八年级下册数学综合试卷
最新精品解析鲁教版(五四制)八年级数学下册第八章一元二次方程综合练习试题(含答案及详细解析)
鲁教版(五四制)八年级数学下册第八章一元二次方程综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若1x =是方程210x ax --=的一个根,则a 的值为( )A .-1B .0C .11D .22、若关于x 的不等式组5324x x x a⎧-≤⎪⎨⎪->⎩无解,且关于x 的一元二次方程()21420a x x -++=有两个不相等的实数根,则符合条件的所有整数a 的和为( )A .-1B .0C .1D .23、若3120k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法判断 4、若关于x 的方程()()22222280x x x x +++-=有实数根,则22x x +的值为( )A .-4B .2C .-4或2D .4或-25、受疫情及其他因素影响,2021年2月份猪肉价格两次大幅度上涨,排骨价格由原来23元/千克,连续两次上涨x %后,售价上升到60元/千克,则下列方程中正确的是( )A .()2231%60x -=B .()2312%60x +=C .()2231%60x +=D .()231%60x +=6、一元二次方程240x -=的根为( )A .2x =-B .2x =C .2x =±D .x =7、已知直角三角形的两条边长分别是方程x 2﹣9x+20=0的两个根,则此三角形的第三边是( )A .4或5B .3CD .38、用一条长60cm 的绳子围成一个面积为2200cm 的长方形.设长方形的长为cm x ,则可列方程为( )A .(30)200x x -=B .(30)200x x +=C .(60)200x x +=D .(60)200x x -= 9、如图,在长为32米、宽为20米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪,要使小路的面积为100平方米,设道路的宽x 米,则可列方程为( )A .32203220100x x ⨯--=B .()()23220100x x x --+=C .23220100x x x +=+D .()()3220100x x --=10、若x =1是方程x 2﹣4x +m =0的根,则m 的值为( )A .﹣3B .﹣5C .3D .5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x 的二次方程(m ﹣1)x 2+2mx +m ﹣2=0有两个不相等的实数根,则m 的取值范围是_____.2、若m ≠0,则关于x 的一元二次方程mx 2+x -3m =0的实数根的个数为____.3、方程x 2=x (2x +1)的解是 _____.4、若方程2(1)30m x mx ---=是关于x 的一元二次方程,则m 的取值范围是_____.5、已知x =2是一元二次方程x 2+mx +n =0的一个解,则4m +2n 的值是 _____.三、解答题(5小题,每小题10分,共计50分)1、已知关于x 的方程2(1)410k x x -++=.(1)当k _________时,方程2(1)410k x x -++=是一元二次方程;(2)若方程有两个实数根,求k 的取值范围;2、因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一.深圳著名旅游“网红打卡地”东部华侨城景区在2018年春节长假期间,共接待游客达20万人次,预计在2020年春节长假期间,将接待游客达28.8万人次(1)求东部华侨城景区2018至2020年春节长假期间接待游客人次的年平均增长率.(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯.2020年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?3、解方程:()(3x x x +=4、解方程:x (2x ﹣5)=2x ﹣5.5、解下列方程:(1)220210x x -=(因式分解法)(2)3x 2+5x +1=0(公式法)-参考答案-一、单选题1、B【解析】【分析】将1x =代入方程210x ax --=中即可求出a 的值.【详解】解:将1x =代入方程210x ax --=中,可得2110--=a即0a =故选:B .【点睛】此题考查了一元二次方程的系数问题,掌握代入法是解题的关键.2、A【解析】【分析】由x 的不等式组无解可解得2a ≥-,由x 的一元二次方程有两个不相等的实数根可解得3a <,故23a -≤<中符合条件的所有整数有-2,-1,0,1,2,所有整数a 的和为0.【详解】532x x -≤移项得332x ≤ 解得2x ≤4x a ->解得4x a >+∵关于x 的不等式组无解∴24a ≤+解得2a ≥-一元二次方程()21420a x x -++=则()22444121688248b ac a a a =-=-⋅-⋅=-+=-△且10a -≠∵x 的一元二次方程()21420a x x -++=有两个不相等的实数根∴240b ac =->即2480a ->解得3a <且a≠1综上所述符合题意的整数有-2,-1,0,2则-2-1+0+2=-1故选:A .【点睛】一元二次方程根的判别式的应用主要有以下三种情况:不解方程,由根的判别式直接判断根的情况;根据方程根的情况,确定方程中字母系数的取值范围;应用根的判别式证明方程根的情况(无实根、有两个不相等实根、有两个相等实根).已知不等式(组)的解集,求不等式(组)中待定字母的取值范围问题,首先把不等式(组)的解集用含有字母的形式表示出来,然后把它与已知解集联系起来求解,这类问题有时要运用方程知识,有时要用到不等式知识,在求解过程中可以利用数轴进行分析.3、A【解析】【分析】先计算判别式的值,再利用根据判别式的意义进行判断.【详解】关于x 的一元二次方程240x x k +-=中1a =,4b =,=-c k ,则224441()164b ac k k ∆=-=-⨯⨯-=+,∵3120k +<,4k ∴<-,1640k ∴+<,即∆<0,∴方程无实数根.故选:A .【点睛】本题考查了根的判别式:一元二次方程20(a 0)++=≠ax bx c 的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根.4、B【解析】【分析】设22x x y +=,则原方程可化为2280y y +-=,解得y 的值,即可得到22x x +的值.【详解】解:设22x x y +=,则原方程可化为2280y y +-=,解得:14y =-,22y =,当4y =-时,224x x +=-,即2240x x ++=,△224140=-⨯⨯<,方程无解,当2y =时,222x x +=,即2220x x +-=,△()22412=120=-⨯⨯->,方程有实数根,22x x ∴+的值为2,故选:B .【点睛】本题考查了换元法解一元二次方程,的关键是把22x x +看成一个整体来计算,即换元法思想.5、C【解析】【分析】利用经过两次上涨后的猪肉价格=原价×(1+每次上涨的百分数)2,即可得出关于x 的一元二次方程,此题得解.【详解】解:依题意得:23(1+x %)2=60.故选:C .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6、C【解析】【分析】先移项,把方程化为24,x = 再利用直接开平方的方法解方程即可.【详解】解:240x -=,24,x ∴=2,x ∴=± 即122,2,x x故选C【点睛】本题考查的是一元二次方程的解法,掌握“利用直接开平方的方法解一元二次方程”是解本题的关键.7、D【解析】【分析】先利用因式分解法解得14x =,25x =,然后分类讨论:当两直角边分别为4和5或斜边为5,再利用勾股定理计算出第三边.【详解】解:解方程29200x x -+=得14x =,25x =,当两直角边分别为4和5,则第三边的长=当斜边为5,第三边的长3=,所以此三角形的第三边长为3故选:D .【点睛】本题考查了因式分解法解一元二次方程,勾股定理,解题的关键是利用分类讨论的思想进行求解.8、A【解析】【分析】本题可根据长方形的周长可以用x 表示宽的值,然后根据面积公式即可列出方程【详解】设长方形的长为xcm ,则长方形的宽为()60302x x cm -=-, 根据长方形的面积等于长乘以宽可列方程:(30)200x x -=故答案选A .【点睛】本题考查了由实际问题列出一元二次方程,要掌握运用长方形的面积计算公式S=ab 来解题的方法.9、C【解析】【分析】先将图形利用平移进行转化,可得两长方形的面积之和=小路的面积+两长方形重合的面积.【详解】利用图形平移可将原图转化为下图,道路的宽为x 米.根据题意可得:23220100x x x +=+.故选:C .【点睛】本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.10、C【解析】【分析】根据一元二次方程的解,把1x =代入方程240x x m -+=得到关于m 的一次方程,然后解此一次方程即可.【详解】解:把1x =代入240x x m -+=得140m -+=,解得3m =.故选:C .【点睛】本题考查了一元二次方程的解,解题的关键是掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.二、填空题1、m >23且m ≠1 【解析】【分析】根据一元二次方程的定义和判别式的意义得到不等式组:2(2)4(1)(2)010m m m m ⎧--->⎨-≠⎩,进而即可求出m 的取值范围.【详解】解:∵关于x 的一元二次方程(m ﹣1)x 2﹣2mx +m +3=0有两个不相等的实数根,∴2(2)4(1)(2)010m m m m ⎧--->⎨-≠⎩, 解得m >23且m ≠1. 故答案为:m >23且m ≠1. 【点睛】本题考查了一元二次方程的定义和判别式,根据定义解不等式是解题的关键.2、2【解析】【分析】根据一元二次方程根的判别式求解即可.【详解】解:0m ≠()221431120m m m ∴=-⨯-=+>∴实数根的个数为2故答案为:2.【点睛】此题考查了一元二次方程根的判别式,当Δ大于0时,有两个不同的实根;当Δ等于0时,有两个相同的实根;当Δ小于0时,无实根,正确理解根的判别式是解题的关键.3、120,1x x ==-【解析】【分析】方程移项后运用因式分解法求解即可.【详解】解:x 2=x (2x +1)2(21)0x x x -+=[(21)]0x x x -+=(1)0x x --=0,10x x =--=∴120,1x x ==-故答案为:120,1x x ==-【点睛】本题考查了用因式分解法解一元二次方程,熟练掌握报解方程的步骤是解答本题的关键.4、m ≠1【解析】【分析】根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【详解】解:根据一元二次方程的定义可得:m -1≠0,解得:m ≠1,故答案是:m ≠1.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.5、-8【解析】【分析】由x=2是一元二次方程x2+mx+n=0的一个解,将x=2代入原方程,即可求得2m+n的值,从而得解.【详解】解:∵x=2是一元二次方程x2+mx+n=0的一个根,∴4+2m+n=0,∴2m+n=-4.∴4m+2n=-8.故答案为:-8.【点睛】本题主要考查了方程解的定义.解题的关键是将x=2代入原方程,利用整体思想求解.三、解答题1、(1)≠1(2)k≤5且k≠1【解析】【分析】(1)根据一元二次方程的定义,进行判断即可,(2)根据一元二次方程根的判别式大于或等于0求解即可(1)解:∵方程2(1)410k x x -++=是一元二次方程10k ∴-≠∴k ≠1故答案为:≠1(2)解:∵方程2(1)410k x x -++=有两个实数根,∴()24410k ∆=--≥,且1k ≠解得5k ≤且1k ≠【点睛】本题考查了一元二次方程的定义,一元二次方程根的判别式,理解定义以及一元二次方程根的判别式是解题的关键,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.2、 (1)年平均增长率为20%(2)当每杯售价定为20元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额【解析】【分析】(1)设年平均增长率为x ,根据东部华侨城景区在2018年春节长假期间,共接待游客达20万人次,预计在2020年春节长假期间,将接待游客达28.8万人次.列出方程求解即可;(2)设当每杯售价定为y 元时,店家在此款奶茶实现平均每天6300元的利润额,由题意得关于y 的方程,解方程并对方程的解,作出取舍即可.(1)设年平均增长率为x ,由题意得:()220128.8x += 解得:10.220%x ==,2 2.2x =-(舍)答:年平均增长率为20%;(2)设当每杯售价定为y 元时,店家在此款奶茶实现平均每天6300元的利润额,由题意得:()()630030256300y y -+-=⎡⎤⎣⎦整理得:2414200y y -=+解得:1220,21y y ==让顾客获得最大优惠,y =20答:当每杯售价定为20元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额.【点睛】本题考查了一元二次方程在实际问题中的应用,理清题中的数量关系并正确列出方程是解题的关键.3、1x 22x =-【解析】【分析】先把等号右边的项移到等号左边,再利用因式分解法求解.【详解】解:(3)((0x x x +-=,(3)1]0x x +-=.即(2)0x x +=.∴0x =或20x +=,∴1x =22x =-.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的因式分解法是解决本题的关键.4、x 1=52,x 2=1 【解析】【分析】利用因式分解法解方程即可.【详解】解:(2x -5)(x -1)=0x 1=52,x 2=1【点睛】本题考查因式分解法解一元二次方程,解题的关键是移项后利用提公因式进行因式分解.5、 (1)10x =,22021x =(2)x 1x 2【解析】【分析】(1)用提取公因式法分解因式求解;(2)先求出b 2﹣4ac =13,再根据求根公式求解;(1)解:220210x x -=,(2021)0x x ∴-=,∴0x =或20210x -=,解得10x =,22021x =;(2)解:3x 2+5x +1=0,a =3,b =5,c =1,b 2﹣4ac =52﹣4×3×1=13,x =,x 1x 2 【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.。
人教版八年级下册数学期末试卷综合测试卷(word含答案)
人教版八年级下册数学期末试卷综合测试卷(word 含答案)一、选择题1.要使式子﹣3x -有意义,则x 的值可以为( )A .﹣6B .0C .2D .π2.下列语句不能判定ABC 是直角三角形的是( )A .2220a b c +-=B .::3:4:5A BC ∠∠∠= C .::3:4:5a b c =D .A B C ∠+∠=∠3.如图,四边形ABCD 的对角线AC 、BD 相交于O ,下列判断正确的是( )A .若AC ⊥BD ,则四边形ABCD 是菱形B .若AC =BD ,则四边形ABCD 是矩形C .若AB =DC ,AD ∥BC ,则四边形ABCD 是平行四边形 D .若AO =OC ,BO =OD ,则四边形ABCD 是平行四边形4.为了丰富校园文化,学校艺术节举行初中生书法大赛,设置了10个获奖名额.结果共有21名选手进入决赛,且决赛得分均不相同.若知道某位选手的决赛得分,要判断它是否获奖,只需知道学生决赛得分的( ) A .平均数B .中位数C .众数D .方差5.如图,在△ABC 中,AC =6,AB =8,BC =10,点D 是BC 的中点,连接AD ,分别以点A ,B 为圆心,CD 的长为半径在△ABC 外画弧,两弧交于点E ,连接AE ,BE .则四边形AEBC 的面积为( )A .2B .3C .24D .366.如图,在平面直角坐标系上,直线y =34x ﹣3分别与x 轴、y 轴相交于A 、B 两点,将△AOB 沿x 轴翻折得到△AOC ,使点B 刚好落在y 轴正半轴的点C 处,过点C 作CD ⊥AB 交AB 于D ,则CD 的长为( )A.185B.245C.4 D.57.如图,在平行四边形ABCD上,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F,分别以点B、F为圆心,以大于12BF的长为半径画弧交于点P,作射线AP交BC于点E,连接EF.若12BF=,10AB=,则线段AE的长为()A.18 B.17 C.16 D.148.如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(3,4),点P 是y轴正半轴上的动点,连接AP交线段OB于点Q,若△OPQ是等腰三角形,则点P的坐标是()A.(0,53)B.(0,43)C.(0,43)或(0,163)D.(0,53)或(0,163)二、填空题9.2x-x的取值范围为__________.10.如图,在菱形ABCD中,AC=6,BD=8,则菱形的面积等于 ___.11.图中阴影部分是一个正方形,则此正方形的面积为_______ .12.在平行四边形ABCD 中,AB =5,AD =3,AC ⊥BC ,则BD 的长为____.13.已知一次函数y=kx +b 图像过点(0,5)与(2,3),则该一次函数的表达式为_____. 14.如图,O 是矩形ABCD 的对角线AC 、BD 的交点,OM ⊥AD ,垂足为M ,若AB=8,则OM 长为_______.15.如图,将一块等腰直角三角板ABC 放置在平面直角坐标系中,90,ACB AC BC ∠=︒=,点A 在y 轴的正半轴上,点C 在x 轴的负半轴上,点B 在第二象限,AC 所在直线的函数表达式是22y x =+,若保持AC 的长不变,当点A 在y 轴的正半轴滑动,点C 随之在x 轴的负半轴上滑动,则在滑动过程中,点B 与原点O 的最大距离是_______.16.如图,矩形ABCD 中,AB=8,AD=5,点E 为DC 边上一个动点,把△ADE 沿AE 折叠,点D 的对应点D ’落在矩形ABCD 的对称轴上时,DE 的长为____________.三、解答题17.计算:(1)80205-+;+-.(2)(53)(53)18.由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭.近日,A城气象局测得沙尘暴中心在A城的正西方向240km的B处,以每时12km的速度向北偏东60°方向移动,距沙尘暴中心150km的范围为受影响区域.(1)A城是否受到这次沙尘暴的影响?为什么?(2)若A城受这次沙尘暴影响,那么遭受影响的时间有多长?A B C均在格点上.19.如图,网格中的每个小正方形的边长为1,点、、(1)直接写出AC的长为___________,ABC的面积为_____;(2)请在所给的网格中,仅用无刻度的直尺作出AC边上的高BD,并保留作图痕迹.20.已知:如图,在Rt△ABC中,D是AB边上任意一点,E是BC边中点,过点C作CF∥AB,交DE的延长线于点F,连接BF、CD.(1)求证:四边形CDBF是平行四边形.(2)当D点为AB的中点时,判断四边形CDBF的形状,并说明理由.21.先化简,再求值:a+2-+,其中a=1007.12a a如图是小亮和小芳的解答过程.(1)的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:;(3)先化简,再求值:a+2269-+,其中a=﹣2018.a a22.某电商在线销售甲、乙、丙三种水果,已知每千克乙水果的售价比每千克甲水果的售价多3元,每千克丙水果的售价是每千克甲水果售价的2倍,用200元购买丙水果的数量是用80元购买乙水果数量的2倍.(1)求丙水果每千克的售价是多少元?(2)电商推出如下销售方案:甲、乙、丙三种水果搭配销售共7千克,其中乙水果的数量是丙水果数量的2倍,且甲、乙两种水果数量之和不超过丙水果数量的6倍.请直接写出按此方案购买7千克水果最少要花费元.23.如图1,以平行四边形的顶点O为坐标原点,以所在直线为x轴,建立平面直角坐标系,,D是对角线AC的中点,点P从点A出发,以每秒1个单位的速度沿AB方向运动到点B,同时点Q从点O出发,以每秒3个单位的速度沿x轴正方向运动,当点P到达点B时,两个点同时停止运动.(1)求点A的坐标.(2)连结PQ,AQ,CP,当PQ经过点D时,求四边形的面积.(3)在坐标系中找点F,使以Q、D、C、F为顶点的四边形是菱形,则点F的坐标为________.(直接写出答案)24.(1)[探究]对于函数y=|x|,当x≥0时,y=x;当x<0时,y=﹣x.在平面直角坐标系中画出函数图象,由图象可知,函数y=|x|的最小值是.(2)[应用]对于函数y =|x ﹣1|+12|x +2|.①当x ≥1时,y = ;当x ≤﹣2时,y = ;当﹣2<x <1时,y = . ②在平面直角坐标系中画出函数图象,由图象可知,函数y =|x ﹣1|+12|x +2|的最小值是 .(3)[迁移]当x = 时,函数y =|x ﹣1|+|2x ﹣1|+|3x ﹣1|+…+|8x ﹣1|取到最小值.(4)[反思]上述问题解决过程中,涉及了一些重要的数学思想或方法,请写出其中一种. 25.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 10,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值. (3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由. 26.如图1,ABC ∆中,CD AB ⊥于D ,且::2:3:4BD AD CD =; (1)试说明ABC ∆是等腰三角形;(2)已知Δ40ABC S =cm 2,如图2,动点M 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒). ①若DMN ∆的边与BC 平行,求t 的值;②在点N 运动的过程中,ADN ∆能否成为等腰三角形?若能,求出t 的值;若不能,请说明【参考答案】一、选择题 1.D 解析:D 【分析】根据二次根式有意义的条件列出不等式,解不等式即可. 【详解】解:由题意得:x ﹣3≥0, 解得:x ≥3,各个选项中,π符合题意, 故选:D . 【点睛】此题主要考查二次根式有意义的条件,解题的关键是熟知二次根式的性质.2.B解析:B 【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可. 【详解】解:A 、由2220a b c +-=,可得222+=a b c ,故是直角三角形,不符合题意; B 、∵::3:4:5A B C ∠∠∠=,∴∠C =180°×575345=︒++,故不是直角三角形,符合题意;C 、32+42=52,能构成直角三角形,不符合题意;D 、∵∠A +∠B =∠C ,∴∠C =90°,故是直角三角形,不符合题意; 故选:B . 【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.D解析:D【分析】根据平行四边形及特殊平行四边形的判定方法,对选项逐个判断即可. 【详解】解:A :对角线相互垂直平行四边形才是菱形,四边形ABCD 不一定是平行四边形,故选项错误,不符合题意;B :对角线相等的平行四边形才是矩形,四边形ABCD 不一定是平行四边形,故选项错误,不符合题意;C :一组对边相等,另外一组对边平行,不一定是平行四边形,还有可能是等腰梯形,故选项错误,不符合题意;D :对角线互相平分的四边形是平行四边形,故选项正确,符合题意; 故选D . 【点睛】此题考查了平行四边形的判定方法,熟练掌握平行四边形及特殊平行四边形的判定方法是解题的关键.4.B解析:B 【解析】 【分析】由于书法大赛设置了10个获奖名额,共有21名选手进入决赛,根据中位数的意义分析即可. 【详解】解:将21名选手进入决赛不同的分数按从小到大排序后,中位数及中位数之后的共有11个数,故只要知道自己的分数和中位数就可以知道是否获奖了, 故选B . 【点睛】本题主要考查中位数,以及相关平均数、众数、方差的意义,熟练掌握相关知识是解题的关键.5.D解析:D 【分析】根据勾股定理的逆定理求出90BAC ∠=,求出BD CD AD AE BE ====,根据菱形的判定求出四边形AEBD 是菱形,根据菱形的性质求出//AE BD ,求出1122ABE ABD ACD ABC S S S S ∆∆∆∆====,再求出四边形AEBC 的面积即可.【详解】 解:6AC =,8AB =,10BC =,222AB AC BC ∴+=,ABC ∆∴是直角三角形,即90BAC ∠=︒,点D 是BC 的中点,10BC =,5BD DC AD ∴===,即5BE AE BD AD ====,∴四边形AEBD 是菱形,//AE BC ∴,1116812222ABE ABD ACD ABC S S S S ∆∆∆∆∴====⨯⨯⨯=,∴四边形AEBC 的面积是12121236++=,故选:D . 【点睛】本题考查了勾股定理的逆定理,直角三角形斜边上的中线的性质,菱形的性质和判定,三角形的面积等知识点,解题的关键是能求出12ABE ABD ACD ABC S S S S ∆∆∆∆===是解此题的关键,注意:①如果一个三角形的两边a 、b 的平方和等于第三边c 的平方,那么这个三角形是直角三角形,②等底等高的三角形的面积相等.6.B解析:B 【解析】 【分析】利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,在Rt △AOB 中,利用勾股定理可求出AB 的长,由折叠的性质可得出OC =OB ,进而可得出BC 的长,再利用面积法,即可求出CD 的长. 【详解】解:当x =0时,y =34×0﹣3=﹣3,∴点B 的坐标为(0,﹣3);当y =0时,34x ﹣3=0,解得:x =4,∴点A 的坐标为(4,0).在Rt △AOB 中,∠AOB =90°,OA =4,OB =3, ∴5AB = 由折叠可知:OC =OB =3, ∴BC =OB +OC =6.∵S △ABC =12BC •OA =12AB •CD , ∴245BC OA CD AB == 故选B . 【点睛】本题主要考查了一次函数与坐标轴的交点问题,折叠的性质,三角形的面积公式,勾股定理等等,解题的关键在于能够熟练掌握相关知识进行求解.7.C解析:C 【解析】 【分析】证明四边形ABEF 是菱形,得到OA=OE ,OB=OF =6,AE ⊥BF ,再在Rt △AOB 中由勾股定理求出OA 即可解决问题. 【详解】解:∵以点A 为圆心,AB 的长为半径画弧交AD 于点F , ∴AF=AB ,∵分别以点B 、F 为圆心,以大于12BF 的长为半径画弧交于点P ,作射线AP 交BC 于点E ,∴直线AE 是线段BF 的垂直平分线, 且AP 为∠F AB 的角平分线, ∴EF=EB ,∠F AE=∠BAE , ∵四边形ABCD 为平行四边形, ∴AD ∥BC ,∠F AE =∠AEB , ∴∠AEB =∠BAE , ∴BA =BE , ∴BA =BE=AF=FE , ∴四边形ABEF 是菱形; ∴AE ⊥BF ,OB =OF =6,OA =OE , ∴∠AOB =90°,在Rt △AOB 中:8AO =, ∴216AE AO ==, 故选:C . 【点睛】本题考查的是菱形的判定、垂直平分线、角平分线的尺规作图、勾股定理等相关知识点,掌握特殊四边形的判定方法及重要图形的尺规作图是解决本题的关键.8.C解析:C 【分析】利用待定系数法分别求出OB 、PA 的函数关系式,设(0,)P m ,4(,)3Q n n ,并由P 、Q 点坐标,可表示出OP 、OQ 和PQ ,根据△OPQ 是等腰三角形,可得OP OQ =或OP PQ =或OQ PQ =,则可得到关于m 的方程,求得m 的值,即可求得P 点坐标.【详解】解:设OB 的关系式为y kx =,将B (3,4)代入得:43k =, ∴43OB y x =, 设(0,)P m ,4(,)3Q n n , ∴OP m =,53OQ n =,PQ = 设PA 的关系式为y kx b =+,将(0,)P m ,(4,0)A 代入得:40b m k b =⎧⎨+=⎩, 解得4b m m k =⎧⎪⎨=-⎪⎩, ∴4PA m y x m =-+, 将4PA m y x m =-+,43OB y x =联立方程组得: 443PA OB m y x m y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得12163Q m x n m==+, 若△OPQ 是等腰三角形,则有OP OQ =或OP PQ =或OQ PQ =,当OP OQ =时,53m n =,12163m n m =+, 即5123163m m m=⨯+, 解得43m =,则P 点坐标为(0,43), 当OP PQ =时,m =,12163m n m =+, 解得176m =-,不合题意,舍去, 当OQ PQ =时,根据等腰三角形性质可得:点Q 在OP 的垂直平分线上,12Q y OP =, ∴4132n m =,且12163m n m =+, 即412131632m m m ⨯=+, 解得163m =,则P 点坐标为(0,163)综上可知存在满足条件的点P,其坐标为(0,43)或(0,163).故选:C.【点睛】本题是一次函数的综合问题,考查了待定系数法、等腰三角形的性质等知识,掌握待定系数法与两点间的距离公式并注意分类讨论思想及方程思想的应用是解题的关键,综合性较强.二、填空题9.x≥2且x≠3【解析】【分析】0,且分子二次根式的被开方数非负,则可求得x的取值范围.【详解】由题意得:3020xx-≠⎧⎨-≥⎩,解不等式组得:x≥2且x≠3.故答案为:x≥2且x≠3.【点睛】本题是求使式子有意义的自变量的取值范围的问题,涉及二次根式的意义,分母不为零,不等式组的解法等知识;一般地,当式子为分式时,分母不为零;当式子中含有二次根式时,要求被开方数非负.10.24【解析】【分析】根据菱形的面积=对角线积的一半,可求菱形的面积.【详解】四边形ABCD是菱形,∴116824 22S AC BD=⋅=⨯⨯=.故答案为:24.【点睛】本题考查菱形的性质,解题的关键是熟练运用菱形的性质.11.36cm2【解析】【分析】利用勾股定理求正方形边长,从而求正方形的面积.【详解】6∴正方形的面积为:6²=36故答案为:36 cm 2.【点睛】本题考查勾股定理解直角三角形,题目比较简单,正确计算是解题关键.12.A 解析:213【分析】根据AC ⊥BC ,AB =5,AD =3,可以得到AC 的长,再根据平行四边形的性质,可以得到DE 和BE 的长,然后根据勾股定理即可求得BD 的长.【详解】解:∵四边形ABCD 是平行四边形,∴AD =BC ,∵AC ⊥BC ,AB =5,AD =3,∴∠ACB =90°,BC =3,∴AC =4,作DE ⊥BC 交BC 的延长线于点E ,∵AC ⊥BC ,∴AC ∥DE , 又∵AD ∥CE ,∴四边形ACED 是矩形,∴AC =DE ,AD =CE ,∴DE =4,BE =6,∵∠DEB =90°,∴BD 222264213BE DE ++=故答案为:213【点睛】本题考查了平行四边形的判定和性质、勾股定理,解答本题的关键是熟练掌握勾股定理. 13.y =-x +5【分析】由直线y =kx +b 经过(0,5)、(2,3)两点,代入可求出函数关系式.【详解】解:把点(0,5)和点(2,3)代入y =kx +b 得532b k b =⎧⎨=+⎩,解得:15k b =-⎧⎨=⎩,所以一次函数的表达式为y =-x +5,故答案为:y =-x +5.【点睛】此题主要考查了待定系数法求一次函数解析式,注意利用一次函数的特点,来列出方程组求解是解题关键.14.A解析:4【解析】【分析】根据三角形的中位线即可求解.【详解】∵O 是矩形ABCD 的对角线AC 、BD 的交点,∴O 是AC 中点,又OM ⊥AD ,AD ⊥CD ∴12∥OM CD ,又AB=CD=8 故OM=4故填:4【点睛】此题主要考查矩形的性质,解题的关键是熟知三角形中位线的性质.15.【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求得OE 与BE 的长,然后由三角形三边关系,求得点B 到原点的最大距离.【详解】解:当x =0时,y =2x +2=2,∴A (0,2);当y =2x +2=0时,x =-1,∴C (-1,0).∴OA =2,OC =1,∴AC如图所示,过点B 作BD ⊥x 轴于点D .∵∠ACO +∠ACB +∠BCD =180°,∠ACO +∠CAO =90°,∠ACB =90°,∴∠CAO =∠BC D .在△AOC 和△CDB 中,AOC CDB CAO BCD AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△CDB (AAS ),∴CD =AO =2,DB =OC =1,OD =OC +CD =3,∴点B 的坐标为(-3,1).如图所示.取AC 的中点E ,连接BE ,OE ,OB ,∵∠AOC =90°,AC =5, ∴OE =CE =12AC =52, ∵BC ⊥AC ,BC =5,∴BE =22BC CE +=52, 若点O ,E ,B 不在一条直线上,则OB <OE +BE =5522, 若点O ,E ,B 在一条直线上,则OB =OE +BE =5522, ∴当O ,E ,B 三点在一条直线上时,OB 取得最大值,最大值为552+, 故答案为:552+.【点睛】此题考查了一次函数综合题,利用自变量与函数值的对应关系是求AC 长度的关键,又利用了勾股定理;求点B 的坐标的关键是利用全等三角形的判定与性质得出CD ,BD 的长;求点B 与原点O 的最大距离的关键是直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.或【详解】分析:过点D′作MN ⊥AB 于点N ,MN 交CD 于点M ,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理解析:52或533【详解】分析:过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.详解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1、所示.设DE=a,则D′E=a.∵矩形ABCD有两条对称轴,∴分两种情况考虑:①当DM=CM时,AN=DM=12CD=12AB=4,AD=AD′=5,由勾股定理可知:22=3AD AN'-,∴MD′=MN-ND′=AD-ND′=2,EM=DM-DE=4-a,∵ED′2=EM2+MD′2,即a2=(4-a)2+4,解得:a=52;②当MD′=ND′时,MD′=ND′=12MN=12AD=52,由勾股定理可知:2253 =AD ND'-'∴53,∵ED′2=EM2+MD′2,即a2=53−a)2+(52)2,解得:53.综上知:DE=5253.故答案为52.. 点睛:本题考查了翻转变换、轴对称的性质、矩形的性质以及勾股定理,解题的关键是找出关于DM 长度的一元二次方程.本题属于中档题,难度不大,但在做题过程中容易丢失一种情况,解决该题型题目时,结合勾股定理列出方程是关键.三、解答题17.(1)3;(2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式=(2)原式=5﹣3=2.【点睛】本题考查的是二次根式解析:(1)2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式==(2)原式=5﹣3=2.【点睛】本题考查的是二次根式的加减运算,二次根式的混合运算,掌握利用平方差公式进行简便运算是解题的关键.18.(1)受影响,理由见解析;(2)15小时【分析】(1)过点作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠ABC=30°,由此可以求出AC 的长度,然后和150km 比较大小即可判断A 城是否解析:(1)受影响,理由见解析;(2)15小时【分析】(1)过点作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠ABC =30°,由此可以求出AC 的长度,然后和150km 比较大小即可判断A 城是否受到这次沙尘暴的影响;(2)如图,设点E 、F 是以A 为圆心,150km 为半径的圆与BM 的交点,根据勾股定理可以求出CE 的长度,也就求出了EF 的长度,然后除以沙尘暴的速度即可求出遭受影响的时间.【详解】解:(1)过点A 作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠CBA =30°,∴AC =12AB =12×240=120,∵AC =120<150,∴A 城将受这次沙尘暴的影响.(2)设点E ,F 是以A 为圆心,150km 为半径的圆与MB 的交点,连接AE ,AF , 由题意得,222221*********CE AE AC =-=-=,CE =90∴EF =2CE =2×90=180180÷12=15(小时)∴A 城受沙尘暴影响的时间为15小时.【点睛】本题考查了直角三角形中30°的角所对的直角边等于斜边的一半及勾股定理的应用,正确理解题意,把握好题目的数量关系是解决问题的关键.19.(1),;(2)见解析【解析】 【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据无刻度直尺作图中作垂直的技巧画出线段BD 即可;【详解】解:(1),:(2)如图所示,解析:(1)29AC =9ABC S=;(2)见解析【解析】【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据无刻度直尺作图中作垂直的技巧画出线段BD 即可;【详解】解:(1)222529,AC +, 111452425149222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=:(2)如图所示,BD 即为所求.【点睛】本题考查了作图-应用与设计作图,三角形的面积的计算,勾股定理,正确的作出图形是解题的关键.20.(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF=BD ,再由CF ∥DB ,即可得出结论; (2)由直角三角形斜边上的直线性质得CD=DB ,即解析:(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF =BD ,再由CF ∥DB ,即可得出结论;(2)由直角三角形斜边上的直线性质得CD =DB ,即可证平行四边形CDBF 是菱形.【详解】(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD ,∵E 是BC 中点,∴CE =BE ,在△CEF 和△BED 中,ECF EBD CE BECEF BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CEF ≌△BED (ASA ),∴CF =BD ,又∵CF ∥AB ,∴四边形CDBF 是平行四边形.(2)解:四边形CDBF 是菱形,理由如下:∵D 为AB 的中点,∠ACB =90°,∴CD =12AB =BD ,由(1)得:四边形CDBF 是平行四边形,∴平行四边形CDBF 是菱形.【点睛】本题考查了平行四边形的判定和性质、菱形的判定、全等三角形的判定和性质、直角三角形斜边上的中线性质等知识;熟练掌握平行四边形的判定与性质,证明△CEF ≌△BED 是解题的关键,属于中考常考题型.21.(1)小亮(2)=-a (a <0)(3)2024.【解析】【详解】试题分析:(1)根据二次根式的性质=|a|,判断出小亮的计算是错误的; (2)错误原因是:二次根式的性质=|a|的应用错误;(解析:(1)小亮(2(a <0)(3)2024.【解析】【详解】试题分析:(1,判断出小亮的计算是错误的;(2的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(2(a <0)(3)原式=a+2(3-a )=6-a=6-(-2018)=2024.22.(1)10;(2)46【分析】(1)设每千克甲水果的售价是元,则每千克乙水果的售价是元,每千克丙水果的售价是元,利用数量总价单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即解析:(1)10;(2)46【分析】(1)设每千克甲水果的售价是x 元,则每千克乙水果的售价是(3)x +元,每千克丙水果的售价是2x 元,利用数量=总价÷单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设搭配方案中含丙水果m 千克,则含乙水果2m 千克,甲水果(72)m m --千克,根据甲、乙两种水果数量之和不超过丙水果数量的6倍,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,设购买7千克水果的费用为w 元,利用总价=单价⨯数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设每千克甲水果的售价是x 元,则每千克乙水果的售价是(3)x +元,每千克丙水果的售价是2x 元, 依题意得:80200232x x⨯=+, 解得:5x =,经检验,5x =是原方程的解,且符合题意,3538x ∴+=+=,22510x =⨯=.答:每千克丙水果的售价是10元.(2)设搭配方案中含丙水果m 千克,则含乙水果2m 千克,甲水果(72)m m --千克, 依题意得:7226m m m m --+,解得:1m .设购买7千克水果的费用为w 元,则5(72)82101135w m m m m m =--+⨯+=+.110>,w ∴随m 的增大而增大,∴当1m =时,w 取得最小值,最小值1113546=⨯+=(元).故答案为:46.【点睛】本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.23.(1);(2)21;(3)或或或【分析】(1)过点作轴于,求出AH 和OH 即可;(2)证明≌,表示出AP ,CQ ,根据OC=14求出t 值,得到AP ,CQ ,再根据面积公式计算;(3)由Q 、D 、C 、解析:(1);(2)21;(3)或或或【分析】(1)过点A 作轴于H ,求出AH 和OH 即可; (2)证明≌,表示出AP ,CQ ,根据OC =14求出t 值,得到AP ,CQ ,再根据面积公式计算;(3)由Q 、D 、C 、F 为顶点的四边形是菱形得到以C ,D ,Q 为顶点的三角形是等腰三角形,求出CD ,得到点Q 坐标,再分情况讨论.【详解】解:(1)过点A 作轴于H , ∵,,, ∴, ∴A 点坐标为.(2)∵,∴C点坐标为,∵点D是对角线AC的中点,∴点D的坐标为,∵四边形ABCD是平行四边形,∴,∴,当PQ经过点D时,,在和中,,∴≌,∴,∵,∴,∴,∴,∴四边形APCQ的面积为,即当PQ经过点D时,四边形APCQ的面积为21.(3)∵F是平面内一点,以Q,D,C,F为顶点的四边形是菱形,则以C,D,Q为顶点的三角形是等腰三角形,∵,,∴,∴当时,Q点坐标为或,当Q点坐标为时,F点坐标为,当Q点坐标为时,F点坐标为,当时,点F与点D关于x轴对称,∴点F的坐标为,当时,设Q点坐标为,∴,解得,∴Q点坐标为,∴F点坐标为,∴综上所述,以Q,D,F,C为顶点的四边形是菱形,点F的坐标为或或或.【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,菱形的性质,等腰直角三角形的判定和性质,综合性较强,解题的关键是根据菱形的性质进行分类讨论.24.(1)见解析;0;(2)①x,﹣x,﹣x+2,②见解析;;(3);(4)分段去绝对值.【解析】【分析】(1)画出函数图象,直接得出结论;(2)先去绝对值,得出函数关系式,再画出函数图象,即可解析:(1)见解析;0;(2)①32x,﹣32x,﹣12x+2,②见解析;32;(3)16;(4)分段去绝对值.【解析】【分析】(1)画出函数图象,直接得出结论;(2)先去绝对值,得出函数关系式,再画出函数图象,即可得出结论;(3)分段去绝对值,合并同类项,得出函数关系式,即可得出结论;(4)直接得出结论.【详解】解:(1)[探究]图象如图1所示,函数y=|x|的最小值是0,故答案为0;(2)[应用]①当x≥1时,y=x﹣1+12(x+2)=32x;当x≤﹣2时,y=﹣x+1﹣12(x+2)=﹣32x;当﹣2<x<1时,y=﹣x+1+12(x+2)=﹣12x+2;②函数图象如图2所示,由图象可知,函数y=|x﹣1|+12|x+2|的最小值是32,故填:①32x,﹣32x,﹣12x+2,②32;(3)[迁移]当x≤18时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1﹣7x+1﹣8x+1=﹣36x+8,∴y≥72,当18<x≤17时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1﹣7x+1+8x﹣1=﹣20x+6,∴227≤y<72,当17<x≤16时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1+7x﹣1+8x﹣1=﹣6x+4,∴3≤y<227,当16<x≤15时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1+6x﹣1+7x﹣1+8x﹣1=6x+2,∴3<y≤165,当15<x≤14时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=16x,∴165<y≤4,当14<x≤13时,y=﹣x+1﹣2x+1﹣3x+1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=24x﹣2,∴4<y≤6,当13<x≤12时,y=﹣x+1﹣2x+1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=30x﹣4,∴6<y≤11,当12<x≤1时,y=﹣x+1+2x﹣1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=34x﹣6,∴11<y≤28,当x>1时,y=x﹣1+2x﹣1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=36x﹣8,∴y>28,∴当x=16时,函数y=|x﹣1|+|2x﹣1|+|3x﹣1|+…+|8x﹣1|取到最小值;(4)[反思]用到的数学思想有:数形结合的数学思想,分段去绝对值,故答案为:分段去绝对值.【点睛】此题主要考查了一次函数的应用,去绝对值,函数图象的画法,用分类讨论的思想解决问题是解本题的关键.25.(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或.【分析】(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2解析:(1)123y x=-+;(2)t=23s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【分析】(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题.(2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题.(3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题.【详解】(1)如图1中,作BH⊥x轴于H.∵A(1,0)、C(0,2),∴OA=1,OC=2,∵∠COA=∠CAB=∠AHB=90°,∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°,∴∠ACO=∠BAH,∵AC=AB,∴△COA≌△AHB(AAS),∴BH=OA=1,AH=OC=2,∴OH=3,∴B(3,1),设直线BC的解析式为y=kx+b,则有231 bk b=⎧⎨+=⎩,解得:132k b ⎧=-⎪⎨⎪=⎩, ∴123y x =-+; (2)如图2中,∵四边形ABMN 是平行四边形,∴AN ∥BM ,∴直线AN 的解析式为:1133y x =-+, ∴10,3N ⎛⎫ ⎪⎝⎭, ∴103BM AN ==, ∵B (3,1),C (0,2),∴BC=10,∴2103CM BC BM =-=, ∴21021033t =÷=, ∴t=23s 时,四边形ABMN 是平行四边形; (3)如图3中,如图3中,当OB 为菱形的边时,可得菱形OBQP ,菱形OBP 1Q 1.菱形OBP 3Q 3, 连接OQ 交BC 于E ,∵OE⊥BC,∴直线OE的解析式为y=3x,由3123y xy x=⎧⎪⎨=-+⎪⎩,解得:3595xy⎧=⎪⎪⎨⎪=⎪⎩,∴E(35,95),∵OE=OQ,∴Q(65,185),∵OQ1∥BC,∴直线OQ1的解析式为y=-13x,∵OQ1,设Q1(m,-1m3),∴m2+19m2=10,∴m=±3,可得Q1(3,-1),Q3(-3,1),当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,易知线段OB的垂直平分线的解析式为y=-3x+5,由3513y xy x=-+⎧⎪⎨=-⎪⎩,解得:15858xy⎧=⎪⎪⎨⎪=-⎪⎩,∴Q2(158,58-).综上所述,满足条件的点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【点睛】本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.26.(1)证明见解析;(2)①t值为5或6;②点N运动的时间为6s,,或时,为等腰三角形. 【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2解析:(1)证明见解析;。
知识点详解人教版八年级数学下册第十九章-一次函数综合训练试卷(名师精选)
人教版八年级数学下册第十九章-一次函数综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是()A.B.C.D.2、在同一平面直角坐标系中,一次函数y=kx+b与正比例函数y=﹣bkx(k,b是常数,且kb≠0)的图象可能是()A.B.C .D .3、下列函数中,是一次函数的是( ) A .2yxB .35y x =-C .6y x=D .11y x =- 4、若直线y =kx +b 经过A (0,2)和B (3,-1)两点,那么这个一次函数关系式是( ) A .y =2x +3B .y =3x +2C .y =-x +2D .y =x -15、下列曲线中,表示y 是x 的函数的是( )A .B .C .D .6、已知正比例函数y =kx 的函数值y 随x 的增大而减小,则一次函数y =kx -k 的图象大致是( )A.B.C.D.7、若正比例函数y=2x的图象经过点M(a﹣1,4),则a的值为()A.0 B.1 C.2 D.38、一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在该函数图象上,则()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y29、如果函数y=(2﹣k)x+5是关于x的一次函数,且y随x的值增大而减小,那么k的取值范围是()A.k≠0B.k<2 C.k>2 D.k≠210、如图,直线l1和l2相交于点P3(x3,y3),点P1(x1,y1)在直线l1,点P2(x2,y2)在直线l2上,且x1>x3,x2>x3,则y1,y2,y3大小关系正确的是()A.y1<y3<y2B.y2<y1<y3C.y2<y3<y1D.y3<y1<y2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲、乙两施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成任务.下表根据每天工程进度绘制而成的.下列结论:①甲队每天修路20米;②乙队第一天修路15米;③乙队技术改进后每天修路35米;④前7天甲、乙两队修路长度相等.其中正确的结论有_______.(填序号).2、如图,在平面直角坐标系中,直线:AB y x b =-+交y 轴于点A (0,2),交x 轴于点B ,直线l 垂直平分OB 交AB 于点D ,交x 轴于点E ,点P 是直线l 上且在第一象限一动点.若AOP 是等腰三角形,点P 的坐标是______________.3、直线y =x -2与y 轴交点坐标是_____.4、某图书馆对外出租书的收费方式是:每本书出租后的前两天,每天收0.6元,以后每天收0.3元,那么一本书在出租后x 天(2)x 后,所收租金y 与天数x 的表达式为_____.5、如图,已知A (6,0)、B (﹣3,1),点P 在y 轴上,当y 轴平分∠APB 时,点P 的坐标为_________.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,直线l 1的解析式为y =x ,直线l 2的解析式为y =-12x +3,与x 轴、y 轴分别交于点A 、点B ,直线l 1与l 2交于点C .(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.x+4的图象相交于点A.2、如图,函数y=2x和y=-23(1)求点A的坐标;x+4的解集.(2)根据图象,直接写出不等式2x≥-233、如图,直线l1:y=x+4与过点A(5,0)的直线l2交于点C(2,m)与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.(3)若动点P在线段..BA上从点B开始以每秒1个单位的速度向点A运动.点P运动________秒,可使△BCP为等腰三角形.4、甲、乙两车匀速从同一地点到距离出发地480千米处的景点,甲车出发半小时后,乙车以每小时80千米的速度沿同一路线行驶,两车分别到达目的地后停止.甲、乙两车之间的距离y(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示.(1)甲车行驶的速度是千米/小时.(2)求乙车追上甲车后,y与x之间的函数关系式,并写出自变量x的取值范用.(3)直接写出两车相距5千米时x的值.5、在平面直角坐标系中,若点O(0,0),A(﹣1,6),B(a,﹣2)在同一条直线上,求a的值.---------参考答案-----------一、单选题1、D【解析】【分析】根据题意分析出托运费y与物品重量x之间的函数关系,画出图像即可.【详解】解:由题意可得,当0<3x≤时, 1.5y=,∵物品重量每增加1kg(不足1kg按1kg计)需增加托运费0.5元,∴托运费y与物品重量x之间的函数图像为:故选:D.【点睛】此题考查了函数的图像,解题的关键是根据题意正确分析出托运费y与物品重量x之间的函数关系.2、C【解析】【分析】根据一次函数的图象与系数的关系,由一次函数y=kx+b图象分析可得k、b的符号,进而可得bk的符号,从而判断by xk=-的图象是否正确,进而比较可得答案.【详解】解:根据一次函数的图象分析可得:A、由一次函数y=kx+b图象可知k<0,b>0,则bk<0;正比例函数by xk=-的图象可知bk>0,矛盾,故此选项不符合题意;B、由一次函数y=kx+b图象可知k>0,b>0;即bk>0,与正比例函数by xk=-的图象可知bk<0,矛盾,故此选项不符合题意;C、由一次函数y=kx+b图象可知k<0,b<0;即bk>0,与正比例函数by xk=-的图象可知bk>0,故此选项符合题意;D、由一次函数y=kx+b图象可知k>0,b<0;即bk<0,与正比例函数by xk=-的图象可知bk>0,矛盾,故此选项不符合题意;故选C.【点睛】此题主要考查了一次函数图象,注意:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象.3、B【解析】【分析】根据一次函数的定义解答即可.【详解】解:A、自变量次数为2,故是二次函数;B、自变量次数为1,是一次函数;C、分母中含有未知数,故是反比例函数;D 、分母中含有未知数,不是一次函数.故选:B . 【点睛】本题考查一次函数的定义,一次函数y kx b =+的定义条件是:k 、b 为常数,0k ≠,自变量次数为1. 4、C 【解析】 【分析】把两点的坐标代入函数解析式中,解二元一次方程组即可求得k 与b 的值,从而求得一次函数解析式. 【详解】解:由题意得:231b k b =⎧⎨+=-⎩解得:12k b =-⎧⎨=⎩故所求的一次函数关系为2y x =-+ 故选:C . 【点睛】本题考查了用待定系数法求一次函数的解析式,其一般步骤是:设函数解析式、代入、求值、求得解析式. 5、C 【解析】 【分析】根据函数的定义进行判断即可.【详解】解:在某一变化过程中,有两个变量x、y,一个量x变化,另一个量y随之变化,当x每取一个值,另一个量y就有唯一值与之相对应,这时,我们把x叫做自变量,y是x的函数,只有选项C中图象所表示的符合函数的意义,故选:C.【点睛】本题考查函数的定义,理解函数的定义,理解自变量与函数值的对应关系是正确判断的前提.6、C【解析】【分析】由题意易得k<0,然后根据一次函数图象与性质可进行排除选项.【详解】解:∵正比例函数y=kx(k≠0)函数值随x的增大而减小,∴k<0,∴-k>0,∴一次函数y=kx-k的图象经过一、二、四象限;故选:C.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.7、D【解析】【分析】把点(a-1,4)直接代入正比例函数y=2x中求解即可.【详解】解:∵函数2y x =过M (a -1,4),∴2(1)4a -=,∴3a =.故选D .【点睛】本题考查了正比例函数图象上点的坐标特征,解一元一次方程,熟知正比例函数图象上的点的坐标一定满足正比例函数的解析式是解题的关键.8、A【解析】【分析】先根据图象在平面坐标系内的位置确定m 、n 的取值范围,进而确定函数的增减性,最后根据函数的增减性解答即可.【详解】解:∵一次函数y =mx +n 的图象经过第一、二、四象限,∴m <0,n >0∴y 随x 增大而减小,∵1<3,∴y 1>y 2.故选:A.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系、一次函数的增减性等知识点,图象在坐标平面内的位置确定m 、n 的取值范围成为解答本题的关键.9、C【解析】【分析】由题意()25y x k =-+,y 随x 的增大而减小,可得自变量系数小于0,进而可得k 的范围.【详解】解:∵关于x 的一次函数()25y x k =-+的函数值y 随着x 的增大而减小,20k ∴-<,2k ∴>.故选C .【点睛】本题主要考查了一次函数的增减性问题,解题的关键是:掌握在y kx b =+中,0k >,y 随x 的增大而增大,0k <,y 随x 的增大而减小.10、A【解析】【分析】根据一次函数的性质,利用1l 可得13y y <,利用2l 可得23y y >,即可得到结论.【详解】由图像可知:直线1l 的性质为:y 随x 的增大而减小13x x >13y y ∴<由图像可知:直线2l 的性质为:y 随x 的增大而增大23x x >∴23y y >132y y y ∴<<故选:A【点睛】本题考查了一次函数的性质,一次函数图像上点的坐标的特征,0k >,y 随x 的增大而增大;0k <,y 随x 的增大而减小,利用此性质是解题关键.二、填空题1、①②③【解析】【分析】根据表格数据准确分析分析计算即可;【详解】由表格可以看出乙队是第五天停工的,所以甲队每天修路:16014020-=(米),故①正确;乙队第一天修路352015-=(米),故②正确;乙队技术改进之后修路:2151602035--=(米),故③正确;前7天,甲队修路:207140⨯=(米),乙队修路:270140130-=,故④错误;综上所述,正确的有①②③.故答案是:①②③.【点睛】本题主要考查了行程问题的实际应用,准确分析判断是解题的关键.2、,(1,1),,(1,2-【解析】【分析】利用分类讨论的思想方法分三种情形讨论解答:①AO AP =,②PA PO =,③OA OP =,依据题意画出图形,利用勾股定理和轴对称的性质解答即可得出结论.【详解】y x b =-+交y 轴于点(0,2)A ,2b ∴=.2y x ∴=-+.令0y =,则2x =,(2,0)B ∴.2OB ∴=.直线l 垂直平分OB 交AB 于点D ,交x 轴于点E ,(1,0)E ∴,点P 的横坐标为1.1OE ∴=.①AO AP =时,如图,过点1P 作1PC OA ⊥交y 轴于点C ,则11PC OE ==, (0,2)A ,2OA ∴=.122AP AP ∴==.AC ∴=2OC OA OC ∴=+=1(1,2P ∴.同理,2(1,2P .②当PA PO =时,如图,点P在AO的垂直平分线上,∴点P的纵坐标为1,∴.P(1,1)③当OA OPOP=,如图,=时,则2PE=,∴.P综上,若AOP∆是等腰三角形,点P的坐标是(1,1)或或或(1,2.故答案为:(1,1)或或或(1,2.【点睛】本题主要考查了一次函数图象的性质,一次函数图象上点的坐标的特征,等腰三角形的性质,勾股定理,线段垂直平分线的性质,利用分类讨论的思想方法解答是解题的关键.3、 (0,-2)【解析】【分析】当x=0时,求y的值,从而确定直线与y轴的交点.【详解】解:∵当x=0时,y=-2,∴直线y=x-2与y轴交点坐标是(0.-2).故答案为:(0,-2).【点睛】本题考查一次函数与坐标轴的交点坐标,利用数形结合思想解题是关键.4、0.30.6(2)=+≥y x x【解析】【分析】x后,根据每本书出租后的前两天,每天收0.6元,以后每天收0.3元,列出一本书在出租后x天(2)所收租金y与天数x的表达式即可.【详解】解:由题意得,=⨯+⨯-=+,y x x0.620.3(2)0.30.6故答案为:0.30.6(2)y x x=+≥.【点睛】本题考查了一次函数的应用,读懂题意,根据题意列出所收租金y与天数x的表达式是解本题的关键.5、(0,2)【解析】【分析】当y 轴平分∠APB 时,点A 关于y 轴的对称点A '在BP 上,利用待定系数法求得A 'B 的表达式,即可得到点P 的坐标.【详解】解:如图,当y 轴平分∠APB 时,点A 关于y 轴的对称点A '在BP 上,∵A (6,0),∴A ’ (-6,0),设A 'B 的表达式为y =kx +b ,把A ’ (-6,0),B (﹣3,1)代入,可得0613k b k b -+⎧⎨-+⎩==, 解得132k b ⎧=⎪⎨⎪=⎩, ∴123=+y x ,令x =0,则y =2,∴点P 的坐标为(0,2),故答案为:(0,2).【点睛】本题主要考查了坐标与图形性质,掌握轴对称的性质以及待定系数法是解决问题的关键.三、解答题1、(1)点A 、B 的坐标分别为(6,0),(0,3),点C (2,2);△COB 的面积=3;(2)P (4,1);(3)点Q 的坐标为(0,127)或(0,125)或(0,65)【解析】【分析】(1)点A 、B 的坐标分别为(6,0)、(0,3),联立式y =x ,y =﹣12x +3得:点C (2,2);△COB 的面积=12×OO ×O O ,即可求解;(2)设点P (m ,﹣12m +3),S △COP =S △COB ,则BC =PC ,则(m ﹣2)2+(﹣12m +3﹣2)2=22+12=5,即可求解;(3)分∠MQN =90°、∠QNM =90°、∠NMQ =90°三种情况,分别求解即可.【详解】解:(1)直线l 2的解析式为y =-12x +3,与x 轴、y 轴分别交于点A 、点B ,则点A 、B 的坐标分别为(6,0)、(0,3),联立式y =x ,y =-12x +3并解得:x =2,故点C (2,2);△COB 的面积=12×OO ×O O =12×3×2=3;(2)设点P (m ,-12m +3), S △COP =S △COB ,则BC =PC ,则(m -2)2+(-12m +3-2)2=22+12=5,解得:m =4或0(舍去0),故点P (4,1);(3)设点M 、N 、Q 的坐标分别为(m ,m )、(m ,3-12m )、(0,n ), ①当∠MQN =90°时,∵∠GNQ +∠GQN =90°,∠GQN +∠HQM =90°, ∴∠MQH =∠GNQ ,∠NGQ =∠QHM =90°,QM =QN , ∴△NGQ ≌△QHM (AAS ),∴GN =QH ,GQ =HM ,即:m =3-12m -n ,n -m =m ,解得:m =67,n =127;②当∠QNM =90°时,则MN =QN ,即:3-12m -m =m ,解得:m =65, n =O O =3-12×65=125;③当∠NMQ =90°时,同理可得:n =65;综上,点Q 的坐标为(0,127)或(0,125)或(0,65).【点睛】本题主要考查一次函数与几何的综合,熟练掌握一次函数的性质及等腰三角形的性质是解题的关键.2、 (1) (32,3);(2) x ≥32.【解析】【分析】(1)联立两直线解析式,解方程组即可得到点A 的坐标;(2)根据图形,找出点A 右边的部分的x 的取值范围即可.【详解】 (1)由题意得{O =2O ,O =−23O +4,解得{O =32,O =3.∴点A 的坐标为(32,3);(2)由图象得不等式2x ≥-23x +4的解集为x ≥32.【点睛】本题考查了一次函数图象交点坐标与二元一次方程组解的关系,以及利用函数图象解一元一次不等式,求不等式解集的关键在于准确识图,确定出两函数图象的对应的函数值的大小.3、(1)O =−2O +10;(2)O (5,9)或(−1,3);(3)6√2或6【解析】【分析】(1)先求出A (5,0),O (2,7),然后利用待定系数法求出直线的解析式;(2)由已知条件得出M 、N 两点的横坐标,利用两点间距离公式求出M 的坐标.(3)先求出,OO=√(2+4)2+62=6√2,再通过分三类讨论即可得到答案,①当BP=BC时,②当BC=CP时,③当BP=CP时.【详解】解:(1)把点C(2,m)代入y=x+4,得:m=2+4=6∴C(2,6)设直线O2的解析式为O=OO+O,把A(5,0),O(2,6)代入得∴{2O+O=6 5O+O=0,解得{O=−2O=10∴直线O2的解析式为O=−2O+10;(2)在y=x+4中,令y=0,得x=-4,∴B(-4,0),OO=5−(−4)=9,如图所示,设O(O,O+4),由OO//O轴,得O(O,−2O+10),OO=|O+4−(−2O+10)|=OO=9,解得O=5或O=−1,∴O(5,9)或(−1,3).(3)OO=√(2+4)2+62=6√2,设P (b .0),①当BP =BC 时,则OO =OO =6√2,所以,O =6√2秒.②当BC =CP 时√(2−O )2+62=6√2,得:b =8或b =-4(不符合题意,故舍去)③当BP =CP 时,O +4=√(O −2)2+(−6)2∴.b =2∴t =4+2=6秒综上所述,点P 运动6√2或6秒,可使△BCP 为等腰三角形.【点睛】本题考查了两条直线相交或平行问题,待定系数法求一次函数的解析式,等腰三角形的判定及勾股定理,求得交点坐标以及会分类讨论是解题的关键.4、(1)60;(2)AB 的解析式为y =20x -40(2≤x ≤6.5);BC 的解析式为y =-60x +480(6.5≤x ≤8);(3)甲车出发112小时或74小时或94小时或9512小时两车相距5千米.【解析】【分析】(1)利用先出发半小时行驶的路程为30千米,可得答案;(2)分别求出相应线段的两个端点的坐标,再运用待定系数法解答即可;(3)结合运动状态,分四种情况讨论,当甲车出发而乙车还没有出发时,即0≤O ≤0.5, 当乙车追上甲车时,时间为2小时,当0.5<O ≤2时,当乙车超过甲车时,而乙车到达终点时,甲车行驶时间为6.5小时,当2<O ≤6.5时,当乙车到达后,甲车继续行驶,当6.5<O ≤8时,再列方程解方程可得答案.【详解】解:(1)甲行驶的速度为:30÷0.5=60(千米/小时),故答案为:60.(2)如图所示:设甲出发x小时后被乙追上,根据题意得: 60x=80(x-0.5),解得x=2,即甲出发2小时后被乙追上,∴点A的坐标为(2,0),而480÷80+0.5=6.5(时),即点B的坐标为(6.5,90),设AB的解析式为y=kx+b,由点A,B的坐标可得:{2O+O=0 6.5O+O=90,解得{O=20O=−40,所以AB的解析式为y=20x-40(2≤x≤6.5);∵乙车的速度每小时为60千米∴O OO=−60,而乙车的行驶时间为:48060=8,∴O(8,0),设BC的解析式为y=-60x+c,则-60×8+c=0,解得c=480,故BC 的解析式为y =-60x +480(6.5≤x ≤8);(3)根据题意得:当甲车出发而乙车还没有出发时,即0≤O ≤0.5,∴O =560=112,当乙车追上甲车时,时间为2小时,当0.5<O ≤2时, 60O −80(O −0.5)=5,解得:O =74当乙车超过甲车时,而乙车到达终点时,甲车行驶时间为6.5小时,当2<O ≤6.5时, 80(O −0.5)−60O =5,解得:O =94当乙车到达后,甲车继续行驶,当6.5<O ≤8时, 60O =480−5,解得:O =9512答:甲车出发112小时或74小时或94小时或9512小时两车相距5千米.【点睛】本题是一次函数的应用,属于行程问题,考查了利用待定系数法求一次函数的解析式,并与行程问题的路程、时间、速度相结合.读出图形中的已知信息,运用了数形结合的思想解决函数问题是解本题的关键.5、a 的值为13.【解析】【分析】设直线的解析式为y=kx,把A点的坐标代入求得k值,再把B点的坐标代入即可求出a的值.【详解】解:设直线OA的解析式为:y=kx,把A(﹣1,6)代入得:6=-k,∴k=-6,∴直线OA的解析式为:y=-6x,∵点O(0,0),A(﹣1,6),B(a,﹣2)在同一条直线上,即B点在直线OA上,把B(a,﹣2)代入y=-6x得:-2=-6a,,∴a=13.∴a的值为13【点睛】本题考查了待定系数法求函数解析式,函数解析式与图象的关系,知道图象上的点的坐标满足函数解析式是解题的关键.。
53模拟试卷初中数学八年级下册03期末素养综合测试(二)
期末素养综合测试(二)(满分120分,限时100分钟)一、选择题(每小题3分,共30分)1.(2022广东广州市华侨外国语学校月考)由下列长度组成的各组线段中,不能组成直角三角形的是()A.cm,cm,2 cmB.1 cm,2 cm,cmC.cm,2 cm,cmD.cm,cm,1 cm2.下列计算正确的是()A.+=B.2-2=C.(-)×=-=3-2=1D.==23.(2022山东济南历城二中期末)如图,平行四边形ABCD的对角线AC,BD相交于点O,下列说法正确的是()A.∠ABD=∠CBDB.∠BAD=2∠ABCC.OB=ODD.OD=AD 4.(2021陕西中考)在平面直角坐标系中,若将一次函数y=2x+m-1的图象向左平移3个单位后,得到一个正比例函数的图象,则m的值为()A.-5B.5C.-6D.65.七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,现在从七年级800名学生中选出20名学生统计各自家庭一个月的节水情况如下表:节水量(m3)0.20.250.30.40.5家庭数(户)24482那么这组数据的众数和平均数分别是()A.0.4和0.34B.0.4和0.3C.4和4D.0.25和0.36.下列有关一次函数y=-3x+2的说法中,错误的是()A.y的值随着x值的增大而减小B.函数图象与y轴的交点坐标为(0,2)C.当x>0时,y>2D.函数图象经过第一、二、四象限7.【数学文化】在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离AB为1尺,将它往前水平推送10尺时,即A'C=10尺,秋千的踏板离地距离A'D 就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,则绳索OA 的长为()A.13.5尺B.14尺C.14.5尺D.15尺8.【转化思想】(2023山东滨州期末)如图,在Rt△ABC中,∠BAC=90°,AB=5, AC=12,点D是BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为()A. B.13 C. D.9.(2023湖北武汉调研)小海鸥从家出发,步行到离家a米的公园散步,速度为50米/分钟,6分钟后咩咩也从家出发沿着同一路线骑自行车到公园,咩咩到达公园后立即以原速返回家中,两人离家的距离y(米)与小海鸥出发的时间x(分钟)的函数关系如图所示.小海鸥出发多长时间与咩咩第二次相遇() A.9.5分钟 B.9.6分钟C.9.8分钟D.10分钟10.(2022河南郑州模拟)如图,正方形ABCD中,AB=12,点E在边CD上,将△ADE 沿AE翻折至△AFE,延长EF交边BC于点G,且BG=CG,连接AG、CF.下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正确结论的个数是()A.2B.3C.4D.5二、填空题(每小题4分,共32分)11.已知x为正整数,写出一个使在实数范围内没有意义的x值:.12.(2021广东广州市华侨外国语学校期末)在Rt△ABC中,∠C=90°,若AB-AC=2,BC=8,则AB的长是.13.(2021北京中考)有甲、乙两组数据,如下表所示:甲1112131415乙1212131414甲、乙两组数据的方差分别为、,则(填“>”“<”或“=”).14.若0<a<1,则化简+的结果是.15.(2023北京丰台期末)如图,四边形ABCD 是菱形,AC、BD交于点O,DH⊥AB 于H,连接OH,若AC=8,OH=3,则DH=.16.(2023山东枣庄二模)如图,直线y=x+4与x轴交于点A,与y轴交于点B,点D 为OB的中点,▱OCDE的顶点C在x轴上,顶点E在直线AB上,则▱OCDE的面积为.17.【新考向·代数推理】观察下列各式:=1+=1+,=1+=1+,=1+=1+,……请利用你发现的规律计算:+++…+=. 18.如图,有一张矩形纸条ABCD,AB=10 cm,BC=3 cm,点M,N分别在边AB,CD 上,CN=1 cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'处.在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为cm.三、解答题(共58分)19.[含评分细则](6分)计算:(1)2+3-×;(2)÷+|1-|-.20.[含评分细则](6分)如图,网格是由小正方形拼成的,每个小正方形的边长都为1,四边形ABCD的四个点都在格点上.(1)四边形ABCD的面积为,周长为;(2)求证:∠BAD是直角.21.[含评分细则](8分)【课本再现】已知:如图1,在△ABC中,D,E分别是AB,AC的中点.求证:DE∥BC,且DE=BC.(1)下面是证明三角形中位线定理的两种添加辅助线的方法,选择其中一种,完成证明.方法一:如图2,过点C作AB的平行线交DE的延长线于点F.方法二:如图3,过点E作AB的平行线交BC于点N,过点A作BC的平行线交NE的延长线于点M.【知识应用】(2)如图4,在四边形ABCD中,AD∥BC,AD≠BC,E,F分别为AB,CD的中点,判断线段EF,AD,BC之间的数量关系,并说明理由. 22.[含评分细则](2023江西适应性考试)(8分)“双减”形势下,各地要求初中学生作业量不超过90分钟,其中作业量应以学习程度中等的学生完成作业所需时间为基准.某校推行作业时间公示制度,数学小组从七、八年级各随机抽取20名同学,将他们每天的作业完成时间(单位:分钟)记录下来,并进行统计、分析,共分为四个时段(x表示作业完成时间,x取整数):A.60<x≤70;B.70<x≤80;C.80<x≤90;D.90<x≤100.过程如下.【收集数据】七年级:80,70,80,95,65,100,90,85,85,80,95,75,80,90,70,80,95,75,100,90;八年级:85,80,95,100,90,95,85,70,75,85,90,90,70,90,100,80,80,90,95,75.【整理数据及分析数据】七、八年级抽取的学生每天的作业完成时间统计表统计量年级平均数众数中位数方差七年级84a82.599八年级8690b79(1)补全条形统计图.(2)填空:a=,b=.(3)根据以上数据,你认为该校七、八年级中哪个年级的作业量布置得更合理?并说明理由.(4)若该校七、八年级共1 000名学生,请估计每天的作业完成时间在90分钟以内(含90分钟)的学生人数.23.[含评分细则]【新独家原创】(8分)【知识回顾】(1)通过学习我们知道一次函数y=5-x和y=2x-1的图象如图1所示,所以方程组的解为.【知识探究】(2)小友结合学习一次函数的经验,对函数y=-2|x|+5的图象进行了探究.下面是小友的探究过程:①列表:把下表补充完整.x…-4-3-2-101234…y…-31353-1-3…②描点、连线:在给出的平面直角坐标系中描出以表中各对对应值为坐标的点,画出该函数的图象. 【知识应用】(3)利用一次函数与二元一次方程(组)的关系,结合函数图象可知,方程组的解为.24.[含评分细则](2023广西南宁师大附中期末)(10分)如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.(1)判断四边形ODEC的形状,并说明理由;(2)连接AE,交CD于点F,当∠ADB=60°,AD=2时,求AE的长.25.[含评分细则](2023江苏南通二模)(12分)某水果店销售甲、乙两种苹果,售价分别为25元/kg、20元/kg.甲种苹果的进货总金额y(单位:元)与甲种苹果的进货量x(单位:kg)之间的关系如图所示,乙种苹果的进价为14元/kg.(1)求甲种苹果进货总金额y(单位:元)与甲种苹果的进货量x(单位:kg)之间的函数解析式,并写出x的取值范围;(2)若该水果店购进甲、乙两种苹果共200 kg,并能全部售出,其中甲种苹果的进货量不低于50 kg,且不高于100 kg.①求销售两种苹果所获总利润w(单位:元)与甲种苹果进货量x(单位:kg)之间的函数关系式,并给出总利润最大的进货方案;②为回馈客户,水果店决定在总利润最大的前提下对两种苹果进行让利销售,甲、乙两种苹果的售价均降低a元/kg(a>0),若要保证所获总利润不低于940元,求a的取值范围.5年中考3年模拟·初中数学·人教版·八年级下册答案全解全析1.C+=22,12+=22,+22≠,+12=,所以选项A 、B 、D 中的三条线段能组成直角三角形.故选C.2.D与不能合并,故A 不符合题意;2与-2不能合并,故B不符合题意;(-)×=-=,故C不符合题意;==2,故D符合题意.故选D.3.C∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.故选C. 4.A将一次函数y=2x+m-1的图象向左平移3个单位后,得到y=2(x+3)+m-1,把(0,0)代入得0=6+m-1,解得m=-5.故选A.5.A∵节水量为0.4 m3的一共有8户家庭,户数最多,∴众数为0.4,平均数为×(2×0.2+4×0.25+4×0.3+8×0.4+2×0.5)=0.34,故选A.6.C∵k=-3<0,∴y的值随着x值的增大而减小,故A说法正确;令x=0,得y=2,∴函数图象与y轴的交点坐标为(0,2),故B说法正确;当x>0时,y<2,故C说法错误;∵k=-3<0,b=2>0,∴函数图象经过第一、二、四象限,故D说法正确.故选C. 7.C由题意得OA=OA',∠A'CO=90°,BC=A'D=5尺,设绳索OA的长为x尺,则OC=OA+AB-BC=(x+1-5)尺,OA'=OA=x尺,在Rt△OA'C 中,由勾股定理得102+(x+1-5)2=x2,解得x=14.5,故绳索OA的长为14.5尺.故选C.8.C连接AD(图略),∵∠BAC=90°,且BA=5,AC=12,∴BC==13,∵DM⊥AB,DN ⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,∴当AD⊥BC时,AD的值最小,此时△ABC的面积=AB·AC=BC·AD,∴AD==,∴MN的最小值为.故选C.9.B由题图可得小海鸥家到公园的路程为50×12=600(米),∴a=600,设点C的坐标为(m,n),由题意得m=6+=9,n=a=600,∴点C的坐标是(9,600),由题图得点D的坐标是(12,0),设CD所在直线的解析式为y=kx+b(k≠0),∴解得∴y=-200x+2 400,由题意可知OA所在直线的解析式为y=50x,联立解得∴小海鸥出发9.6分钟与咩咩第二次相遇.故选B.10.D∵四边形ABCD是正方形,∴AB=BC=CD=AD=12,∠B=∠GCE=∠D= ∠BAD=90°,由翻折得AF=AD,∠AFE=∠D=90°,∴∠AFG=90°=∠B,AB=AF,在Rt△ABG和Rt△AFG中,∴Rt△ABG≌Rt△AFG(HL),故①正确;∴∠BAG=∠FAG,BG=GF,由翻折得∠DAE=∠FAE,∴∠EAG=∠BAD=45°,故②正确;∵AB=12,BG=CG,∴GF=BG=CG=6,由翻折得EF=DE,设DE=EF=x,则CE=12-x,GE=x+6,在直角△ECG中,根据勾股定理得CE2+CG2=GE2,即(12-x)2+62 =(x+6)2,解得x=4,∴DE=4,CE=8,∴CE=2DE,故③正确;∵CG=GF,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∵∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GCF,∴∠AGB=∠GCF,∴AG ∥CF,故④正确;∵GF=6,EF=4,∴S△GFC∶S △FCE=6∶4=3∶2,∵S△GCE=GC·CE=×6×8=24,∴S△GFC=×24=,故⑤正确.故选D.11.答案1(答案也可以是2或3) 解析要使在实数范围内没有意义,则x-4<0,∴x<4,∵x为正整数,∴x的值是1,2,3(任意写一个即可).12.答案17解析∵在Rt△ABC中,∠C=90°,AB-AC=2,BC=8,∴AC2+BC2=AB2,即(AB-2)2+82=AB 2,解得AB=17.13.答案>解析=×(11+12+13+14+15)=13,=×[(11-13)2+(12-13)2+(13-13)2+(14-13)2+(15-13)2]=2,=×(12+12+13+14+14)=13,=×[(12-13)2+(12-13)2+(13-13)2+(14-13)2+(14-13)2]=0.8,∵2>0.8,∴>.14.答案解析∵+4=a 2+2+=,-4=a2-2+=,∴原式=+,∵0<a<1,∴a+>0,a-=<0,∴原式=+=a+-=.15.答案解析∵四边形ABCD是菱形,∴OD=OB,OA=OC=AC=4,∠AOB=90°,∵DH⊥AB,∴OH=BD=OB,∴BO=3,BD=6,∴S菱形ABCD=×6×8=24,在Rt△AOB 中,AB===5,∴AB·DH=×24=12,∴×5DH=12,∴DH=.16.答案 4解析∵直线y=x+4与x轴交于点A,与y轴交于点B,∴当x=0时,y=4,当y=0时,x=-4,∴A(-4,0),B(0,4),∴OA=OB=4,∵点D 为OB的中点,∴OD=OB=2,∴D(0,2),∵四边形OCDE是平行四边形,∴DE∥AC,把y=2代入y=x+4,得x=-2,∴E(-2,2),∴DE=2,∴S▱OCDE=OD·DE=2×2=4.17.答案2021解析由题意可得, 原式=1++1++1++…+1+=2 021+1-=2 021.18.答案(-1)解析如图,当点M与点A重合时,由折叠可知∠NAB=∠NAE,∵AB∥CD,∴∠BAN=∠ENA,∴∠EAN=∠ENA,∴AE=EN,设AE=EN=x cm,则DE=(10-1-x)cm,在Rt△ADE中,由勾股定理得x2=32+(10-1-x)2,解得x=5,∴DE=10-1-5=4(cm).如图,当点M运动到MB'⊥AB 时,DE'的值最大,此时DE'=10-1-3=6(cm).如图,当点M运动到点B'落在CD 上时,由勾股定理得NB'===(cm),此时DB'(即DE″)=10-1-=(9-)cm.∴点E的运动轨迹为E →E'→E″,运动路径长=6-4+6-(9-)=(-1)cm.19.解析(1)原式=4+2-=4+2-2=4.3分(2)原式=+-1-=4+-1-2+=1+2.6分20.解析(1)10.5;4+.2分提示:由题意得,四边形ABCD 的面积=4×5-×2×1-×5×1-×2×4-×(1+3)×1=20-1-2.5-4-2=10.5.由题图可得CD2=12+22=5,AD2=12+22=5,BC2=12+52=26,AB 2=22+42=20, ∴CD=,AD=,BC=,AB==2,∴四边形ABCD的周长=CD+AD+BC+AB=4+.(2)证明:如图,连接BD,由题意得,BD2=42+32=25,∵AD2+AB2=5+20=25,∴BD2=AD2+AB2,4分∴△BAD是直角三角形,∴∠BAD是直角.6分21.解析(1)任选一个方法证明即可.(方法一)证明:∵AB∥CF,∴∠DAE=∠FCE.∵E是AC的中点,∴AE=CE.在△ADE与△CFE中,∴△ADE≌△CFE(ASA),∴AD=CF,DE=FE=DF.∵D是AB的中点,∴BD=AD,∴BD=CF.∴四边形DBCF是平行四边形,∴DF∥BC,DF=BC,∴DE∥BC,DE=BC.4分(方法二)证明:∵AM∥BC,∴∠MAC=∠BCA.在△AEM与△CEN中,∴△AEM≌△CEN(ASA),∴AM=CN,EN=EM. ∵AB∥MN,AM∥BC,∴四边形ABNM是平行四边形,∴AM=BN,AB=MN.∵AM=NC,∴BN=BC.∵D是AB的中点,∴BD=AB=MN=EN,∴四边形DBNE是平行四边形,∴DE=BN=BC,DE∥BC.4分(2)EF=(BC+AD).5分理由:如图,连接AF并延长交BC的延长线于点G.∵AD∥BC,∴∠DAF=∠G,∠D=∠FCG.又∵DF=FC,∴△ADF≌△GCF(AAS).∴AD=CG,AF=FG.7分又∵AE=EB.∴EF=BG=(BC+CG)=(BC+AD).8分22.解析(1)补全统计图如下: 2分(2)80;87.5.4分提示:将所有数据从低到高排列.七年级:65,70,70,75,75,80,80,80,80,80,85,85,90,90,90,95,95,95,100,100,八年级:70,70,75,75,80,80,80,85,85,85,90,90,90,90,90,95,95,95,100,100,∴a=80,b==87.5.(3)(答案不唯一)例如:①七年级的作业量布置得更合理.理由:七年级学生每天完成作业的平均时间低于八年级学生每天完成作业的平均时间.②七年级的作业量布置得更合理.理由:七年级大多数学生每天完成作业的时间低于八年级大多数学生每天完成作业的时间.③七年级的作业量布置得更合理.理由:七年级的一大半学生每天完成作业的时间低于八年级的一大半学生每天完成作业的时间.④八年级的作业量布置得更合理.理由:八年级学生每天完成作业的时间波动小些.6分(4)1 000×=1 000×=750(人).∴每天的作业完成时间在90分钟以内(含90分钟)的学生约有750人.8分23.解析(1)2分(2)①补全表格如下:4分x…-4-3-2-101234…y …-3-113531-1-3…②描点、连线,画出函数图象如图1所示.6分(3)或8分提示:如图2,画出一次函数y=x+2的图象,由图可知,方程组的解为或24.解析(1)四边形ODEC是矩形.1分理由:∵CE∥BD,DE∥AC,∴四边形ODEC 是平行四边形,3分∵四边形ABCD是菱形,∴AC ⊥BD,∴∠DOC=90°,∴四边形ODEC是矩形.5分(2)∵Rt△AOD中,∠ADB=60°,∴∠OAD=30°,∴OD=AD=1,∴AO==,∴AC=2,8分∵四边形ODEC 是矩形,∴EC=OD=1,∠ACE=90°,∴AE==.10分25.解析(1)当0≤x≤60时,y=x=20x,当60<x≤120时,y=1 200+(x-60)=18x+120,∴y=3分(2)①当50≤x≤60时,w=25x+20(200-x)-20x-14(200-x)=-x+1 200,∵-1<0,∴当x=50时,w取得最大值,为-50+1 200=1 150,此时购进甲种苹果50 kg,乙种苹果150 kg,5分当60<x≤100时,w=25x+20(200-x)-(18x+120)-14(200-x)=x+1 080,∵1>0,∴当x=100时,w取得最大值,为100+1 080=1 180,此时购进甲种苹果100 kg,乙种苹果100 kg,7分∵1 180>1 150,∴购进甲种苹果100 kg,乙种苹果100 kg时,总利润最大.9分②由①知,x=100时,总利润最大,∴(25-a)×100+(20-a)(200-100)-(18×100+120)-14×(200-100)≥940,10分解得a≤1.2,∴a的取值范围是0<a≤1.2.12分。
北师大版初中数学八下第一章综合测试试题试卷含答案
第一章综合测试一、选择题(共10小题,满分30分)1.如图已知100BAC ︒∠=,AB AC =,AB AC 、的垂直平分线分别交BC 于D E 、,则DAE ∠=( )A .40︒B .30︒C .20︒D .10︒2.如图,ABC △中,AB AC =,高BD CE 、相交于点O ,连接AO 并延长交BC 于点F ,则图中全等的直角三角形共有( )A .4对B .5对C .6对D .7对 3.如果一个三角形一条边上的中点到其它两边距离相等,那么这个三角形一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .斜三角形 4.Rt ABC △中,9046C B ︒︒∠=∠=,,则A ∠=( ) A .44︒ B .34︒ C .54︒ D .64︒ 5.在ABC △中,若0A B C ∠+∠−∠=,则ABC △是( ) A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形6.如图,AC AD BC BD ==,,则( )A .AB 垂直平分CD B .CD 垂直平分ABC .CD 平分ACB ∠D .以上结论均不对7.如图,ABC △中,D 为BC 上一点,ABD △的周长为12cm ,DE 是线段AC 的垂直平分线,5AE =cm ,则ABC △的周长是( )A .17cmB .22cmC .29cmD .32cm8.如图,在ABC △中,AF 平分BAC ∠,AC 的垂直平分线交BC 于点E ,60B ︒∠=,30C ︒∠=,则FAE ∠为( )A .10︒B .15︒C .20︒D .30︒9.如图,AD 是ABC △的角平分线,,DF AB ⊥,垂足分别为点F ,DE DG =,若ADG △和ADE △的面积分别为50和39,则DEF △的面积为( )A .11B .7C .5.5D .3.510.如图,ABC △中,90C ︒∠=,AD 平分BAC ∠,过点D 作DE AB ⊥于E ,若4DC =,则DE =( )A .3B .5C .4D .6二、填空题(共7小题,满分28分)11.若等腰三角形的一个内角为50︒,则这个等腰三角形的顶角为________.12.下列四组数:①5,12,13;②7,24,25;③1,2,4;④5,6,8其中可以作为直角三角形三边长的有________.(把所有你认为正确的序号都写上)13.如图,在ABC △中,90C ∠=︒,AC BC =,BD 平分ABC ∠交AC 于点D ,DE AB ⊥于点E .若AB =10cm ,则ADE △的周长为________cm .14.在ABC △中,AB AC =,AB 的垂直平分线交AC 于D ,交AB 于E ,连接BD ,若40ADE ︒∠=,则ABC ∠=________.15.如图,BD 垂直平分线段AC ,AE BC ⊥,垂足为E ,交BD 于点P ,3cm PE =,则点P 到直线AB 的距离是________cm .16.如图,在ABC △中,点D 是BC 边上一点,12∠=∠,34∠=∠,63BAC ︒∠=,则DAC ∠的度数为________.17.如图,在Rt ABC △中,90C ︒∠=,AD 平分BAC ∠,交BC 于点D ,若103AB CD ==,,则ABC S =△________.三、解答题(共8小题,满分62分)18.如图,ABC △中,90C =∠,4AC =,8BC =.(1)用直尺和圆规作AB 的垂直平分线;(保留作图痕迹,不要求写作法) (2)若(1)中所作的垂直平分线交BC 于点D ,求BD 的长.19.如图,已知ABC ∠,求作:(1)ABC ∠的平分线BD (写出作法,并保留作图痕迹);(2)在BD 上任取一点P ,作直线PQ ,使PQ AB ⊥(不写作法,保留作图痕迹).20.如图,ABC △中,D 是BC 上的一点,若10AB =,6BD =,8AD =,17AC =,求ABC △的面积.21.如图所示、AOB △和D CO ∆均为等腰直角三角形,90AOB COD ︒∠=∠=,D 在AB 上.(1)求证:AOC BOD △≌△;(2)若12AD BD ==,,求CD 的长.22.如图,已知ABC △中,AB AC BD CE =,、是高,BD 与CE 相交于点O . (1)求证:OB OC =;(2)若50ABC ︒∠=,求BOC ∠的度数.23.已知锐角ABC △,45ABC AD BC ︒∠=⊥,于D ,BE AC ⊥于E ,交AD 于F . (1)求证:BDF ADC △≌△;(2)若43BD DC ==,,求线段BE 的长度.24.如图,AB BC ⊥,射线CM BC ⊥,且5cm BC =,1cm AB =,点P 是线段BC (不与点B C 、重合)上的动点,过点P 作DP AP ⊥交射线CM 于点D ,连结AD .(1)如图1,若4cm BP =,则CD =________;(2)如图2,若DP 平分ADC ∠,试猜测PB 和PC 的数量关系,并说明理由;(3)若PDC △是等腰三角形,则CD =________cm .(请直接写出答案)25.如图,在ABC △中,20AB AC ==厘米,B C ∠=∠,16BC =厘米,点D 为AB 的中点,如果点P 在线段BC 上以6厘米/秒的速度由点向点运动,同时点Q 在线段CA 上由C 点向A 点运动.当一个点停止运动时,另一个点也随之停止运动.(1)用含有t 的代数式表示CP ,则CP =________厘米;(2)若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;(3)若点Q 的运动速度与点P 的运动速度不相等,那么当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?第一章综合测试答案解析一、 1.【答案】C【解析】解:100BAC AC AB ︒∠==,,18040B C BAC ︒︒∴∠=∠=−∠=(),DM EN 、分别是边AB 和AC 的垂直平分线, BD AD AE CE ∴==,,4040B BAD C CAE ︒︒∴∠=∠=∠=∠=,, =100404020DAE ︒︒︒︒∴∠−−=.故选C. 2.【答案】D【解析】解:有7对全等三角形: ①BDC CEB △≌△,理由是:AB AC =, ABC ACB ∴∠=∠,BD 和CE 是两腰上的高, 90BDC CEB ︒∴∠=∠=,在BDC △和CEB △中,BDC CEB ACB ABC BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,BDC CEB AAS ∴△≌△(), BE DC ∴=.②BEO CDO △≌△,理由是:在BEO △和CDO △中,BEO CDO BOE COD BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,BEO CDO AAS ∴△≌△(). ③AEO ADO △≌△,理由是: 由BEO CDO △≌△得:EO DO =,在Rt AEO △和Rt ADO △中,AO AO EO OD =⎧⎨=⎩,,Rt Rt AEO ADO HL ∴△≌△(), EAO DAO ∴∠=∠.④ABF ACF △≌△,理由是:在ABF △和ACF △中,AB AC EAO DAO AF AF =⎧⎪∠=∠⎨⎪=⎩,,,⑤BOF COF △≌△,理由是:AB AC BAF CAF =∠=∠,, BF FC AFB AFC ∴=∠=∠,,在BOF △和COF △中,OF OF AFB ADC BF FC =⎧⎪∠=∠⎨⎪=⎩,,,BOF COF SAS ∴△≌△(). ⑥AOB AOC △≌△,理由是:在AOB △和AOC △中,AO AO BAO CAO AB AC =⎧⎪∠=∠⎨⎪=⎩,,,AOB AOC SAS ∴△≌△(). ⑦ABD ACE △≌△,理由是: 在ABD △和ACE △中, ABD ACE SAS ∴△≌△(). 故选:D. 3.【答案】B 【解析】如右图,DE AB DF AC ⊥⊥,,90BED DFC ︒∴∠=∠=,在BDE △和CDF △,BD CD DE DF ==,,DBE DFC HL ∴△≌△(), B C ∴∠=∠, AB AC ∴=,∴这个三角形一定是等腰三角形. 故选B. 4.【答案】A【解析】解:9046904644C B A ︒︒︒︒︒∠=∠=∴∠=−=,,.故选A. 5.【答案】A【解析】解:0A B C ∠+∠−∠=,A B C ∴∠+∠=∠,180A B C ︒∠+∠+∠=,90C ︒∴∠=,ABC ∴△是直角三角形.故选择:A. 6.【答案】A 【解析】解:AC AD BC BD AB AB ===,,,CAB DAB ∴∠=∠,且AC AD =,AB ∴垂直平分CD .故选:A. 7.【答案】B【解析】因为DE 是AC 的垂直平分线,所以AD CD =,AE EC =,而5cm AE =,所以10cm AC =,而ABC C AB BC AC =++△,ABC C AB BD AD AB BD CD AB BC =++=++=+△,所以ABC ABD C C AC =+=△△cm 10c m 12m c 22+=.8.【答案】B【解析】解:在ABC ∆中,60B ︒∠=,30C ︒∠=,180690030BAC ︒︒︒︒∴−−=∠=,AF 平分BAC ∠,11904522CAF BAC ︒︒⨯∴∠=∠==;DE 垂直平分AC , AE CE ∴=,30EAD C ︒∴∠=∠=,453015FAE CAF CAE ︒︒︒∴∠=∠−∠=−=.故选:B. 9.【答案】C【解析】作DM DE =交AC 于M ,作DN AC ⊥于点N ,DE DG =, DM DG ∴=,AD 是ABC △的角平分线,DF AB ⊥, DF DN ∴=,在Rt DEF △和Rt DMN △中,DN DFDM DE ==⎧⎨⎩, Rt Rt DEF DMN HL ∴△≌△(), ADG △和AED △的面积分别为50和39, 503911MDG ADG ADM S S S ∴=−=−=△△△,1152.5112DNM EDF MDG S S S ===⨯=△△△.故选C. 10.【答案】C【解析】解:90C ︒∠=,AD 平分BAC DE AB ∠⊥,于E ,DE DC ∴=, 4DC =,4DE ∴=.故选:C. 二、11.【答案】50︒或80︒ 【解析】如右图所示,ABC △中,AB AC =,有两种情况:①顶角50A ︒∠=; ②当底角是50︒时,AB AC =,50B C ︒∴∠=∠=, 180A B C ︒∠+∠+∠=, 180505080A ︒︒︒︒∴∠=−−=,∴这个等腰三角形的顶角为50︒或80︒. 故答案为50︒或80︒. 12.【答案】①②【解析】解:①22251213+=,能构成直角三角形; ②22272425+=,能构成直角三角形; ③222124+≠,不能构成直角三角形; ④222568+≠,不能构成直角三角形, 所以可以作为直角三角形三边长的有①②, 故答案为:①②. 13.【答案】10 【解析】BD 平分ABC ∠交AC 于D ,DE AB ⊥于E ,90DBE DBC BED C BD BD ︒∴∠=∠∠=∠==,,,BDE BDC AAS ∴△≌△(), DE DC BE BC ∴==,,ADE ∴△的周长10cm DE DA AE DC DA AE CA AE BC AE BE AE AB =++=++=+=+=+==.故答案为:10. 14.【答案】65︒ 【解析】DE 是AB 的垂直平分线,DE AB ∴⊥,90AED ︒∴∠=.又40ADE ︒∠=,50A ︒∴∠=.又AB AC =,18050265ABC ACB ︒︒︒∴∠=∠=−÷=().故答案为65︒. 15.【答案】3【解析】过点P 作PM AB ⊥与点M ,BD 垂直平分线段AC , AB CB ∴=,ABD DBC ∴∠=∠,即BD 为角平分线,又PM AB PE CB ⊥⊥,,3PM PE ∴==.16.【答案】24︒【解析】设12x ∠=∠=,则43122x ∠=∠=∠+∠=,63DAC ︒∠=, 63DAC x ︒∴∠=−,在ABC △中,有263180x x ︒︒++=,39x ︒=,°°6324DAC x ∴∠=−=,故答案为:24︒. 17.【答案】15 【解析】解:作DE AB ⊥于E ,90C ︒∠=, DC AC ∴⊥,AD 平分BAC DC AC DE A ∠⊥⊥,,, DE CD ∴=, 103AB CD ==,,∴111031522ABDSAB DE =⨯⨯=⨯⨯=. 故答案为15. 三、18.【答案】(1)如图直线MN 即为所求.(2)5BD =【解析】(2)MN 垂直平分线段AB ,DA DB ∴=,设DA DB x ==,在Rt ACD △中,222AD AC CD =+,()22248x x ∴=+−,解得5x =, 5BD ∴=.19.【答案】解:(1)如下图所示,作法:①以B 点为圆心,任意长为半径画弧分别交BA BC 、于M N 、点; ②再以M N 、为圆心,以大于它们之间的距离的二分之一为半径画弧,两弧在ABC ∠内相交于E ,则BD 为所作;(2)如下图,PQ 为所作.20.【答案】解:2222226810BD AD AB +=+==,ABD ∴△是直角三角形,AD BC ∴⊥,在Rt ACD △中,15CD ===,()111 21884222ABC BC AD BD CD S AD ∴==+=⨯⨯=△, 因此ABC △的面积为84.答:ABC △的面积是84.21.【答案】解:(1)证明:如右图,1903︒∠=−∠,2903︒∠=−∠,12∴∠=∠.又OC OD =,OA OE =,AOC BOD ∴△≌△.(2)由AOC BOD △≌△有:2AC BD ==,45CAO BOD ︒∠=∠=,90CAB ︒∴∠=,故CD =22.【答案】解:(1)证明:AB AC =,ABC ACB ∴∠=∠,BD CE 、是ABC △的两条高线,DBC ECB ∴∠=∠,OB OC ∴=.(2)50ABC AB AC ︒∠==,,18025080A ︒︒︒∴∠=−⨯=,18080100BOC ︒︒︒∴∠=−=.23.【答案】解:(1)证明:45AD BC ABC ︒⊥∠=,, 45ABC BAD ︒∴∠=∠=,AD BD ∴=,DA BC BE AC ⊥⊥,,9090C DAC C CBE ︒︒∴∠+∠=∠+∠=,,CBE DAC ∴∠=∠,且90AD BD ADC ADB ︒=∠=∠,=,BDF ADC ASA ∴△≌△(). (2)BDF ADC △≌△,43AD BD CD DF BF AC ∴=====,,,5BF ∴=,5AC ∴=,11 22ABCBC A S AD C BE =⨯⨯=⨯⨯, 745BE =∴⨯⨯, 285BE ∴=. 24.【答案】(1)4cm (2)PB PC =,理由:如图2,延长线段AP DC 、交于点E , DP 平分ADC ∠,ADP EDP =∴∠∠.DP AP ⊥,90DPA DPE ︒∴∠==∠,在DPA △和DPE △中,ADP EDP DP DP DPA DPE ∠=∠⎧⎪=⎨⎪∠=∠⎩DPA DPE ASA ∴△≌△(), PA PE ∴=.AB BP CM CP ⊥⊥,,ABP ECP Rt ∴∠=∠=∠.在APB △和EPC △中,ABP ECP APB EPC PA PE ∠=∠⎧⎪∠=⎨⎪=⎩APB EPC AAS ∴△≌△(), PB PC ∴=.(3)4【解析】(1)5cm 4cm BC BP ==,,1cm PC ∴=,AB PC ∴=,DP AP ⊥,90APD ︒=∴∠,90APB CPD ︒∴∠=∠+,90APB CPD ︒∠=∠+,90APB BAP ︒∠=+∠, BAP CPD =∴∠∠,在ABP △和PCD △中,B CBAP CPD AB PC∠=∠⎧⎪∠=∠⎨⎪=⎩,ABP PCD ∴△≌△,4cm BP CD =∴=.(3)PDC △是等腰三角形,PCD ∴△为等腰直角三角形,即45DPC ︒∠=, 又DP AP ⊥,45APB ︒∴∠=,1cm BP AB ∴==,4cm PC BC BP ∴=−=,4cm CD CP ∴==.25.【答案】(1)166t −(2)当1t =时,616BP CQ ==⨯=(厘米), 20AB =厘米,点D 为AB 的中点,10BD ∴=厘米.又PC BC BP =−,16BC ∴=厘米,16610PC ∴=−=(厘米),PC BD =在BPD △和CQP △中,BD PC B C BP CQ =∠=∠=,,,BPD CQP SAS ∴△≌△()(3)P Q v v ≠BP CQ ∴≠又BPD CPQ △≌△,B C ∠=∠,8cm BP PC ∴==,10cm CQ BD ==, ∴点P ,点Q 运动的时间4863t =÷=(秒),107.543Q CQv t ∴===(厘米/秒).【解析】(1)6BP t =,则166PC BC BP t =−=−.。
八年级下册数学全套试卷
八年级下册数学全套试卷一、选择题(每题3分,共30分)1. 若二次根式√(x - 3)有意义,则x的取值范围是()A. x≤slant3B. x≠3C. x≥slant3D. x > 32. 下列二次根式中,属于最简二次根式的是()A. √(frac{1){2}}B. √(0.8)C. √(4)D. √(5)3. 下列计算正确的是()A. √(2)+√(3)=√(5)B. √(2)×√(3)=√(6)C. √(8)=4√(2)D. √(4)-√(2)=√(2)4. 已知平行四边形ABCD中,∠ A = 50^∘,则∠ C的度数为()A. 50^∘B. 130^∘C. 40^∘D. 100^∘5. 直角三角形的两条直角边分别为6和8,则斜边上的高为()A. (24)/(5)B. (12)/(5)C. 5D. 106. 下列命题中,正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形。
B. 对角线互相垂直的四边形是菱形。
C. 对角线相等的四边形是矩形。
D. 对角线互相垂直平分且相等的四边形是正方形。
7. 若函数y=(m - 1)x^m^{2-3}是正比例函数,则m的值为()A. 1B. - 1C. ±1D. √(3)8. 一次函数y = kx + b(k≠0)的图象经过点(0,2),且y随x的增大而减小,则这个函数的表达式可能是()A. y = 2x + 3B. y=-3x + 2C. y = (1)/(2)x + 2D. y = x - 29. 数据1,2,3,4,5的方差是()A. 1B. 2C. (5)/(4)D. (1)/(2)10. 已知点A(x_1,y_1),B(x_2,y_2)在一次函数y = kx + b(k≠0)的图象上,当x_1时,y_1,则k的取值范围是()A. k < 0B. k>0C. k≤slant0D. k≥slant0二、填空题(每题3分,共18分)1. 计算:√(12)-√(3)=_√(3)。
华师版数学八年级下册第17章综合检测试卷
第17章综合检测试卷(满分:120分)一、选择题(每小题3分,共30分)1.在直角坐标系中,点P (2,-3)所在的象限是( D ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.函数y =x +2x的自变量x 的取值范围是( B ) A .x ≥-2 B .x ≥-2且x ≠0 C .x ≠0D .x >0且x ≠-23.反比例函数y =-3x 的图象上有P 1(x 1,-2)、P 2(x 2,-3)两点,则x 1与x 2的大小关系是( A )A .x 1>x 2B .x 1=x 2C .x 1<x 2D .不确定4.“科学用眼,保护视力”是青少年珍爱生命的具体表现.科学证实:近视眼镜的度数y (度)与镜片焦距x (m)成反比例.如果500度近视眼镜片的焦距为0.2 m ,那么表示y 与x 函数关系的图象大致是( B )5.若一次函数y =ax +b 的图象经过第一、二、四象限,则下列不等式中总是成立的是( C )A .ab >0B .a -b >0C .a 2+b >0D .a +b >06.在直角坐标系中,点M 、N 在同一个正比例函数图象上的是( A ) A .M (2,-3)、N (-4,6) B .M (-2,3)、N (4,6) C .M (-2,-3)、N (4,-6)D .M (2,3)、N (-4,6)7.如图,过反比例函数y =kx(x >0)的图象上一点A 作AB ⊥x 轴于点B ,连结AO .若S △AOB =2,则k 的值为( C )A .2B .3C .4D .58.如图,正比例函数y 1=k 1x 的图象与反比例函数y 2=k 2x 的图象相交于A 、B 两点,其中点B 的横坐标为-2,当y 1<y 2时,x 的取值范围是( B )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >29.甲、乙两车从A 城出发前往B 城,在整个行驶过程中,汽车离开A 城的距离y (km)与行驶时间t (h)的函数图象如图所示,下列说法正确的有( D )①甲车的速度为50 km/h ;②乙车用了3 h 到达B 城;③甲车出发4 h 时,乙车追上甲车;④乙车出发后经过1 h 或3 h 两车相距50 km.A .1个B .2个C .3个D .4个解析:甲车的速度为3006=50(km/h),故①正确;乙车到达B 城用了5-2=3(h),故②正确;甲车出发4 h 时,所行驶路程是50×4=200(km),此时乙车行驶的路程是3003×(4-2)=200(km),则乙车追上甲车,故③正确;当乙车出发1 h 时,两车相距50×3-100=50(km).当乙车出发3 h 时,两车相距100×3-50×5=50(km),故④正确.10.如图,直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,PC +PD 的值最小时,点P 的坐标为( C )A .(-3,0)B .(-6,0)C .⎝⎛⎭⎫-32,0 D .⎝⎛⎭⎫-52,0 解析:作点D 关于x 轴的对称点D ′,连结CD ′交x 轴于点P ,此时PC +PD 的值最小.由题意,得点B 的坐标为(0,4),点A 的坐标为(-6,0).∵点C 、D 分别为线段AB 、OB 的中点,∴C (-3,2)、D (0,2).∵点D ′和点D 关于x 轴对称,∴点D ′的坐标为(0,-2).设直线CD ′的表达式为y =kx +b .∵直线CD ′过点C (-3,2)、D ′(0,-2),∴⎩⎪⎨⎪⎧2=-3k +b ,-2=b ,解得⎩⎪⎨⎪⎧k =-43,b =-2.∴直线CD ′的表达式为y =-43x -2.令y =-43x -2=0,解得x =-32.∴点P 的坐标为⎝⎛⎭⎫-32,0. 二、填空题(每小题3分,共18分)11.一辆汽车加满油后,油箱中有汽油70 L ,汽车行驶时正常的耗油量为0.1 L/km ,则油箱中剩余的汽油量Q (L)关于行驶里程d (km)的函数表达式是__Q =70-0.1d __,自变量d 的取值范围是__0≤d ≤700__.12.若点A (1,-3)、B (m,3)在同一反比例函数的图象上,则m 的值为__-1__. 13.若函数y =(m -1)x |m |是正比例函数,则该函数的图象经过第__二、四__象限. 14.直线y =-x +3向上平移m 个单位后,与直线y =-2x +4的交点在第一象限,则m 的取值范围是__-1<m <1__.15.如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式x +b >kx +6的解集是__x >3__.16.如图,在平面直角坐标系中,直线l :y =x +2交x 轴于点A ,交y 轴于点A 1,点A 2、A 3、…在直线l 上,点B 1、B 2、B 3、…在x 轴的正半轴上,若△A 1OB 1、△A 2B 1B 2、△A 3B 2B 3、…依次均为等腰直角三角形,直角顶点都在x 轴上,则第n 个等腰直角三角形A n B n-1B n 的顶点B n 的横坐标为__2n +1-2__.解析:由题意,得OA=OA1=2,∴OB1=OA1=2,B1B2=B1A2=4,B2A3=B2B3=8,∴B1(2,0)、B2(6,0)、B3(14,0)、….∵2=22-2,6=23-2,14=24-2,…,∴B n的横坐标为2n+1-2.三、解答题(共72分)17.(6分)小明在下图中建立平面直角坐标系,使医院的坐标为(0,0),火车站的坐标为(2,2).(1)写出体育场、文化宫、超市、宾馆、市场的坐标;(2)分别指出(1)中场所在的象限;(3)同学小丽针对这幅图也建立了一个平面直角坐标系,可是她得到的同一场所的坐标和小明的不一样,请说明理由.第17题解:(1)体育场的坐标为(-2,5),文化宫的坐标为(-1,3),超市的坐标为(4,-1),宾馆的坐标为(4,4),市场的坐标为(6,5).(2)体育场、文化宫在第二象限,市场、宾馆在第一象限,超市在第四象限.(3)对于同一幅图,平面直角坐标系的原点、坐标轴方向不同,得到的点的坐标也就不一样.18.(8分)已知一次函数y=2x+4.(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴的交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出当y<0时,x的取值范围.解:(1)当x =0时,y =4;当y =0时,x =-2.图象如图所示. (2)由(1),知A (-2,0)、B (0,4). (3)S △AOB =12×2×4=4. (4)当y <0时,x 的取值范围为x <-2.19.(8分)某养鱼专业户准备挖一个面积为2000平方米的长方形鱼塘. (1)求鱼塘的长y (米)关于宽x (米)的函数表达式;(2)由于受场地的限制,鱼塘的宽最多只能挖20米,当鱼塘的宽是20米时,鱼塘的长为多少米?解:(1)由题意,得xy =2000,即y =2000x.(2)当x =20时,y =200020=100.故当鱼塘的宽是20米时,鱼塘的长为100米.20.(8分)如图,过点A (2,0)的两条直线l 1、l 2分别交y 轴于点B 、C ,其中点B 在原点上方,点C 在原点下方,已知AB =13.(1)求点B 的坐标;(2)若△ABC 的面积为4,求直线l 2的表达式.第20题解:(1)∵点A (2,0),AB =13,∴AO =2,BO =AB 2-AO 2=9=3,∴点B 的坐标为(0,3).(2)∵△ABC 的面积为4,∴12BC ·AO =4,∴12BC ×2=4,∴BC =4.∵BO =3,∴CO =4-3=1,∴点C (0,-1).设直线l 2的表达式为y =kx +b ,则⎩⎪⎨⎪⎧0=2k +b ,-1=b ,解得⎩⎪⎨⎪⎧k =12,b =-1.∴直线l 2的表达式为y =12x -1.21.(10分)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10 ℃,加热到100 ℃停止加热,水温开始下降,此时水温y (℃)与开机后用时x (min)成反比例关系,直至水温降至30 ℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30 ℃时接通电源,水温y (℃)与时间x (min)的关系如图所示:(1)分别写出水温上升和下降阶段y 与x 之间的函数关系式; (2)怡萱同学想喝高于50 ℃的水,请问她最多需要等待多长时间?第21题解:(1)观察图象可知,当x =7时,水温y =100.当0≤x ≤7时,设y 关于x 的函数关系式为y =kx +b .由题意,得⎩⎪⎨⎪⎧ b =30,7k +b =100,解得⎩⎪⎨⎪⎧k =10,b =30.即当0≤x ≤7时,y 关于x 的函数关系式为y =10x +30;当x >7时,设y 关于x 的函数关系式为y =a x .由题意,得100=a7,解得a =700,即当x >7时,y 关于x 的函数关系式为y =700x .当y =30时,x =703,∴y 与x的函数关系式为y =⎩⎪⎨⎪⎧10x +30(0≤x ≤7),700x ⎝⎛⎭⎫7<x ≤703,且y 与x 的函数关系式每703 min 重复出现一次. (2)将y =50代入y =10x +30,得x =2;将y =50代入y =700x ,得x =14.∵14-2=12,703-12=343,∴怡萱同学想喝高于50 ℃的水,她最多需要等待343min. 22.(10分)如图,在平面直角坐标系xOy 中,一次函数y =-ax +b 的图象与反比例函数y =kx的图象相交于点A (-4,-2)、B (m,4),与y 轴相交于点C .(1)求反比例函数和一次函数的表达式; (2)求点C 的坐标及△AOB 的面积.第22题解:(1)∵点A (-4,-2)在反比例函数y =kx 的图象上,∴k =-4×(-2)=8,∴反比例函数的表达式为y =8x .∵点B (m,4)在反比例函数y =8x的图象上,∴4m =8,解得m =2,∴点B (2,4).将A (-4,-2)、B (2,4)代入y =-ax +b ,得⎩⎪⎨⎪⎧ -2=4a +b ,4=-2a +b ,解得⎩⎪⎨⎪⎧a =-1,b =2.∴一次函数的表达式为y =x +2. (2)令x =0,则y =x +2=2,∴点C 的坐标为(0,2),∴S △AOB =12OC ·(x B -x A )=12×2×[2-(-4)]=6.23.(10分)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y 甲、y 乙(单位:元)与原价x (单位:元)之间的函数关系如图所示.(1)直接写出y 甲、y 乙关于x 的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?第23题解:(1)设y 甲=kx .把(2000,1600)代入,得2000x =1600,解得k =0.8.所以y 甲=0.8x .当0<x <2000时,设y 乙=ax .把(2000,2000)代入,得2000x =2000,解得a =1.所以y 乙=x ;当x ≥2000时,设y 乙=mx +n .把(2000,2000),(4000,3400)代入,得⎩⎪⎨⎪⎧2000m +n =2000,4000m +n =3400,解得⎩⎪⎨⎪⎧ m =0.7,n =600.所以y 乙=0.7x +600.综上,y 乙=⎩⎪⎨⎪⎧x (0<x <2000),0.7x +600(x ≥2000). (2)当0<x <2000时,0.8x <x ,到甲商店购买小龙虾更省钱.当x ≥2000时,若到甲商店购买小龙虾更省钱,则0.8x <0.7x +600,解得x <6000;若到乙商店购买小龙虾更省钱,则0.8x >0.7x +600,解得x >6000;若到甲、乙两商店购买小龙虾一样省钱,则0.8x =0.7x +600,解得x =6000.故当购买金额按原价小于6000元时,到甲商店购买小龙虾更省钱;当购买金额按原价大于6000元时,到乙商店购买小龙虾更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买小龙虾一样省钱.24.(12分)如图,P 1、P 2是反比例函数y =kx (k >0)在第一象限图象上的两点,点A 1的坐标为(4,0).若△P 1OA 1与△P 2A 1A 2均为等腰直角三角形,其中点P 1、P 2为直角顶点.(1)求反比例函数的表达式; (2)求P 2的坐标.第24题解:(1)过点P 1作P 1B ⊥x 轴,垂足为点B .∵点A 1的坐标为(4,0),△P 1OA 1为等腰直角三角形,∴OB =2,P 1B =12OA 1=2,∴P 1的坐标为(2,2).将P 1的坐标代入反比例函数y =kx (k >0),得k =2×2=4,∴反比例函数的表达式为y =4x . (2)过点P 2作P 2C ⊥x 轴,垂足为点C .∵△P 2A 1A 2为等腰直角三角形,∴P 2C =A 1C .设P 2C =A 1C =a ,则P 2的坐标为(4+a ,a ).将P 2的坐标代入反比例函数的表达式,得a =44+a ,即(a +2)2=8,解得a 1=22-2,a 2=-22-2(舍去),∴P 2的坐标为()2+22,22-2.。
八年级下册数学期末试卷综合测试(Word版含答案)(1)
八年级下册数学期末试卷综合测试(Word 版含答案)(1)一、选择题1.如果二次根式2x -有意义,那么x 的取值范围是( )A .2x >B .2x ≥C .2x ≠D .2x ≤ 2.若ABC 的三边a 、b 、c 满足条件222()()0a b a b c -⋅+-=,则ABC 为( ) A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形3.下列能判定一个四边形是平行四边形的是( )A .对角线相等,且一组对角相等的四边形是平行四边形B .一对邻角的和为180°的四边形是平行四边形C .两条对角线相互垂直的四边形是平行四边形D .一组对边平行且相等的四边形是平行四边形4.小君周一至周五的支出分别是(单位:元):7,10,14,7,12则这组数据的平均数是( )A .7B .10C .11D .11.55.如图,在正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是( )A .25B .5C .35D .2 6.如图,将△ABC 沿DE 、HG 、EF 翻折,三个顶点均落在点O 处.若∠1=129°,则∠2的度数为( )A .49°B .50°C .51°D .52°7.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C '处,BC '交AD 于E ,AD =8,AB =4,则DE 的长为( )A.3 B.4 C.5 D.68.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有( )A.1个B.2个C.3个D.4个二、填空题9.使式子32xx-+有意义的x的取值范围是______.10.已知菱形的两条对角线长分别为4cm和6cm,则这个菱形的面积为______cm2.11.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有____m.12.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OAB的度数为_______.13.饮料每箱24瓶,售价48元,买饮料的总价y (元)与所买瓶数x 之间的函数________.14.如图,在△ABC 中,AD ,CD 分别平分∠BAC 和∠ACB ,AE ∥CD ,CE ∥AD .若从三个条件:①AB=AC ;②AB=BC ;③AC=BC 中,选择一个作为已知条件,则能使四边形ADCE 为菱形的是__(填序号).15.如图,已知点A ,B ,C ,D 的坐标分别为()2,2-,()2,1-,()3,1,()3,2.线段AD 、AB 、BC 组成的图形为图形G ,点P 沿D A B C →→→移动,设点P 移动的距离为S ,直线l :y x b =-+过点P ,且在点P 移动过程中,直线l 随P 运动而运动,当l 过点C 时,S 的值为__________;若直线l 与图形G 有一个交点,直接写出b 的取值范围是__________.16.如图,矩形ABCD 中,6,8AB BC ==,点E 是BC 边上一点,连接AE ,把ABE △沿AE 折叠,使点B 落在点F 处,当CEF △为直角三角形时,CF 的长为________.三、解答题17.计算:(1)2+818(212273-2324 18.我国古代数学著作《九章算术》中有这样一个问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?”(注:丈、尺是长度单位,1丈=10尺,1尺=13米),这段话翻译城现代汉语,即为:如图,有一个水池,水面是一个边长为一丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是多少米?请你用所学知识解答这个问题.19.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图1中画出一个以AB为一边正方形ABCD,使点C、D在小正方形的顶点上;(2)在图2中画出一个以AB为一边,面积为6的□ABEF,使点E、F均在小正方形的顶点上,并直接写出□ABEF周长.20.如图,已知点E是ABCD中BC边的中点,连接AE并延长交DC的延长线于点F,连接AC,BF,AF BC=.(1)求证:四边形ABFC为矩形;(2)若AFD∆是等边三角形,且边长为6,求四边形ABFC的面积.21.阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似.例如:计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=,i4=,i+i2+i3+…+i2021=;(2)计算:(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i);(3)已知a+bi=2543i-(a,b为实数),求2222(24)x a x b++-+的最小值.22.互联网时代,一部手机就可搞定午餐是新零售时代的重要表现形式,打包是最早出现的外卖形式,虽然古老,却延续至今,随着电话、手机、网络的普及,外卖行业得到迅速的发展.某知名外卖平台招聘外卖骑手,并提供了如下两种日工资方案:方案一:每日底薪50元,每完成一单外卖业务再提成3元;方案二:每日底薪80元,外卖业务的前30单没有提成,超过30单的部分,每完成一单提成5元.设骑手每日完成的外卖业务量为x单(x为正整数),方案一、方案二中骑手的日工资分别为y1、y2(单位:元).(1)分别写出y1、y2关于x的函数关系式;(2)若小强是该外卖平台的一名骑手,从日工资收入的角度考虑,他应该选择哪种日工资方案?并说明理由.23.如图,在平面直角坐标系中,已知▱OABC的顶点A(10,0)、C(2,4),点D是OA 的中点,点P在BC上由点B向点C运动.(1)求点B的坐标;(2)若点P运动速度为每秒2个单位长度,点P运动的时间为t秒,当四边形PCDA是平行四边形时,求t的值;(3)当△ODP是等腰三角形时,直接写出点P的坐标.24.如图,在平面直角坐标系中,直线AB交x轴于点A(﹣2,0), 交y轴于点B(0,4),直线y=kx+b经过点B且交x轴正半轴于点C,已知△ABC面积为10.(1)点C的坐标是(,),直线BC的表达式是;(2)如图1,点E为线段AB中点,点D为y轴上一动点,以DE为直角边作等腰直角三角形△EDF,且DE=DF,当点F落在直线BC上时,求点D的坐标;(3)如图2,若G为线段BC上一点,且满足S△ABG=S△ABO,点M为直线AG上一动点,在x轴上是否存在点N,使以点B,C,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,说明理由;25.综合与实践:如图1,在正方形ABCD中,连接对角线AC,点O是AC的中点,点E 是线段OA上任意一点(不与点A,O重合),连接DE,BE.过点E作EF DE⊥交直线BC于点F.(1)试猜想线段DE与EF的数量关系,并说明理由;CE CD CF之间的数量关系,并说明理由;(2)试猜想线段,,(3)如图2,当E在线段CO上时(不与点C,O重合),EF交BC延长线于点F,保持CE CD CF之间的数量关系.其余条件不变,直接写出线段,,【参考答案】一、选择题1.B解析:B【分析】x-≥,据此解题.x-202【详解】x-≥,x-202∴≥,x2故选:B.本题考查二次根式有意义的条件,是基础考点,掌握相关知识是解题关键.2.C解析:C【详解】解析:∵222()()0a b a b c -+-=,∴a b =或222+=a b c .当只有a b =成立时,是等腰三角形.当只有222+=a b c 成立时,是直角三角形.当a b =,222+=a b c 同时成立时,是等腰直角三角形.答案:C题型解法:此类题型首先根据题意化简式子,找出隐含条件,然后根据三边的关系判断三角形的形状.当三角形的三边满足勾股定理时,即可判断为直角三角形.3.D解析:D【解析】【分析】分别利用平行四边形的判定方法结合梯形的判定方法分析得出答案.【详解】解:A 、对角线相等,且一组对角相等的四边形无法确定是平行四边形,故此选项不合题意;B 、一对邻角的和为180°的四边形是平行四边形,错误,有可能是梯形,故此选项不合题意;C 、两条对角线相互垂直的四边形无法确定是平行四边形,故此选项不合题意;D 、一组对边平行且相等的四边形是平行四边形,正确,符合题意.故选D .【点睛】本题主要考查了平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定条件. 4.B解析:B【解析】【分析】用这组数据的和除以数据的个数就可计算出这组数据的平均数,据此解答即可.【详解】解:(7+10+14+7+12)÷5=50÷5=10(元),故选:B .【点睛】此题主要考查的是平均数的含义及其计算方法,关键是要熟练掌握平均数的计算方法. 5.B【分析】连接AC 、CF ,如图,根据正方形的性质得∠ACD =45°,∠FCG =45°,AC =2,CF =32,则∠ACF =90°,再利用勾股定理计算出AF =25,然后根据直角三角形斜边上的中线求CH 的长.【详解】连接AC 、CF ,如图,∵四边形ABCD 和四边形CEFG 都是正方形,∴∠ACD =45°,FCG =45°,AC =2BC =2,CF =2CE =32,∴∠ACF =45°+45°=90°,在Rt △ACF 中,AF =()()22232=25+,∵H 是AF 的中点,∴CH =12AF =5 .故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.两条对角线将正方形分成四个全等的等腰直角三角形.也考查了直角三角形斜边上的中线性质及勾股定理.6.C解析:C【解析】【分析】根据翻折的性质可知,∠DOE =∠A ,∠HOG =∠B ,∠EOF =∠C ,又∠A +∠B +∠C =180°,可知∠1+∠2=180°,又∠1=129°,继而即可求出答案.【详解】解:根据翻折的性质可知,∠DOE =∠A ,∠HOG =∠B ,∠EOF =∠C ,又∵∠A +∠B +∠C =180°,∴∠DOE +∠HOG +∠EOF =180°,∴∠1+∠2=180°,又∵∠1=129°,∴∠2=51°.故选:C .【点睛】本题考查翻折变换的知识,解答此题的关键是三角形折叠以后的图形和原图形全等,对应的角相等,同时注意三角形内角和定理的灵活运用.7.C解析:C【解析】【分析】根据折叠前后角相等可知△ABE ≌△C'ED ,利用勾股定理可求出.【详解】解:∵四边形ABCD 是矩形,∴AB=CD ,∠C =∠A =90°由折叠的性质可得:C'D =CD =AB ;∠C'=∠C =∠A在△ABE 与△C'ED 中'''C D AB C ED AEB C A =⎧⎪∠=∠⎨⎪∠=∠⎩∴△ABE ≌△C'ED (AAS )∴DE=BE设DE =BE =x ,则AE =8-x ,AB =4,在直角三角形ABE 中,()22816x x =-+ 解得x =5故选C .【点睛】本题考查勾股定理在折叠问题中的应用,找到合适的直角三角形构建等量关系是本题关键.8.A解析:A【分析】根据函数图像上的特殊点以及函数图像自身的实际意义进行判断即可.【详解】解:由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,①错;从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1小时,②对;汽车用9小时走了280千米,平均速度为:280÷9≠30米/时,③错.汽车自出发后6小时至9小时,图象是直线形式,说明是在匀速前进,④错. 故答案为A.【点睛】本题考查由函数图象的实际意义,理解函数图像所反映的运动过程是解答本题的关键.二、填空题9.3x ≤且2x ≠-【解析】【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键. 10.12【解析】【分析】根据菱形的面积计算公式计算即可;【详解】解:由已知得,菱形的面积等于两对角线乘积的一半即:4×6÷2=12cm 2.故答案为:12.【点睛】本题主要考查了菱形的面积计算,准确计算是解题的关键.11.A解析:4【解析】【详解】解:解如图所示:在Rt ∆ABC 中,BC=3,AC=5,由勾股定理可得:AB 2+BC 2=AC 2设旗杆顶部距离底部AB=x 米,则有32+x 2=52,解得x=4故答案为:4.【点睛】本题考查勾股定理.12.A解析:35°【分析】根据矩形的判定得到四边形ABCD是矩形,由矩形的性质求出∠DAB,代入∠OAB=∠DAB ﹣∠OAD求出即可.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形,∴∠DAB=90°,∵∠OAD=55°,∴∠OAB=∠DAB﹣∠OAD=35°,故答案为:35°.【点睛】本题考查了矩形的判定和性质,能根据矩形的性质求出∠DAB的度数是解此题的关键.13.y=2x.【详解】试题解析:每瓶的售价是4824=2(元/瓶),则买的总价y(元)与所买瓶数x之间的函数关系式是:y=2x.考点:根据实际问题列一次函数关系式.14.A解析:②【解析】【分析】根据②作条件,先证明四边形ADCE是平行四边形,再利用邻边相等,得到四边形ADCE 是菱形.【详解】解:当BA=BC时,四边形ADCE是菱形.理由:∵AE∥CD,CE∥AD,∴四边形ADCE是平行四边形,∵BA=BC,∴∠BAC=∠BCA,∵AD,CD分别平分∠BAC和∠ACB,∴∠DAC=∠DCA,∴DA=DC,∴四边形ADCE是菱形.【点睛】本题考查的知识点是菱形的证明,解题关键是熟记菱形的性质.15.1或11 或【分析】l 过点C 、点P 的位置有两种情况:①点P 位于点E 时,S=1;②点P 位于点C 时,S=11;求出l 过临界点D 、E 、B 即求出直线与图形有一个交点时b 的取值范围.【详解解析:1或11 45b <≤或1b =-【分析】l 过点C 、点P 的位置有两种情况:①点P 位于点E 时,S =1;②点P 位于点C 时,S =11;求出l 过临界点D 、E 、B 即求出直线l 与图形G 有一个交点时b 的取值范围.【详解】解:∵点A 、B 、C 、D 的坐标分别为(-2,2),(-2,1),(3,1),(3,2) ∴AD =BC =5,AB =1当直线l 过点C (3,1)时,1=-3+b ,即b =4∴直线的解析式为y =-x +4.∴42y x y =-+⎧⎨=⎩,解得22x y =⎧⎨=⎩,即直线1与AD 的交点E 为(2,2) ∴DE =1.∴如图:当l 过点C 时,点P 位于点E 或点C①当l 过点C 时,点P 位于点E 时,S =DE =1;②当l 过点C 时,点P 位于点C 时,S =AD +AB +BC =5+1+5=11..∴当1过点C 时,S 的值为1或11;当直线l 过点D 时,b =5;当直线1过点C 时,b =4;当直线1过点B 时,将B (-2,1)代入y =-x +b 得1=2+b ,即b =-1∴当45b <≤或1b =-时,直线l 与图形G 有一个交点.故填1或11,45b <≤或1b =-.【点睛】本题主要考查了一次函数图象与系数的关系、一次函数图象上点的坐标特征,根据题意求出临界值成为解答本题的关键.16.4或【分析】当为直角三角形时,有两种情况:①当点F 落在矩形内部时,如答图1所示.连接,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点A 、F 、C 共线,即沿折叠,使点解析:4或【分析】当CEF △为直角三角形时,有两种情况:①当点F 落在矩形内部时,如答图1所示.连接AC ,先利用勾股定理计算出10AC =,根据折叠的性质得90AFE B ∠=∠=︒,而当CEF △为直角三角形时,只能得到90EFC ∠=︒,所以点A 、F 、C 共线,即B 沿AE 折叠,使点B 落在对角线AC 上的点F 处,则,6EB EF AB AF ===,可计算出CF ;②当点F 落在AD 边上时,如答图2所示.此时ABEF 为正方形,根据勾股定理计算出CF .【详解】解:当CEF △为直角三角形时,有两种情况:①当点F 落在矩形内部时,如答图1所示.连接AC ,在Rt ABC 中,6,8AB BC ==,∴10AC =,∵B 沿AE 折叠,使点B 落在点F 处,∴90AFE B ∠=∠=︒,当CEF △为直角三角形时,只能得到90EFC ∠=︒,∴点A 、F 、C 共线,即B 沿AE 折叠,使点B 落在对角线AC 上的点F 处,∴,6EB EF AB AF ===,∴1064CF =-=;②当点F 落在AD 边上时,如答图2所示.此时ABEF 为正方形,∴6,862BE AB CE ===-=,∴CF =综上所述,CF 的长为4或故答案为:4或【点睛】本题考查折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.解题的关键是要注意本题有两种情况,需要分类讨论,避免漏解.三、解答题17.(1)4-;(2)3.【分析】(1)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可;(2)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可.【详解】(1)解析:(1)422)3.【分析】(1)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可; (2)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可.【详解】(1)2+81828818162232=42232=42==+(212273-23241227224333=2-3+4=3=⨯【点睛】此题考查了二次根式的加减乘法运算,解题的关键是熟练掌握二次根式的加减乘法运算法则.18.4米【分析】根据勾股定理列出方程,解方程即可.【详解】解:设水池里水的深度是x尺,由题意得,x2+52=(x+1)2,解得:x=12,米答:水池里水的深度是4米.【点睛】本题考查解析:4米【分析】根据勾股定理列出方程,解方程即可.【详解】解:设水池里水的深度是x尺,由题意得,x2+52=(x+1)2,解得:x=12,1∴⨯=米1243答:水池里水的深度是4米.【点睛】本题考查的是勾股定理的应用,掌握勾股定理、根据勾股定理正确列出方程是解题的关键.19.(1)见解析;(2)见解析;周长为4+2.【解析】【分析】(1)直接利用网格结合正方形的性质得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出答案.【详解】(1)解析:(1)见解析;(2)见解析;周长为.【解析】【分析】(1)直接利用网格结合正方形的性质得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出答案.【详解】(1)如图1,将AB 绕点A 逆时针旋转90︒得AD ,将AB 绕点B 顺时针旋转90︒得BC ,连接DC ,正方形ABCD 即为所求.(2)如图2所示,2AF BE ==∴S ▱ABEF 236=⨯= 由题意可知:221310AB =+=平行四边形ABEF 即为所求.周长为2()2(210)410AB BE +=⨯=+【点睛】本题考查作图、勾股定理、正方形的性质等知识,解题的关键是理解题意,学会利用数形结合的思想思考问题.20.(1)见解析;(2)四边形的面积.【分析】(1)利用平行四边形的性质先证明,可得再证明四边形是平行四边形,从而可得结论;(2)先求解,,再利用勾股定理求解,从而可得答案.【详解】(1)证明解析:(1)见解析;(2)四边形ABFC 的面积93=【分析】(1)利用平行四边形的性质先证明ABE FCE ∆≅∆,可得,AB FC =再证明四边形ABFC 是平行四边形,从而可得结论;(2)先求解6AF DF ==,132CF DF ==,再利用勾股定理求解2233AC AF CF -=而可得答案.【详解】(1)证明:四边形ABCD 是平行四边形, AB CD ∴=,//AB CD ,BAE CFE ∴∠=∠,点E 是ABCD 中BC 边的中点,BE CE ∴=,AEB FEC ∠=∠,()ABE FCE AAS ∴∆≅∆,,AB FC ∴=//AB FC ,∴四边形ABFC 是平行四边形,又AF BC =,∴平行四边形ABFC 为矩形;(2)解:由(1)得:四边形ABFC 为矩形,90ACF ∴∠=︒, AFD 是等边三角形,6AF DF ∴==,132CF DF ==,AC ∴∴四边形ABFC 的面积3AC CF =⨯==.【点睛】本题考查的是等边三角形的性质,勾股定理的应用,平行四边形的性质与判定,矩形的判定,熟练的使用矩形的判定定理是解题的关键.21.(1)﹣i ,1,;(2)﹣i ﹣6;(3)的最小值为25.【解析】【分析】(1)根据题目所给条件可得i3=i2•i ,i4=i2•i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所解析:(1)﹣i ,1,20221i i i--;(2)﹣i ﹣6;(325.【解析】【分析】(1)根据题目所给条件可得i 3=i 2•i ,i 4=i 2•i 2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案;(3)根据题目已知条件,a +bi =4+3i ,求出a 、b ,即可得出答案.【详解】(1)i 3=i 2•i =﹣1×i =﹣i ,i 4=i 2•i 2=﹣1×(﹣1)=1,设S =i +i 2+i 3+…+i 2021,iS =i 2+i 3+…+i 2021+i 2022,∴(1﹣i )S =i ﹣i 2022,∴S =20221i i i--,故答案为﹣i,1,20221i ii--;(2)(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i)=3﹣4i+3i﹣4i2﹣(4﹣9i2)=3﹣i+4﹣4﹣9=﹣i﹣6;(3)a+bi=2543i-=25(43)(43)(43)ii i+-+=10075169i++=4+3i,∴a=4,b=3,x,0)到点A(0,4),B(24,3)的最小距离,∵点A(0,4)关于x轴对称的点为A'(0,﹣4),连接A'B即为最短距离,∴A'B25,25.【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键.22.(1)y1=50+3x;当0<x<30且n为整数时,y2=80;当x≥30时且n为整数时,y2=5x-70;(2)见解析【分析】(1)根据题意,可以写出y1,y2关于x的函数解析式;(2)在0解析:(1)y1=50+3x;当0<x<30且n为整数时,y2=80;当x≥30时且n为整数时,y2=5x-70;(2)见解析【分析】(1)根据题意,可以写出y1,y2关于x的函数解析式;(2)在0<x<30范围内,令y1=y2,求x的值,可得y1>y2时x的取值范围,在x≥30时,令y1=y2可得x的值,即可得y1>y2时可得x的取值范围.【详解】解:(1)由题意得:y1=50+3x,当0<x<30且x为整数时,y2=80,当x≥30时且x为整数时,y2=80+5(x-30)=5x-70;(2)当0<x<30且x为整数时,当50+3x=80时,解得x=10,即10<x<30时,y1>y2,0<x<10时,y1<y2,当x≥30且x为整数时,50+3x=5x-70时,解得x=60,即x>60时,y2>y1,30≤x<60时,y2<y1,∴从日工资收入的角度考虑,①当0<x<10或x>60时,y2>y1,他应该选择方案二;②当10<x<60时,y1>y2,他应该选择方案一;③当x=10或x=60时,y1=y2,他选择两个方案均可.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23.(1)B(12,4);(2);(3)【分析】(1)由四边形是平行四边形,得到,,于是得到,,可求出点的坐标;(2)根据四边形是平行四边形,得到,即,解方程即可得到结论;(3)如图2,可分三解析:(1)B(12,4);(2);(3)【分析】(1)由四边形是平行四边形,得到,,于是得到,,可求出点B的坐标;(2)根据四边形是平行四边形,得到,即,解方程即可得到结论;(3)如图2,可分三种情况:①当时,②当时,③当时分别讨论计算即可.【详解】解:如图1,过C作于E,过B作于F,四边形是平行四边形,,,,C的坐标分别为,,,,,;(2)设点P运动秒时,四边形是平行四边形,由题意得:,点D是的中点,,四边形是平行四边形,,即,,当秒时,四边形是平行四边形;(3)如图2,①当时,过作于E,则,,,又,C的坐标分别为,,∴,即有,当点P与点C重合时,,;②当时,过作于G,则,,;③当时,过作于F,则,,,;综上所述:当是等腰三角形时,点P的坐标为,,,,.【点睛】本题是四边形综合题,考查了平行四边形的性质,等腰三角形的性质,勾股定理,熟练掌握平行四边形的性质和等腰三角形的性质是解题的关键.24.(1),;(2)或;(3)存在,或或【解析】【分析】(1)由△ABC 面积为10,可得AC =5,即可求C 点坐标,再将点B 与C 代入y =kx+b ,解二元一次方程组可求y =﹣x+4;(2)当D 点在E解析:(1)(3,0)C ,443y x =-+;(2)23(0,)7或(0,1)-;(3)存在,19(,0)3或31(,0)3-或1(,0)3- 【解析】【分析】(1)由△ABC 面积为10,可得AC =5,即可求C 点坐标,再将点B 与C 代入y =kx +b ,解二元一次方程组可求y =﹣43x +4; (2)当D 点在E 上方时,过点D 作MN ⊥y 轴,过E 、F 分别作ME 、FN 垂直与x 轴,与MN 交于点M 、N ,由△EDF 是等腰直角三角形,可证得△MED ≌△NDF (AAS ),设D(0,y ),F (m ,﹣43m +4),E (﹣1,2),由ME =y ﹣2,MD =1,DN =y ﹣2,NF =1,得到m =y ﹣2,y =1+(﹣43m +4)=5﹣43m ,求出D (0,237);当点D 在点E 下方时,过点D 作PQ ⊥y 轴,过P 、Q 分别作PE 、FQ 垂直与x 轴,与PQ 交于点P 、Q ,同理可证△PED ≌△QDF (AAS ),设D (0,y ),F (m ,﹣43m +4),得到PE =2﹣y ,PD =1,DQ =2﹣y ,QF =1,所以m =2﹣y ,1=﹣43m +4﹣y ,求得D (0,﹣1); (3)连接OG ,由S △ABG =S △ABO ,可得OG ∥AB ,求出AB 的解析式为y =2x +4,所以OG 的解析式为y =2x ,可求出G (65 ,125),进而能求出AG 的解析式为y =34x +32,设M (t ,34t +32),N (n ,0),①当BC 、MN 分别为对角线时,BC 的中点为(32,2),MN 的中点为(2t n +,38t +34),求得N (﹣13,0);②当BM 、CN 分别为对角线时,BM 的中点为(2t ,38t +114),CN 的中点为(32n +,0),求得N (﹣313,0);③当BN 、CM 分别为对角线时,BN 的中点为(2n ,2),CM 的中点为(32t +,38t +34),求得N (193,0). 【详解】解:(1)∵△ABC 面积为10, ∴12×AC ×OB =12×AC ×4=10,∴AC =5,∵A (﹣2,0),∴C(3,0),将点B与C代入y=kx+b,可得4 30bk b=⎧⎨+=⎩,∴434kb⎧=-⎪⎨⎪=⎩,∴y=﹣43x+4,故答案为(3,0),y=﹣43x+4;(2)当D点在E上方时,过点D作MN⊥y轴,过E、F分别作ME、FN垂直与x轴,与MN交于点M、N,∵△EDF是等腰直角三角形,∴∠EDF=90°,ED=DF,∵∠MDE+∠NDF=∠MDE+∠MED=90°,∴∠NDF=∠MED,∴△MED≌△NDF(AAS),∴ME=DN,MD=FN,设D(0,y),F(m,﹣43m+4),∵E是AB的中点,∴E(﹣1,2),∴ME=y﹣2,MD=1,∴DN=y﹣2,NF=1,∴m=y﹣2,y=1+(﹣43m+4)=5﹣43m,∴m=97,∴D(0,237);当点D在点E下方时,过点D作PQ⊥y轴,过P、Q分别作PE、FQ垂直与x轴,与PQ 交于点P、Q,∵△EDF是等腰直角三角形,∴∠EDF=90°,ED=DF,∵∠PDE+∠QDF=∠PDE+∠PED=90°,∴∠QDF=∠PED,∴△PED≌△QDF(AAS),∴PE=DQ,PD=FQ,设D(0,y),F(m,﹣43m+4)∵E是AB的中点,∴E(﹣1,2),∴PE=2﹣y,PD=1,∴DQ=2﹣y,QF=1,∴m=2﹣y,1=﹣43m+4﹣y,∴m=3,∴D(0,﹣1);综上所述:D点坐标为(0,﹣1)或(0,237);(3)连接OG,∵S△ABG=S△ABO,∴OG∥AB,设AB的解析式为y=kx+b,将点A(﹣2,0),B(0,4)代入,得420bk b=⎧⎨-+=⎩,解得24k b =⎧⎨=⎩, ∴y =2x +4,∴OG 的解析式为y =2x ,∴2x =﹣43x +4, ∴x =65, ∴G (65 ,125), 设AG 的解析式为y =k 1x +b 1,将点A 、G 代入可得11112061255k b k b -+=⎧⎪⎨+=⎪⎩, 解得113422k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴y =34x +32, ∵点M 为直线AG 上动点,点N 在x 轴上,则可设M (t ,34t +32),N (n ,0), 当BC 、MN 分别为对角线时,BC 的中点为(32,2),MN 的中点为(2t n +,38t +34), ∴322t n +=,38t +34=2, ∴t =103,n =﹣13, ∴N (﹣13,0); 当BM 、CN 分别为对角线时,BM 的中点为(2t ,38t +114),CN 的中点为(32n +,0), ∴322n t +=,38t +114=0, ∴t =﹣223,n =﹣313, ∴N (﹣313,0); ③当BN 、CM 分别为对角线时,BN 的中点为(2n ,2),CM 的中点为(32t +,38t +34), ∴322t n +=,38t +34=2, ∴t =103,n =193, ∴N (193,0); 综上所述:以点B ,C ,M ,N 为顶点的四边形为平行四边形时,N 点坐标为19(,0)3或31(,0)3-或1(,0)3-. 【点睛】本题考查一次函数的综合应用,(2)中注意D 点的位置有两种情况,避免丢解,同时解题时要构造K 字型全等,将D 点、F 点坐标联系起来,(3)中利用平行四边形对角线互相平分的性质,借助中点坐标公式解题,能简便运算,快速求解.25.(1),理由见解析;(2),理由见解析;(3),理由见解析【分析】(1)先根据正方形的性质可证得,由此可得,,再根据同角的补角相等证得,等量代换可得,由此可得,再等量代换即可得证;(2)过点E解析:(1)DE EF =,理由见解析;(2CD CF =+,理由见解析;(3)CD CF =-,理由见解析【分析】(1)先根据正方形的性质可证得BCE DCE ≌,由此可得CBE CDE ∠=∠,BE DE =,再根据同角的补角相等证得CDE EFB ∠=∠,等量代换可得CBE EFB ∠=∠,由此可得BE EF =,再等量代换即可得证;(2)过点E 作EG EC ⊥交CB 的延长线于点G ,先证明EG EC =,利用勾股定理可得CG ,再证明EGF ECB △≌△,由此可得GF CB CD ==,最后再等量代换即可得证;(3)仿照(1)和(2CD CF =-.【详解】解:(1)DE EF =,理由如下:∵四边形ABCD 是正方形,∴BC CD AD ==,90BCD ADC ∠=∠=︒, ∴180452ADC DAC DCA ︒-∠∠=∠==︒, ∴45BCE BCD DCA ∠=∠-∠=︒,∴BCE DCE ∠=∠,在BCE 与DCE 中,BC DC BCE DCE CE CE =⎧⎪∠=∠⎨⎪=⎩∴()BCE DCE SAS ≌,∴CBE CDE ∠=∠,BE DE =,∵EF DE ⊥,∴90FED ∠=︒,∵360EFC BCD CDE FED ∠+∠+∠+∠=︒,∴180CDE EFC ∠+∠=︒,∵180EFC EFB ∠+∠=︒,∴CDE EFB ∠=∠,∴CBE EFB ∠=∠,∴BE EF =,∴DE EF =;(2)2CE CD CF =+,理由如下:如图,过点E 作EG EC ⊥交CB 的延长线于点G ,∴90CEG ∠=︒,由(1)知:45BCE ∠=︒,∴45EGC BCE ∠=∠=︒, ∴EG EC =,∴在Rt GEC △中,222CG CE EG CE +,在EGF △与ECB 中,EGF ECB EFG EBC EF EB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EGF ECB AAS △≌△,∴GF CB CD ==,又∵CG GF CF CD CF =+=+, ∴2CE CD CF =+;(32CE CD CF =-,理由如下:如图,过点E 作EG EC ⊥交BC 于点G ,设CD 与EF 的交点为点P ,∴90CEG ∠=︒,由(1)可知:45BCE ∠=︒,∴45EGC BCE ∠=∠=︒,∴EG EC =,∴在Rt GEC △中,222CG CE EG CE +,∵EF DE ⊥,∴90FED ∠=︒,∴90CDE EPD ∠+∠=︒,∵18090DCF BCD ∠=︒-∠=︒,∴90CFE CPF ∠+∠=︒,又∵EPD CPF ∠=∠,∴CDE CFE ∠=∠,由(1)可知:CBE CDE ∠=∠,∴CBE CFE ∠=∠,在EGF △与ECB 中,EGF ECB EFG EBC EG EC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EGF ECB AAS △≌△,∴GF CB CD ==,又∵CG GF CF CD CF =-=-, ∴2CE CD CF =-.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的判定与性质以及勾股定理的应用,作出正确的辅助线并能灵活运用相关图形的性质是解决本题的关键.。
华师版八年级数学下册期末复习综合题含答案
华师版八年级数学下册期末复习综合题含答案第16章三、解答题(本大题共8小题,共72分) 17.(10分)计算:(1)|-2|+⎪⎪⎪⎪⎪⎪13 -1×(π-2 )0-9 +(-1)-2;解:原式=2+3×1-3+1=3.(2)⎝ ⎛⎭⎪⎫a 2b -cd 3 3 ÷2ad 3 · ⎝⎛⎭⎪⎫c 2a 3 ; 解:原式=(a 2b )3(-cd 3)3 ·d 32a ·c 3(2a )3=-a 6b 3c 3d 9 ·d 32a ·c 38a 3 =-a 2b 316d 6.(3)⎝ ⎛⎭⎪⎫a -1a 2-4a +4-a +2a 2-2a ÷⎝ ⎛⎭⎪⎫4a -1 . 解:原式=⎣⎢⎡⎦⎥⎤a -1(a -2)2-a +2a (a -2) ÷4-aa =a (a -1)-(a -2)(a +2)a (a -2)2 ·a4-a=a 2-a -a 2+4a (a -2)2·a4-a=1(a -2)2. 18.(6分)解方程:(1)(广安中考)23 +x 3x -1 =19x -3 ;解:方程两边同乘以3(3x -1)去分母, 得2(3x -1)+3x =1,解这个整式方程得x =13 ,经检验,x =13 是原方程的增根,所以原方程无解.(2)2x 2-4 +x x -2=1. 解:方程两边同时乘以(x +2)(x -2), 得2+x (x +2)=x 2-4. 2+x 2+2x =x 2-4.x =-3.经检验,x =-3是原分式方程的解. 19.(8分)先化简再求值:(1)aa -b ⎝ ⎛⎭⎪⎫1b -1a +a -1b ,其中a =2,b =13; 解:原式=aa -b·a -b ab +a -1b=1b +a -1b =a b. 当a =2,b =13 时,原式=213=6.(2)x 2x 2-1 ÷⎝⎛⎭⎪⎫1x -1+1 ,其中x 是5 的整数部分. 解:原式=x 2(x +1)(x -1) ·x -1x =xx +1.∵x 是5 的整数部分,∴x =2.当x =2时,原式=22+1 =23.20.(8分)已知分式(m -1)(m -3)m 2-3m +2 ,试问: (1)当m 为何值时,分式有意义? (2)当m 为何值时,分式值为0.解:(1)由题意得m 2-3m +2≠0,解得m ≠1且m ≠2. (2)由题意得(m -1)(m -3)=0,m 2-3m +2≠0,解得m =3, 当m =3时,分式值为0.21.(8分)已知|2a -b +1|+⎝ ⎛⎭⎪⎫3a +32b 2 =0,求代数式b 2a +b ÷⎝ ⎛⎭⎪⎫a a -b -1 ·⎝ ⎛⎭⎪⎫a -a 2a -b 的值. 解:化简代数式得原式=b 2a +b ÷a -(a -b )a -b ·a (a -b )-a 2a -b=b 2a +b ·a -b b ·-ab a -b =-ab 2a +b.由题意得a =-14 ,b =12 ,∴原式=--14×⎝ ⎛⎭⎪⎫122-14+12 =14 .22.(10分)按下列要求完成各题.(1)已知实数a ,b 满足关系1a +b +1a -b =b a 2-b 2 ,求2ab +b 2a 2的值;解:由1a +b +1a -b =2a a 2-b 2 =ba 2-b 2 可得b =2a ,将b =2a 代入2ab +b 2a 2 =2a ·2a +(2a )2a2=8. (2)如果3(x +1)(x -2) =A x +B x +1 +C x -2,求A ,B ,C 的值.解:Ax +B x +1 +C x -2 =(Ax +B )(x -2)+C (x +1)(x +1)(x -2)=Ax 2+(B +C -2A )x +C -2B(x +1)(x -2)=3(x +1)(x -2), ∴⎩⎪⎨⎪⎧A =0,B +C -2A =0,C -2B =3, ∴⎩⎪⎨⎪⎧A =0,B =-1,C =1.23.(10分)某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2 000元要多,多出的部分能购买25副乒乓球拍. (1)若每副乒乓球拍的价格为x 元,请你用含x 的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用; (2)若购买的两种球拍数一样,求x . 解:(1)(4 000+25x )元;(2)由题意得2 000x =2 000+25x x +20 ,解得x =±40,经检验,x =±40都是原方程的解,但x>0,∴x =40.24.(12分)(德阳中考)今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A 种板材48 000 m 2和B 种板材24 000 m 2的任务.(1)如果该厂安排210人生产这两种板材,每人每天能生产A 种板材60 m 2或B种板材40 m 2,请问:应分别安排多少人生产A 种板材和B 种板材,才能确保同时完成各自的生产任务?(2)某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:问这400解:(1)设x 人生产A 种板材,根据题意得48 00060x =24 00040(210-x ) ,解得x =120.经检验,x =120是分式方程的解.210-120=90. 故安排120人生产A 种板材,90人生产B 种板材, 才能确保同时完成各自的生产任务;(2)设生产甲种板房y 间,乙种板房(400-y )间, 安置人数为12y +10(400-y )=2y +4 000, 根据题意得{108y +156(400-y )≤48 000,61y +51(400-y )≤24 000,解得300≤y ≤360,因为2大于零,所以当y =360时安置的人数最多.360×2+4 000=4 720.故最多能安置4 720人.第17章三、解答题(本大题共8小题,共72分) 17.(10分)已知一次函数y =(3+m )x +n -6.(1)当m ,n 为何值时,函数的图象过原点?(2)当m ,n 满足什么条件时,函数的图象经过第一、二、三象限? 解:(1)依题意得{3+m ≠0,n -6=0, 得m ≠-3且n =6.(2) ∵该函数图象经过第一、二、三象限, ∴{3+m>0,n -6>0, 解得m>-3且n>6.18.(6分)判断A (-2,-5),B (3,5),C (7,13)三点是否在一条直线上,并说明理由.解:A ,B ,C 三点在同一条直线上,设经过A ,B 两点的直线表达式是y =kx +b (k ≠0), ∴{-5=-2k +b ,5=3k +b , ∴{k =2,b =-1. ∴y =2x -1,当x =7时,y =2×7-1=13,∴点C 在直线AB 上,即A ,B ,C 三点在同一条直线上. 19.(8分)已知直线y =2x +3与直线y =-2x -1. (1)若两直线与y 轴分别交于点A ,B ,求点A ,B 的坐标; (2)求两直线的交点C 的坐标; (3)求△ABC 的面积.解:(1)对于y =2x +3,令x =0, 则y =3.∴点A 的坐标为(0,3).对于y =-2x -1,令x =0,则y =-1.∴点B 的坐标为(0,-1). (2)解方程组{y =2x +3,y =-2x -1, 得{x =-1,y =1. ∴点C 的坐标为(-1,1).(3)△ABC 的面积为12×[3-(-1)]×|-1|=2.20.(8分)如图,已知某电路的电压U (V)、电流I (A)、电阻R (Ω)三者之间有如下关系式:U =IR ,且该电路的电压U 恒为220 V . (1)求出电流I 关于电阻R 的函数表达式;(2)如果该电路的电阻为200 Ω,则通过他的电流是多少?解:(1)电流I 关于电阻R 的函数表达式是I =220R(R>0);(2)通过他的电流是220200=1.1 A .21.(8分)如图,一次函数y 1=kx +b (k ≠0)和反比例函数y 2=m x(m ≠0)的图象交于点A (-1,6),B (a ,-2). (1)求一次函数与反比例函数的表达式; (2)根据图象直接写出y 1>y 2时,x 的取值范围.解:(1)把点A (-1,6)代入反比例函数y 2=mx(m ≠0),得m =-1×6=-6,∴y 2=-6x.将B (a ,-2)代入y 2=-6x ,得-2=-6a,解得a =3,∴B (3,-2).将A (-1,6),B (3,-2)代入一次函数y 1=kx +b , 得{-k +b =6,3k +b =-2, 解得{k =-2,b =4. ∴y 1=-2x +4.(2)由函数图象可得当y 1>y 2时,x<-1或0<x<3.22.(10分)(泸州中考)某工厂现有甲种原料380千克,乙种原料290千克,计划用这两种原料生产A ,B 两种产品共50件.已知生产一件A 产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1 200元.设生产A,B两种产品的总利润为y元,其中A种产品生产的件数是x.(1)写出y与x之间的函数关系式;(2)如何安排A,B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.解:(1)y=700x+1200(50-x),即y=-500x+60000;(2)由题意得{9x+4(50-x)≤380,3x+10(50-x)≤290,解得30≤x≤36,y=-500x+60000,y随x的增大而减小,当x=30时,y最大=45000,生产B种产品20件,A种产品30件,总利润y有最大值,y最大=45000元.23.(10分)甲、乙两名大学生去距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车步行前往,乙骑电动车沿原路返回.乙取到相机后(在学校取相机所用时间忽略不计),骑电动车追甲,在距乡镇13.5千米处追上甲并同车前往乡镇.若电动车速度始终不变,设甲与学校相距y甲(千米),乙与学校相距y乙(千米),甲离开学校的时间为x(分),y甲,y乙与x之间的函数图象如图所示.结合图象解答下列问题:(1)电动车的速度为__0.9__千米/分;(2)甲步行所用的时间为__45__分钟;(3)求乙返回到学校时,甲与学校相距多远.解:甲步行过程中,设y甲与x的函数关系式为y甲=kx+b,则{20k +b =18,65k +b =22.5, 解得{k =0.1,b =16, ∴y 甲=0.1x +16,当x =40时,y 甲=20. 即乙返回到学校时,甲与学校相距20千米.24.(12分)某个体户购进一批时令水果,20天销售完毕.他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量y (千克)与销售时间x (天)之间的函数关系如图甲所示,销售单价p (元/千克)与销售时间x (天)之间的函数关系如图乙所示. (1)直接写出y 与x 之间的函数关系式; (2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元/千克?解:(1)y ={2x (0≤x ≤15),-6x +120(15<x ≤20). (2)设销售单价p (元/千克)与销售时间x (天)之间的函数关系式为p =kx +b (10≤x ≤20),把点(10,10),(20,8)代入,得{10k +b =10,20k +b =8, 解得⎩⎨⎧k =-15,b =12.∴p =-15 x +12(10≤x ≤20).当x =15时,p =-15 ×15+12=9.第10天的销售金额为2×10×10=200元, 第15天的销售金额为30×9=270元.(3)当y ≥24时,①24≤2x ≤30,解得12≤x ≤15;②24≤-6x +120<30.解得15<x ≤16.综上可知“最佳销售期”的范围是12≤x ≤16,共有5天. 对于函数p =-15 x +12(10≤x ≤20),y 随x 的值的增大而减小,故当x =12时,p 有最大值,最高单价为-15×12+12=9.6元/千克.第18章三、解答题(本大题共8小题,共72分)17.(6分)如图,在▱ABCD 的对角线AC 上取两点E 和F ,若AE =CF ,求证:∠AFD =∠CEB .证明:∵四边形ABCD 为平行四边形, ∴AD 綊BC ,∴∠DAF =∠BCE , ∵AE =CF ,∴AE +EF =CF +EF , 即AF =CE ,∴△DAF ≌△BCE , ∴∠AFD =∠CEB.18.(10分)(宿迁中考)如图,在▱ABCD 中,点E ,F 分别在边CB ,AD 的延长线上,且BE =DF ,EF 分别与AB ,CD 交于点G ,H ,求证:AG =CH .证明:∵四边形ABCD 是平行四边形, ∴∠A =∠C ,AD ∥BC ,AD =BC ,∴∠E =∠F. 又∵BE =DF ,∴AD +DF =BC +BE ,即AF =EC.在△AGF 和△CHE 中,{∠A =∠C ,AF =CE ,∠F =∠E , ∴△AGF ≌△CHE (A.S.A.),∴AG =CH.19.(8分)如图,AB ,CD 相交于点O ,AC ∥DB ,AO =BO ,E ,F 分别是OC ,OD 的中点.求证: (1)△AOC ≌△BOD ;(2)四边形AFBE 是平行四边形.证明:(1)∵AC ∥DB ,∴∠C =∠D ,在△AOC 和△BOD 中,{∠C =∠D ,∠COA =∠DOB ,AO =BO , ∴△AOC ≌△BOD ;(2) ∵△AOC ≌△BOD ,∴CO =DO.∵E ,F 分别是OC ,OD 的中点,∴OF =12 OD ,OE =12 OC ,∴EO =FO ,又∵AO =BO ,∴四边形AFBE 是平行四边形.20.(8分)如图,▱ABCD 中,∠BAD 和∠DCB 的平分线AE ,CF 分别交BC ,AD 于点E ,F ,点M ,N 分别为AE ,CF 的中点,连接FM ,EN ,试判断FM 和EN 的数量关系和位置关系,并加以证明.解:FM =EN ,FM ∥EN.证明如下:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD ,∠BAD =∠DCB ,∠B =∠D , ∴∠DAE =∠AEB ,∠DFC =∠BCF.∵∠BAD 和∠DCB 的平分线AE ,CF 分别交BC ,AD 于点E ,F ,∴∠BAE =∠DAE=12 ∠BAD ,∠BCF =∠DCF =12∠DCB ,∴∠BAE=∠DCF.在△BAE和△DCF中,{∠B=∠D,AB=CD,∠BAE=∠DCF,∴△BAE≌△DCF(ASA),∴AE=CF,∠AEB=∠DFC,∴∠AEB=∠BCF,∴AE∥CF.∵点M,N分别为AE,CF的中点,∴ME∥FN,ME=FN,∴四边形MENF是平行四边形,∴FM=EN,FM∥EN.21.(8分)如图,在▱ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在B′,C′处,线段EC′与线段AF交于点G,连结DG,B′G.求证:(1)∠1=∠2;(2)DG=B′G.证明:(1)∵在平行四边形ABCD中,DC∥AB,∴∠2=∠FEC,由折叠得∠1=∠FEC.∴∠1=∠2.(2)∵∠1=∠2,∴EG=GF.∵AB∥DC,∴∠DEG=∠EGF.由折叠得EC′∥B′F,B′F=BF,∴∠B′FG=∠EGF,∴∠DEG=∠B′FG.∵DE=BF,∴DE=B′F,∴△DEG≌△B′FG,∴DG=B′G.22.(10分)如图所示,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC.(1)求证:CD=AN;(2)若AC⊥DN,AN=2,MN=1,求四边形ADCN的面积.(1) 证明:∵CN ∥AB ,∴∠DAC =∠NCA , (2)在△ADM 和△CNM 中,∵{∠DAC =∠NCA ,∠AMD =∠CMN ,MA =CM , ∴△ADM ≌△CNM , ∴CN =AD , ∵CN ∥AD ,∴四边形ADCN 为平行四边形,∴CD =AN ; (2)解:∵AC ⊥DN ,MN =1,AN =2,∴AM =AN 2-MN 2 =3 ,∴S △AMN =12 AM ·MN =12 ×3 ×1=32.∵四边形ADCN 是平行四边形,∴S 四边形ADCN =4S △AMN =23 .23.(10分)如图,平行四边形ABCD 中,BD ⊥AD ,∠A =45°,E ,F 分别是AB ,CD 上的点,且BE =DF ,连结EF 交BD 于点O .(1)求证:BO =DO ;(2)若EF ⊥AB ,延长EF 交AD 的延长线于点G ,当FG =1时,求AE 的长.(1) 证明:∵四边形ABCD 是平行四边形, (2)∴DC ∥AB ,∴∠OBE =∠ODF.在△OBE 与△ODF 中,{∠BOE =∠DOF ,∠OBE =∠ODF ,BE =DF , ∴△OBE ≌△ODF ,∴BO =DO.(2) 解:∵EF ⊥AB ,AB ∥DC ,∴∠GFD =∠GEA =90°.∵∠A =45°,∴∠G =∠A =45°,∴AE =GE.∵BD ⊥AD ,∴∠ADB =∠GDO =90°,∴∠GOD=∠G=45°,∴DG=DO,∴OF=FG=1.由(1)可知,OE=OF=1,∴GE=OE+OF+FG=3,∴AE=3.24.(12分)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与点B,C重合),△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC 于点E,连接BF.(1)如图①,求证:△AFB≌△ADC;(2)请判断图①中四边形BCEF的形状,并说明理由;(3)若点D在BC的延长线上,如图②,其他条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.(1)证明:∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°.又∵∠FAB=∠FAD-∠BAD,∠DAC=∠BAC-∠BAD,∴∠FAB=∠DAC.在△AFB和△ADC中,{AF=AD,∠BAF=∠CAD,AB=AC,∴△AFB≌△ADC(S.A.S.).(2)解:四边形BCEF为平行四边形.理由如下:由(1)得△AFB≌△ADC,∴∠ABF=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABF=∠BAC,∴FB∥AC.又∵BC∥EF,∴四边形BCEF是平行四边形.(3)解:成立,理由如下:∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠BAC-∠FAE,∠DAC=∠FAD-∠FAE,∴∠FAB=∠DAC.在△AFB和△ADC中,{AF=AD,∠BAF=∠CAD,AB=AC,∴△AFB≌△ADC(S.A.S.),∴∠AFB=∠ADC,又∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,∴∠ADC=∠EAF,∴∠AFB=∠EAF,∴BF∥AE.又∵BC∥EF,∴四边形BCEF是平行四边形.第19章三、解答题(本大题共8小题,共72分)17.(10分)如图,在矩形ABCD内部,以AB为边作等边△ABE,且DE=CE,∠DEC=90°,求∠AED的度数.解:∵四边形ABCD是矩形,△ABE是等边三角形,∴AD=BC,AE=BE,∠AEB=60°,在△ADE和△BCE中,{AD=BC,AE=BE,DE=CE,∴△ADE≌△BCE(S.S.S.),∴∠AED=∠BEC,∵∠DEC=90°,∴∠AED=(360°-90°-60°)÷2=105°.18.(6分)如图,Rt△ABC中,∠C=90°,∠A,∠B的平分线交于点O,OE ⊥BC于点E,OF⊥AC于点F,求证:四边形CEOF为正方形.证明:过O点作OG⊥AB,∵AO,BO分别平分∠CAB,∠ABC,OE⊥BC,OF⊥AC,∴OF=OE=OG.又∵∠C=90°,∴四边形CEOF为正方形.19.(8分)如图,在菱形ABCD中,F为对角线BD上一点,点E为AB延长线上一点,DF=BE,CE=CF.求证:(1)△CFD≌△CEB;(2)∠CFE=60°.证明:(1)∵四边形ABCD是菱形,∴CD=CB.在△CFD和△CEB中,{CD=CB,CF=CE,DF=BE,∴△CFD≌△CEB(S.S.S.).(2)∵△CFD≌△CEB,∴∠CDB=∠CBE,∠DCF=∠BCE.∵四边形ABCD是菱形,∴∠CBD=∠ABD.∵CD=CB,∴∠CDB=∠CBD,∴∠ABD=∠CBD=∠CBE=60°.∴∠DCB=60°,∴∠FCE=∠DCB=60°.∵CF=CE,∴∠CFE=∠CEF=60°.20.(8分)如图,点E是正方形ABCD外一点,点F是线段AE上一点,△EBF 是等腰直角三角形,其中∠EBF=90°,连结CE,CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.(1)证明:∵四边形ABCD是正方形,(2)∴AB=CB,∠ABC=90°.∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∠EBC+∠FBC=90°.又∵∠ABF+∠FBC=90°,∴∠ABF=∠CBE.在△ABF和△CBE中,有{AB=CB,∠ABF=∠CBE,BF=BE,∴△ABF≌△CBE(S.A.S.).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°-∠BFE=135°.又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB-∠FEB=135°-45°=90°,∴△CEF是直角三角形.21.(8分)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD 的中点,射线BE交AD的延长线于点F,连结CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.(1)证明:∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC.在△BCE与△FDE中,{∠FBC=∠BFD,∠DCB=∠CDF,DE=EC,∴△BCE≌△FDE,∴DF=BC.又∵DF∥BC,∴四边形BCFD为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)解:∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB=BD2-AD2=3,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF=AB2+AF2=12 .22.(10分)如图,在△ABC中,D是BC边的中点,E,F分别在线段AD及其延长线上,CE∥BF.(1)求证:△BDF≌△CDE;(2)若BD=DF,求证:四边形BFCE是矩形.证明:(1)∵D是BC边的中点,∴BD=DC.∵CE∥BF,∴∠ECD=∠FBD.在△BDF和△CDE中,{∠FBD=∠ECD,DB=DC,∠BDF=∠CDE,∴△BDF≌△CDE(A.S.A.).(2)∵△BDF≌△CDE,∴ED=DF.又BD=CD,∴四边形BFCE是平行四边形.∵BD=DF,∴BC=EF.∴四边形BFCE是矩形.23.(10分)如图,菱形ABCD中,对角线AC,BD交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为矩形;(2)在BC上截取CF=CO,连结OF,若AC=16,BD=12,求四边形OFCD的面积.(1)证明:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 为平行四边形. 又∵四边形ABCD 是菱形,∴AC ⊥BD , ∴∠DOC =90°.∴四边形OCED 为矩形; (2)解:作OH ⊥BC 于点H.∵四边形ABCD 是菱形,∴AC ⊥BD ,OD =OB =12 BD =6,OA =OC =12 AC =8.∴S △DBC =12DB ·OC =48.在Rt △OBC 中,BC =OB 2+OC 2 =10,∵CF =CO =8, ∴BF =2.∵S △OBC =12 ·BO ·OC =12 ·BC ·OH ,∴6×8=10×OH.∴OH =48,∴S △OBF =12·BF ·OH =4.8,∴S 四边形OFCD =S △DBC -S △OBF =48-4.8=43.2.24.(12分)在菱形ABCD 中,∠ABC =60°,E 是对角线AC 上任意一点,F 是线段BC 延长线上一点,且CF =AE ,连结BE ,EF . (1)如图①,当E 是线段AC 的中点时,求证:BE =EF ;(2)如图②,当点E 不是线段AC 的中点,其它条件不变时,请你判断(1)中的结论:__成立__.(选填“成立”或“不成立”)(3)如图③,当点E 是线段AC 延长线上的任意一点,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.(1)证明:∵四边形ABCD 是菱形,∴AB =BC , ∵∠ABC =60°, ∴△ABC 是等边三角形, ∴∠BCA =60°, ∵E 是线段AC 的中点,∴∠CBE =∠ABE =30°,AE =CE , ∵CF =AE ,∴CE =CF ,∴∠F =∠CEF =12 ∠BCA =30°,∴∠CBE =∠F =30°,∴BE =EF ;(2)解:结论成立;理由如下:过点E 作EG ∥BC 交AB 于点G , ∵四边形ABCD 为菱形,∴AB =BC ,∠BCD =120°,AB ∥CD , ∴∠ACD =60°,∠DCF =∠ABC =60°, ∴∠ECF =120°, 又∵∠ABC =60°, ∴△ABC 是等边三角形, ∴AB =AC ,∠ACB =60°,又∵EG ∥BC ,∴∠AGE =∠ABC =60°, 又∵∠BAC =60°, ∴△AGE 是等边三角形,∴AG =AE =GE ,∠AGE =60°,∴BG =CE ,∠BGE =120°=∠ECF ,又∵CF =AE,∴GE=CF,在△BGE和△ECF中,{BG=CE,∠BGE=∠ECF,GE=CF,∴△BGE≌△ECF(S.A.S.),∴BE=EF.(2)解:结论成立,证明如下:过点E作EG∥BC交AB的延长线于点G,∵四边形ABCD为菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠ECF=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∠AGE=60°,∴BG=CE,∠AGE=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△ECF中,{BG=CE,∠AGE=∠ECF,GE=CF,∴△BGE≌△ECF(S.A.S.),∴BE=EF.第20章三、解答题(本大题共8小题,共72分)17.(6分)某校规定学生期末数学总评成绩由三部分构成:卷面成绩、课外论文成绩、平日表现成绩(三部分所占比例如图),若小方的三部分得分依次是92,80,84,求他这学期期末数学总评成绩是多少?解:92×70%+80×20%+84×10%=88.8分,即小方的数学总评成绩为88.8分.18.(10分)2018年7月27日上午九点三十分在黑龙红省青少年发展基金会举行“2018年园梦大学捐款资助仪式”.八年级(1)班50名同学积极参加了这次捐款活动,下表是小明对全班捐款情况的统计结果:38元.(1)根据以上信息,请帮助小明计算出被污染的数据,并写出解答过程;(2)该班捐款金额的众数、中位数分别是多少?解:(1)被污染处的人数为50-(3+6+11+13+6)=11人.设被污染处的捐款数为x元,则11x+1460=50×38,解得x=40.即被污染处的捐款为40元;(2)捐款金额的中位数是40元,捐款金额的众数是50元.19.(8分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选他们的各项成绩如下表所示:人的综合成绩(满分为100分).(1)(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.解:(1)这四名候选人面试成绩的中位数为88+902 =89分;(2)由题意得x ×60%+90×40%=87.6, 解得x =86,答:表中x 的值为86;(3)甲候选人综合成绩为90×60%+88×40%=89.2分, 乙候选人的综合成绩为84×60%+92×40%=87.2分, 丁候选人的综合成绩为88×60%+86×40%=87.2分, ∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.20.(8分)(东莞中考)甲、乙两人参加操作技能培训,他们在培训期间参加的5次测试成绩(满分10分)记录如下:(1) (2)如果乙再测试一次,成绩为8分,请计算乙6次测试成绩的方差(结果保留小数点后两位).解:(1)∵x 甲=x 乙,s 2甲 <s 2乙 ,∴甲的成绩比较稳定,派甲参赛比较合适;(2)x 乙=(5+9+7+10+9+8)÷6=8,s 2乙=16[(5-8)2+(9-8)2+(7-8)2+(10-8)2+(9-8)2+(8-8)2] ≈2.67.21.(8分)(威海中考)为积极响应“弘扬传统文化”的号召,某学校倡导全校1 200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表(1)活动启动之初学生“一周诗词诵背数量”的中位数为__4.5__首; (2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数; (3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果. 解:(1)本次调查的学生有20÷60°360°=120名, 背诵4首的有120-15-20-16-13-11=45人, ∵15+45=60人,∴这组数据的中位数是(4+5)÷2=4.5首, 故答案为4.5首; (3)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有1 200×40+25+20120=850人,答:大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人; (3)活动启动之初的中位数是4.5首,众数是4首,大赛比赛后一个月时的中位数是6首,众数是6首,由比赛前后的中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次活动举办后的效果比较理想.22.(10分)甲、乙两名同学进入九年级后,某科6次考试成绩如图:(1)请根据统计图填写下表:(2)析;①从平均数和方差相结合看;②从折线图上两名同学分数的走势上看,你认为反映出什么问题?解:(2)①甲、乙两同学平均分相同,乙的方差小,说明乙的成绩较稳定;②甲的成绩越来越好,而乙的成绩起伏不定.23.(10分)某地发生地震后,某校学生会向全校1 900名学生发起了“心系灾区人民”的捐款活动.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为__50人__,图①中m的值是__32__;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.解:(2)平均数为16元,众数为10元,中位数为15元.(3)608名.24.(12分)射击训练班中的甲、乙两名选手在5次射击训练中的成绩依次为(单位:环):甲:8,8,7,8,9乙:5,9,7,10,9教练根据他们的成绩绘制了如下尚不完整的统计图表:(1)a=__8__,b=__8__,c=__9__;(2)完成图中表示乙成绩变化情况的折线;(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是什么?(4)若选手乙再射击第6次,命中的成绩是8环,则选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会__变小__.(选填“变大”“变小”或“不变”)解:(1)由题可得a=15(5+9+7+10+9)=8;甲的成绩7,8,8,8,9中,8出现的次数最多,故众数b=8;而乙的成绩5,7,9,9,10中,中位数c=9;故答案为:8,8,9;(2)乙成绩变化情况的折线如图.(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是两人的平均成绩相同,而甲的成绩的方差小,即甲的成绩较稳定;(4)由题可得,选手乙这6次射击成绩5,9,7,10,9,8的方差=16[(5-8)2+(9-8)2+(7-8)2+(10-8)2+(9-8)2+(8-8)2]≈2.7<3.2,∴选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会变小.故答案为变小.。
精品解析2022年人教版八年级数学下册第十八章-平行四边形综合测试试题(含答案及详细解析)
人教版八年级数学下册第十八章-平行四边形综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知直线:l y x =,点P 在直线l 上,点(2A ,点(2B +,若APB △是直角三角形,则点P 的个数有( )A .1个B .2个C .3个D .4个2、如图,四边形ABCD 是平行四边形,下列结论中错误的是( )A .当▱ABCD 是矩形时,∠ABC =90°B .当▱ABCD 是菱形时,AC ⊥BD C .当▱ABCD 是正方形时,AC =BD D .当▱ABCD 是菱形时,AB =AC3、如图所示,在矩形ABCD 中,已知AE ⊥BD 于E ,∠DBC =30°,BE =1cm ,则AE 的长为( )A.3cm B.2cm C.D4、ABCD的周长为32cm,AB:BC=3:5,则AB、BC的长分别为()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm5、如图,在菱形ABCD中,AB=5,AC=8,过点B作BE⊥CD于点E,则BE的长为()A.125B.245C.6 D.4856、如图菱形ABCD,对角线AC,BD相交于点O,若BD=8,AC=6,则AB的长是()A.5 B.6 C.8 D.107、如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E,若∠1=40°,则∠2的度数为()A .25°B .20°C .15°D .10°8、平行四边形ABCD 中,60A ∠=︒,则C ∠的度数是( )A .30B .60︒C .90︒D .120︒9、如图,平行四边形ABCD 的周长为36,对角线AC ,BD 相交于点O ,点E 是CD 的中点,BD =12,则△DOE 的周长是( )A .12B .15C .18D .2410、如图,在四边形ABCD 中,AD BC ∥,6BC =,BDC ∆面积为21,AB 的垂直平分线MN 分别交,AB AC 于点,M N ,若点P 和点Q 分别是线段MN 和BC 边上的动点,则PB PQ +的最小值为( )A .5B .6C .7D .8第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,正方形ABCD 的面积为6,△CDE 是等边三角形,点E 在正方形ABCD 内,在对角线BD 上有一动点K ,则KA +KE 的最小值为 _____________.2、如图,菱形ABCD的对角线AC,BD相交于点O,E为DC的中点,若2OE ,则菱形的周长为__________.3、点D、E分别是△ABC边AB、AC的中点,已知BC=12,则DE=_____4、判断:(1)菱形的对角线互相垂直且相等____( )____(2)菱形的对角线把菱形分成四个全等的直角三角形____( )____5、如图,在平行四边形ABCD中,∠B=45°,AD=8,E、H分别为边AB、CD上一点,将▱ABCD沿EH 翻折,使得AD的对应线段FG经过点C,若FG⊥CD,CG=4,则EF的长度为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,ABCD是平行四边形,AD=4,AB=5,点A的坐标为(-2,0),求点B、C、D的坐标.2、如图,在Rt △ABC 中,∠ACB =90°.(1)作AB 的垂直平分线l ,交AB 于点D ,连接CD ,分别作∠ADC ,∠BDC 的平分线,交AC ,BC 于点E ,F (尺规作图,不写作法,保作图痕迹);(2)求证:四边形CEDF 是矩形.3、如图,在菱形ABCD 中,点E ,F 分别是边AB 和BC 上的点,且BE =BF .求证:∠DEF =∠DFE .4、如图,在平行四边形ABCD 中,8cm AB =,16cm BC =.30B ∠=︒.点P 在BC 上由点B 向点C 出发,速度为每秒2cm ;点Q 在边AD 上,同时由点D 向点A 运动,速度为每秒1cm .当点P 运动到点C 时,点P ,Q 同时停止运动.连接PQ ,设运动时间为t 秒.(1)当t为何值时,四边形ABPO为平行四边形?(2)设四边形ABPQ的面积为y,求y与t之间的函数关系式.∠的度数.(3)当t为何值时,四边形ABPQ的面积是四边形ABCD的面积的四分之三?求出此时PQD(4)连接AP,是否存在某一时刻t,使ABP△为等腰三角形?若存在,请求出此刻t的值;若不存在,请说明理由.5、如图,已知正方形ABCD中,点E是边BC延长线上一点,连接DE,过点B作BF DE⊥,垂足为点F,BF与CD交于点G.(1)求证:CG CE=;(2)若BE=DG=BG的长.---------参考答案-----------一、单选题1、C【解析】【分析】分别讨论90APB∠=︒三种情况,求出P点坐标即可得出答案.PAB∠=︒,90PBA∠=︒,90【详解】如图,当90PAB ∠=︒时,点A 与点P 横坐标相同,(22,0)A -2x ∴=y x =中得:2y =1(2P ∴,当90PBA ∠=︒时,点B 与点P 横坐标相同,(22,0)B +,2x ∴=代入y x =中得:2y =2(2P ∴,当90APB ∠=︒时,取AB 中点为点C ,过点P 作PM AB ⊥交于点M ,设(,)P a a ,OM a ∴=,PM a =,(22,0)A -,(2B +,2(2AB ∴=+=12AC PC AB ∴==22OC OA AC ∴=+==,2CM a ∴=-,在Rt PMC 中,222(2)a a +-=,解得:1a =,(1,1)P ∴,P ∴点有3个.故选:C .【点睛】本题考查直角三角形的性质与平面直角坐标系,掌握分类讨论的思想是解题的关键.2、D【解析】【分析】由矩形的四个角是直角可判断A ,由菱形的对角线互相垂直可判断B ,由正方形的对角线相等可判断C ,由菱形的四条边相等可判断D ,从而可得答案.【详解】解:当▱ABCD 是矩形时,∠ABC =90°,正确,故A 不符合题意;当▱ABCD 是菱形时,AC ⊥BD ,正确,故B 不符合题意;当▱ABCD 是正方形时,AC =BD ,正确,故C 不符合题意;当▱ABCD 是菱形时,AB =BC ,故D 符合题意;【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.3、D【解析】【分析】根据矩形和直角三角形的性质求出∠BAE=30°,再根据直角三角形的性质计算即可.【详解】解:∵四边形ABCD是矩形,∴∠BAD=90°,∠BDA=∠DBC=30°,∵AE⊥BD,∴∠DAE=60°,∴∠BAE=30°,在Rt△ABE中,∠BAE=30°,BE=1cm,∴AB=2cm,cm),∴AE故选:D.【点睛】本题考查了矩形的性质,含30度角的直角三角形的性质,熟记各图形的性质并准确识图是解题的关键.4、C【解析】根据平行四边形的性质,可得AB =CD ,BC =AD ,然后设3cm,5cm AB x BC x == ,可得到()23532x x += ,即可求解.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,BC =AD ,∵AB :BC =3:5,∴可设3cm,5cm AB x BC x == ,∵ABCD 的周长为32cm ,∴()232AB BC += ,即()23532x x += ,解得:2x = ,∴6cm,10cm AB BC == .故选:C【点睛】本题主要考查了平行四边形的性质,熟练掌握平行四边形的对边相等是解题的关键.5、B【解析】【分析】根据菱形的性质求得BD 的长,进而根据菱形的面积等于12AC BD CD BE ⋅=⋅,即可求得BE 的长【详解】解:如图,设,AC BD 的交点为O ,四边形ABCD 是菱形AC BD ∴⊥,142AO CO AC ===,DO BO =,5CD AB == 在Rt AOB 中,5AB =,4AO =3BO ∴26BD BO ∴== 菱形的面积等于12AC BD CD BE ⋅=⋅1168242255AC BD BE CD ⋅⨯∴==⨯= 故选B【点睛】本题考查了菱形的性质,掌握菱形的性质,求得BD 的长是解题的关键.6、A【解析】【分析】由菱形的性质可得OA =OC =3,OB =OD =4,AO ⊥BO ,由勾股定理求出AB .【详解】解:∵四边形ABCD 是菱形,AC =6,BD =8,∴OA =OC =3,OB =OD =4,AO ⊥BO ,在Rt△AOB中,由勾股定理得:5AB=,故选:A.【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.7、D【解析】【分析】根据矩形的性质,可得∠ABD=40°,∠DBC=50°,根据折叠可得∠DBC′=∠DBC=50°,最后根据∠2=∠DB C′−∠DBA进行计算即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,CD∥AB,∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,由折叠可得∠DB C′=∠DBC=50°,∴∠2=∠DB C′−∠DBA=50°−40°=10°,故选D.【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA 的度数.8、B【解析】【分析】根据平行四边形对角相等,即可求出C∠的度数.【详解】解:如图所示,∵四边形ABCD是平行四边形,∴A C∠=∠,∴60A∠=︒,∴60∠=°.C故:B.【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.9、B【解析】【分析】根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是BC,所以易求△DOE的周长.△BCD的中位线,可得OE=12【详解】解:∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=12BD=6.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=12CD,∴OE=12BC,∴△DOE的周长=OD+OE+DE=12BD+12(BC+CD)=6+9=15,故选:B.【点睛】本题考查了三角形中位线定理、平行四边形的性质.解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质.10、C【解析】【分析】连接AQ,过点D作DH BC⊥,根据垂直平分线的性质得到PA PB=,再根据PB PQ AP PQ AQ+=+≥计算即可;【详解】连接AQ,过点D作DH BC⊥,∵6BC=,BDC∆面积为21,∴1212BC DH =, ∴7DH =,∵MN 垂直平分AB ,∴PA PB =,∴PB PQ AP PQ AQ +=+≥,∴当AQ 的值最小时,PB PQ +的值最小,根据垂线段最短可知,当AQ BC ⊥时,AQ 的值最小, ∵AD BC ∥,∴7AQ DH ==,∴PB PQ +的值最小值为7;故选C .【点睛】本题主要考查了四边形综合,垂直平分线的性质,准确分析计算是解题的关键.二、填空题1【解析】【分析】根据正方形的性质可知C 、A 关于BD 对称,推出CK =AK ,推出EK +AK ≥CE ,根据等边三角形性质推出CE =CD ,根据正方形面积公式求出CD 即可.【详解】解:∵四边形ABCD 是正方形,∴C 、A 关于BD 对称,即C 关于BD 的对称点是A ,如图,连接CK ,则CK =AK ,∴EK+CK≥CE,∵△CDE是等边三角形,∴CE=CD,∵正方形ABCD的面积为6,∴CD,∴KA+KE【点睛】本题考查了正方形的性质,轴对称-最短路径问题,等边三角形的性质等知识点的应用,解此题的关键是确定K的位置和求出KA+KE的最小值是CE.2、16【解析】【分析】由菱形的性质和三角形中位线定理即可得菱形的边长,从而可求得菱形的周长.【详解】∵四边形ABCD是菱形,且对角线相交于点O∴点O是AC的中点∵E为DC的中点∴OE为△CAD的中位线∴AD=2OE=2×2=4∴菱形的周长为:4×4=16故答案为:16【点睛】本题考查了菱形的性质及三角形中位线定理、菱形周长等知识,掌握这些知识是解答本题的关键.3、6【解析】【分析】根据三角形的中位线等于第三边的一半进行计算即可.【详解】解:∵D、E分别是△ABC边AB、AC的中点,∴DE是△ABC的中位线,∵BC=12,BC=6,∴DE=12故答案为6.【点睛】本题主要考查了三角形中位线定理,熟知三角形中位线定理是解题的关键.4、× √【解析】【分析】根据菱形的性质,即可求解.【详解】解:(1)菱形的对角线互相垂直且平分;(2)菱形的对角线把菱形分成四个全等的直角三角形.故答案为:(1)×;(2)√【点睛】本题主要考查了菱形的性质,熟练掌握菱形的对角线互相垂直且平分是解题的关键.5、8【解析】【分析】延长CF与AB交于点M,由平行四边形的性质得BC长度,GM⊥AB,由折叠性质得GF,∠EFM,进而得FM,再根据△EFM是等腰直角三角形,便可求得结果.【详解】解:延长CF与AB交于点M,∵FG⊥CD,AB∥CD,∴CM ⊥AB ,∵∠B =45°,BC =AD =8,∴CM由折叠知GF =AD =8,∵CG =4,∴MF =CM -CF =CM -(GF -CG )-4,∵∠EFC =∠A =180°-∠B =135°,∴∠MFE =45°,∴EF ()故答案为:【点睛】本题主要考查了平行四边形的性质,折叠的性质,解直角三角形的应用,关键是作辅助线构造直角三角形.三、解答题1、(3,0)B 、(5,C 、(0,D【分析】根据5AB =,(2,0)A -即可求得点B ,勾股定理求得OD 即可求得点D ,再根据平行四边形的性质可得C 点坐标.【详解】解:ABCD 是平行四边形,∴CD x ∥轴,5CD AB ==,由题意可得,2OA =,90AOD ∠=︒,∴OD =,即(0,D ,∵(2,0)A -,5AB =,∴(3,0)B ,∵(0,D ,5CD AB ==,CD x ∥轴,∴(5,C ,∴(3,0)B 、(5,C 、(0,D .【点睛】此题考查了坐标与图形,涉及了勾股定理、平行四边形的性质,解题的关键是掌握并灵活运用相关性质进行求解.2、(1)见解析(2)见解析【分析】(1)利用垂直平分线和角平分线的尺规作图法,进行作图即可.(2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明CED ∠与EDF ∠都是90︒,最后加上90ACB ∠=︒,即可证明结论.【详解】(1)答案如下图所示:分别以A 、B 两点为圆心,以大于2AB 长为半径画弧,连接弧的交点的直线即为垂直平分线l ,其与AB的交点为D ,以点D 为圆心,适当长为半径画弧,分别交DA 于点M ,交CD 于点N ,交BD 于点T ,然后分别以点M ,N 为圆心,大于2MN 为半径画弧,连接两弧交点与D 点的连线交AC 于点E ,同理分别以点T ,N 为圆心,大于2TN 为半径画弧,连接两弧交点与D 点的连线交BC 于点F . (2)证明:D 点是AB 与其垂直平分线l 的交点,D ∴点是AB 的中点,CD ∴是Rt △ABC 上的斜边的中线,2AB CD AD ∴==, DE 、DF 分别是∠ADC ,∠BDC 的角平分线,12CDE ADE ADC ∴∠=∠=∠,12CDF CDB ∠=∠, EDF CDE CDF ∠=∠+∠,11190222EDF ADC CDB ADB ∴∠=∠+∠=∠=︒ , CD AD CDE ADE DE DE =⎧⎪∠=∠⎨⎪=⎩, ()CDE ADE SAS ∴∆∆≌,1902CED AED AEC ∴∠=∠=∠=︒, 在四边形CEDF 中,90ACB CED EDF ∠=∠=∠=︒,∴四边形CEDF 是矩形.【点睛】本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键.3、见解析【分析】根据菱形的性质可得AB =BC =CD =AD ,∠A =∠C ,再由BE =BF ,可推出AE =CF ,即可利用SAS 证明△ADE ≌△CDF 得到DE =DF ,则∠DEF =∠DFE .【详解】解:∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,∠A =∠C ,∵BE =BF ,∴AB -BE =BC -BF ,即AE =CF ,∴△ADE ≌△CDF (SAS ),∴DE =DF ,∴∠DEF =∠DFE .【点睛】本题主要考查了菱形的性质,全等三角形的性质与判定,等腰三角形的性质与判定,解题的关键在于能够熟练掌握菱形的性质.4、(1)163;(2)y =S 四边形ABPQ =2t +32(0<t ≤8);(3)t =8,75PQD ∠=;(4)当t =4或ABP △为等腰三角形,理由见解析.【分析】(1)利用平行四边形的对边相等AQ =BP 建立方程求解即可;(2)先构造直角三角形,求出AE ,再用梯形的面积公式即可得出结论;(3)利用面积关系求出t,即可求出DQ,进而判断出DQ=PQ,即可得出结论;(4)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.【详解】解:(1)∵在平行四边形ABCD中,8cmAB=,16cmBC=,由运动知,AQ=16−t,BP=2t,∵四边形ABPQ为平行四边形,∴AQ=BP,∴16−t=2t∴t=163,即:t=163s时,四边形ABPQ是平行四边形;(2)过点A作AE⊥BC于E,如图,在Rt△ABE中,∠B=30°,AB=8,∴AE=4,由运动知,BP=2t,DQ=t,∵四边形ABCD是平行四边形,∴AD=BC=16,∴AQ=16−t,∴y=S四边形ABPQ=12(BP+AQ)•AE=12(2t+16−t)×4=2t+32(0<t≤8);(3)由(2)知,AE=4,∵BC=16,∴S四边形ABCD=16×4=64,由(2)知,y=S四边形ABPQ=2t+32(0<t≤8),∵四边形ABPQ的面积是四边形ABCD的面积的四分之三∴2t+32=34×64,∴t=8;如图,当t=8时,点P和点C重合,DQ=8,∵CD=AB=8,∴DP=DQ,∴∠DQC=∠DPQ,∴∠D=∠B=30°,∴∠DQP=75°;(4)①当AB=BP时,BP=8,即2t=8,t=4;②当AP=BP时,如图,∵∠B=30°,过P作PM垂直于AB,垂足为点M,∴BM=4,22242BPBP⎛⎫+=⎪⎝⎭,解得:BP,∴2t,∴t③当AB=A P时,同(2)的方法得,BP=∴2t=∴t=所以,当t=4或ABP为等腰三角形.【点睛】此题是四边形综合题,主要考查了平行四边形的性质,含30°的直角三角形的性质,等腰三角形的性质,解(1)的关键是利用AQ=BP建立方程,解(2)的关键是求出梯形的高,解(3)的关键是求出t,解(4)的关键是分类讨论的思想思考问题.5、(1)见解析;(2)BG=【分析】(1)由正方形的性质可得BC DC=,BCG DCE∠=∠,由E∠的余角相等可得∠CBG=∠CDE,进而证明△BCG≌△DCE,从而证明CG=CE;CG BC,进而勾股定理即可求得BG的(2)证明正方形的性质可得BC DC=,结合已知条件即可求得,长【详解】(1)∵BF⊥DE∴∠BFE=90°∵四边形ABCD是正方形∴∠DCE=90°BC DC=,BCG DCE∴∠=∠∴∠CBG+∠E=∠CDE+∠E,∴∠CBG=∠CDE∴△BCG≌△DCE∴CG=CE(2)∵BC DC=,且BE=DG=∴CE CG=∵CG=CE∴CG BC=在Rt BCG中,BG=【点睛】本题考查了正方形的性质,全等三角形的性质与判定,勾股定理,掌握三角形全等的性质与判定与勾股定理是解题的关键.。
人教版八年级数学下册第十七章勾股定理综合测试题(一)
C5米3米2013-2014学年度第二学期八年级数学试卷(二)(第十七章:勾股定理)一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分)1.满足下列条件的三角形中,不是直角三角形的是( )A.、三内角之比为1∶2∶3B.、三边长的平方之比为1∶2∶3C.、三边长之比为3∶4∶5 D 、.三内角之比为3∶4∶52. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长 A 、4 cm B 、8 cmC 、10 cmD 、12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A 、25B 、14C 、7D 、7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) A 、13 B 、8 C 、25 D 、645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )72425207152024257252024257202415(A)(B)(C)(D)6. 在Rt △ABC 中,∠B =90°,BC =15,AC =17,以AB 为直径作半圆,则此半圆的面积为( ). A .16π B .12π C .10π D .8π7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) A 、 25 B 、 12.5 C 、 9 D 、 8.58. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A 、 等边三角形B 、 钝角三角形C 、 直角三角形D 、 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). A 、0a 元 B 、600a 元 C 、1200a 元 D 、1500a 元10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).A 、12B 、7C 、5D 、13二、填一填,要相信自己的能力!(每小题3分,共18分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要_____米.12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14.如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是________.(第14题) (第15题) (第16题)15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D 若BC =8,AD =5,则AC 等于______________.三、做一做,要注意认真审题呀!(5大题,17—20题每题10分,21题12分,共52分)17. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.密 封 线 内 不 得 答 题C18、 如图,一架2.5米长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?19.如图,在平面直角坐标系中,点A 、B 的坐标分别为A (3,1),B (2,4),△OAB 是直角三角形吗?借助于网格,证明你的结论.20. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?21、去年某省将地处A 、B 两地的两所大学合并成了一所综合性大学,为了方便A 、B 两地师生的交往,学校准备在相距2km 的A 、B 两地之间修筑一条笔直公路(即图中的线段AB ),经测量,在A 地的北偏东60°方向、B 地的西偏北45°方向C 处有一个半径为0.7km 的公园,问计划修筑的这条公路会不会穿过公园?为什么?(3≈1.732)ABC DL。
2020人教版八年级数学下册第16章二次根式单元综合评价试卷含解析
2020人教版八年级数学下册第16章二次根式单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共12小题,满分36分,每小题3分)1.(3分)在下列代数式中,不是二次根式的是()A.B.C.D.2.(3分)要使二次根式有意义,则x应满足()A.x≥6B.x>6C.x≤6D.x<63.(3分)下列二次根式中与是同类二次根式的是()A.B.C.D.4.(3分)下列式子是最简二次根式的是()A.B.C.D.5.(3分)下列计算结果正确的是()A.B.C.D.6.(3分)若最简二次根式是同类二次根式,则x的值为()A.B.C.x=1D.x=﹣17.(3分)若a>0,则的值为()A.1B.﹣1C.±1D.﹣a8.(3分)计算(2﹣3)(2+3)的结果是()A.B.C.﹣3D.39.(3分)计算:等于()A.B.C.D.10.(3分)如果式子有意义,那么x的取值范围在数轴上表示出来,正确的是()A.B.C.D.11.(3分)已知a、b、c是△ABC三边的长,则+|a+b﹣c|的值为()A.2a B.2b C.2c D.2(a一c)12.(3分)已知n是正整数,是整数,n的最小值为()A.21B.22C.23D.24二.填空题(共6小题,满分18分,每小题3分)13.(3分)如果二次根式有意义,则x.14.(3分)计算:+=.15.(3分)化简:(a>0)=.16.(3分)将化成最简二次根式为17.(3分)已知实数a在数轴上的位置如图所示,则化简|a﹣1|﹣的结果是.18.(3分)若x,y都是实数,且,则x+3y的立方根为.三.解答题(共7小题,满分46分)19.(5分)计算:2﹣(﹣).20.(6分)将下列式子化成最简二次根式(1);(2);(3).21.(6分)计算:﹣÷+(2﹣)(2+).22.(7分)实数a、b在数轴上的位置如图所示,且|a|>|b|,化简23.(7分)已知n=﹣6,求的值.24.(7分)一个长方体的塑料容器中装满水,该塑料容器的底面是长为4cm,宽为3cm 的长方形,现将塑料容器内的一部分水倒入一个底面半径2cm的圆柱形玻璃容器中,玻璃容器水面高度上升了3cm,求长方形塑料容器中的水下降的高度.(注意:π取3).25.(8分)观察下列各式子,并回答下面的问题:第一个:第二个:第三个:第四个:…(1)试写出第n个式子(用含n的表达式表示),这个式子一定是二次根式吗?为什么?(2)你估计第16个式子的值应在哪两个连续整数之间?试说明理由.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)在下列代数式中,不是二次根式的是()A.B.C.D.【分析】直接利用二次根式的定义分析得出答案.【解答】解:A、,是二次根式,故此选项错误;B、,是二次根式,故此选项错误;C、,是二次根式,故此选项错误;D、,不是二次根式,故此选项正确;故选:D.2.(3分)要使二次根式有意义,则x应满足()A.x≥6B.x>6C.x≤6D.x<6【分析】本题主要考查自变量的取值范围,根据二次根式的意义,被开方数是非负数.【解答】解:根据题意得:x﹣6≥0,解得x≥6.故选:A.3.(3分)下列二次根式中与是同类二次根式的是()A.B.C.D.【分析】根据同类二次根式的定义进行选择即可.【解答】解:A、=2,与是同类二次根式,故正确;B、=,与不是同类二次根式,故错误;C、=,与不是同类二次根式,故错误;D、=3,与不是同类二次根式,故错误;故选:A.4.(3分)下列式子是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式进行分析即可.【解答】解:A、=2,则不是最简二次根式,故此选项错误;B、是最简二次根式,故此选项正确;C、=3,则不是最简二次根式,故此选项错误;D、=,则不是最简二次根式,故此选项错误;故选:B.5.(3分)下列计算结果正确的是()A.B.C.D.【分析】根据二次根式的加减法对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的性质对C、D进行判断.【解答】解:A、原式=2,所以A选项错误;B、原式==2,所以B选项正确;C、原式=12,所以C选项错误;D、原式=2,所以D选项错误.故选:B.6.(3分)若最简二次根式是同类二次根式,则x的值为()A.B.C.x=1D.x=﹣1【分析】根据同类二次根式的被开方数相同,即可求出结果.【解答】解:由题意得:1+x=4﹣2x,解得:x=1.故选:C.7.(3分)若a>0,则的值为()A.1B.﹣1C.±1D.﹣a【分析】根据二次根式的性质,对化简,然后代入代数式计算求值.【解答】解:∵a>0,∴=a.==﹣1.故选:B.8.(3分)计算(2﹣3)(2+3)的结果是()A.B.C.﹣3D.3【分析】利用平方差公式计算.【解答】解:原式=12﹣9=3.故选:D.9.(3分)计算:等于()A.B.C.D.【分析】根据二次根式的乘除法法则计算.【解答】解:==.故选:A.10.(3分)如果式子有意义,那么x的取值范围在数轴上表示出来,正确的是()A.B.C.D.【分析】根据式子有意义和二次根式的概念,得到2x﹣6≥0,解不等式求出解集,根据数轴上表示不等式解集的要求选出正确选项即可.【解答】解:由题意得,2x﹣6≥0,解得,x≥3,故选:A.11.(3分)已知a、b、c是△ABC三边的长,则+|a+b﹣c|的值为()A.2a B.2b C.2c D.2(a一c)【分析】根据三角形三边的关系:两边之和大于第三边,两边之差小于第三边,可知根号和绝对值里数的取值.【解答】解:∵三角形两边之和大于第三边,两边之差小于第三边,∴a﹣b﹣c<0,a+b﹣c>0∴+|a+b﹣c|=b+c﹣a+a+b﹣c=2b.故选:B.12.(3分)已知n是正整数,是整数,n的最小值为()A.21B.22C.23D.24【分析】如果一个根式是整数,则被开方数是完全平方数,首先把化简,然后求n的最小值.【解答】解:∵189=32×21,∴=3,∴要使是整数,n的最小正整数为21.故选:A.二.填空题(共6小题,满分18分,每小题3分)13.(3分)如果二次根式有意义,则x≥2.【分析】根据二次根式被开方数是非负数列出不等式,解不等式得到答案.【解答】解:∵二次根式有意义,∴x﹣2≥0,解得,x≥2,故答案为:≥2.14.(3分)计算:+=5.【分析】首先化简,然后再合并同类二次根式即可.【解答】解:原式=4+=5,故答案为:5.15.(3分)化简:(a>0)=3a.【分析】根据二次根式的性质化简.【解答】解:∵a>0,∴=3a,故答案为:3a.16.(3分)将化成最简二次根式为【分析】利用最简二次根式定义判断即可.【解答】解:=,故答案为:.17.(3分)已知实数a在数轴上的位置如图所示,则化简|a﹣1|﹣的结果是1﹣2a.【分析】根据绝对值和二次根式的性质即可求解.【解答】解:根据数轴上的数所在位置,可知a﹣1<0,a>0.所以原式=1﹣a﹣a=1﹣2a.故答案为1﹣2a.18.(3分)若x,y都是实数,且,则x+3y的立方根为3.【分析】根据被开方数大于等于0列式求出x的值,然后求出y的值,代入代数式求解,再根据立方根的定义解答.【解答】解:根据题意得,x﹣3≥0且3﹣x≥0,解得x≥3且x≤3,所以,x=3,y=8,x+3y=3+3×8=27,∵33=27,∴x+3y的立方根为3.故答案为:3.三.解答题(共7小题,满分46分)19.(5分)计算:2﹣(﹣).【分析】先把二次根式化为最简二次根式,然后合并即可.【解答】解:原式=2﹣3+=﹣.20.(6分)将下列式子化成最简二次根式(1);(2);(3).【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:(1)==;(2)==;(3)===.21.(6分)计算:﹣÷+(2﹣)(2+).【分析】先根据二次根式的除法法则和平方差公式运算,然后合并即可.【解答】解:原式=﹣+4﹣5=﹣﹣1=﹣1.22.(7分)实数a、b在数轴上的位置如图所示,且|a|>|b|,化简【分析】由图可知:b>0,a<0,再由绝对值和二次根式的性质可得=﹣a+(a+b)=b.【解答】解:由图可知:b>0,a<0,∴=﹣a+(a+b)=b.23.(7分)已知n=﹣6,求的值.【分析】直接利用二次根式的性质得出m,n的值,进而化简得出答案.【解答】解:∵与有意义,∴m=2019,则n=﹣6,故==45.24.(7分)一个长方体的塑料容器中装满水,该塑料容器的底面是长为4cm,宽为3cm 的长方形,现将塑料容器内的一部分水倒入一个底面半径2cm的圆柱形玻璃容器中,玻璃容器水面高度上升了3cm,求长方形塑料容器中的水下降的高度.(注意:π取3).【分析】根据倒出的水的体积不变列式计算即可.【解答】解:设长方形塑料容器中水下降的高度为h,根据题意得:4×3h=3×(2)2×3,解得:h=2,所以长方形塑料容器中的水下降2cm.25.(8分)观察下列各式子,并回答下面的问题:第一个:第二个:第三个:第四个:…(1)试写出第n个式子(用含n的表达式表示),这个式子一定是二次根式吗?为什么?(2)你估计第16个式子的值应在哪两个连续整数之间?试说明理由.【分析】(1)根据形如(a≥0)是二次根式,可得答案;(2)利用二次根式的性质化简得出<<进而得出答案.【解答】解:(1)∵第一个:第二个:第三个:第四个:…∴第n个式子(用含n的表达式表示)为:,∵n≥1,∴n2﹣n=n(n﹣1)≥0,∴这个式子一定是二次根式;(2)第16个式子的值为:===,∵<<,∴15<<16,∴第16个式子的值应在15,16之间.。
精品解析2022年最新人教版八年级数学下册第二十章-数据的分析综合测试试卷(含答案详解)
人教版八年级数学下册第二十章-数据的分析综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一组数据:4,1,2,3,4,这组数据的中位数和众数分别是()A.4,4 B.3.5,4 C.3,4 D.2,42、在我校“文化艺术节”英语表演比赛中,有16名学生参加比赛,规定前8名的学生进入决赛,某选手想知道自己能否晋级,只需要知道这16名学生成绩的()A.中位数B.方差C.平均数D.众数3、某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为188cm的队员换下场上身高为194cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大4、鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的()A.平均数B.众数C.中位数D.众数或中位数5、2022年冬季奥运会将在北京张家口举行,如表记录了四名短道速滑选手几次选拔赛成绩的平均数x 和方差s2.根据表中数据,可以判断乙选手是这四名选手中成绩最好且发挥最稳定的运动员,则m、n的值可以是()A.m=50,n=4 B.m=50,n=18 C.m=54,n=4 D.m=54,n=186、已知一组数据:2,0,1-,4,2,3-.这组数据的众数和中位数分别是()A.2,1.5 B.2,-1 C.2,1 D.2,27、每年的4月23日为“世界读书日”,某学校为了鼓励学生多读书,开展了“书香校园”的活动.如图是该校某班班长统计的全班50名学生一学期课外图书的阅读量(单位本),则这50名学生图书阅读数量的中位数和平均数分别为()A.18,12 B.12,12 C.15,14.8 D.15,14.58、甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x分、80分,若这组数据的平均数恰好等于90分,则这组数据的中位数是()A.100分B.95分C.90分D.85分9、一组数据:1,3,3,4,5,它们的极差是()A.2 B.3 C.4 D.510、已知一组数据的方差s2=15[(6﹣7)2+(10﹣7)2+(a﹣7)2+(b﹣7)2+(8﹣7)2](a,b为常数),则a+b的值为()A.5 B.7 C.10 D.11第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小明某学期的数学平时成绩80分,期中考试90分,期末考试86分,若计算学期总评成绩的方法如下:平时:期中:期末2:3:5,则小明总评成绩是________分.2、已知一组数据:3、4、5、6、8、8、8、10,这组数据的中位数是_________.3、5月1日至7日,某市每日最高气温如图所示,则中位数是 ______.4、九(1)班同学为灾区小朋友捐款.全班40%的同学捐了10元,30%的同学捐了5元,20%的同学捐了2元,还有10%的同学因为自身家庭经济原因没捐款.则这次全班平均每位同学捐款____元.5、若一组数据1x,2x,3x,…,n x的方差为4.5,则另一组数据21x,22x,23x,…,2n x的方差为____.三、解答题(5小题,每小题10分,共计50分)1、某厂用罐头分装机分装某种鱼罐头(每只罐头的标准质量为207g).为了监控分装质量,该厂决定定期对罐头的质量进行抽样检查,并规定抽检产品的平均质量与标准质量相差大于5g或罐头质量的标准差大于8g时,就认为该分装机运行不正常,将对它进行检修,现抽取了20只罐头,它们的质量(单位:g)如下:200,205,208,212,223,199,193,208,204,200,208,201,215,190,193,206,215,198,206,216,该分装机运行是否正常?2、为庆祝中国共产党建党100周年,某中学组织七、八年级全体学生开展了“党史知识”竞赛活动,为了解竞赛情况,从两个年级各抽取10名学生的成绩(满分为100分).收集数据:七年级:90,95,95,80,85,90,80,90,85,100;八年级:85,85,95,80,95,90,90,90,100,90.整理数据:分析数据:根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)通过计算求出e的值;(3)通过数据分析,你认为哪个年级的成绩比较好?说明理由;(4)该校七八年级共1600人,本次竞赛成绩不低于90分的为“优秀”,估计这两个年级共多少名学生达到“优秀”?3、14,5,10,3,6的中位数是什么?4、用直尺测量你的“拃长”,连续测量10次,计算这10次“拃长”的平均数,这样你就有了一把自己的“尺子”了,试用这把“尺子”测量课桌的长度.你还能在自己的身上找到其他的“尺子”吗?5、“西安年,最中国”.西安某校九年级1班数学兴趣小组就“最想去的西安市旅游景点”,随机调查了本校部分学生,A﹣临潼秦始皇帝陵博物馆(兵马俑),B﹣大唐芙蓉园,C﹣西安城墙、D﹣陕西历史博物馆,E﹣大雁塔.要求每位同学选择且只能选择一个最想去的景点.下面是根据调查结果进行数据整理后绘制出的不完整统计图,请根据图中信息,解答下列问题:(1)补全条形统计图,则扇形统计图中表示最想去景点C的扇形圆心角的度数为____度;(2)所抽取的部分学生的众数落在______组内;(3)若该校共有1800名学生,请估计最想去景点D的学生人数.---------参考答案-----------一、单选题1、C【解析】【分析】根据中位数和众数的定义分别进行解答即可.【详解】解:把这组数据从小到大排列:1,2,3,4,4,最中间的数是3,则这组数据的中位数是3;4出现了2次,出现的次数最多,则众数是4;故选:C.【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.2、A【解析】【分析】根据中位数的意义进行求解即可.【详解】解:16位学生参加比赛,取得前8名的学生进入决赛,中位数就是第8、第9个数的平均数,因而要判断自己能否晋级,只需要知道这16名学生成绩的中位数就可以.故选:A.【点睛】本题考查了中位数的意义,掌握中位数的意义是解题的关键.3、A【解析】【分析】由题意分别计算出原数据和新数据的平均数和方差进行比较即可得出答案.【详解】 解:原数据的平均数为1801841881901921941886+++++=, 则原数据的方差为16×[(180-188)2+(184-188)2+(188-188)2+(190-188)2+(192-188)2+(194-188)2]= 683, 新数据的平均数为1801841881901921881876+++++=, 则新数据的方差为16×[(180-187)2+(184-187)2+(188-187)2+(190-187)2+(188-187)2+(192-187)2]= 473, 所以平均数变小,方差变小,故选:A .【点睛】本题主要考查方差和平均数,一般地设n 个数据,x 1,x 2,…xn 的平均数为x ,则方差222212[()))]1((n S x x x x x x n=-+-+⋯+-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4、B【解析】【分析】由鞋厂关心的数据,即大众买的最多的鞋号,也就是出现次数最多的数据,从而可得所构成的数据是众数.【详解】解:生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的众数,故选B【点睛】本题考查的是众数的含义及众数表示的意义,理解众数的含义及在生活中的应用是解本题的关键.5、A【解析】【分析】根据乙选手是这四名选手中成绩最好且发挥最稳定的运动员,可得到乙选手的成绩的平均数最大,方差最小,即可求解.【详解】解:因为乙选手是这四名选手中成绩最好的,所以乙选手的成绩的平均数最小,又因为乙选手发挥最稳定,所以乙选手成绩的方差最小.故选:A.【点睛】本题主要考查了平均数和方差的意义,理解方差是反映一组数据的波动大小的一个量:方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.6、C【解析】【分析】根据众数和中位数的求解方法解答即可.【详解】解:把这组数据从小到大排列:3-,1-,0,2,2,4.∴中位数=0212+=,∵数字2有2个,其他数字都是只有一个,∴众数是2.故选:C.【点睛】此题考查了众数和中位数,解题的关键是熟练掌握众数和中位数的求解方法.7、C【解析】【分析】根据中位数和平均数的定义求解即可.【详解】解:由折线统计图知,第25、26个数据分别为12、18,∴这50名学生图书阅读数量的中位数为1218152+=(本),平均数为7812171815211014.850⨯+⨯+⨯+⨯=(本),故选:C.【点睛】本题主要考查中位数和平均数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.8、C【解析】【分析】由题意平均数是90,构建方程即可求出x的值,然后根据中位数的定义求解即可.【详解】解:∵这组数据的平均数数是90,∴14(90+90+x+80)=90,解得x=100.这组数据为:80,90,90,100,∴中位数为90.故选:C.【点睛】本题考查了求一组数据的平均数和中位数,掌握求解方法是解题的关键.9、C【解析】【分析】根据极差的定义,即一组数据中最大数与最小数之差计算即可;【详解】极差是514-=;故选C.【点睛】本题主要考查了极差的计算,准确计算是解题的关键.10、D【解析】根据方差的定义得出这组数据为6,10,a,b,8,其平均数为7,再利用平均数的概念求解可得.【详解】解:由题意知,这组数据为6,10,a,b,8,其平均数为7,则15×(6+10+a+b+8)=7,∴a+b=11,故选:D.【点睛】本题主要考查方差,解题的关键是根据方差的公式得出这组数据及其平均数.二、填空题1、86【解析】【分析】利用加权平均数计算即可.【详解】总评成绩23580908686101010=⨯+⨯+⨯=(分)故答案为:86.【点睛】本题考查加权平均数,掌握加权平均数的定义是解答本题的关键.2、7【解析】将一组数据按照从小到大的顺序进行排列,排在中间位置上的数叫作这组数据的中位数,若这组数据的个数为偶数个,那么中间两位数的平均数就是这组数据的中位数,据此解答即可得到答案.【详解】解:按照从小到大的顺序排列为:3、4、4、5、6、8,8,10中位数:(6+8)÷2=7故答案为:7.【点睛】本题主要考查中位数的求解,根据中位数的定义,将数据从小到大进行排列是解决本题的关键.3、27℃【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:把这些数从小到大排列为:23,25,26,27,30,33,33,∴最中间的数是27,则中位数是27℃.故答案为:27℃.【点睛】本题主要考查中位数,熟练掌握求一组数据的中位数是解题的关键.4、5.9【解析】设总人数为x 求平均值即可.【详解】设全班人数为x 人则平均每位同学捐款为:(1040%530%220%) 5.9x x x x ⨯+⨯+⨯÷= (元)故答案为:5.9【点睛】本题考查平均数的知识,熟练掌握求值方法是解题的关键.5、18【解析】【分析】根据方差的计算公式计算即可.【详解】设1x ,2x ,3x ,…,n x 的平均数为x ,则21x ,22x ,23x ,…,2n x 的平均数为2x ,∵数据1x ,2x ,3x ,…,n x 的方差为4.5, ∴222221231[()()()()]n s x x x x x x x x n =-+-+-++-=92, ∴2222211231[(22)(22)(22)(22)]n s x x x x x x x x n=-+-+-++- =222212314[()()()()]n x x x x x x x x n ⨯-+-+-++-=4⨯92=18,故答案为:18.【点睛】本题考查了方差的计算,熟练掌握方差的计算公式是解题的关键.三、解答题1、该分装机运行不正常,理由见解析【分析】先根据平均数公式求得抽取的20只罐头质量的平均数,再根据方差公式求得它们的方差,进而可求得标准差,再用所求得的标准差与8g比较大小即可求得答案.【详解】解:抽取的20只罐头质量的平均数=(200+205+208+212+223+199+193+208+204+200+208+201+215+190+193+206+215+198+206+216)÷20=4100÷20=205(g),∴抽取的20只罐头质量的方差=[(200-205)2+(205-205)2+(208-205)2+(212-205)2+(223-205)2+(199-205)2+(193-205)2+(208-205)2+(204-205)2+(200-205)2+(208-205)2+(201-205)2+(215-205)2+(190-205)2+(193-205)2+(206-205)2+(215-205)2+(198-205)2+(206-205)2+(216-205)2]÷20=1388÷20=69.4,8,∴该分装机运行不正常.【点睛】本题考查了平均数和方差、标准差的计算和应用,熟练掌握平均数、方差以及标准差的计算公式是解决本题的关键.2、(1)a =2,b =90,c =90,d =90;(2)31;(3)八年级的学生成绩好,理由见解析;(4)1040人【分析】(1)通过八年级抽取人数10人,即可得到a ,根据中位数、平均数、众数的定义得到b 、c 、d ;(2)根据方差的计算公式,求解即可;(3)由于中位数和众数相同,通过分析平均数和方差即可得到答案;(4)根据抽取的人中,不低于90分的比例即可得到两个年级共多少名学生达到“优秀”.【详解】解:(1)观察八年级95分的有2人,故a =2;七年级成绩按从小到大顺序排列为80,85,85,85,90,90,90,95,95,100, 七年级的中位数为9090920+=,故b =90; 八年级的平均数为:1(85895809590909010090]9010⨯+++++++++=,故c =90; 八年级中90分的最多,故d =90;(2)七年级的方差2222221(8089)(8589)4(9089)2(9589)(10089)3110e +⎡⎤=⨯-⨯-+⨯-+⨯-+-=⎣⎦; (3)八年级的学生成绩好,理由如下:七、八年级学生成绩的中位数和众数相同,但八年级的平均成绩比七年级高,且从方差看,八年级学生成绩更稳定,综上,八年级的学生成绩好;(4)∵131600104020⨯=(人), ∴估计该校七、八年级这次竞赛达到优秀的有1040人.【点睛】本题考查了中位数、众数、方差、平均数,以及样本估计总体,审清题中数据并了解基本的定义是解题的关键.3、6【分析】把这组数据按从小到大的顺序排列,位于最中间的一个数为中位数.【详解】解:将这组数据从小到大排列为:3,5,6,10,14,处在中间位置的数为6,因此中位数是6,答:14,5,10,3,6的中位数是6.【点睛】本题属于基础题,考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而做错,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4、见解析【分析】先连续测量10次“拃长”,将对应的数据记录下来,再根据平均数的公式即可求得这10次“拃长”的平均数,进而可求得课桌的长度,身体上的“尺子”有很多,比如:脚的长度,胳膊的长度等等.【详解】解:连续测量10次“拃长”的数据分别为20.1,20.2,20.1,19.9,20.3,20.3,19.8,19.9,19.7,19.7(单位:cm),则这10次“拃长”的平均数为(20.1+20.2+20.1+19.9+20.3+20.3+19.8+19.9+19.7+19.7)÷10=20(cm),用这把“尺子”测量课桌的长度正好需要测量3次,则课桌的长度为3×20=60(cm),身体上的“尺子”有很多,比如:脚的长度,胳膊的长度等等.【点睛】本题考查了平均数的计算,熟练掌握平均数计算公式是解决本题的关键.5、(1)图见解析,36;(2)B;(3)估计最想去景点D的学生人数为360人.【分析】(1)先根据景点A的条形统计图和扇形统计图信息求出调查的学生总人数,从而可得最想去景点D的学生人数,由此补全条形统计图即可;再利用360︒乘以最想去景点C的学生所占百分比即可得其圆心角的度数;(2)根据众数的定义(一组数据中出现次数最多的那个数据)求出所抽取的部分学生的众数,由此即可得出答案;(3)利用1800乘以最想去景点D的学生所占百分比即可得.【详解】解:(1)调查的学生总人数为820%40÷=(人),则最想去景点D的学生人数为40814468----=(人),补全条形统计图如下:4360100%36︒⨯⨯=︒,40即扇形统计图中表示最想去景点C的扇形圆心角的度数为36度,故答案为:36;(2)因为最想去景点B的学生人数最多,所以所抽取的部分学生的众数落在B组内,故答案为:B;(3)81800100%36040⨯⨯=(人),答:估计最想去景点D的学生人数为360人.【点睛】本题考查了条形统计图和扇形统计图的信息关联、众数等知识点,熟练掌握统计调查的相关知识是解题关键.。
八年级数学下册期末试卷综合测试卷(word含答案)
八年级数学下册期末试卷综合测试卷(word 含答案)一、选择题1.2a +在实数范围内有意义,实数a 的取值范围是( ) A .a >0 B .a >1 C .a ≥﹣2 D .a >﹣1 2.以下列各组数为边长,不能构成直角三角形的是( )A .1,2,3B .5,12,13C .3,4,5D .1,2,53.如图,在四边形ABCD 中,对角线AC 和BD 相交于点O ,下列条件不能判断四边形ABCD 是平行四边形的是( )A .//AB DC ,ABC ADC ∠=∠ B .AB DC =,AD BC = C .OA OC =,OB OD =D .//AD BC ,AB CD =4.某次竞赛每个学生的综合成绩得分(x )与该学生对应的评价等次如表. 综合成绩(x )=预赛成绩×30%+决赛成绩×70% x ≥90 80≤x <90 评价等次优秀良好小华同学预赛成绩为80,综合成绩位于良好等次,他决赛的成绩可能为( )A .71B .79C .87D .955.如图所示,正方形ABCD 的边长为4,点E 为线段BC 上一动点,连结AE ,将AE 绕点E 顺时针旋转90°至EF ,连结BF ,取BF 的中点M ,若点E 从点B 运动至点C ,则点M 经过的路径长为( )A .2B .22C .23D .46.如图,在Rt △ABC 中,C ∠=90°,沿着过点B 的一条直线BE 折叠△ABC ,使点C 恰好落在AB 的中点D 处,则A ∠的度数为( )A .30°B .45°C .60°D .75°7.如图,在Rt ABC △中,90ACB ∠=︒,D ,E ,F 分别是AC ,BC ,AB 的中点,连接DE ,CF .若1CF =,则DE 的长度为( )A .1B .2C .3D .48.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h )的函数图象如图所示,则a 等于( )A .4.7B .5.0C .5.4D .5.8二、填空题9.△ABC 的三条边长a 、b 、c 满足8c =,460a b -+-=,则△ABC ____直角三角形(填“是”或“不是”)10.菱形的周长为12cm ,它的一个内角为60︒,则菱形的面积为______()2cm .11.在Rt ABC ∆中,90C ∠=︒,4AC =,3BC =,则AB =______.12.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,已知5OD =,6AD =,则该矩形的周长是______.13.设一次函数y =kx +3. 若当x =2时,y =-1,则k =___________ 14.若矩形的边长分别为2和4,则它的对角线长是__. 15.如图,CD 是直线3y x =上的一条动线段,且2CD =,点()23,1A ,连接AC 、AD ,则ACD ∆周长的最小值是_______.16.如图,在菱形 ABCD 中,对角线 AC , BD 交于点O ,过点 A 作 AH ⊥ BC 于点 H ,已知 BD=8,S 菱形ABCD =24,则 AH =_______.三、解答题17.计算:(1)0131|2|8(2020)()3π--+-+-+-;(2)11(124)(320.5)83---; (3)(212)(4818)-⨯+; (4)22()()a b a b ++-.18.《九章算术》中有“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处距竹子底端6尺远,问折断处离地面的高度是多少尺?19.图1、图2均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,在给定的网格中按要求画图,所画图形的顶点均在格点上.(1)在图1中画一个面积为4的菱形;(2)在图2中画一个矩形,使其边长都是无理数,且邻边不相等.20.请在横线上添加一个合适的条件,并写出证明过程:如图,平行四边形ABCD 对角线上有两点E ,F ,AE =CF , ,连接EB ,ED ,FB ,FD .求证:四边形EBFD 为菱形.21.学习了二次根式的乘除后,老师给同学们出了这样一道题:已知a =13,求2221a a a a -+-的值.刘峰想了想,很快就算出来了,下面是他的解题过程:解:∵()()()2221211111a a a a a a a a a a a--+-===---, 又∵a =13,∴13a=, ∴原式=3.你认为刘峰的解法对吗?如果对,请你给他一句鼓励的话;如果不对,请找出错误的原因,并改正.22.小明爸爸为了让小明上学更近,决定在学校附近租套房子居住.现有甲、乙两家出租房屋,甲家已经装修好,每月租金为2500元;乙家未装修,每月租金为1800元,但需要支付装修费14000元.设租用时间为x 个月,所需租金为y 元.(1)请分别写出租用甲、乙两家房屋的租金x 甲、x 乙与租用时间x 之间的函数关系; (2)试判断租用哪家房屋更合算,并说明理由.23.如图1,在平面直角坐标系xOy 中,直线l 1:y =x +6交x 轴于点A ,交y 轴于点B ,经过点B 的直线l 2:y =kx +b 交x 轴于点C ,且l 2与l 1关于y 轴对称. (1)求直线l 2的函数表达式;(2)点D ,E 分别是线段AB ,AC 上的点,将线段DE 绕点D 逆时针α度后得到线段DF . ①如图2,当点D 的坐标为(﹣2,m ),α=45°,且点F 恰好落在线段BC 上时,求线段AE 的长;②如图3,当点D 的坐标为(﹣1,n ),α=90°,且点E 恰好和原点O 重合时,在直线y =3﹣13上是否存在一点G ,使得∠DGF =∠DGO ?若存在,直接写出点G 的坐标;若不存在,请说明理由.24.如图1,矩形OABC 在平面直角坐标系中的位置如图所示,点A ,C 分别在x 轴,y 轴上,点B的坐标为()8,4,点P,Q同时以相同的速度分别从点O,B出发,在边OA,BC 上运动,连接,OQ BP,当点P到达A点时,运动停止.(1)求证:在运动过程中,四边形OPBQ是平行四边形.(2)如图2,在运动过程中,是否存在四边形OPBQ是菱形的情况?若存在,求出此时直线PQ的解析式;若不存在,请说明理由.(3)如图3,在(2)的情况下,直线PQ上是否存在一点D,使得PBD△是直角三角形?如果存在,请直接写出点D的坐标;如果不存在,请说明理由.25.如图,平行四边形ABCD中,连接对角线BD,∠ABD=30°,E为平行四边形外部一点,连接AE、BE、DE,若AE=BE,∠DAE=60°.(1)如图1,若∠C=45°,BC=2,求AB的长;(2)求证:DE=BC;(3)如图2,若∠BCD=15°,连接CE,延长CB与DE交于点F,连接AF,直接写出(AFBF)2的值.【参考答案】一、选择题1.C解析:C【分析】根据二次根式有意义的条件即可求出a的取值范围.【详解】解:由题意可知:a+2≥0,∴a≥-2.故选:C.【点睛】本题考查二次根式有意义,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.2.A解析:A 【分析】分别求出各选项中较小两数的平方和及最大数的平方,比较后即可得出结论. 【详解】解:A 、由于222123+≠,不能作为直角三角形的三边长,符合题意;B 、由于22251213+=,能作为直角三角形的三边长,不符合题意;C 、由于222345+=,能作为直角三角形的三边长,不符合题意;D 、由于22212+=,能作为直角三角形的三边长,不符合题意.故选:A . 【点睛】本题考查了勾股定理的逆定理,解题的关键是牢记“如果三角形的三边长a ,b ,c 满足222+=a b c ,那么这个三角形就是直角三角形”.3.D解析:D 【解析】 【分析】根据平行四边形的判定定理逐项判断即可. 【详解】A 、由//AB DC ,得180ABC ACD ∠+∠=︒,又ABC ADC ∠=∠,得180ADC ACD ∠+∠=︒,得//AD BC ,可得到四边形ABCD 是平行四边形,故A 选项不符合题意B 、由AB DC =,AD BC =,可得到四边形ABCD 是平行四边形,故B 选项不符合题意; C 、由OA OC =,OB OD =,可得到四边形ABCD 是平行四边形,故C 选项不符合题意; D 、由//AD BC ,AB CD =,不可得到四边形ABCD 是平行四边形,故D 选项符合题意. 故选:D . 【点睛】本题主要考查了平行四边形的判定,解题的关键是理解并掌握平行四边形的判定定理,并会灵活运用.4.C解析:C 【解析】 【分析】设他决赛的成绩为x 分,根据综合成绩所处位次得出80≤80×30%+70%x <90,解之求出x 的范围即可得出答案. 【详解】解:设他决赛的成绩为x 分,根据题意,得:80≤80×30%+70%x <90, 解得80≤x <9427,∴各选项中符合此范围要求的只有87, 故选:C . 【点睛】本题主要考查加权平均数,解题的关键是根据加权平均数的定义及综合成绩位次列出关于x 的不等式组.5.B解析:B 【分析】已知EF ⊥AE ,当E 点在线段BC 上运动到两端时,正好是M 点运动的两个端点,由此可以判断M 点的运动轨迹是BC 、CD 中点的连线长. 【详解】解:取BC 、CD 的中点G 、H ,连接GH ,连接BD ∴GH 为△BCD 的中位线,即12GH BD =∵将AE 绕点E 顺时针旋转90°至EF , ∴EF ⊥AE ,当E 点在B 处时,M 点在BC 的中点G 处,当E 点在C 点处时,M 点在CD 中点处, ∴点M 经过的路径长为GH 的长, ∵正方形ABCD 的边长为4, ∴2242BD BC CD =+= ∴1222GH BD ==, 故选B .【点睛】本题主要考查了正方形的性质,勾股定理和中位线定理,解题的关键在于找到M 点的运动轨迹.6.A解析:A 【解析】 【分析】根据题意可知∠CBE =∠DBE ,DE ⊥AB ,点D 为AB 的中点,∠EAD =∠DBE ,根据三角形内角和定理列出算式,计算得到答案. 【详解】解:由题意可知∠CBE =∠DBE , ∵DE ⊥AB ,点D 为AB 的中点, ∴EA =EB , ∴∠EAD =∠DBE , ∴∠CBE =∠DBE =∠EAD , ∴∠CBE +∠DBE +∠EAD =90°, ∴∠A =30°, 故选:A . 【点睛】本题考查的是翻折变换的知识,理解翻折后的图形与原图形全等是解题的关键,注意三角形内角和等于180°.7.A解析:A 【解析】 【分析】根据直角三角形斜边上的中线等于斜边的一半,可得AB 的长,根据三角形中位线定理可得DE 的长. 【详解】依题意,90ACB ∠=︒,D ,E ,F 分别是AC ,BC ,AB 的中点,1CF =,22AB CF ∴==, 112DE AB ==. 故选A . 【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,三角形中位线定理,掌握以上定理是解题的关键.8.B解析:B 【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t ,进而求得a 的值. 【详解】解:设甲乙两地的路程为s ,从甲地到乙地的速度为v ,从乙地到甲地的时间为t ,则 2.71.5v svt s =⎧⎨=⎩ 解得,t =1.8∴a =3.2+1.8=5(小时), 故选B .【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.二、填空题 9.A解析:不是 【解析】 【分析】根据二次根式有意义的条件以及绝对值的非负性,得出,a b 的值,运用勾股定理逆定理验证即可. 【详解】 解:∵460a b -+-=,∴40a -=,60b -=, ∴4,6a b ==, 则22246528+=≠, ∴222a b c +≠,∴△ABC 不是直角三角形, 故答案为:不是. 【点睛】本题考查了二次根式有意义的条件,绝对值的非负性,勾股定理逆定理等知识点,根据题意得出,a b 的值是解本题的关键.10.A 解析:932【解析】 【分析】由菱形的性质和已知条件得出3AB BC CD DA cm ====,AC BD ⊥由含30°角的直角三角形的性质得1322BO AB cm ==,由勾股定理求出OA ,可得BD ,AC 的长度,由菱形的面积公式可求解. 【详解】 如图所示:、∵AB = BC = CD = DA ,130?2BAO BAD ∠=∠=,AC BD ⊥,12OA AC BO DO ==, ∵菱形的周长为12cm , ∴3AB BC CD DA cm ====, ∴1322BO AB cm ==,∴m OA == ∴2AC OA ==,23BD BO cm == ∴菱形ABCD 的面积212AC BD ⨯=.【点睛】本题考查了菱形的性质、含30° 角的直角三角形的性质、勾股定理;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.11.5【解析】 【分析】根据勾股定理222AB AC BC =+即可求得AB 的长度. 【详解】在直角ABC 中,90C ∠=︒, ∴根据勾股定理222AB AC BC =+, ∴5AB =, 故答案为:5. 【点睛】本题考查了勾股定理在直角三角形中的运用,本题中正确的运用勾股定理是解题的关键.12.B解析:28 【分析】先求出BD ,再根据勾股定理求出AB ,即可求矩形的周长. 【详解】解:∵四边形ABCD 是矩形, ∴∠BAD=90°,OD =OB =5,即BD =10, ∴8AB =,矩形的周长为()28628⨯+=,故答案为:28.【点睛】本题考查了矩形的性质和勾股定理,解题关键是熟练运用勾股定理求出矩形的边长. 13.-2【分析】把x=2时,y=-1代入一次函数y =kx +3,解得k 的值即可.【详解】解:把x=2时,y=-1代入一次函数y =kx +3得-1=2k +3,解得k =-2.故答案为:-2.【点睛】本题考查待定系数法求一次函数解析式.一般函数解析式中有几个常量不知道,就需要代入几个函数上的点就可以求出函数解析式.14.A【分析】根据矩形的性质得出∠ABC =90°,AC =BD ,根据勾股定理求出AC 即可.【详解】∵四边形ABCD 是矩形,∴∠ABC =90°,AC =BD ,在Rt △ABC 中,AB =2,BC =4,由勾股定理得:AC ∴BD AC ==故答案为【点睛】本题考查了矩形的性质,勾股定理的应用,题目比较好,难度适中.15.+2.【分析】过点A 作AB ⊥CD ,垂足为点B ,当点B 为CD 的中点时,△ACD 的周长最小,利用等腰三角形的性质,勾股定理计算即可.【详解】过点A 作AB ⊥CD ,垂足为点B ,当点B 为CD 的中点时,解析:.【分析】过点A 作AB ⊥CD ,垂足为点B ,当点B 为CD 的中点时,△ACD 的周长最小,利用等腰三角形的性质,勾股定理计算即可.【详解】过点A作AB⊥CD,垂足为点B,当点B为CD的中点时,△ACD的周长最小,如图,延长BA交x轴与点E,过点A作AF⊥x轴,垂足为点F,设点M(3,3)是直线33y x=上一个点,则OM=223+(3)=23,∴∠MOF=30°,∴∠BEF=60°,∠EAF=30°,∵A(2+3,1),∴OF=2+3,AF=1,设AE=2n,则EF=n,根据勾股定理,得2241n n=+,∴EF=33,AE=233,∴OE=OF+EF=2+433,∴BE=12OE=1+233,∴BA=BE-AE=1+233-233=1,∵CB=BD,AB⊥CD,CD=2,∴AC=AD22BC BA+CB=BD=1,∴AC=AD22112+=∴△ACD的周长最小值为2.故答案为:22.【点睛】本题考查了正比例函数的解析式,勾股定理,直角三角形中30°角的性质,等腰三角形的判定和性质,两点间的距离公式,准确确定最小值的情形,并灵活运用勾股定理求解是解题的关键.16.【分析】根据菱形面积=对角线积的一半可求AC,再根据勾股定理求出BC,然后由菱形的面积即可得出结果.【详解】解:∵四边形ABCD 是菱形,BD =8,∴AO =CO ,AC ⊥BD ,OB=OD=4, 解析:245【分析】根据菱形面积=对角线积的一半可求AC ,再根据勾股定理求出BC ,然后由菱形的面积即可得出结果.【详解】解:∵四边形ABCD 是菱形,BD =8,∴AO =CO ,AC ⊥BD ,OB=OD=4,∴S 菱形ABCD =12×AC×BD =24,∴AC =6,∴OC =12AC =3,∴BC5,∵S 菱形ABCD =BC×AH =24,∴AH =245, 故答案为:245. 【点睛】本题考查了菱形的性质、勾股定理以及菱形面积公式;熟练掌握菱形的性质,由勾股定理求出BC 是解题的关键.三、解答题17.(1);(2);(3);(4).【分析】(1)根据负整数幂、零指数幂、立方根和绝对值的性质求解即可; (2)先化成最简二次根式,再合并即可;(3)先化成最简二次根式,再计算乘法即可;(4)根解析:(14;(23)18--4)22a b +.【分析】(1)根据负整数幂、零指数幂、立方根和绝对值的性质求解即可;(2)先化成最简二次根式,再合并即可;(3)先化成最简二次根式,再计算乘法即可;(4)根据完全平方公式展开,再合并即可.【详解】解:(1)011|(2020)()3π--+-213=+-4=;(2)-4(32=-=-=(3)⨯(=⨯=624=--18=--(4)22+a b a b =++-22a b =+.【点睛】本题考查二次根式的混合运算、零指数幂、负整数指数幂,解题的关键是明确各自的计算方法,仔细认真化简,会合并同类项.18.折断处离地面的高度有3.2尺.【分析】根据题意画出图形,设折断处离地面的高度为x 尺,再利用勾股定理列出方程求解即可.【详解】解:如图,设折断处离地面的高度为x 尺,则AB=10-x ,BC=6,解析:折断处离地面的高度有3.2尺.【分析】根据题意画出图形,设折断处离地面的高度为x 尺,再利用勾股定理列出方程求解即可.【详解】解:如图,设折断处离地面的高度为x 尺,则AB =10-x ,BC =6,在Rt△ABC中,AC2+BC2=AB2,即x2+62=(10-x)2.解得:x=3.2.答:折断处离地面的高度有3.2尺.【点睛】本题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.19.(1)见解析;(2)见解析.【解析】【分析】(1)直接利用菱形的性质画出符合题意的菱形;(2)利用网格结合矩形的判定和性质得出答案.【详解】(1)如图1所示:其四边形是菱形,且面积为4;解析:(1)见解析;(2)见解析.【解析】【分析】(1)直接利用菱形的性质画出符合题意的菱形;(2)利用网格结合矩形的判定和性质得出答案.【详解】(1)如图1所示:其四边形是菱形,且面积为4;(2)如图2所示:其四边形是边长为无理数的矩形.【点睛】本题考查应用设计与作图,解题的关键是熟练掌握菱形的性质与矩形的判定和性质.20.,见解析【分析】根据题意和图形,可以在空格处填一个条件,注意填写的条件不唯一,只要可以证明结论成立即可,然后根据菱形的判定方法证明即可.【详解】补充条件:AB =BC ,证明:连接BD 交AC 于解析:AB BC =,见解析【分析】根据题意和图形,可以在空格处填一个条件,注意填写的条件不唯一,只要可以证明结论成立即可,然后根据菱形的判定方法证明即可.【详解】补充条件:AB =BC ,证明:连接BD 交AC 于点O ,如图所示,∵四边形ABCD 是平行四边形,∴OB =OD ,OA =OC ,∵AE =CF ,∴OE =OF ,∴四边形EBFD 是平行四边形,∵AB =BC ,∴∠BAE =∠BCF ,在△BAE 和△BCF 中,BA BC BAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△BAE ≌△BCF (SAS ),∴BE =BF ,∴平行四边形EBFD 是菱形,即四边形EBFD 为菱形.故答案为:AB =BC .【点睛】本题考查菱形的判定、平行四边形的性质、全等三角形的判定与性质,利用数形结合的思想解答是解答本题的关键.21.答案见解析.【解析】【分析】直接利用二次根式的性质化简进而得出答案.【详解】刘峰的解法错误,原因是:错误地运用了=这个公式,正确解法是:∵a==<1,∴a﹣1<0,∴====解析:答案见解析.【解析】【分析】直接利用二次根式的性质化简进而得出答案.【详解】刘峰的解法错误,(0)(0)a aa a⎧⎨-<⎩这个公式,正确解法是:∵a1,∴a﹣1<0,∴=|1|(1)aa a--=1(1)aa a--=﹣1a,∴【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.22.(1),;(2)当租期超过20个月时,租乙家房屋更合算;当租期等于20个月时,租甲家、乙家都可以;当租期低于20个月,租甲家房屋更合算【分析】(1)租金等于每月费用乘以租用月数.(2)租金等于解析:(1)2500y x=甲,180014000y x=+乙;(2)当租期超过20个月时,租乙家房屋更合算;当租期等于20个月时,租甲家、乙家都可以;当租期低于20个月,租甲家房屋更合算【分析】(1)租金等于每月费用乘以租用月数.(2)租金等于每月费用乘以租用月数,有装修费的再加上装修费即可.【详解】(1)根据题意,租用甲家房屋:2500y x =甲;租用乙家房屋:180014000y x =+乙;(2)①由题意,可知:2500180014000x x =+,解得:20x ,即当租用20个月时,两家租金相同.②由2500180014000x x >+,解得:20x >;即当租用时间超过20个月时,租乙家的房屋更合算.③由2500180014000x x <+,解得:20x <,即当租用时间少于20个月时,租甲家的房屋更合算.综上所述,当租期超过20个月时,租乙家房屋更合算;当租期等于20个月时,租甲家、乙家都可以;当租期低于20个月,租甲家房屋更合算.【点睛】本题考查一次函数的具体应用,根据题意找出等量关系是解题关键.23.(1)y=-x+6;(2)①;②,或或,【分析】(1)先求出点A ,B 的坐标,再运用待定系数法求出直线直线l2的函数解析式;(2)①将点D (-2,m )代入y=x+6中,求出D (-2,4),如图2解析:(1)y =-x +6;(2)①4+②1(2G ,3-或2(2,3G 或3(2G ,3 【分析】(1)先求出点A ,B 的坐标,再运用待定系数法求出直线直线l 2的函数解析式;(2)①将点D (-2,m )代入y =x +6中,求出D (-2,4),如图2,作∠DHF =45°,利用AAS 证明△ADE ≌△HFD ,再运用等腰直角三角形性质即可求出答案;②将D (-1,n )代入y =x +6中,得D (-1,5),过D 作DM ⊥x 轴于M ,作FN ⊥DM 于N ,如图3,利用AAS 可证得△FDN ≌△DEM ,进而得出F (4,6),再根据∠DGF =∠DGO 分类讨论即可.【详解】解:(1)6y x =+交x 轴于点A ,交y 轴于点B ,(6,0)A ∴-,(0,6)B ,2l 与1l 关于y 轴对称,)0(6,C ∴,设直线2l 为:y kx b =+,将B 、C 坐标代入得606k b b +=⎧⎨=⎩,解得16k b =-⎧⎨=⎩, ∴直线2l 的函数解析式为:6y x =-+;(2)①将点(2,)D m -代入6y x =+中,得: 26m -+=,解得:4m =,(2,4)D ∴-,如图2,作45DHF ∠=︒,6OA OB ==,45EAD EDF DHF ∴∠=∠=∠=︒,135AED ADE ∴∠+∠=︒,135ADE HDF ∠+∠=︒, AED HDF ∴∠=∠,在ADE ∆和HFD ∆中,EAD DHF AED HDF DE FD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE HFD AAS ∴∆≅∆,22(62)442HF AD ∴=-++=AE HD =, 又6OA OB OC ===,90AOB COB ∠=∠=︒, ABO ∴∆和COB ∆均为等腰直角三角形,45ABO CBO ∴∠=∠=︒,90ABC ∴∠=︒,18090HBF ABC ∴∠=︒-∠=︒,BFH ∴∆是等腰直角三角形,24BH ∴=, 62AB =62442422AE HD AB BH AD ∴==+-=-+ ②将(1,)D n -代入6y x =+中,得:165n =-+=, (1,5)D ∴-,则5DM =,1EM =,过D 作DM x ⊥轴于M ,作FN DM ⊥于N ,如图3,DE DF =,90EDF DME FND ∠=∠=∠=︒,90MDE FDN ∴∠+∠=︒,90MDE DEM ∠+∠=︒, FDN DEM ∴∠=∠,在FDN ∆和DEM ∆中,FND DME FDN DEM DF ED ∠=∠⎧⎪∠=∠⎨⎪=⎩, FDN DEM ∴∆≅∆()AAS ,5FN DM ∴==,1DN EM ==,514BF FN BN ∴=-=-=,516EB MN DM DN ====+=, (4,6)F ∴,当点F 、O 、1G 三点共线时,如图3,11DG O DG F ∠=∠, 设直线EF 的解析式为y mx =,(4,6)F ,46m ∴=, 解得:32m =, ∴直线EF 的解析式为32y x =, 当33132x =2132x = 1213(2G ∴313); 如图4,连接DG 2,FG 2,过点D 作DM ⊥OG 2,DN ⊥FG 2,∵22DG F DG O ∠=∠,∴DM =DN ,又DO =DF ,∴2Rt DG M Rt DFN ≅△△(HL ),∴∠ODM =∠FDN ,又∠ODN +∠FDN =90°, ∴∠ODM +∠ODN =90°,即∠MDN =90°,∴四边形DMG 2N 是正方形,∴∠OG 2F =90°,设2(,313)G a -,22290FG O DG O DG F ∠=∠+∠=︒,22222G O G F OF ∴+=,222222(313)(4)(3136)46a a ∴+-+-+--=+,解得:122a a ==,2(2,313)G ∴-;当3DG 平分3OG F ∠时,如图5,DO DF =,33DG O DG F ∠=∠,33OG FG ∴=,又33DG DG =, 33()DOG DFG SSS ∴∆≅∆,设OF 与3DG 交于点H ,OH FH ∴=,(0,0)O ,(4,6)F ,(2,3)H ∴,设直线DG 解析式为11y k x b =+,(1,5)D -,()2,3H ,∴1111523k b k b -+=⎧⎨+=⎩, 解得:1123133k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线DG 解析式为21333y x =-+,联立方程组213333y x y ⎧=-+⎪⎨⎪=⎩,解得:23x y ⎧=⎪⎨⎪=⎩3(2G ∴,3; 综上所述,符合条件的G的坐标为1(2G,3或2(2,3G或3(2G,3.【点睛】本题是一次函数综合题,考查了运用待定系数法求一次函数解析式,求一次函数图象与坐标轴交点坐标,利用解方程组求两直线交点坐标,等腰直角三角形判定和性质,全等三角形判定和性质,勾股定理等,添加辅助线构造全等三角形,运用分类讨论思想和数形结合思想是解题关键.24.(1)证明见解析;(2)存在,;(3)存在,或.【解析】【分析】(1)说明出后,再利用矩形的性质得到,即可完成求证;(2)先设,依次表示各点坐标与相应线段长,再利用菱形的判定,令一组邻边相等 解析:(1)证明见解析;(2)存在,210y x =-+;(3)存在,()4,2D 或()0,10D .【解析】【分析】(1)说明出BQ OP =后,再利用矩形的性质得到//BQ OP ,即可完成求证;(2)先设=BQ OP x =,依次表示各点坐标与相应线段长,再利用菱形的判定,令一组邻边相等建立关于x 的方程,解方程后,则各点坐标得以确定,然后利用待定系数法即可求出直线PQ 的解析式;(3)先设出D 点坐标,再分别表示出2BP 、2PD 、2BD ,利用勾股定理的逆定理分类讨论求解即可.【详解】解:(1)证:∵点P ,Q 同时以相同的速度分别从点O ,B 出发,∴BQ OP =,又∵矩形OABC ,∴//BQ OP ,∴四边形OPBQ 是平行四边形.(2)存在;理由:∵矩形OABC 且点B 的坐标为()8,4,∴8OA CB ==,4OC AB ==;设=BQ OP x =∴8AP x =-,∴()2222284BP AP AB x =+=-+, 当四边形OPBQ 是菱形时,则=BP OP ,∴()22284x x =-+, 解得:=5x ,∴8=3CQ BC BQ x =-=-,∴()5,0P ,()3,4Q ,设直线PQ 的解析式为:y kx b =+;∴5034k b k b +=⎧⎨+=⎩,解得:210k b =-⎧⎨=⎩, ∴直线PQ 的解析式为:210y x =-+;(3)由(2)知=5BP OP =,设(),210D m m -+,∴()()22225210550125PD m m m m =-+-+=-+, ()()2222=82104540100BD m m m m -+-+-=-+, 当222=BD BP PD +时,2225401005550125m m m m -+=+-+,解得:5m =,此时2100m -+=,∴()5,0D ,此时D 点与P 点重合,不合题意,故舍去;当222=BP BD PD +时,2225540100550125m m m m =-++-+,解得:14m =,25m =(舍去),此时,2102m -+=,∴()4,2D ;当222=PD BD BP +时,2225501255401005m m m m -+=-++,解得:0m =,此时,21010m -+=,∴()0,10D ;综上可得:()4,2D 或()0,10D .【点睛】本题综合考查了矩形的性质、待定系数法求一次函数解析式、平行四边形的判定定理、菱形的判定定理、勾股定理及其逆定理等内容,同时涉及到了解一元二次方程等知识,本题综合性较强,要求学生具备一定的综合分析能力和计算能力,本题蕴含了分类讨论和数形结合的思想方法等.25.(1);(2)证明见解析;(3)【分析】(1)过点D 作DF ⊥AB 于F ,有等腰直角三角形和含30度角的直角三角形的性质,利用勾股定理求出AF 和BF 的长即可求解.(2)过点E 作EF ⊥AB 于F ,过点解析:(1)62+;(2)证明见解析;(3)43-【分析】(1)过点D 作DF ⊥AB 于F ,有等腰直角三角形和含30度角的直角三角形的性质,利用勾股定理求出AF 和BF 的长即可求解. (2)过点E 作EF ⊥AB 于F ,过点A 作AG ⊥BD 交BD 延长线于G ,先证明△GAD ≌△FAE ,再证明三角形ADE 时等边三角形,即可得到答案;(3)过点A 作AP ⊥DE 于P ,过点D 作DN ⊥BF 于点N ,可证明∠BDN =∠DBN =45°,∠FDN =30°,以及EF =BF ,设FN =m ,根据勾股定理,用含m 的式子分别表示出2AF 和2BF ,即可得出结果.【详解】解:(1)如图,过点D 作DF ⊥AB 于F ,∴∠AFD =∠BFD =90°∵四边形ABCD 是平行四边形,∠C =45°,BC =2∴∠A =∠C =45°,AD =BC =2∴AF =DF ,∵∠DBA =30°,∴BD =2DF ,在直角三角形AFD 中,222AF DF AD +=,∴224AF =,∴2AF DF ==,∴222BD DF ==,在直角三角形DFB 中,226BF BD DF =-=,∴62AB AF BF =+=+;(2)过点E 作EF ⊥AB 于F ,过点A 作AG ⊥BD 交BD 延长线于G ,∵AE =BE ,∴12A FB A BF ==, ∵∠G =90°,∠DBA =30°,∴12AG AB =,∠DAB =60° ∴AG AF =,∵∠DAE =60°,∴∠GAD =∠FAE =60°-∠DAF ,∵∠G =∠AFE =90°,∴△GAD ≌△FAE (ASA ),∴AD =AE ,∴三角形ADE 时等边三角形,∴AD =DE ,∴DE =BC ;(3)如图,过点A 作AP ⊥DE 于P ,过点D 作DN ⊥BF 于点N ,则∠APE =∠APF =∠DNF =∠DNB =90°,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠ABF =∠C =15°,∠DFB =∠ADF =60°,∴∠DBN =∠ABF +∠ABD =45°,∠FDN =30°,∴∠BDN =∠DBN =45°,∴∠EBD =∠EDB =∠FDN +∠BDN =75°,∴∠FEB =180°-75°-75°=30°,∴∠FBE =∠DFB -∠FEB =60°-30°=30°=∠FEB ,∴EF =BF ,设FN =m ,DF =2m , ∴223BN DN DF FN m ==-=, ∴3EF BF m m ==+,33AE DE m m ==, ∴1332m m PE PD DE +=== ∴3332m m m m PF m +-== ∵2AE DE PE ==,∴22223AP AE PE PE =-=, ∴(22222231043AF AP PF PE PF m =+=+=+, ∵()(222343BF m m m ==+, ∴()()22222104343423m AF AF BF BF m +⎛⎫=== ⎪⎝⎭+【点睛】本题主要考查了等腰三角形的性质,等腰直角三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,平行四边形的性质,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.。
华东师大版八年级下册数学《第19章矩形、菱形与正方形》单元综合检测试卷含答案
华东师⼤版⼋年级下册数学《第19章矩形、菱形与正⽅形》单元综合检测试卷含答案第19章矩形、菱形与正⽅形⼀、选择题A. 对⾓线相等的四边形是矩形B. 对⾓线互相垂直且相等的四边形是正⽅形C. 对⾓线互相垂直的四边形是菱形D. 两组对⾓分别相等的四边形是平⾏四边形2.若菱形的两条对⾓线长分别为6和8, 则这个菱形的周长为( )A. 20B. 16C. 12D. 103.正⽅形具备⽽菱形不具备的性质是()A. 对⾓线互相平分B. 对⾓线互相垂直C. 对⾓线相等D. 每条对⾓线平分⼀组对⾓4.在四边形ABCD中,对⾓线AC、BD相交于点O,给出下列条件:①AB∥CD;②AB=CD;③OA=OC;④OB=OD;⑤AC⊥BD;⑥AC平分∠BAD.则下列各组组合中,不能推出四边形ABCD为菱形的是()A. ①②④B. ③④⑤C. ①②⑤D. ①②⑥5.如图,将正⽅形OABC放在平⾯直⾓坐标系xOy中,O是原点,若点A的坐标为(1,),则点C的坐标为()A. (,1)B. (﹣1,)C. (﹣,1)D. (﹣,﹣1)6.已知:如图,在?ABCD中,点E在AD上,连接BE,DF∥BE交BC于点F,AF与BE交于点M,CE与DF交于点N,AF,BE分别平分∠BAD,∠ABC;CE,DF分别平分∠BCD,∠ADC,则四边形MFNE是()A. 菱形B. 矩形C. 平⾏四边形D. 正⽅形7.如图,在矩形ABCD中,AB=4,BC=8,对⾓线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A. 3B. 5C. 2.4D. 2.58.正⽅形四边中点的连线围成的四边形(最准确的说法)⼀定是()A. 矩形B. 菱形C. 正⽅形D. 平⾏四边形9.如图,点O是矩形ABCD的对⾓线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为()A. 5B. 4C.D.10.如图,四边形ABCD为菱形,AB=5,BD=8,AE⊥CD于E,则AE的长为()A. B. C. D.11.如图,正⽅形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的⾯积是()A. 30B. 34C. 36D. 4012.如图,正⽅形ABCD中,以对⾓线AC为⼀边作菱形AEFC,则∠FAB等于()A. 22.5°B. 45°C. 30°D. 135°⼆、填空题13.如图,平⾏四边形ABCD的对⾓线AC,BD相交于点O,请你添加⼀个适当的条件________使其成为菱形(只填⼀个即可).14.如图,剪两张等宽对边平⾏的纸条,随意交叉叠放在⼀起,转动其中的⼀张,重合的部分构成了⼀个四边形,这个四边形是________.15.如图,矩形ABCD的对⾓线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的⾯积为________16.已知正⽅形的周长是8 ,则对⾓线长是________.17.如图,BF平⾏于正⽅形ABCD的对⾓线AC,点E在BF上,且AE=AC,CF∥AE,则∠BCF的度数为________.18.如图,在四边形ABCD中,AB=BC=CD=DA ,对⾓线AC与BD相交于点O ,若不增加任何字母与辅助线,要使四边形ABCD是正⽅形,则还需增加⼀个条件是________19.已知:如图所⽰,E是正⽅形ABCD边BC延长线⼀点,若EC=AC,AE交CD于F,则∠AFC=________度.20.如图,矩形ABCD中,DE⊥AC于点E,∠EDC:∠EDA=1:3,且AC=12,则DE的长度是________ (结果⽤根号表⽰).三、解答题21.如图,四边形ABCD是平⾏四边形,连接对⾓线AC,E、F是对⾓线AC上两点,满⾜AE=CF,求证:四边形DEBF是平⾏四边形.22.如图,菱形ABCD中,对⾓线AC、BC相交于点O,H为AD边中点,菱形ABCD的周长为28,求OH 的长?23.如图,在?ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平⾏四边形;(2)若去掉已知条件“∠DAB=∠60°”,(1)中的结论还成⽴吗?若成⽴,请写出证明过程;若不成⽴,请说明理由.24.四边形ABCD是正⽅形,对⾓线AC,BD相交于点O.(1)如图1,点P是正⽅形ABCD外⼀点,连接OP,以OP为⼀边,作正⽅形OPMN,且边ON与边BC 相交,连接AP,BN.①依题意补全图1;②判断AP与BN的数量关系及位置关系,写出结论并加以证明;(2)点P在AB延长线上,且∠APO=30°,连接OP,以OP为⼀边,作正⽅形OPMN,且边ON与BC的延长线恰交于点N,连接CM,若AB=2,求CM的长(不必写出计算结果,简述求CM长的过程)参考答案⼀、选择题D A C A C B B C D C B A⼆、填空题13.AC⊥BD或∠AOB=90°或AB=BC 14.菱形15.316.4 17.105°18.AC=BD或AB⊥BC(答案不唯⼀)19.112.5 20.三、解答题21.证明:连接BD,交AC于点O,∵四边形ABCD是平⾏四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平⾏四边形.22.解:在菱形ABCD中,AB=AD=BC=DC,AO=OC,∵菱形的周长为28,∴AB=7,∵H为AD边的中点,∴OH为△ABD的中位线,∴OH=AB=×7=3.5.23.(1)证明:∵四边形ABCD是平⾏四边形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三⾓形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四边形AFCE是平⾏四边形(2)解:上述结论还成⽴.证明:∵四边形ABCD是平⾏四边形,∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.∴∠ADE=∠CBF.∵AE=AD,CF=CB,∴∠AED=∠ADE,∠CFB=∠CBF.∴∠AED=∠CFB.⼜∵AD=BC,在△ADE和△CBF中.,∴△ADE≌△CBF(AAS).∴∠AED=∠BFC,∠EAD=∠FCB.⼜∵∠DAB=∠BCD,∴∠EAF=∠FCE.∴四边形EAFC是平⾏四边形.24.(1)解:①补全图形如图1所⽰,②结论:AP=BN,AP⊥BN.理由:延长NB交AP于H,交OP于K.∵四边形ABCD是正⽅形,∴OA=OB,AO⊥BO,∴∠1+∠2=90°,∵四边形OPMN是正⽅形,∴OP=ON,∠PON=90°,∴∠2+∠3=90°,∴∠1=∠3,在△APO和△BNO中,,∴△APO≌△BNO,∴AP=BN,∴∠4=∠5,在△OKN中,∠5+∠6=90°,∵∠7=∠6,∴∠4+∠7=90°,∴∠PHK=90°,∴AP⊥BN.(2)解:解题思路如下:a.⾸先证明△APO≌△BNO,AP=BN,∠OPA=ONB.b.作OT⊥AB于T,MS⊥BC于S,由题意可知AT=TB=1,c.由∠APO=30°,可得PT= ,BN=AP= +1,可得∠POT=∠MNS=60°.d.由∠POT=∠MNS=60°,OP=MN,可证,△OTP≌△NSM,∴PT=MS= ,∴CN=BN﹣BC= ﹣1,∴SC=SN﹣CN=2﹣,在RT△MSC中,CM2=MS2+SC2,∴MC的长可求.。
八年级下册数学期末试卷综合测试卷(word含答案)(1)
八年级下册数学期末试卷综合测试卷(word含答案)(1) 一、选择题1.函数y=35xx--的自变量x的取值范围是()A.x≠5B.x>3且x≠5C.x≥3D.x≥3且x≠5 2.由下列线段组成的三角形不是直角三角形的是()A.7,24,25 B.4,5,41C.3,5,4 D.4,5,6 3.下列关于平行四边形的命题中,错误的是()A.两组对角分别相等的四边形是平行四边形B.一组对边相等,另一组对边平行的四边形是平行四边形C.一组对边平行,一组对角相等的四边形是平行四边形D.一组对边平行且相等的四边形是平行四边形4.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数()cm183183183183方差 5.7 3.5 6.78.6要从中选择一名发挥稳定的运动员去参加比赛,应该选择()A.甲B.乙C.丙D.丁5.如图,已知矩形ABCD的对角线AC的长为10cm,连结矩形各边中点E、F、G、H得四边形EFGH,则四边形EFGH的周长为()cm.A.20 B.202C.203D.256.如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为()A.20º B.25º C.30º D.35º7.如图,在△ABC中,BC=2∠C=45°,若D是AC的三等分点(AD>CD),且AB =BD ,则AB 的长为( )A .2B .5C .3D .528.一条公路旁依次有A 、B 、C 三个村庄,甲、乙两人骑自行车分别从A 村、B 村同时出发前往C 村,甲、乙之间的距离()km s 与骑行时间()t h 之间的函数关系如图所示,下列结论:①A 、B 两村相距8km ;②甲出发2h 后到达C 村;③甲每小时比乙我骑行8km ;④相遇后,乙又骑行了15min 或45min 时两人相距2km .其中正确结论的个数是( )A .1B .2C .3D .4二、填空题9.若13x x --在实数范围内有意义,则x 的取值范围是____________. 10.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,已知4OA =,菱形ABCD 的面积为24,则BD 的长为______.11.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为_____12.如图,在矩形ABCD 中,点E 在AD 上,且EC 平分BED ∠,若1AB =,45EBC ∠=︒,则DE 的长为__________.13.已知一次函数y x b =-+的图象过点()8,2,那么此一次函数的解析式为__________. 14.若顺次连接四边形ABCD 四边中点所得的四边形是菱形,则原四边形的对角线AC 、BD 所满足的条件是________.15.在平面直角坐标系中,矩形OABC 的顶点O 为坐标原点,顶点A ,C 分别在x 轴和y 轴上,OA =4,OC =3,D 为AB 边的中点,E 是OA 边上的一个动点,当△CDE 的周长最小时,则点E 的坐标为_____.16.如图,∠ABD =∠BDC =90°,AB =12,BC =8,CD =10A 与点D 重合,折痕为HG ,则线段BH 的长为___.三、解答题17.计算:(1)218×12﹣24;(2)48÷3﹣12×12+24. 18.如图,在甲村到乙村的公路一旁有一块山地正在开发.现A 处需要爆破,已知点A 与公路上的停靠站B ,C 的距离分别为400 m 和300 m ,且AC ⊥AB .为了安全起见,如果爆破点A 周围半径260 m 的区域内不能有车辆和行人,问在进行爆破时,公路BC 段是否需要暂时封闭?为什么?19.如图,4×10长方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A ,B ,E ,F 都在格点上,按下列要求作图,使得所画图形的顶点均在格点上. (1)在图中画出以AB 为边的正方形ABCD ;(2)在图中画出以EF 为边的等腰三角形EFG ,且△EFG 的周长为1010+; (3)在(1)(2)的条件下,连接CG ,则线段CG 的长为 .20.如图,在ABCD 中,两条对角线AC 和BD 相交于点O ,并且6BD =,8AC =,5BC =.(1)AC 与BD 有什么位置关系?为什么?(2)四边形ABCD 是菱形吗?为什么?21.阅读材料:规定初中考试不能使用计算器后,小明是这样解决问题的:已知a 23+,求2281a a -+的值.他是这样分析与解的:∵a 23+2323(23)(23)-=+-, ∴23a -= ∴2(2)3,a -= 2443a a -+=∴241a a -=-, ∴2281a a -+=2(24)1a a -+=2(1)11⨯-+=-.请你根据小明的分析过程,解决如下问题:(1)若a 21-,直接写出2481a a -+的值是 . (21315375121119+++++ 22.为丰富同学们的课余活动,某校成立了篮球课外兴趣小组,计划购买一批篮球,需购买A 、B 两种不同型号的篮球共300个.已知购买3个A 型篮球和2个B 型篮球共需340元,购买2个A 型篮球和1个B 型篮球共需要210元.(1)求购买一个A 型篮球、一个B 型篮球各需多少元?(2)若该校计划投入资金W 元用于购买这两种篮球,设购进的A 型篮球为t 个,求W 关于t 的函数关系式;(3)学校在体育用品专卖店购买A 、B 两种型号篮球共300个,经协商,专卖店给出如下优惠:A 种球每个降价8元,B 种球打9折,计算下来,学校共付费16740元,学校购买A 、B 两种篮球各多少个?23.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为秒.(1)直接写出的面积(用含的代数式表示).(2)当点M 落在BC 边上时,求的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的的值;若不存在请说明理由(不能添加辅助线). 24.如图,在平面直角坐标系中,直线28y x =+与x 轴交于点A,与y 轴交于点B,过点B 的直线x 轴于点C ,且AB=BC .(1)求直线BC 的表达式(2)点P 为线段AB 上一点,点Q 为线段BC 延长线上一点,且AP=CQ,PQ 交x 轴于点P ,设点Q 的横坐标为m ,求PBQ ∆的面积(用含m 的代数式表示)(3)在(2)的条件下,点M 在y 轴的负半轴上,且MP=MQ ,若45BQM ︒∠=求点P 的坐标.25.如图,Rt △CEF 中,∠C =90°,∠CEF ,∠CFE 外角平分线交于点A ,过点A 分别作直线CE ,CF 的垂线,B ,D 为垂足.(1)∠EAF = °(直接写出结果不写解答过程);(2)①求证:四边形ABCD 是正方形.②若BE =EC =3,求DF 的长.(3)如图(2),在△PQR 中,∠QPR =45°,高PH =5,QH =2,则HR 的长度是 (直接写出结果不写解答过程).【参考答案】一、选择题1.D解析:D【分析】根据二次根式和分式有意义的条件列出不等式,求解不等式即可.【详解】根据题意得:x﹣3≥0且x﹣5≠0,解得x≥3且x≠5.∴自变量x的取值范围是x≥3且x≠5.故选:D.【点睛】本题考查了二次根式和分式由意义的条件,理解二次根式和分式由意义的条件是解题的关键.2.D解析:D【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】解:A、∵72+242=625=252,∴能够成直角三角形,故本选项不符合题意;B、∵42+52412,∴能够成直角三角形,故本选项不符合题意;C、∵32+42=52,∴能够成直角三角形,故本选项不符合题意;D、∵42+52≠62,∴不能够成直角三角形,故本选项符合题意.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.B解析:B【解析】【分析】根据平行四边形的判定方法,一一判断即可.【详解】解:A. 两组对角分别相等的四边形是平行四边形,正确;根据平行四边形的判定方法,可得结论;B. 一组对边相等,另一组对边平行的四边形是平行四边形,错误;如:等腰梯形;C. 一组对边平行,一组对角相等的四边形是平行四边形正确,由题意可以证明两组对边分别平行,四边形是平行四边形;D. 一组对边平行且相等的四边形是平行四边形,正确,根据平行四边形的判定方法,可得结论.故选:B【点睛】本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考基础题.4.B解析:B【解析】【分析】首先比较出甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的方差的大小关系,然后根据方差越大,波动性越大,判断出应该选择谁参加比赛即可.【详解】解:因为3.5<5.7<6.7<8.6,所以乙最近几次选拔赛成绩的方差最小,所以要从中选择一名发挥稳定的运动员去参加比赛,应该选择乙.故选:B.【点睛】此题主要考查了方差的含义和应用,要熟练掌握,解答此题的关键是要明确:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.A解析:A【分析】连接BD,根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,而矩形对角线相等,从而算出周长即可.【详解】连接BD,∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=1AC=5cm,同理EF=5cm,2∵四边形ABCD是矩形,∴根据矩形的对角线相等,即BD=AC=10cm,∵H、E是AD与AB的中点,∴EH是△ABD的中位线,∴EH=1BD=5cm,同理FG=5cm,2∴四边形EFGH的周长为20cm.故选A.【点睛】熟练掌握矩形对角线相等和三角形中位线等于第三边的一半的性质是解决本题的关键. 6.C解析:C【解析】【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.【详解】∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故选:C.【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.7.B解析:B【解析】【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理2222215AB BE AE =+=+=即可.【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴()22222+222BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点, ∴CD =13AC ,AD =AC -CD =1233AC AC AC -=, ∴AE =DE =121233AC AC ⨯==CD , ∴CE =CD +DE =2CD =2,∴CD =1,∴AE =1,在Rt △ABE 中,根据勾股定理2222215AB BE AE =+=+=.故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键. 8.C解析:C【分析】由图像与纵轴的交点可得出A 、B 两地的距离;当s=0时,即为甲、乙相遇的时候,同理根据图像的拐点判断其他即可.【详解】解:由图像可知A 村、B 村相离8km ,故①正确;甲出发2h 后到达C 村,故②正确;当0≤t≤1时,易得一次函数的解析式为s=-8t+8,故甲的速度比乙的速度快8km/h ,故③正确;当1≤t≤1.5时,函数图象经过点(1,0)(1.5,4)设一次函数的解析式为s=kt+b则有:104 1.5k b k b =+⎧⎨=+⎩解得21k b =⎧⎨=⎩ ∴s=2t+1当s=2时,得2=2t+1,解得t=0.5<1,不符合题意,④错误.故答案为C.【点睛】本题考查了一次函数的应用和函数与方程的思想,解题的关键在于读懂图象,根据图像的信息进行解答.二、填空题9.1≥x 且3x ≠【解析】【分析】根据分母不等于0,且被开方数是非负数列式求解即可.【详解】由题意得10x -≥且30x -≠解得1≥x 且3x ≠故答案为:1≥x 且3x ≠【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.10.A解析:6【解析】【分析】根据菱形的性质得到AC =8,根据菱形的面积等于两条对角线乘积的一半,即可求解.【详解】解:∵四边形ABCD 为菱形;∴AC =2OA =8,12ABCD S AC BD =⋅菱形, ∴12482BD =⨯⨯, ∴BD =6,故答案为:6【点睛】本题考查了菱形的性质,解题的关键是熟记菱形面积的两种表示法:(1)底乘高,(2)对角线乘积的一半,本题运用的是第二种.11.E解析:8【解析】【分析】根据正方形的面积等于边长的平方,由正方形PQED 的面积和正方形PRQF 的面积分别表示出PR 的平方及PQ 的平方,又三角形PQR 为直角三角形,根据勾股定理求出QR 的平方,即可求小正方形的边长.【详解】如图,∵正方形PQED 的面积等于225,∴即PQ 2=225,∵正方形PRGF 的面积为289,∴PR 2=289,又△PQR 为直角三角形,根据勾股定理得:PR 2=PQ 2+QR 2,∴QR 2=PR 2−PQ 2=289−225=64,∴QR=8,即字母A 所代表的正方形的边长为8.【点睛】本题考查勾股定理,根据勾股定理求出小正方形的面积是关键.12.D21【分析】由矩形的性质和角平分线的定义得出∠DEC =∠ECB =∠BEC ,推出BE =BC ,求得 AE =AB =1,然后依据勾股定理可求得BC 的长;【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEC =∠BCE ,∵EC 平分∠DEB ,∴∠DEC =∠BEC ,∴∠BEC =∠ECB ,∴BE =BC ,∵四边形ABCD 是矩形,∴∠A =90°,AD BC =∵∠ABE =45°,∴∠ABE =∠AEB =45°,∴AB =AE =1,由勾股定理得:BE ==,∴BC =AD =BE, ∴1DE AD AE =-,1.【点睛】本题考查了矩形的性质,等腰三角形的性质与判定,勾股定理的应用;熟练掌握矩形的性质,证出BE =BC 是解题的关键.13.10y x =-+【分析】用待定系数法即可得到答案.【详解】解:把()8,2代入y x b =-+得82b -+=,解得10b =,所以一次函数解析式为10y x =-+.故答案为10y x =-+【点睛】本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.14.A解析:AC BD =【分析】如下图,根据三角形中位线的定理,可得AG=EF=12AC ,GF=AE=12BD ,再根据菱形四条边相等的性质,可得出AC 与BD 的关系.【详解】如下图,点E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点∵点E、F是AB、BC的中点∴EF=12AC同理可得:AG=EF=12AC,GF=AE=12BD∵要使得四边形HEFG是菱形,则HE=EF=FG=GH ∴只需AC=BD即可故答案为:AC=BD【点睛】本题考查菱形的性质和三角形中位线的性质,解题关键是得出AG=EF=12 AC,GF=AE=12 BD.15.(,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解析:(83,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解:作点D关于x轴对称点F,如图,∵四边形OABC 是矩形,∴OC =BD =3,点C 的坐标为()0,3,∵D 为AB 边的中点,∴AD =32, ∵OA =4,∴D 点的坐标为34,2⎛⎫ ⎪⎝⎭,则F 点的坐标为34,2⎛⎫- ⎪⎝⎭, 根据轴对称的性质可得:EF =ED ,∴C △CDE =CD +CE +DE =CD +CE +EF ,其中CD 为定值,当CE +EF 值最小时,△CDE 周长最小,此时点C ,E ,F 三点共线,设直线CF 的解析式为:()0y kx b k =+≠,将()0,3和34,2⎛⎫- ⎪⎝⎭代入解析式得: 3342b k b =⎧⎪⎨+=-⎪⎩,解得:983k b ⎧=-⎪⎨⎪=⎩, ∴直线CF 的解析式为:938y x =-+, 令0y =,得:9308x -+=, 解得:83x =, ∴点E 坐标(83,0), 故答案为:803⎛⎫ ⎪⎝⎭,. 【点睛】本题考查一次函数与轴对称的综合运用,理解最短路径的求解方法,熟悉待定系数法求一次函数解析式是解题关键.16.5【分析】在Rt△BDC中由勾股定理可求出BD,根据翻折变换可得AH=HD,在Rt△BDH 中由勾股定理可得答案.【详解】解:在Rt△BDC中,∵BC=8,CD=2,∴BD=,由题意,得解析:5【分析】在Rt△BDC中由勾股定理可求出BD,根据翻折变换可得AH=HD,在Rt△BDH中由勾股定理可得答案.【详解】解:在Rt△BDC中,∵BC=8,CD=∴BD=由题意,得AH=HD,设BH=x,则AH=12﹣x=HD,在Rt△BDH中,由勾股定理得,HB2+BD2=HD2,即x2)2=(12﹣x)2,解得x=5,即HB=5,故答案为:5.【点睛】本题考查了翻折变换,勾股定理.掌握翻折变换的性质及勾股定理是解题的关键.三、解答题17.(1);(2)【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.【详解】解:(1)解析:(1)2)4【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.【详解】解:(1)===(22=4=4=【点睛】本题主要考查了利用二次根式的化简和二次根式的混合运算,熟练掌握相关计算法则是解题的关键.18.需要封闭,理由见解析【分析】过作于 先求解 再利用等面积法求解 再与260比较,可得答案.【详解】解:过作于所以进行爆破时,公路BC 段需要暂时封闭.【点睛】解析:需要封闭,理由见解析【分析】过A 作AK BC ⊥于,K 先求解,BC 再利用等面积法求解,AK 再与260比较,可得答案.【详解】解:过A 作AK BC ⊥于,K,400,300,AB AC AB AC22500,BC AB AC11,AB AC BC AK22AK300400500,240,AK240260,所以进行爆破时,公路BC段需要暂时封闭.【点睛】本题考查的是勾股定理的应用,利用等面积法求解直角三角形斜边上的高,掌握“等面积法求解直角三角形斜边上的高”是解题的关键.19.(1)见解析;(2)见解析;(3)【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为等腰三角形即可;(3)解析:(1)见解析;(2)见解析;(35【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为1010(3)由勾股定理求出CG即可.【详解】解:(1)如图,所作正方形ABCD即为以AB为边的正方形ABCD;(2)如图,所作△EFG即为以EF为边的等腰三角形EFG,且△EFG的周长为1010+(3)如图,CG22+512【点睛】本题考查作图-应用与设计,勾股定理,解题的关键是理解题意,根据GE=GF=5画出等腰三角形.20.(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC, OB的长,再利用勾股定理逆定理求出∠BOC=90,可得AC与BD的位置关系;(解析:(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC,OB的长,再利用勾股定理逆定理求出∠BOC=90︒,可得AC与BD的位置关系;(2)菱形的判定方法:对角线互相垂直平分的四边形是菱形,可得答案.【详解】解:(1)AC⊥BD;理由如下:在ABCD中,132==OB BD,142OC AC==∵22291625+=+==OB OC BC∴∠BOC=90︒∴AC⊥BD.(2)四边形ABCD是菱形∵四边形ABCD是平行四边形(已知),AC⊥BD(已证)∴四边形ABCD是菱形.【点睛】此题主要考查了菱形的判定,平行四边形的性质,以及勾股定理的逆定理的运用,解题的关键是根据条件证出BO2+CO2=CB2.21.(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵a=,∴4a2-8a+1=4×()2-8×()+1=5;(2)解析:(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵, ∴4a 2-8a+1)2-8×)+1=5;(2)原式=12×=12×) =12×10=5.点睛:本题主要考查了分母有理化,利用分母有理化化简是解答此题的关键. 22.(1)一个A 型篮球为80元,一个B 型篮球为50元;(2)函数解析式为:;(3)A 型篮球120个,则B 型篮球为180个.【分析】(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意列出方程组求 解析:(1)一个A 型篮球为80元,一个B 型篮球为50元;(2)函数解析式为:()30150000300W t t =+≤≤;(3)A 型篮球120个,则B 型篮球为180个.【分析】(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意列出方程组求解即可得; (2)A 型篮球t 个,则B 型篮球为()300t -个,根据单价、数量、总价的关系即可得; (3)根据A 型篮球与B 型篮球的优惠政策求出单价,然后代入(2)解析式中求解即可得.【详解】解:(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意可得:323402210x y x y +=⎧⎨+=⎩, 解得:8050x y =⎧⎨=⎩,∴一个A 型篮球为80元,一个B 型篮球为50元;(2)A 型篮球t 个,则B 型篮球为()300t -个,根据题意可得:()()805030030150000300W t t t t =+-=+≤≤,∴函数解析式为:()30150000300W t t =+≤≤;(3)根据题意可得:A 型篮球单价为()808-元,B 型篮球单价为500.9⨯元,则()()16740808500.9300t t =-+⨯⨯-,解得:120t =,300180t -=,∴A 型篮球120个,则B 型篮球为180个. 【点睛】题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应方程是解题关键.23.(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,. 【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是解析:(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,.【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是等腰直角三角形,然后根据等腰直角三角形的性质可得AH 的长,最后根据等腰直角三角形的面积公式即可得; (2)先根据平行四边形的性质可得,从而可得,再根据三角形中位线定理可得是的中位线,从而可得,然后与(1)所求的建立等式求解即可得;(3)分①当点H 是AB 的中点时,;②当点Q 与点E 重合时,;③当时,三种情况,分别求解即可得.【详解】 (1)由题意得:,点Q 为AP 的中点,,四边形ABCD 是矩形,,是BAD的角平分线,,,是等腰直角三角形,,则的面积为;(2)如图1,四边形PQHM是平行四边形,,点M在BC边上,,点Q为AP的中点,是的中位线,,由(1)知,,则,解得;(3)由题意,有以下三种情况:①如图2,当点H是AB的中点时,则,四边形PQHM是平行四边形,,,在和中,,由(2)可知,此时;②如图3,当点Q与点E重合时,在和中,,,,则,解得;③如图4,当时,四边形ABCD是矩形,四边形PQHM是平行四边形,,,在和中,,,,在中,,是等腰直角三角形,,,在中,,是等腰直角三角形,,则由得:,解得;综上,如图2,当时,;如图3,当时,;如图4,当时,.【点睛】本题考查了矩形的性质、三角形中位线定理、三角形全等的判定定理与性质、等腰直角三角形的判定与性质等知识点,较难的是题(3),依据题意,正确分三种情况讨论并画出图形是解题关键.24.(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC 的解析式;(2)过点P作PG解析:(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC 的解析式;(2)过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,由“AAS”可证△AGP≌△CHQ,可得AG=HC=m-4,PG=HQ=2m-8,由“AAS”可证△PEF≌△QCF,可得S△PEF=S△QCF,即可求解;(3)如图2,连接AM,CM,过点P作PE⊥AC,由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=4,可求m的值,可得点P的坐标.【详解】解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,∴点B(0,8),点A(-4,0)∴AO=4,BO=8,∵AB=BC,BO⊥AC,∴AO=CO=4,∴点C(4,0),设直线BC解析式为:y=kx+b,由题意可得:804bk b=⎧⎨=+⎩,解得:28kb=-⎧⎨=⎩,∴直线BC解析式为:y=-2x+8;(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,设△PBQ的面积为S,∵AB=CB,∴∠BAC=∠BCA,∵点Q横坐标为m,∴点Q(m,-2m+8)∴HQ=2m-8,CH=m-4,∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,∴△AGP≌△CHQ(AAS),∴AG=HC=m-4,PG=HQ=2m-8,∵PE∥BC,∴∠PEA=∠ACB,∠EPF=∠CQF,∴∠PEA=∠PAE,∴AP=PE,且AP=CQ,∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,∴△PEF≌△QCF(AAS)∴S△PEF=S△QCF,∴△PBQ的面积=四边形BCFP的面积+△CFQ的面积=四边形BCFP的面积+△PEF的面积=四边形PECB的面积,∴S=S△ABC-S△PAE=12×8×8-12×(2m-8)×(2m-8)=16m-2m2;(3)如图2,连接AM,CM,过点P作PE⊥AC,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=4,∴2m-8=4,∴m=6,∴P(-2,4).【点睛】本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.25.(1)45;(2)①见解析;②DF的长为2;(3)【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=DFE,∠AEF=BEF,求得∠解析:(1)45;(2)①见解析;②DF的长为2;(3)15 7【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=12∠DFE,∠AEF=12∠BEF,求得∠AEF+∠AFE=12(∠DFE+∠BEF),根据三角形的内角和定理即可得到结论;(2)①作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD是矩形,再由角平分线的性质得出AB=AD,即可得出四边形ABCD是正方形;②设DF=x,根据已知条件得到BC=6,由①得四边形ABCD是正方形,求得BC=CD=6,根据全等三角形的性质得到BE=EG=3,同理,GF=DF=x,根据勾股定理列方程即可得到结论;(3)把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,得出MG=DG=MP=PH=6,GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR 中,由勾股定理得出方程,解方程即可.【详解】解:(1)∵∠C=90°,∴∠CFE+∠CEF=90°,∴∠DFE+∠BEF=360°﹣90°=270°,∵AF平分∠DFE,AE平分∠BEF,∴∠AFE=12∠DFE,∠AEF=12∠BEF,∴∠AEF +∠AFE =12(∠DFE +∠BEF )=12⨯270°=135°,∴∠EAF =180°﹣∠AEF ﹣∠AFE =45°, 故答案为:45;(2)①作AG ⊥EF 于G ,如图1所示:则∠AGE =∠AGF =90°, ∵AB ⊥CE ,AD ⊥CF , ∴∠B =∠D =90°=∠C , ∴四边形ABCD 是矩形,∵∠CEF ,∠CFE 外角平分线交于点A , ∴AB =AG ,AD =AG , ∴AB =AD ,∴四边形ABCD 是正方形; ②设DF =x , ∵BE =EC =3, ∴BC =6,由①得四边形ABCD 是正方形, ∴BC =CD =6,在Rt △ABE 与Rt △AGE 中,AB AGAE AE=⎧⎨=⎩ , ∴Rt △ABE ≌Rt △AGE (HL ), ∴BE =EG =3, 同理,GF =DF =x ,在Rt △CEF 中,EC 2+FC 2=EF 2, 即32+(6﹣x )2=(x +3)2, 解得:x =2, ∴DF 的长为2; (3)解:如图2所示:把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,∴MG=DG=MP=PH=5,∴GQ=3,设MR=HR=a,则GR=5﹣a,QR=a+2,在Rt△GQR中,由勾股定理得:(5﹣a)2+32=(2+a)2,解得:a=157,即HR=157;故答案为:157.【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、角平分线的性质、勾股定理、矩形的判定、翻折变换的性质等知识;本题综合性强,有一定难度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级(下)数学综合试卷
一、相信你的选择(每小题3分,共30分)
1. 在“线段、角、等边三角形、等腰三角形、平行四边形、矩形、菱形、正方形”中,
既是轴对称图形又是中心对称图形的共有 A .4种 B .5种 C .7种 D .8种 2.如果
2
2
6
x x x ---=0,则x 等于 A .±2 B .-2 C .2 D .3
3.下列说法中,错误的是
A .平行四边形的对角线互相平分
B .对角线互相平分的四边形是平行四边形
C .菱形的对角线互相垂直
D .对角线互相垂直的四边形是菱形 4.分式
y
x x
232-中的,x y 同时扩大2倍,则分式的值
A .不变
B .是原来的2倍
C .是原来的4倍
D .是原来的
2
1 5.在ABC ∆中,AB=AC =5,D 是BC 上的点,DE ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F ,
那么四边形AFDE 的周长是
A .5
B .10
C .15
D .20 6.已知111,11ab M a b ==
+++,11a b
N a b
=+
++,则M 与N 的大小关系为 A .M>N B .M=N C .M<N D .不确定
7.如果一个四边形的两条对角线互相平分,互相垂直且相等,那么这个四边形是
A .矩形
B .菱形
C .正方形
D .平行四边形 8.已知
113x y -=,则55x xy y
x xy y
+---的值为 A .72-
B .72
C .27
D .―27
9.已知四边形ABCD 中,AC 交BD 于点O ,如果只给条件“AB ∥CD ”,那么还不能
判定四边形ABCD 为平行四边形,给出以下四种说法:
(1)如果再加上条件“BC=AD ”,那么四边形ABCD 一定是平行四边形 (2)如果再加上条件“BCD BAD ∠=∠”,那么四边形ABCD 一定是平行四边形 (3)如果再加上条件“AO=OC ”,那么四边形ABCD 一定是平行四边形 (4)如果再加上条件“CAB DBA ∠=∠”,那么四边形ABCD 一定是平行四边形
其中正确的说法的个数是 A .1 B .2 C .3 D .4
10.学生有m 个,若每n 个人分配1间宿舍,则还有一人没有地方住,问宿舍的间数为
A .
1m n + B .1m n - C .1m n - D .1
m
n + 二、 试试你的身手(每小题3分,共36分)
11.已知在平行四边形ABCD 中,AB =14cm ,BC =16cm ,则该平行四边形的周长为 cm . 12.若分式
1
1
x x -+无意义,则x 的值为 . 13.矩形的两条对角线的夹角为ο60,较短的边长为12cm , 则较长边的长为 cm . 14. 当a 时,分式
2521
a
a -+的值不小于...0. 15. 根据图中所给的尺寸和比例,可知这个“十”字标志的周长为 m .
16. 化简:32222222
32a b a b a ab
ab a ab b a b +--÷++-= .
17. 在平行四边形ABCD 中,AC =10,AB =8,则BD 的取值范围为 .
18. 若1
2a b b -=,则222
2352235a ab b a ab b -++-的值是 . 19.计算232
()()y x y x y
-÷-= .
20. 某宾馆在重新装修后,准备在大厅的主楼梯铺上某种红色的地毯,已知这种地毯每平方米的售价30元,主楼梯道宽2米,其侧面如图所示,则购买地毯至少需要
_________元.
2N
M
D
C
B
A
21. 如图,平行四边形ABCD 中,M 在AC 上,N 在DM 上,且AM =2MC ,DN =2MN ,若△DNC
的面积为1,则平行四边形ABCD 的面积为 . 22.在非零数范围内定义一种运算“※”,其规则为a ※b =11
a b
+,根据这个规则方程 x ※(1x +)=0的解为 . 三、挑战你的技能
23.(本题6分)化简:
⎪⎪⎭
⎫ ⎝
⎛--÷-a b ab a a b a 2
2
24.(本题6分)解方程:
214
1.11
x x x +-=--
25.(本题8分)已知菱形的两条对角线长为8cm 和6cm ,求这个菱形的面积和周长.
O D
C
B
A
26.(本题7分)先化简代数式22222
2()()()
a b a b ab
a b a b a b a b +--÷-+-+,然后请选择一组你喜欢的,a b 的值代入求值.
27.(本题10分)上学期我校初二师生乘中巴车去距学校20公里外的仇湖农工校参加社会实践活动.当第一班车出发20分钟后,学校领导为了安排好师生们的活动,立即乘坐小轿车按相同路线赶往活动基地,结果与第一班车同时到达.已知小轿车的速度是中巴车的1.5倍.求这两种车的速度各是多少?
28.拓广探索(本大题共7分)
⑴ (3分)请阅读某同学解下面分式方程的具体过程.
解方程
1423.4132x x x x +=+---- 解:13244231x x x x -=-
----, ① 22210210
6843
x x x x x x -+-+=
-+-+, ② 2211
6843
x x x x =
-+-+, ③ ∴2
2
684 3.x x x x -+=-+ ④ ∴5.2
x =
检验:把52x =
代入原方程检验知5
2
x =是原方程的解. 上述解答正确吗?答: .
(回答正确者,以下问题无须作答)如果不正确,你认为正确答案是 .
⑵ (4分)如图,把边长为2cm 的正方形剪成四个完全相同的直角三角形.请用这四个完全相同的直角三角形拼成符合下列要求的图形(全部用上,互不重叠且不留空隙),把你的拼法仿照题中所给的图按实际大小画出即可: (1)不是正方形的菱形(一个); (3)不是正方形的矩形(一个); (2)不是矩形和菱形的平行四边形(一个);(4)不是梯形和平行四边形的凸四边形;
29.(本题10分)如图,四边形ABCD 中,A D ∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P 从A 出发,以1cm ∕s 的速度向D 运动,点Q 从C 同时出发,以3 cm ∕s 的速度向B 运动.其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,⑴经过多少时间,四边形PQCD 成为平行四边形?⑵经过多少时间,四边形ABQP 成为矩形?
Q
P
D
C
B
A
30.(本题6分)如图,平行四边形的对角线AC,BD 交于点O ,E 与F 是AC 上的两点,
并且AE=CF .求证四边形BFDE 是平行四边形.
O
E
F
D
C
B
A
31. (本题10分)先把命题补充完整,再进行证明
顺次连结 的四边形各边的中点所成的四边形是正方形.
32.(本题14分) 平行四边形ABCD 中,∠ADC 的平分线交AB 的延长线于E,交BC 于F
(1)求证:BE=BF
(2)若F 为DE 的中点,请猜想AD 与AB 的大小关系,并证明你的猜想. (3)若F 为DE 的中点,∠ABC=60°且AB=3,求平行四边形ABCD 的面积.
F
E
D
C
B
A
参考答案
1——5.ACDAB 6——10.BCBBC 11.60 12.1-=x 13.312 14.≤25 15.4 16.ab 2 17.266<<
BD 18.
16
5 19.2
xy 20.420 21.9 22.21-=x
23.
b
a -1
24.1=x (4分) 检验(5分) 故原方程无解(6分) 25.解:S=24(cm 2) (3分) AD=5(7分) C=20(cm) (8分) 26.化简原式=b a +, 求值(略)
27.解:设中巴车的速度为小时千米x (1分)由题意得,3
1
5.12020=-x x (5分) 解得20=x (7分)经检验, 20=x 是原方程的解,也符合题意(8分)
305.1=∴x (9分)
答:(10分)
28.(1) 不正确(1分) 2
5
,5 (各1分) (2) 图略.每个图得1分 29.6秒(5分),
2
13
秒(5分) 30.证明略(6分)
31.对角线相等且互相垂直 (2分)
已知 (3分) 求证 (4分) 证明 (10分)
32.(1)证明(4分) (2)猜想AB AD 2= (5分)证明(9分) (3)39 (14分)。