进行独立性检验时,我们通常会使用卡方检验、t检验、F检验等方法来进行统计分析,从而得出样本数据是否具有独立性的结论。
在实际应用中,独立性检验可以被广泛用于不同领域。
例如,在医学研究中,我们可以利用独立性检验来判断某种治疗方法是否对疾病的治疗效果产生影响;在市场调研中,我们可以利用独立性检验来判断不同产品的销售情况是否存在相关性;在质量控制中,我们可以利用独立性检验来判断生产线上的不良品率是否受到某些因素的影响。
除了上述的应用外,独立性检验还可以帮助我们进行决策分析。
通过对样本数据进行独立性检验,我们可以更好地理解数据之间的关系,从而为决策提供科学依据。
例如,在制定营销策略时,我们可以利用独立性检验来判断不同市场营销手段对销售业绩是否产生影响,从而选择最有效的营销方式。
在进行独立性检验时,我们需要注意一些问题。
首先,样本数据的收集需要具有代表性,以确保独立性检验的结果具有统计学意义。
其次,我们需要选择合适的检验方法,以确保能够得出准确的结论。
最后,我们需要对检验结果进行合理解释,避免盲目地进行数据分析。
总的来说,独立性检验是统计学中一项非常重要的工具,它可以帮助我们判断数据之间是否存在相关性,从而为决策提供科学依据。
在实际应用中,独立性检验具有广泛的应用价值,可以帮助我们更好地理解数据之间的关系,为实际问题的解决提供支持。
希望本文对独立性检验的原理及其应用有所帮助,谢谢阅读!。
统计学中的独立性检验
统计学中的独立性检验统计学中的独立性检验(Test of Independence)是一种常用的统计方法,用于研究两个或多个分类变量之间是否存在相互独立的关系。
通过对随机抽样数据进行分析,可以判断不同变量之间是否有关联,并衡量关联的强度。
本文将介绍独立性检验的基本原理、常用的检验方法以及实际应用。
一、独立性检验的基本原理独立性检验的基本原理是基于统计学中的卡方检验(Chi-Square Test)。
卡方检验是一种非参数检验方法,用于比较观察值频数与期望频数之间的差异。
在独立性检验中,我们首先建立一个原假设,即所研究的两个或多个变量之间不存在关联,然后通过计算卡方统计量来判断观察值与期望值之间的差异是否显著。
二、常用的独立性检验方法1. 皮尔逊卡方检验(Pearson's Chi-Square Test):这是最常见的独立性检验方法,适用于有两个以上分类变量的情况。
它基于观察频数和期望频数之间的差异,计算出一个卡方统计量,并根据卡方分布表给出显著性水平。
2. Fisher精确检验(Fisher's Exact Test):当样本量较小或者某些期望频数很小的情况下,皮尔逊卡方检验可能存在一定的偏差。
在这种情况下,可以使用Fisher精确检验来代替皮尔逊卡方检验,得到更准确的结果。
3. McNemar检验:适用于配对数据比较的独立性检验,例如一个样本在两个时间点上的观察结果。
三、独立性检验的实际应用独立性检验在各个领域都有广泛的应用,以下是几个常见的实际应用场景:1. 医学研究:独立性检验可以用于研究某种药物治疗方法是否具有显著的疗效,或者判断不同年龄组和性别之间是否存在患病率的差异。
2. 教育领域:独立性检验可用于研究学生成绩与家庭背景、教育水平之间是否存在关联。
3. 市场调研:在市场调研中,可以通过独立性检验来分析不同年龄、性别、收入水平等因素对消费者购买习惯的影响。
4. 社会科学研究:独立性检验可以帮助社会科学研究人员探索个体特征与社会行为之间的关系,例如政治倾向与不同年龄群体之间的关联性等。
高考必备——独立性检验-独立性检验
k0
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.82
P( K 2 k0 )
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
例 1:研究吸烟与患肺癌的关系. 1.确定研究对象:吸烟与患肺癌的关系. 2.采集数据——列联表: 不患肺癌 不吸烟 吸烟 总计 7775 2099 9874 患肺癌 42 49 91 总计 7817 2148 9965
不吸烟不患肺癌 吸烟不患肺癌 a c .即“ ” ab cd 不吸烟总数 吸烟总数
得 ad bc 0 ,所以 | ad bc | 越小,说明吸烟与患肺癌关系越弱,反之越强. (2)构造随机变量 K 2
n(ad bc) 2 (其中 n a b c d ) (a b)(c d )(a c)(b d )
2 2
0.15 2.072
0.10 2.706
0.05 3.841
0.025 5.024
0.010 6.635
0.005 7.879
0.001 10.828
,其中 n=a+b+c+d)
5.某校在规划课程设置方案的调研中, 随机抽取 160 名理科学生, 想调查男生、 女生对 “坐标系与参数方程” 与“不等式选讲”这两道题的选择倾向性,调研中发现选择“坐标系与参数方程”的男生人数与选择“不等 式选讲”的总人数相等,且选择“坐标系与参数方程”的女生人数比选择“不等式选讲”的女生人数多 25 人,根据调研情况制成如下图所示的列联表: 选择坐标系与参数方程 男生 女生 合计 160 60 选择不等式选讲 合计
3-1独立性检验
是否有关? 解 根据题目所给的数据作出如下的列联表:
色盲 不色盲 合计
男 38 442
480
女 6 514
520
合计 44 956
1 000
根据列联表中所给的数据可得
n1514, n11+n12=480,n21+n22=520, n11+n21=44,n12+n22=956,n=1 000,
代入公式 χ2=nnn111+nn222+-n+n11n2n+2212, 得 χ2=1 00408×0×385×205×144-4×6×9546422≈27.139, 由于 χ2=27.139>6.635, 所以我们有 99%的把握认为性别与患色盲有关系.
例2.在一次恶劣气候的飞行航程中调查男女乘客在机上晕机的 情况如下表所示,根据此资料你是否认为在恶劣气候飞行中男 性比女性更任意晕机?
2.列联表
判断两个事件 A、B 是否有关,我们可以把 A 发生、A 不发生
( A )、B 发生、B 不发生( B )的数据列成以下表格
B
B
合计
A
n 11
n12
n 1+
A
n21
n22
n 2+
合计
n +1
n +2
n
这个表格称为 2×2 列联表.
如果 A,B 无关,那么n11与n1+·n+1应该很接近,n22与n2+·n+2应
2
n
n11n22 n12n21
2
n1n 2n1n2
P(χ2≥x0) 事件A 0.05 有95%的把握认 0.01
x0 与B无关 3.841 为A与B有关 6.635
99%的把握认为
A与B有关
例 1 在调查的 480 名男士中有 38 名患有色盲,520 名女士中
高中数学选修课件第一章:独立性检验
注意事项与误区提示
在进行独立性检验前,需要确保样本 的随机性和代表性,以避免因样本偏 差导致结果失真。
需要注意的是,独立性检验只能判断 两个变量之间是否存在统计上的独立 性,并不能说明它们之间是否存在因 果关系或其他形式的关联。
在解读结果时,需要注意概率值(p 值)或临界值表的具体含义和适用条 件,避免误用或滥用。
高中数学选修课件第一 章:独立性检验
汇报人:XX 20XX-01-30
contents
目录
• 独立性检验基本概念 • 独立性检验基本思想解读 • 独立性检验方法介绍及应用场景分析 • 独立性检验结果解读与注意事项 • 独立性检验在统计学中地位和作用 • 高中数学选修课程中其他相关知识点回
顾与拓展
01
在实际应用中,还需要结合其他统计 方法和专业知识进行综合分析和判断 。
05
独立性检验在统计学中地位和作用
独立性检验在统计学中地位
独立性检验是统计学 中一种重要的假设检 验方法。
在数据分析、市场调 研、医学研究等领域 具有广泛应用。
它用于判断两个或多 个分类变量之间是否 相互独立。
独立性检验对后续统计分析影响
高中数学选修课程中其他相关知识点梳理
排列组合与二项式定理
回顾排列组合的基本概念、计算公式及应用,掌握二项式定理的展开式及通项公式的应 用。
概率与统计的综合应用
梳理概率与统计在高中数学选修课程中的综合应用,如概率与统计在解决实际问题中的 结合,以及概率与统计在其他数学知识点中的交叉应用等。
数学建模与数学探究
独立性检验的基本思想
通过抽样调查获取数据,根据样本数据来判断两个分类变量 是否独立。
独立性检验的方法
通常采用列联表的形式整理数据,然后计算相关统计量的值 (如χ²值),并根据统计量的值及给定的显著性水平作出判 断。
1.2 独立性检验的基本思想及其初步应用
2.下列是一个2×2列联表:
y1
x1
a
x2
2
总计
b
则该表中a,b的值分别为( C )
A.94,96
B.52,50
y2
总计
21
73
25
27
46
100
C.52,54
解析:a=73-21=52,b=a+2=52+2=54.
D.54,52
——能力提升——
14.(5分)假设两个分类变量X与Y,它们的取值分别为{x1,x2},
样方法在校园内调查了 120 位学生,得到如下 2×2 列联表:
男 女 总计
爱好
a
b
73
不爱好
c
25
总计
74
则 a-b-c 等于( D )
A.6
B.7
C.8
D.9
13.(13分)某校为了了解学生对紧急避险常识的了解情况,从高 一年级和高二年级各选取100名同学参加紧急避险常识知识竞赛.图 ①和图②分别是对高一年级和高二年级参加竞赛的学生成绩按 [40,50),[50,60),[60,70),[70,80]分组后得到的频率分布直方图.
高二年级学生竞赛的平均成绩为(45×15+55×35+65×35+ 75×15)÷100=60(分).
(2)补全2×2列联表如下:
成绩小于60分 成绩不小于60
总计
的人数
分的人数
高一年级
70
30
100
高二年级
50
50
100
总计
120
80
200
∴K2的观测值k=20100×0×501×007×0-12500××83002≈8.333>7.879,
独立性检验的基本思想及初步应用教案
独立性检验的基本思想及初步应用教学目标:1. 了解独立性检验的基本思想及其在实际问题中的应用。
2. 学会使用假设检验方法判断两个分类变量之间是否具有独立性。
3. 掌握利用独立性检验解决实际问题的基本步骤。
教学内容:第一章:独立性检验的基本思想1.1 独立性检验的定义1.2 独立性检验的基本原理1.3 独立性检验的应用场景第二章:列联表与卡方检验2.1 列联表的定义及制作2.2 卡方检验的原理及计算2.3 卡方检验的判断标准第三章:假设检验方法3.1 假设检验的定义及类型3.2 独立性检验的假设条件3.3 独立性检验的步骤及注意事项第四章:实际问题中的应用4.1 案例一:产品质量检验4.2 案例二:消费者偏好调查4.3 案例三:疾病与性别关系的分析第五章:总结与拓展5.1 独立性检验在实际问题中的应用范围5.2 独立性检验的局限性5.3 独立性检验与其他统计方法的比较教学方法:1. 讲授:讲解独立性检验的基本思想、原理及应用。
2. 案例分析:分析实际问题,引导学生运用独立性检验解决问题。
3. 小组讨论:分组讨论案例,培养学生的合作与交流能力。
4. 练习与反馈:布置课后习题,及时了解学生掌握情况,给予针对性的指导。
教学评估:1. 课后习题:检验学生对课堂内容的掌握程度。
2. 案例分析报告:评估学生在实际问题中运用独立性检验的能力。
3. 课堂表现:观察学生在课堂讨论、提问等方面的参与度。
教学资源:1. 教材:独立性检验相关章节。
2. 案例材料:产品质量检验、消费者偏好调查、疾病与性别关系等实际问题。
3. 计算器:用于计算卡方值及概率。
教学时数:1. 共计4课时,每课时45分钟。
2. 分配如下:第一章1课时,第二章1课时,第三章1课时,第四章1课时。
第六章:多组独立性检验6.1 多组独立性检验的定义6.2 多组独立性检验的方法6.3 多组独立性检验的应用案例第七章:非参数检验7.1 非参数检验的定义及意义7.2 非参数检验方法简介7.3 独立性检验与非参数检验的比较第八章:独立性检验的软件操作8.1 统计软件的选择与操作8.2 独立性检验的软件实现8.3 结果解读与分析第九章:独立性检验在实际问题中的应用案例分析9.1 案例一:市场调查与分析9.2 案例二:教育公平性研究9.3 案例三:医学研究中的应用第十章:总结与展望10.1 独立性检验在统计学中的地位与作用10.2 独立性检验的发展趋势10.3 独立性检验在未来的挑战与机遇教学方法:1. 讲授:讲解多组独立性检验、非参数检验及软件操作相关知识。
独立性检验原理
独立性检验原理
一、独立性检验原理
独立性检验是一种统计学方法,用来检验两个变量之间是否具有某种特定的关联。
这种检验通常被称为卡方检验,也称为假设检验,可用于衡量总体比例的差异。
独立性检验的原理是基于卡方检验的假设。
卡方检验是一种假定检验,由卡方分布检验构成,它主要对两个及以上的分类字段进行检验,以确定两个或多个字段是否存在某种统计关联。
此外,在独立性检验中,被检验的时间变量不能过剩或不足。
检验的内容取决于所检验的变量是多变量还是单变量。
如果是多变量检验,可以分析多个变量之间的时间关系;而如果是单变量检验,则只能测量单变量之间的关系。
独立性检验也是针对总体比例的,因此它可以用于衡量独立变量和因变量间的关系。
例如,独立性检验可用于测量某种健康行为的总体比例,以及分析事件发生的不同国家或地区之间是否具有某种统计关联性。
另外,独立性检验也可用于分析多项结果之间具有相互影响的概率,以及分析某种疾病的发病率。
例如,它可以用于确定一个人决定一种某种疾病发病的概率是否与另一个人的不同因素(例如性别)有关。
8.3.2独立性检验(解析版)
独立性检验【学习目标】1.了解独立性检验的基本思想、方法及其简单应用2.理解判断两个分类变量是否有关系的常用方法、独立性检验中K2的含义及其实施步骤【自主学习】知识点独立性检验(1)定义:利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验.(2)K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.(3)独立性检验的具体做法①根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查表确定临界值k0.②利用公式计算随机变量K2的观测值k.③如果k≥k0,就推断“X与Y有关系”,这种推断犯错误的概率不超过α,否则就认为在犯错误的概率不超过α的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够证据支持结论“X与Y有关系”.【合作探究】探究一 有关“相关的检验”【例1】某校对学生课外活动进行调查,结果整理成下表:用你所学过的知识进行分析,能否在犯错误的概率不超过0.005的前提下,认为“喜欢体育还是文娱与性别有关系”?解 判断方法如下:假设H 0“喜欢体育还是喜欢文娱与性别没有关系”,若H 0成立,则K 2应该很小. ∵a =21,b =23,c =6,d =29,n =79, ∴K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=79×(21×29-23×6)244×35×27×52≈8.106.且P (K 2≥7.879)≈0.005即我们得到的K 2的观测值k ≈8.106超过7.879,这就意味着:“喜欢体育还是文娱与性别没有关系”这一结论成立的可能性小于0.005,即在犯错误的概率不超过0.005的前提下认为“喜欢体育还是喜欢文娱与性别有关”.归纳总结:(1)利用K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )求出K 2的观测值k 的值.再利用临界值的大小来判断假设是否成立.(2)解题时应注意准确代数与计算,不可错用公式,准确进行比较与判断.【练习1】为研究学生的数学成绩与对学习数学的兴趣是否有关,对某年级学生作调查得到如下数据:判断学生的数学成绩好坏与对学习数学的兴趣是否有关? 解 由公式得K 2的观测值k =189×(64×73-22×30)286×103×95×94≈38.459.∵38.459>10.828,∴有99.9%的把握说学生学习数学的兴趣与数学成绩是有关的.探究二 有关“无关的检验”【例2】为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.分析学生选报文、理科与对外语的兴趣是否有关? 解 列出2×2列联表代入公式得K 2的观测值k =361×(138×52-73×98)2236×125×211×150≈1.871×10-4.∵1.871×10-4<2.706,∴可以认为学生选报文、理科与对外语的兴趣无关.归纳总结:运用独立性检验的方法:(1)列出2×2列联表,根据公式计算K 2的观测值k . (2)比较k 与k 0的大小作出结论.【练习2】第16届亚运会于2010年11月12日至27日在中国广州进行,为了搞好接待工作,组委会招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余人不喜爱运动. (1)根据以上数据完成以下2×2列联表:(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关? 解 (1)(2)假设是否喜爱运动与性别无关,由已知数据可求得: K 2=30×(10×8-6×6)2(10+6)(6+8)(10+6)(6+8)≈1.157 5<2.706,因此,在犯错误的概率不超过0.10的前提下不能判断喜爱运动与性别有关.探究三 独立性检验的基本思想【例3】某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出500件,量其内径尺寸,结果如下表: 甲厂乙厂(1)试分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),解 (1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500=72%;乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500=64%.(2)K 2=1 000×(360×180-320×140)2500×500×680×320≈7.353>6.635,所以有99%的把握认为“两个分厂生产的零件的质量有差异”.归纳总结:(1)解答此类题目的关键在于正确利用K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )计算k 的值,再用它与临界值k 0的大小作比较来判断假设检验是否成立,从而使问题得到解决.(2)此类题目规律性强,解题比较格式化,填表计算分析比较即可,要熟悉其计算流程,不难理解掌握.【练习3】下表是某地区的一种传染病与饮用水的调查表:(1)这种传染病是否与饮用水的卫生程度有关,请说明理由;(2)若饮用干净水得病5人,不得病50人,饮用不干净水得病9人,不得病22人.按此样本数据分析这种疾病是否与饮用水有关,并比较两种样本在反映总体时的差异.解 (1)假设H 0:传染病与饮用水无关.把表中数据代入公式得:K 2的观测值k =830×(52×218-466×94)2146×684×518×312≈54.21,∵54.21>10.828,所以拒绝H 0.因此我们有99.9%的把握认为该地区这种传染病与饮用不干净水有关. (2)依题意得2×2列联表:此时,K 2的观测值k =86×(5×22-50×9)14×72×55×31≈5.785.由于5.785>5.024,所以我们有97.5%的把握认为该种疾病与饮用不干净水有关.两个样本都能统计得到传染病与饮用不干净水有关这一相同结论,但(1)中我们有99.9%的把握肯定结论的正确性,(2)中我们只有97.5%的把握肯定.课后作业A组基础题一、选择题1.经过对K2的统计量的研究,得到了若干个临界值,当K2的观测值k>3.841时,我们() A.在犯错误的概率不超过0.05的前提下可认为X与Y有关B.在犯错误的概率不超过0.05的前提下可认为X与Y无关C.在犯错误的概率不超过0.01的前提下可认为X与Y有关D.没有充分理由说明事件X与Y有关系【答案】A2.用独立性检验来考察两个分类变量x与y是否有关系,当统计量K2的观测值() A.越大,“x与y有关系”成立的可能性越小B.越大,“x与y有关系”成立的可能性越大C.越小,“x与y没有关系”成立的可能性越小D.与“x与y有关系”成立的可能性无关【答案】B3.在一个2×2列联表中,由其数据计算得K2的观测值k=7.097,则这两个变量间有关系的可能性为()A.99% B.99.5%C.99.9% D.无关系【答案】A解析K2的观测值6.635<k<7.879,所以有99%的把握认为两个变量有关系.4.对两个分类变量A,B的下列说法中正确的个数为()①A与B无关,即A与B互不影响;②A与B关系越密切,则K2的值就越大;③K2的大小是判定A与B是否相关的唯一依据A.0 B.1 C.2 D.3【答案】B解析①正确,A与B无关即A与B相互独立;②不正确,K2的值的大小只是用来检验A 与B是否相互独立;③不正确,例如借助三维柱形图、二维条形图等.故选B.5.考察棉花种子经过处理跟生病之间的关系得到下表数据:根据以上数据,可得出()A.种子是否经过处理跟是否生病有关B.种子是否经过处理跟是否生病无关C.种子是否经过处理决定是否生病D.以上都是错误的【答案】B解析由K2=407×(32×213-61×101)293×314×133×274≈0.164<2.706,即没有把握认为种子是否经过处理跟是否生病有关. 二、填空题 6.根据下表计算:K 2的观测值k ≈________(保留3位小数). 【答案】 4.514解析 k =300×(37×143-85×35)2122×178×72×228≈4.514.7.如果K 2的观测值为6.645,可以认为“x 与y 无关”的可信度是________. 【答案】 1%解析 查表可知可信度为1%.8.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:由以上数据,计算得到K 2的观测值k ≈9.643,根据临界值表,有________把握认为课外阅读量大与作文成绩优秀有关. 【答案】 99.5%解析根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.9.为研究某新药的疗效,给50名患者服用此药,跟踪调查后得下表中的数据:设H0:服用此药的效果与患者的性别无关,则K2的观测值k≈________(小数点后保留三位有效数字),从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为________.【答案】 4.8825%解析由公式计算得K2的观测值k≈4.882,∵k>3.841,∴我们有95%的把握认为服用此药的效果与患者的性别有关,从而有5%的可能性出错.三、解答题10.高中流行这样一句话“文科就怕数学不好,理科就怕英语不好”.下表是一次针对高三文科学生的调查所得数据,试问:在出错概率不超过0.025的前提下,能否判断“文科学生总成绩不好与数学成绩不好有关系”?解依题意,计算随机变量K2的观测值:k =913×(478×24-399×12)2490×423×877×36≈6.233>5.024,所以在出错概率不超过0.025的前提下,可以判断“文科学生总成绩不好与数学成绩不好有关系”.11.吃零食是中学生中普遍存在的现象,吃零食对学生身体发育有诸多不利影响,影响学生的健康成长.下表是性别与吃零食的列联表:请问喜欢吃零食与性别是否有关?解K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),把相关数据代入公式,得 K 2的观测值k =85×(5×28-40×12)217×68×45×40≈4.722>3.841.因此,在犯错误的概率不超过0.05的前提下,可以认为“喜欢吃零食与性别有关”. 12.在某校对有心理障碍学生进行测试得到如下列联表:试说明在这三种心理障碍中哪一种与性别关系最大?解 对于题中三种心理障碍分别构造三个随机变量K 21,K 22,K 23.其观测值分别为k 1,k 2,k 3.由表中数据列出焦虑是否与性别有关的2×2列联表可得k 1=110×(5×60-25×20)30×80×25×85≈0.863<2.706,同理,k 2=110×(10×70-20×10)230×80×20×90≈6.366>5.024,k 3=110×(15×30-15×50)230×80×65×45≈1.410<2.706.因此,在犯错误的概率不超过0.025的前提下,认为说谎与性别有关,没有充分的证据显示焦虑、懒惰与性别有关.B组能力提升一、选择题1.千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证“日落云里走,雨在半夜后”,观察了所在地区A的100天日落和夜晚天气,得到如下2×2列联表:0010并计算得到219.05K≈,下列小波对地区A天气判断不正确的是()A. 夜晚下雨的概率约为1 2B. 未出现“日落云里走”夜晚下雨的概率约为5 14C. 有99.9%的把握认为“‘日落云里走’是否出现”与“当晚是否下雨”有关D. 出现“日落云里走”,有99.9%的把握认为夜晚会下雨【答案】:D【分析】把频率看作概率,即可判断,A B的正误;根据独立性检验可判断,C D的正误,即得【答案】.【详解】由题意,把频率看作概率可得:夜晚下雨的概率约为252511002+=,故A正确;未出现“日落云里走”夜晚下雨的概率约为255254514=+,故B正确;由219.0510.828K≈>,根据临界值表,可得有99.9%的把握认为“‘日落云里走’是否出现”与“当晚是否下雨”有关,故C正确;故D错误.故选:D.2.为了判断英语词汇量与阅读水平是否相互独立,某语言培训机构随机抽取了100位英语学习者进行调查,经过计算2K的观测值为7,根据这一数据分析,下列说法正确的()附:A. 有99%以上的把握认为英语词汇量与阅读水平无关B. 有99.5%以上的把握认为英语词汇量与阅读水平有关C. 有99.9%以上的把握认为英语词汇量与阅读水平有关D. 在犯错误的概率不超过1%的前提下,可以认为英语词汇量与阅读水平有关 【答案】:D 【分析】由题意()26.6350.01P K ≥=,由独立性检验的原理即可得解.【详解】由题意27K =,()26.6350.01P K ≥=,所以在犯错误的概率不超过1%的前提下,可以认为英语词汇量与阅读水平有关,有99%的把握认为英语词汇量与阅读水平有关. 故选:D.3.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的22⨯列联表:由22()()()()()n ad bc a b c d a c b d χ-=++++算得,22110(40302020)7.860506050χ⨯⨯-⨯=≈⨯⨯⨯.附表:参照附表,得到的正确结论是()A. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”;B. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”;C. 有99%以上的把握认为“爱好该项运动与性别有关”;D. 有99%以上的把握认为“爱好该项运动与性别无关”.【答案】:C【分析】根据给定的2K的值,结合附表,即可得到结论.【详解】由22110(40302020)7.8 6.63560506050χ⨯⨯-⨯=≈>⨯⨯⨯,所以有99%以上的把握认为“爱好该项运动与性别有关.故选:C.4.在一次独立性检验中得到如下列联表:若这两个分类变量A和B没有关系,则a的可能值是() A. 200 B. 720C. 100D. 180【答案】:B 【分析】令2k 的观测值为零,解方程即得解.【详解】当a =720时,k =0,易知此时两个分类变量没有关系. 故【答案】为B5.(多选题)针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的45,女生喜欢抖音的人数占女生人数35,若有95%的把握认为是否喜欢抖音和性别有关则调查人数中男生可能有( )人 附表:附:()()()()()22n ad bc K a b c d a c b d -=++++ A. 25 B. 45C. 60D. 75【答案】:BC 【分析】设男生的人数为()5n n N*∈,列出22⨯列联表,计算出2K 的观测值,结合题中条件可得出关于n 的不等式,解出n 的取值范围,即可得出男生人数的可能值.【详解】设男生的人数为()5n n N*∈,根据题意列出22⨯列联表如下表所示:则()221042310557321n n n n n n K n n n n ⨯⨯-⨯==⨯⨯⨯,由于有95%的把握认为是否喜欢抖音和性别有关,则23.841 6.632K ≤<,即103.841 6.63221n≤<,得8.066113.9272n ≤<, n N *∈,则n 的可能取值有9、10、11、12,因此,调查人数中男生人数的可能值为45或60. 故选:BC. 二、填空题6.某手机运营商为了拓展业务,现对该手机使用潜在客户进行调查,随机抽取国内国外潜在用户代表各100名,调查用户对是否使用该手机的态度,得到如图所示的等高条形图.根据等高图,______(填“有”或“没有”)99.5%以上的把握认为持乐观态度和国内外差异有关.(参考公式与数据:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)()20P K k ≥0.05 0.01 0.005 0.001 0k3.841 6.635 7.879 10.828【答案】:有依题意,可知国内代表乐观人数60人,不乐观人数40人,国外乐观人数40人,不乐观人数60人,总计乐观人数100人,不乐观人数100人,所以,而,所以有99.5%以上的把握认为持乐观态度和国内外差异有关.7.给给给给给给给 给线性回归方程y bx a =+必过点(),x y ;给相关系数r 越小,表明两个变量相关性越弱; ()22200606040408100100100100K ⨯-⨯==⨯⨯⨯87.879>给相关指数2R 越接近1,表明回归的效果越好;给在一个2×2列联表中,由计算得2K 的观测值k =13.079,则有99%以上的把握认为这两个变量之间没有关系;给设有一个线性回归方程35y x =-,则变量x 增加一个单位时,y 平均增加5个单位. 其中正确的说法有 (填序号).【答案】:给给对于给,应该是相关系数r 的绝对值越小,表明两个变量相关性越弱.所以它是错误的.对于给,应该是有99%以上的把握认为这两个变量之间有关系.对于给,应该是变量x 增加一个单位时,y 平均减少5个单位.故填给给.三、解答题8.随着现代教育技术的不断发展,我市部分学校开办智慧班教学,某校从甲乙两智慧班各随机抽取45名学生,调查两个班学生对智慧课堂的评价:“满意”与“不满意”,调查中发现甲班评价“满意”的学生人数比乙班评价“满意”的学生人数多9人,根据调查情况制成如下图所示的2×2列联表:(1)完成2×2列联表,并判断能否有97.5%的把握认为评价与班级有关系?(2)从甲乙两班调查评价为“不满意”的学生中按照分层抽样的方法随机抽取7人,现从这7人中选派3人到校外参加智慧课堂研究活动,求其中至少有2人选自乙班学生的概率. 附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【答案】:(1)表格见解析,有97.5%的把握认为评价与班级有关系;(2)67. 【分析】 (1)首先根据题意填写22⨯列联表,再计算2 5.031 5.024=>K 即可得到结论.(2)首先根据题意得到甲班选取2人,乙班选取5人,再计算概率即可.【详解】(1)完成列联表如下:2290(3915306)=5.031 5.024********⨯-⨯=>⨯⨯⨯K . 所以有97.5%的把握认为评价与班级有关系.(2)抽样比17213==,甲班选取2人,乙班选取5人,则1232553767C C CpC+==.9.盲盒里面通常装的是动漫、影视作品的周边,或者设计师单独设计出来的玩偶.由于盒子上没有标注,购买者只有打开才会知道自己买到了什么,因此这种惊喜吸引了众多年轻人,形成了“盲盒经济”.某款盲盒内可能装有某一套玩偶的A、B、C三种样式,且每个盲盒只装一个.(1)若每个盲盒装有A、B、C三种样式玩偶的概率相同.某同学已经有了A样式的玩偶,若他再购买两个这款盲盒,恰好能收集齐这三种样式的概率是多少?(2)某销售网点为调查该款盲盒的受欢迎程度,随机发放了200份问卷,并全部收回.经统计,有30%的人购买了该款盲盒,在这些购买者当中,女生占23;而在未购买者当中,男生女生各占50%.请根据以上信息填写下表,并分析是否有95%的把握认为购买该款盲盒与性别有关?参考公式:()()()()()22n ad bca b c d a c b dχ-=++++,其中n a b c d=+++.参考数据:(3)该销售网点已经售卖该款盲盒6周,并记录了销售情况,如下表:由于电脑故障,第二周数据现已丢失,该销售网点负责人决定用第4、5、6周的数据求线性回归方程,再用第1、3周数据进行检验.①请用4、5、6周的数据求出y关于x的线性回归方程y bx a=+;(注:()()()1122211n ni i i ii in ni ii ix x y y x y nx ybx x x nx====---==--∑∑∑∑,a y bx=-)②若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2盒,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠?③如果通过②的检验得到的回归直线方程可靠,我们可以认为第2周卖出的盒数误差也不超过2盒,请你求出第2周卖出的盒数的可能取值;如果不可靠,请你设计一个估计第2周卖出的盒数的方案.【答案】:(1)29;(2)表格见解析,有95%把握认为购买该款盲盒与性别有关;(3)给2.514.5y x=+;给是可靠的;给第2周卖出的盒数的可能值为18、19、20、21.【分析】(1)用列举法写出所有基本事件,再从中找出满足要求的基本事件,用古典概型的公式即可求得结果;(2)通过计算,完成列联表,再计算出观测值2 4.714k ≈,比表中0.05所对应的数据3.841大,故得出结论“有95%把握认为购买该款盲盒与性别有关”;(3)给将第4、5、6周的数据代入公式,计算出b 和a ,写出回归直线方程;给将第1、3周的数据代入给所求出的回归直线方程进行检验,该方程可靠;给将2x =代入给所求出的回归直线方程,解得19.5y =,根据可靠性的要求,以及该应用题的实际要求,得出第2周卖出的盒数的可能取值.【详解】解:(1)由题意,基本事件空间为{}(,),(,),(,),(,),(,),(,),(,),(,),(,)A A A B A C B A B B B C C A C B C C Ω=,其中基本事件的个数为9,设事件D 为:“他恰好能收集齐这三种样式”,则()(){},,,D B C C B =,其中基本事件的个数为2, 则他恰好能收集齐这三种样式的概率29P =; (2)22200(40702070) 4.7141109060140k ⨯-⨯=≈⨯⨯⨯, 又因为4.714 3.841>,故有95%把握认为“购买该款盲盒与性别有关”;(3)给由数据,求得5x =,27y =,由公式求得 222(45)(2527)(55)(2627)(65)(3027)5(45)(55)(65)2b --+--+--==-+-+-, 527514.52a =-⨯=, 所以y 关于x 的线性回归方程为 2.514.5y x =+;给当1x =时, 2.5114.517y =⨯+=,17162-<,同样,当3x =时, 2.5314.522y =⨯+=,22232-<,所以,所得到的线性回归方程是可靠的;给由给可知回归直线方程可靠,2x =时 2.5214.519.5y =⨯+=,设第二周卖出的盒数为()n n N ∈,则19.52n -≤,≤≤,n17.521.5给n能取18、19、20、21,即第2周卖出的盒数的可能值为18、19、20、21.【点睛】本题考查了古典概型的概率计算,独立性检验的实际应用,线性回归直线方程的求解及实际应用问题,综合性较强.10.阿基米德是古希腊伟大的哲学家、数学家、物理学家,对几何学、力学等学科作出过卓越贡献.为调查中学生对这一伟大科学家的了解程度,某调查小组随机抽取了某市的100名高中生,请他们列举阿基米德的成就,把能列举阿基米德成就不少于3项的称为“比较了解”,少于三项的称为“不太了解”.他们的调查结果如下:(1)完成如下2×2列联表,并判断是否有99%的把握认为,了解阿基米德与选择文理科有关?(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本. (i )求抽取的文科生和理科生的人数;(ii )从10人的样本中随机抽取3人,用X 表示这3人中文科生的人数,求X 的分布列和数学期望.参考数据:22()()()()()n ad bc k a b c d a c b d -=++++,n a b c d =+++. 【答案】:(1)见解析;(2) (i )文科生3人,理科生7人 (ii )见解析【分析】(1)写出列联表后可计算2K ,根据预测值表可得没有99%的把握认为,了解阿基米德与选择文理科有关.(2)(i )文科生与理科生的比为310,据此可计算出文科生和理科生的人数. (ii )利用超几何分布可计算X 的分布列及其数学期望.【详解】解:(1)依题意填写列联表如下:计算222()100(42182812) 3.382 6.635()()()()30705446n ad bc K a b c d a c b d -⨯-⨯==≈<++++⨯⨯⨯, ∴没有99%的把握认为,了解阿基米德与选择文理科有关.(2)(i )抽取的文科生人数是30103100⨯=(人),理科生人数是70107100⨯=(人). (ii )X 的可能取值为0,1,2,3,则0337310C C 7(0)C 24P X ===⋅, 1237310C C 21(1)C 40P X ===⋅, 17213307(2)40C C P X C ⋅===, 3037310C C 1(3)C 120P X ===⋅. 其分布列为所以72171369()01232440401204010E X =⨯+⨯+⨯+⨯==.31。
高中数学知识点精讲精析 独立性检验的基本思想
2.2 独立性检验的基本思想独立性检验的基本思想:① 独立性检验的必要性:列联表中的数据是样本数据,它只是总体的代表,具有随机性,故需要用列联表检验的方法确认所得结论在多大程度上适用于总体. ② 独立性检验的步骤(略)及原理(与反证法类似):【解析】1.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。
女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。
(1)根据以上数据建立一个2× 2列联表; (2)判断性别与休闲方式是否有关系。
【解析】(1)2× 2的列联表:(2χ2因为χ2,所以有理由认为假设“休闲方式与性别无关”是不合理的,即有97.5%的把握认为“休闲方式与性别有关”。
2.气管炎是一种常见的呼吸道疾病,医药研究人员对两种中草药治疗慢性气管炎的疗效进行对比,所得数据如表所示.问它们的疗效有无差异(可靠性不低于99%)?分析:由列联表中的数据可知,服用复方江剪刀草的患者的有效率为,服用胆黄片的患者的有效率为,可见,服用复方江剪刀草的患者与服用胆黄片的患者的有 效率存在较大差异.下面用进行独立性检验,以确定能有多大把握作出这一推断. 【解析】提出假设:两种中草药的治疗效果没有差异,即病人使用这两种药物中的何种药物对疗效没有明显差异.由列联表中的数据,求得 当成立时,的概率约为,而这里所以我们有的把握认为:两种药物的疗效有差异.2124(43332721) 6.20170546460⨯⨯-⨯=≈⨯⨯⨯5.024≥75%245≈9191%100=2χ0H 22345(18496191)11.09827570245100χ⨯⨯-⨯=≈⨯⨯⨯0H 210.828χ≥0.001211.09810.828χ≈>99.9%。
独立性检验原理(1)PPT课件
9965人,得到如下结果(单位:人) 吸烟与患肺癌列联表(列出两个分类变量的频数表):
不患肺癌 患肺癌
总计
不吸烟
7775
42
7817
吸烟
2099
49
2148
总计
9874
91
9965
2×2列联表
思考:根据以上表格。能否断定吸烟对患肺癌有影响?
判断的标准是什么?
吸烟与不吸烟,患病的可能性的大小是否有差异?
方法1.用频率估计概率
吸烟与肺癌列联表
不患肺癌 患肺癌 总计
不吸烟 7775
42
7817
吸烟
2099
49
2148
总计
9874
91
9965
在不吸烟者中患肺癌的比重是 0.54%
在吸烟者中患肺癌的比重是 2.28%
根据统计分析的思想,用频率估计概率可知,
吸烟者和不吸烟者患肺癌的可能性存在差异,吸
烟者患肺癌的可能性大
总计 389 1048 1437
(1)等高条形图
100% 80% 60% 40% 20% 0%
秃顶
不秃顶
患其他病 患心脏病
从图中可以看出,秃顶样本中患心脏病的频率明显高于 不秃顶样本中患心脏病的频率,因此可直观地认为秃顶 与患心脏病有关系。
(2)独立性检验法
患心脏病
秃顶
214
不秃顶
451
总计
665
宗教信仰、国籍等等。
在日常生活中,我们常常关心分类变量的之间是否有关系
研究两个变量的相关关系:
定量变量——回归分析(画散点图、相关系数r、
变量
相关指数R 2、残差分析)
分类变量—— 独立性检验
独立性检验的基本思想在生活中的应用
独立性检验的基本思想在生活中的应用224100 江苏省盐城市大丰区南阳中学 潘锦明 独立性检验在日常生活中有广泛的应用,解决该类问题的关键是理解独立性检验的基本思想、熟记公式,准确的运算。
具体地讲要注意以下几个方面。
1.独立性检验的基本思想:① 独立性检验的必要性(为什么不能只凭列联表的数据和图形下结论?):列联表中的数据是样本数据,它只是总体的代表,具有随机性,故需要用列联表检验的方法确认所得结论在多大程度上适用于总体.②独立性检验的原理(与反证法类似): 反证法 假设检验 要证明结论A 备择假设H 1在A 不成立的前提下进行推理在H 1不成立的条件下,即H 0成立的条件下进行推理 推出矛盾,意味着结论A 成立 推出有利于H 1成立的小概率事件(概率不超过α的事件)发生,意味着H 1成立的可能性(可能性为(1-α))很大没有找到矛盾,不能对A 下任何结论,即反证法不成功推出有利于H 1成立的小概率事件不发生,接受原假设 ③独立性检验的基本步骤为:第一步:找相关数据,作出列联表(以吸烟与患肺癌为例);第二步:提出假设检验问题H 0:吸烟与患肺癌没有关系↔ H 1:吸烟与患肺癌有关系。
第三步:选择检验的指标22()K ()()()()n ad bc a b c d a c b d -=++++,用K 2来确定结论“X 与 Y 有关系”的可信程度.(它越小,原假设“H 0:吸烟与患肺癌没有关系”成立的可能性越大;它越大,备择假设“H 1:吸烟与患肺癌有关系”成立的可能性越大.强调:在熟练掌握了两个分类变量的独立性检验方法之后,可直接计算的值解决实际问题,而没有必要画相应的图形,但是图形的直观性也不可忽视.2.应用举例例1. 有人发现了一个有趣的现象,中国人的邮箱名称里含有数字的比较多,而外国人邮箱名称里含有数字的比较少.为了研究国籍和邮箱名称里是否含有数字的关系,他收集了124个邮箱名称,其中中国人的70个,外国人的54个,中国人的邮箱中有43个含数字,外国人的邮箱中有27个含数字.(1)根据以上数据建立一个2×2的列联表;(2)他发现在这组数据中,外国人邮箱名称里含数字的也不少,他不能断定国籍和邮箱名称里含有数字是否有关,你能帮他判断一下吗?分析:按题中数据建列联表,然后根据列联表数据求出k 值,即可判定.不患肺癌 患肺癌 总计 不吸烟 7775 42 7817 吸 烟 209949 2148 总 计 9874 91 9965(.由表中数据得=2K 201.660645470)21273343(1242≈⨯⨯⨯⨯-⨯⨯, 因为024.5>k ,所以有理由认为假设“国籍和邮箱名称里是否含有数字无关”是不合理的,即有005.97的把握认为“国籍和邮箱名称里是否含有数字有关”.评注:独立性检验类似于反证法,其一般步骤为:第一步:首先假设两个分类变量几乎没有关系(几乎独立);第二步:求随机变量k 的值;第三步.判断两个分类变量有关的把握(即概率)有多大.例2. 针对时下的“韩剧热”,某校团委对“学生性别和是否喜欢韩剧是否有关”作了一次调查,其中女生人数是男生人数的21,男生喜欢韩剧的人数占男生人数的61,女生喜欢韩剧人数占女生人数的32. (1)若有0095的把握认为是否喜欢韩剧和性别有关,则男生至少有多少人; (2)若没有充分的证据显示是否喜欢韩剧和性别有关,则男生至多有多少人. 分析:有0095的把握认为回答结果对错和性别有关,说明841.3>k ,没有充分的证据显示回答结果对错和性别有关,说明706.2≤k .设出男生人数,并用它分别表示各类别人数,代入2K 的计算公式,建立不等式求解即可.解:x (1)若有0095的把握认为回答结果的对错和性别有关,则841.3>k ,由841.38322)66365(2322>=⋅⋅⋅⨯-⨯=x x x x x x x x x x K ,解得24.10>x , ∵6,2xx 为整数,∴若有0095的把握认为回答结果的对错和性别有关,则男生至少有12人;(2)没有充分的证据显示回答结果的对错和性别有关,则706.2≤k ,由706.28322)66365(2322≤=⋅⋅⋅⨯-⨯=x x x x x x x x x x K ,解得216.7≤x ,∵6,2xx 为整数,∴若没有充分的证据显示回答结果的对错和性别有关,则男生至多有6人.评注:这是一个独立性检验的创新问题,解答时要注意理解“至少”、“至多”的含义. 通过上面几例,大家是否已体会到了回归分析和独立性检验思想方法的应用的广泛性和重要性.其实,这两种思想方法并不神秘,你身边有很多问题可信手拈来,用它们处理,这一点还请同学们多思考、勤尝试.练习:1、为了研究某种新药的副作用(如恶心等),给50位患者服用此新药,另外50名患者服用安慰剂,得到下列实验数据:请问服用新药是否可产生副作用?2、某大型企业人力资源部为了研究企业员工工作积极性和对待企业改革的关系,随机抽取了189名员工进行调查,其中支持企业改革的调查者中,工作积极的54人,工作一般的32人,而不太赞成企业改革的调查者中,工作积极的40人,工作一般的63人.(1) 根据以上数据建立一个22⨯的列联表;(2) 对于人力资源部的研究项目,根据以上数据可以认为企业的全体员工对待企业改革的态度与其工作积极性是否有关系? 练习答案:1、解:提出假设0H :服用新药与产生副作用之间没有关系由已知数据可以求得63.686.781195050435461510022>=⨯⨯⨯⨯-⨯⨯=)(K所以有99%的把握认为新药与产生副作用是相关联的.0H :企业的全体员工对待企业改革的态度与其工作积极性无关.根据(1)中列联表的数据,可以求得879.7759.101038695943240635418922>≈⨯⨯⨯⨯-⨯⨯=)(K所以有99.5%的把握认为抽样员工对待企业改革的态度与其工作积极性是有关的.从而可以认为企业的全体员工对待企业改革的态度与其工作积极性是有关的.。
8.3.2独立性检验课件(人教版)
肺癌
合计
非肺癌患者
42
7817
吸烟者
2099
49
2148
合计
9874
91
9965
7775
42
0.9946,
0.0054
7817
7817
吸烟者中不患肺癌和患肺癌的频率分别为
2099
49
0.9772,
0.0228
2148
2148
由
0.0228
4.2
0.0054
可见,在被调查者中,吸烟者患肺癌的频率是不吸烟者患肺癌频率的4倍以
上。于是,根据频率稳定于概率的原理,我们可以认为吸烟者患肺癌的概率明
显大于不吸烟者患肺癌概率,即吸烟更容易引发肺癌。
六、方法总结
应用独立性检验解决实际问题大致应包括以下几个主要环节:
(1)提出零假设H0:X和Y相互独立,并给出在问题中的解释.
P(Y=1|X=0)=P(Y=1|X=1)
三、零假设(原假设)的等价条件:
三、零假设(原假设)的等价条件:
X
Y
合计
Y=0
Y=1
X=0
a
b
a+b
X=1
c
d
c+d
合计
a+c
b+d
n=a+b+c+d
问题:根据频率稳定于概率的原理,你能构造一个能对分类变量X和Y的独立性作出推断的统计量吗?
四、卡方统计量:
≈ . 和
因此可以推断乙种疗法的效果比甲种疗法好。
问题2:根据同一抽查数据推断两个分类变量之间是否有关联,应用不同的小概率值,
为什么会得出不同的结论?
独立性检验的基本思想课件
独立性检验的常用方法
卡方检验
适用情况
卡方检验主要用于比较观察频率和期望频率之间的差异,常用于检验两个分类变量之间是 否独立。
原理
卡方检验基于假设,即观察频率和期望频率之间的差异是由于随机误差引起的。如果差异 过大,则拒绝原假设,认为两个分类变量之间存在依赖关系。
计算方法
卡方检验的计算方法包括计算卡方统计量、计算自由度和计算p值。卡方统计量越大,说 明观察频率和期望频率之间的差异越大。自由度等于观察频数减去期望频数减去1。p值 表示拒绝原假设的依据,通常选择0.05作为显著性水平。
计算方法
Fisher's exact test的计算方法包括选择显著性水平、计算超几何分布函数和计算概率值。超几何分布函 数的参数包括观察频数、期望频数和总样本量。
McNemar's test
01
适用情况
McNemar's test主要用于分析两个配对分类变量之间的 关联性,例如同一受试者在不同时间点的测试结果。
独立性检验的发展趋势与未来展望
发展新的统计方法
针对独立性检验的局限性,未来研究可开发新的统计方法 ,提高检验效能和可靠性。
01
结合大数据技术
利用大数据技术,对海量数据进行独立 性检验,可更全面地揭示变量之间的关 系。
02
03
跨学科交叉
将独立性检验与其他学科领域相结合 ,如机器学习、人工智能等,可为其 提供新的应用场景和发展空间。
05
独立性检验的实例分析
两个分类变量的相关性分析
总结词
通过观察两个分类变量之间的相互关系,确 定它们之间是否有联系。
详细描述
在独立性检验中,我们需要观察两个分类变 量之间的关系。例如,我们可以观察吸烟习 惯和患肺癌的可能性之间的关系。通过分析 这些数据,我们可以得出吸烟习惯和患肺癌 之间是否有联系的结论。
独立性检验原理
独立性检验原理
独立性检验原理是统计学中的一种方法,用于确定两个或多个变量之间是否存在独立关系。
独立性检验可以帮助我们验证两个变量之间的关联程度,并推断是否存在其他变量影响因素。
在进行独立性检验时,我们首先假设两个变量是独立的,即它们之间没有关联。
然后,通过对样本数据进行分析,计算出观察到的频数和期望的频数之间的差异。
观察到的频数是根据实际样本数据统计得出的,期望的频数是根据假设的独立性计算出来的。
通常使用卡方检验进行独立性检验。
卡方统计量是观察到的频数和期望的频数之间的差异的平方和的比值。
根据卡方分布的性质,可以计算出卡方统计量的概率值,即p值。
如果p值小于显著性水平(通常设定为0.05),则我们可以拒绝原假设,即认为两个变量之间存在关联性。
独立性检验原理的核心思想是通过比较观察到的频数和期望的频数之间的差异来评估两个变量之间的关联性。
通过统计计算,我们可以得出一个概率值,帮助我们判断这种差异是否是由于随机因素导致的,还是存在真实的关联性。
需要注意的是,独立性检验并不能确定两个变量之间存在因果关系,只是用来评估它们之间是否存在关联性。
如果结果表明两个变量之间存在关联,我们需要进一步进行研究来确定其中的因果关系。
独立性检验
意思是说如果AB没有关系,会推出一个小概率事件,而小概率事件在一次实验中出现的概率几乎为0,我们竟然推出了一个几乎不可能发生的事情,很有可能是我们哪里错了,而错因就在于我们认为AB是无关的,所以AB应该是有关系的。
但我们一定错了吗?小概率事件毕竟不等于不会发生,如题,它发生的概率是0.01,也就是说,有0.01的可能这件事情发生,也即我们的猜想AB 无关是正确的,但这种概率仅有0.01,也就是说,我们认为AB有关是在小概率事件不发生的情况下认定的,而如果发生了小概率事件,那么AB无关,我们就错了,但错的概率不会超过0.01,所以说在错误不超过0.01的程度上判断A、B 有关系。
我的课件——独立性检验原理
看看能推出什么样的结论。
为了研究的一般性,在列联表1-7中用字母代替数字: 不吸烟 吸烟 总计 不患肺癌 a c a+c 患肺癌 b d b+d 总计 a+b c+d a+b+c+d
不吸烟 吸烟 总计
不患肺癌 a c a+c
患肺癌 b d b+d
总计 a+b c+d a+b+c+d
0.445 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
临界值
P( K 2 k ) 0.50
0.40
0.5
0.15
0.10
0.05 0.025 0.010 0.005 0.001
k
0.445 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
练1 为了考察高中生的性别与是否喜欢数 学课程之间的关系,在某城市的某校高中 生中随即抽取300名学生,得到如下列联 表:
喜欢数学课程 男 女 总计 37 35 72 不喜欢数学课程 85 143 228 总计 122 178 300
K 2的观测值 k 4.514 。能够 由表中数据计算得到
以95%的把握认为高中生的性别与是否喜欢数学课程 之间有关系吗?为什么?
数据整理
调查结果:吸烟的220人中有37人患呼吸道疾 病,183人未患呼吸道疾病;不吸烟的295人中 有21人患病,274人未患病。
患病
吸烟 不吸烟 合计 37 21 58
未患病
183 274 457
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一课时
学习目标
• 1.了解分类变量的定义 • 2.会画2x2列联表和等高条形图 • 3.了解独立性检验原理,会用独立 性检验原理来判断两个变量之间是 否有关系。
自学指导1 • 阅读课本第91页至--92图3-8的 内容,注意下列问题 • 1.列联表的画法 • 2.等高条形图的画法
独立性检验的原理:
首先,假设结论不成立,即 H :两个分类变量没有关系
(在这种假设下k应该很小)
其次,由观测数据计算K 的观测值k,
(如果k很大,则在一定可信程度上说明H 不 成立,即两个分类变量之间有关系)
2
最后,根据k的值判断假设是否成立
临界值表:
P(K 2 k0 ) 0.50
0.40 0.70 8 0.25 1.32 3 0.15 2.07 2 0.10 2.70 6 0.05 3.84 1 0.02 5 5.02 4 0.01 0 6.63 5 0.005 7.879 0.001 10.82 8
系,是指有对
2. 在某医院,因为患心脏病而住院的665名男性 病人中,有214人秃顶;而另外772名不是因为 患心脏病而住院的男性病人中有175人秃顶。分 别利用图形和独立性检验方法判断秃顶与患心 脏病是否有关系?
解:根据题目所给数据得到如下列联表1-13:
k0
0.44 5
临界值
P( K 2 k ) 0.50
0.40
0.5
0.15
0.10
0.05 0.025 0.010 0.005 0.001
k
0.445 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(1)如果k2>10.828,就有99.9%的把握认为“X与Y有关系” (2)如果k2>7.879,就有99.5%的把握认为“X与Y有关系” (3)如果k2>6.635,就有99%的把握认为“X与Y有关系”; (4)如果k2>5.024,就有97.5%的把握认为“X与Y有关系” (5)如果k2>3.841,就有95%的把握认为“X与Y有关系”; (6)如果k2>2.706,就有90%的把握认为“X与Y有关系”; (7)如果k2≤2.706,就认为没有充分的证据显示 “X与Y有关系”.
时间3分钟,同桌之间可以相互讨论
自学检测1
1.画等高条形图的目的是________ a 2.观察等高条形图,如果 发现 和 ab c 差距很大,就说两个分 类变量 cd 之间 _________
自学指导2
• 阅读课本第93页---第95页的内容,注意下 列问题: • 1.记忆随机变量K2的计算公式。 • 2. 注意K2的大小对相关关系强弱的影响。 • 3. 独立性检验的原理是什么? • 4.用自己的话总结用独立性检验原理判断相 关关系的具体过程。 时间6分钟,同桌之间可以相互商量
秃顶 不秃顶 总计
患心脏病 不患心脏 病 214 175 451 597 665 772 总计
389 1048 1437
假设秃顶和患心脏病之间没有关系 根据联表1-13中的数据,得到
1437 (214 597 175 451 ) k 16.373 10.828 3891048 665 772 所以有99.9%的把握认为“秃顶与患心脏病有
自学检测2
1.在吸烟与患肺病这两个分类变量的计算中,下列说法正
确的是(
c
)
A、若K的观测值为k=6.635,我们有99%的把握认为吸烟与患 肺病有关系,那么在100个吸烟的人中必有99个患肺病 B、从独立性检验可知有99%的把握认为吸烟与患肺病有关 系时,我们说某人吸烟,那么他有99%的可能患肺病 C、从独立性检验可知有99%的把握认为吸烟与患肺病有关
解:在假设“吃零食与是否患胃病之间没有 关系”的前提下K2应该很小,并且
P( K 3.841) 0.05,
2
而我们所得到的K2 的观测值k≈4.513超过 3.841,这就意味着“吃零食与是否患胃病 之间的关系”这一结论错误的可能性约为 0.05(或小于 0.05 ) ,即有95%(或大于 95%)的把握认为“吃零食与是否患胃病 之间有关系”。
或者:k>10.828,表示在犯错的概率不 超过0.001的前提下,X和Y有关系。
用独立性检验思想的步骤
• • • • 1.列2x2列联表 2. 假设两个分类变量之间没有关系 3.根据K2的计算公式计算K2 4.如果K2 ≥k0(临界值),下结论:“在推 断错误的概率不超过P的前提下,可以判断 ‘两个变量有关系’”,或者说“我们有 (1-P)x100%的把握认为‘两个变量有关 系’。 如果K2≤2.072,就说“没有足够的证据证 明两个变量有关系”。
2
2
例2 为考察高中生的吃零食与是否患胃病之间的 关系,在某城市的某校高中生中随机抽取300名学 生,得到如下联表:
患胃病 不患胃病 总计
吃零食 不吃零食 总计
37 35 72
85 143 228
122 178 300
由表中数据计算K2的观测值k≈4.513。在 多大程度上可以认为高中生的性别与是否喜 欢数学课程之间有关系?为什么?