小学初中高中数理化公式大全

合集下载

数理化公式

数理化公式

数理化公式
以下是一些常见的数理化公式:
数学公式:
1. 直线的斜率公式:y = mx + c, 其中m是斜率,c是常数。

2. 平方根:√x
3. 三角函数:sin(x), cos(x), tan(x)
4. e的指数函数:exp(x)
5. 对数函数:log(x)
6. 微积分:导数和积分的公式(如牛顿-莱布尼茨公式)物理公式:
1. 牛顿第二定律:F = ma,其中F是力,m是物体的质量,a是加速度。

2. 万有引力定律:F = G * (m1 * m2) / r^2,其中F是引力,m1和m2是两个物体的质量,r是它们之间的距离,
G是万有引力常数。

3. 动能公式:K = 1/2 * m * v^2,其中K是动能,m是物体的质量,v是物体的速度。

4. 速度公式:v = s/t,其中v是速度,s是位移,t是时间。

化学公式:
1. 摩尔质量:M = m/n,其中M是摩尔质量,m是物质
的质量,n是物质的摩尔数。

2. 摩尔浓度:M = n/V,其中M是摩尔浓度,n是溶质的摩尔数,V是溶液的体积。

3. 阿伏伽德罗常数:N = 6.02 * 10^23 mol^-1,表示1
摩尔物质中的粒子数。

4. 化学反应速率:rate = k[A]^\\alpha[B]^\\beta,其中rate是反应速率,k是速率常数,[A]和[B]是反应物的浓度,\\alpha和\\beta是反应物的反应级数。

这只是一小部分数理化公式,还有很多其他的公式,具体
取决于你关注的领域和具体的问题。

小学到高三所有数理化公式

小学到高三所有数理化公式

小学到高三所有数理化公式1.三角形的面积=底×高÷2。

公式 S= a×h÷22.正方形的面积=边长×边长。

公式 S= a×a3.长方形的面积=长×宽;。

公式 S= a×b4.平行四边形的面积=底×高。

公式 S= a×h5.梯形的面积=(上底+下底)×高÷2 。

公式 S=(a+b)h÷26.内角和:三角形的内角和=180度。

7.长方体的体积=长×宽×高。

公式:V=abh8.长方体(或正方体)的体积=底面积×高。

公式:V=abh9.正方体的体积=棱长×棱长×棱长。

公式:V=aaa10.圆的周长=直径×π。

公式:L=πd=2πr11.圆的面积=半径×半径×π。

公式:S=πr212.圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。

公式:S=ch=πdh=2πrh13.圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。

公式:S=ch+2s=ch+2πr214.圆柱的体积:圆柱的体积等于底面积乘高。

公式:V=Sh15.圆锥的体积=1/3底面×积高。

公式:V=1/3Sh16.分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

17.分数的乘法则:用分子的积做分子,用分母的积做分母。

18.分数的除法则:除以一个数等于乘以这个数的倒数。

19.加法交换律:两数相加交换加数的位置,和不变。

20.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

21.乘法交换律:两数相乘,交换因数的位置,积不变。

22.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

初中数理化生公式定理及必考知识全解

初中数理化生公式定理及必考知识全解

初中数理化生公式定理及必考知识全解
一. 平方差公式
理论:平方差公式是一种数学概念,它告诉我们如何利用一组数字的均值来有效地计算这组数字的总差。

公式:平方差的计算公式为:
(Xi−X)2=(Xi-X1)2+(Xi-X2)2+…+(Xi-Xn)2
其中Xi为给定样本族的第i个样本值,X为所给样本族的平均值,n为给定样本容量;
二.弦长公式
理论:弦长公式是一种求圆弧长度的计算公式,它能被用来准确测量给定圆上两点之间的弧长。

公式:弦长公式为:
L=r∗△θ
其中L为弦长,r为圆半径,△θ为角度的变化量;
三.勾股定理
理论:勾股定理是一个古老而常用的数学定理,由古希腊数学家勾股
米诺首先提出。

其定理表明,如果一个三角形的两个直角边分别等于a 和b,其斜边的长度则是
公式:勾股定理计算公式为:
c2=a2+b2
其中c为直角三角形的斜边长度,a和b分别为邻边长度。

数理化公式大全

数理化公式大全

数理化公式大全三角形的面积=底×高÷2。

公式 S= a×h÷2正方形的面积=边长×边长公式 S= a×a长方形的面积=长×宽公式 S= a×b平行四边形的面积=底×高公式 S= a×h梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2内角和:三角形的内角和=180度。

长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。

公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。

公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。

公式:V=Sh圆锥的体积=1/3底面×积高。

公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。

读懂理解会应用以下定义定理性质公式一、算术方面1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

从小学到高中的所有数学公式

从小学到高中的所有数学公式

从小学到高中的所有数学公式数学是一门严密的科学,数学公式是数学问题解决的关键工具。

从小学到高中的数学学习过程中,我们将学习到许多重要的数学公式。

下面是从小学到高中的一些数学公式总结。

【小学阶段】1.两个数的和:a+b=c2.两个数的差:a-b=c3.两个数的积:a×b=c4.两个数的商:a÷b=c5. 平均数:(a1 + a2 + ... + an) / n = 平均数6.乘法分配律:a×(b+c)=a×b+a×c7.加法结合律:(a+b)+c=a+(b+c)8.减法结合律:(a-b)-c=a-(b+c)9.乘法结合律:(a×b)×c=a×(b×c)10.除法结合律:(a÷b)÷c=a÷(b÷c)【初中阶段】1.平方:a²=c2.立方:a³=c3.开方:√a=c4.百分数:百分之a=c%5.比例:a:b=c:d6.需要行进的距离:速度×时间=距离7.等腰三角形的面积:(底×高)/28.直角三角形的斜边:c²=a²+b²9.三角形的面积:面积=1/2×底×高10.直线斜率:斜率=(y₂-y₁)/(x₂-x₁)【高中阶段】1. 二次方程:ax² + bx + c = 02. 一元二次方程求根公式: x = (-b ± √(b² - 4ac)) / 2a3.四则运算:-加法:a+b=c-减法:a-b=c-乘法:a×b=c-除法:a÷b=c4.三角函数:- 正弦定理:a / sinA = b / sinB = c / sinC- 余弦定理:c² = a² + b² - 2abcosC- 正切定理:tanA = sinA / cosA5.指数与对数:-指数律:-a^m×a^n=a^(m+n)- (a^m)^n = a^(mn)- (ab)^n = a^n × b^n-对数律:- log_a (mn) = log_a m + log_a n- log_a (m/n) = log_a m - log_a n- log_a m^n = n × log_a m以上是从小学到高中阶段的一些重要数学公式总结。

小学初中高中所有数学公式

小学初中高中所有数学公式

小学初中高中所有数学公式一、小学数学公式1、和公式:a+b=c2、差公式:a-b=c3、积公式:a×b=c4、商公式:a÷b=c5、立方公式:a3=a×a×a6、立方根公式:a3=a7、平方公式:a2=a×a8、平方根公式:a2=a9、四则运算公式:a+(b±c)±d…10、乘方公式:(a×b)n=an×bn11、分式加减法公式:a/b±c/d=(ad±bc)/bd12、分式乘除法公式:a/b×c/d=a×c/b×d13、等比数列公式:an=a1×r^n-1二、初中数学公式1、二次函数公式:y=ax2+bx+c2、一元二次方程公式:ax2+bx+c=03、直线方程公式:y=kx+b4、坐标轴公式:x=←→,y=↑↓5、空间直角坐标公式:P(x,y,z)6、一次函数公式:y=fx+c7、抛物线方程公式:y=ax2+bx+c8、点斜式方程公式:y-y1=k(x-x1)9、圆的标准方程公式:(x-a)2+(y-b)2=r210、椭圆的标准方程公式:(x-x1)2/a2+(y-y1)2/b2=111、圆锥体、椎体体积公式:V=1/3πh(a2+ab+b2)12、圆柱体、台阶体体积公式:V=πr2h13、圆面积公式:S=πr214、三角形面积公式:S=1/2a×h15、梯形面积公式:S=1/2(a+b)×h三、高中数学公式1、双曲线标准方程公式:x2/a2-y2/b2=12、极坐标方程公式:(r,θ)=(ρ,α)3、平面向量公式:a=(a1,a2)4、利用积分求面积公式:S=∫abf(x)dx5、叉积公式:a×b=(a1b2-a2b1)。

小学初中高中数学公式大全

小学初中高中数学公式大全

小学初中高中数学公式大全
一、平面几何:
1、直线、直角三角形、平行四边形、正方形和正多边形的内角和:
△ABC的内角和:A+B+C=180°
正n边形的内角和:(n-2)×180°
2、圆形的面积:
S=πr²
3、圆周长:
C=2πr
4、三角形的面积:
S=1/2×a×h
5、平行四边形的面积:
S=ab
6、三棱柱的表面积:
S=2(a²+ab+b²)
7、三棱柱体的体积:
V=a²h
二、图形函数:
1、一元二次函数:
y=ax²+bx+c
2、一元三次函数:
y=ax³+bx²+cx+d 3、二元函数:
F(x,y)=ax+by+c 4、指数函数:
y=ax^b
三、三角函数:
1、正弦函数:
y=sinθ
2、余弦函数:
y=cosθ
3、正切函数:
y=tanθ
四、立体几何:
1、棱形柱体的表面积:
S=2(ab+bc+ca)
2、棱形柱体的体积:
V=abc
3、球面积:
S=4πr^2
4、球的表面积:
S=4πr^2
5、球体的体积:
V=(4/3)πr^3
五、平面空间:
1、投影面积:
S=abcosθ2、投影体积:
V=abc
3、旋转体积:。

小学到高中的所有数学公式

小学到高中的所有数学公式

小学到高中的所有数学公式
一、初中数学公式
1、全等式:两个式子,它们当中的符号和数值全部一致,则称它们
是全等的,用等号表示两边全等,即a=b
2、几何比率:如果把一条线段平分成两部分,两部分的长度之比称
为几何比率,用比例符号表示为:a:b
3、等比数列:当任意一项与它的前一项或后一项之比为一个常数时,这样的数列称为等比数列,它的公比用q表示,用公式 an=a1qn-1 表示
4、立体几何公式:圆柱体的体积为V=πR2h(其中R为半径,h为高);球的体积为V=4/3πR3(其中R为球半径);正多面体的体积为
V=a3(其中a为顶点到中心点的距离)
5、三角形公式:三角形的面积公式为S=1/2ab sinC(其中a为三角
形的一条边,b为另外一条边,C为两边所成的角度);三角形的周长公
式为P=a+b+c(其中a、b、c为三角形的三条边)
二、高中数学公式
1、空间几何公式:立方体的体积为V=a3(其中a为边长);正八面
体的体积为V=1/3a2√2(其中a为边长);正二十四面体的体积为
V=3/8√5a3(其中a为边长)
2、椭圆公式:椭圆的长轴半径a、短轴半径b,椭圆的面积公式为
S=πab;椭圆的周长公式为L=2π√(a2+b2)/2
3、泰勒公式:多项式的前n项之和为Sn=a0+a1+a2+a3+...+an。

数学有理化常用公式

数学有理化常用公式

数学有理化常用公式1.平方差公式:a^2-b^2=(a+b)(a-b)2.二次平方差公式:a^2 + 2ab + b^2 = (a+b)^23.三次立方和差公式:a^3 + b^3 = (a+b)(a^2 - ab + b^2)a^3 - b^3 = (a-b)(a^2 + ab + b^2)4.方差和平方公式:a^4-b^4=(a^2+b^2)(a^2-b^2)5.前n次方和公式:a^n - b^n = (a-b)(a^(n-1) + a^(n-2)b + a^(n-3)b^2 + ... + ab^(n-2) + b^(n-1))6.一元二次方程求根公式:对于一元二次方程ax^2 + bx + c = 0,其求根公式为:x = (-b±√(b^2-4ac))/(2a)7.四则运算有理化:(a/b) ± (c/d) = (ad±bc)/(bd)(a/b) × (c/d) = (ac)/(bd)(a/b) ÷ (c/d) = (ad)/(bc)8.平方根有理化:√(a/b)=√(a)/√(b)9.欧拉公式:对于一个有向图n-m+f=210.相关系数公式:相关系数r的公式为:r = (Σ((X_i - X_mean)*(Y_i - Y_mean))) / (sqrt(Σ(X_i -X_mean)^2) * sqrt(Σ(Y_i - Y_mean)^2))11.排列组合公式:排列公式为:A(n,m)=n!/(n-m)!组合公式为:C(n,m)=n!/(m!(n-m)!)以上是数学有理化常用的一些公式,它们在解决数学问题时经常被使用。

在实际应用中,根据具体情况选择适当的公式有助于简化计算过程。

小学到初三的数学公式与初中数学学习方法

小学到初三的数学公式与初中数学学习方法

小学到初三的数学公式与初中数学学习方法小学数学公式小学数学主要包括数与式、图形、计量和应用四个方面。

以下是小学数学常用的公式:数与式•1+1=2•10-5=5•3×4=12•12÷3=4图形•长方形面积公式:面积 = 长 × 宽•正方形面积公式:面积 = 边长 × 边长•三角形面积公式:面积 = 1/2 × 底边长 × 高•圆的面积公式:面积= π × 半径的平方计量•1公里 = 1000米•1千克 = 1000克•1米 = 100厘米•时针转一圈,表示时间为12小时应用•利润 = 售价 - 成本•路程 = 速度 × 时间•打折后的价格 = 原价 × 折扣初中数学学习方法初中数学包括代数、几何、数学分析和概率与统计四个方面。

以下是初中数学学习的一些方法:代数代数是初中数学的基础,学好代数对后续学习非常重要。

以下是学习代数的一些方法:1.记忆表格:把常用公式、解法整理成表格,便于记忆和查找。

2.多做题:代数中有很多题目都是相通的,多做题可以锻炼思维能力,帮助我们找到解题的规律。

3.归纳法:学习代数不仅要知道结论,还需要知道结论的推导过程。

通过归纳法可以得到结论的推导过程和规律。

几何几何是初中数学的重点之一,需要灵活使用图形来解决问题。

以下是学习几何的一些方法:1.画图分析:学习几何需要善于思考、勇于尝试。

在解决问题时可以先画图分析,探索其中的规律。

2.记忆公式:对于各种几何关系的计算公式,可以通过死记硬背来掌握。

3.学习三角形:三角形是几何中的基础,学习三角形可以帮助我们更好地理解几何知识。

数学分析数学分析是初中数学的难点,需要深入理解数学概念和运算法则。

以下是学习数学分析的一些方法:1.系统学习:数学分析是一个系统性的学科,需要有扎实的基础知识。

先学习基础知识,再逐步学习高阶内容。

2.理解概念:数学是一门逻辑性很强的学科,需要了解各种概念和符号的含义,才能正确地运用它们。

初中数理化公式概念汇总

初中数理化公式概念汇总

初中数理化公式概念汇总一、数学公式1.一次方程组:一次方程组是由一系列形如ax+b=0的方程组成的,其中a和b是已知的常数,x是未知数。

解一次方程组就是求出未知数的值,使得方程组中的每个方程都成立。

2.二次方程:二次方程是形如ax²+bx+c=0的方程,其中a、b和c是已知的常数,且a≠0,x是未知数。

求解二次方程需要用到求根公式,即x=(-b±√(b²-4ac))/(2a)。

3.平方差公式:平方差公式是指(a+b)²=a²+2ab+b²和(a-b)²=a²-2ab+b²。

这个公式可以用来简化平方和的展开式,常用于化简代数表达式。

4.勾股定理:勾股定理是指在直角三角形中,直角边的平方和等于斜边的平方。

即a²+b²=c²,其中a和b是直角边的长度,c是斜边的长度。

勾股定理常用于求解三角形的边长或角度。

5.三角函数公式:三角函数公式是指正弦、余弦和正切等三角函数之间的关系式。

例如sin²θ+cos²θ=1和tanθ=sinθ/cosθ。

这些公式在解三角函数方程和证明三角函数等式时经常使用。

6.等差数列公式:等差数列是指数列中相邻两项之差均为常数的数列。

等差数列的通项公式是an=a1+(n-1)d,其中an是第n项,a1是首项,d是公差。

等差数列还有求和公式,即Sn=n/2(a1+an),其中Sn是前n项和。

7.等比数列公式:等比数列是指数列中相邻两项之比均为常数的数列。

等比数列的通项公式是an=a1*r^(n-1),其中an是第n项,a1是首项,r是公比。

等比数列还有求和公式,即Sn=a1(1-r^n)/(1-r),其中Sn是前n项和。

8.概率公式:概率公式用于计算事件发生的可能性。

常见的概率公式包括事件的概率P(A)=n(A)/n(S),互斥事件的概率P(A∪B)=P(A)+P(B),独立事件的概率P(A∩B)=P(A)P(B)等。

初中数理化公式定理大全

初中数理化公式定理大全

初中数理化公式定理大全一、数学公式定理:1.二次方程求根公式:对于一元二次方程ax^2 + bx + c = 0 (a≠0),其根的求法可以通过以下公式:x_1 = (-b + √(b^2 - 4ac))/(2a)x_2 = (-b - √(b^2 - 4ac))/(2a)2.三角函数正弦公式:在任意三角形ABC中,三边的长度分别为a,b,c,对应的角分别为A,B,C,则根据正弦定理有:a/sinA = b/sinB = c/sinC3.三角函数余弦公式:在任意三角形ABC中,三边的长度分别为a,b,c,对应的角分别为A,B,C,则根据余弦定理有:c^2 = a^2 + b^2 - 2abcosC4.数列求和公式:对于等差数列an = a1 + (n-1)d,其前n项和为Sn = (n/2)(a1 + an)对于等比数列an = a1 * r^(n-1),其中r是公比,其前n项和为Sn = (a1(1 - r^n))/(1 - r)5.概率公式:对于两个相互独立的事件A和B,其概率为P(A∪B)=P(A)+P(B)-P(A∩B)6.立方和公式:1^3+2^3+···+n^3=(n(n+1)/2)^27.牛顿-莱布尼茨公式:对于定积分∫(a~b)f(x)dx,若F(x)是f(x)的一个原函数,则有:∫(a~b)f(x)dx = F(b) - F(a)二、物理公式定理:1.牛顿第二定律:运动物体的加速度a与作用力F、质量m之间存在着关系:F = ma。

2.能量守恒定律:在一个孤立系统中,能量总是守恒的,即能量的输入等于输出,能量不会被创造和消灭。

3.热力学第一定律:能量守恒定律在热力学中的应用称为热力学第一定律,即能量不会消失,只会转化为其他形式的能量或传递给其他物体。

4.摩擦力公式:运动物体之间的摩擦力与物体质量和接触面之间的摩擦系数μ之间的关系可以用以下公式表示:Ff=μFn,其中Ff是摩擦力,Fn是物体的法向力。

数理化公式大全

数理化公式大全

数理化公式大全1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒小学数学几何形体周长面积体积计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径。

小学初中高中数学公式大全最新整理

小学初中高中数学公式大全最新整理

小学必背定义、定理公式一、公式及应用:1.长方形的周长=(长+宽)³2 公式:C=(a+b)³2(长方形的长=周长÷2—宽长方形的宽=周长2—长)2.长方形的面积=长³宽公式 S= a×b(长=面积÷宽宽=面积÷长)3..正方形的周长=边长³4 公式:C= a ×4(边长=周长÷4 )4.正方形的面积=边长³边长公式 S= a25.三角形的周长=三条边之和6. 三角形的面积=底³高÷2 公式 S= a×h÷2(三角形的高=面积÷底³2。

三角形的底=面积÷高³2)7 .平行四边形的面积=底×底边上的高公式 S= a×h(平行四边的高=面积÷高对应的底平行四边的底=面积÷底边上的高)8.梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2(梯形的高=面积÷上下底之和³2 梯形的上底=面积÷高×2—下底梯形的下底=面积÷高×2—上底)9.圆的周长=直径×π=2×半径×π公式:C=πd=2πr(直径=圆的周长÷π半径=圆的周长÷2÷π)10.圆的面积= π×半径×半径公式:S=πr211.半圆周长=整圆周长÷2+直径或=5.14r12.半圆弧长=整圆周长÷213. 圆环的面积=π³(大圆半径的平方—小圆半径的平方)14.圆环的周长=大圆周长+小圆周长15.长方体的底面积=长³宽16.长方体的棱长总和=(长+宽+高)³4 = 长³4+宽³4+高³4(长方体的长=(棱长总和—宽³4—高³4)÷4)17.长方体的表面积=(长³宽+长³高+宽³高)³2公式:S=(a×b+a×c+b×c)×218.长方体的体积=长×宽×高公式:V = abh(长方体的高=体积÷长÷宽长方体的长=体积÷宽÷高长方体的宽=体积÷长÷高19.正方体的棱长总和=棱长³12 (棱长=棱长总和÷12)20.正方体的表面积=棱长³棱长³6 公式: S=6a221.正方体的体积=棱长³棱长³棱长公式:V = a322.长方体(或正方体)的体积=底面积³高公式:V = abh23.圆柱体的侧面积=底面周长³高公式:S=ch=πdh=2πrh(圆柱体的高=侧面积÷底面周长底面周长=侧面积÷高)24. 圆柱体的表面积=侧面积+两个底面面积公式:S=ch+2s=ch+2πr225.圆柱体的体积=底面积×高公式:V=Sh26.圆锥的体积=1/3底面积×积高。

小学初中高中数学公式大全_数学基础知识

小学初中高中数学公式大全_数学基础知识

小学初中高中数学公式大全_数学基础知识一、初中数学公式(1)代数:1、两个数的积:a*b2、二次方程的一般解:x=(-b±√(b²-4ac))/2a3、三角函数的基本公式:sin A=opp/hyp;cos A=adj/hyp;tan A=opp/adj4、比例公式:a/b=c/d(2)几何:1、直角三角形的勾股定理:a²+b²=c²2、三角形的面积公式:S=1/2a×b×sin A3、平行四边形的面积公式:S=ab4、圆的面积公式:S=πr²5、球体的面积公式:S=4πr²6、棱柱和圆柱的体积公式:V=sh7、球体的体积公式:V=4/3πr³二、高中数学公式(1)代数:1、一次函数的一般解:y=ax+b2、二次函数的一般解:y=ax²+bx+c(2)几何:1、体积:V=Ah(A为底面积,h为高)2、交叉体积:V=p(a+b+c+d+…)3、几何体的表面积公式:S=2πrh+ 2πr²4、共轭矩形的面积:S=2ab5、球的表面积公式:S=4πr²6、椭圆的面积公式:S=πab三、中学数学公式(1)代数:1、一次函数的一般解:y=ax+b2、二次函数的一般解:y=ax²+bx+c3、指数函数的一般解:y=a·bⁿ4、对数函数的一般解:y=a·logbx(2)几何:1、正方形的面积公式:S=a²2、正方体的体积公式:V=a³3、长方形的面积公式:S=ab4、圆柱的体积公式:V=πr²h5、椭圆的面积公式:S=πab。

小学初中高中数学公式大全整理

小学初中高中数学公式大全整理

小学初中高中数学公式大全整理一、数学公式1、一元二次方程式的解:ax²+bx+c=0,有解的充要条件:b²-4ac>0,解:x1=(-b+√b²-4ac)/2a,x2=(-b-√b²-4ac)/2a2、等比数列:若首项a1,公比q,求前n项和:Sn=a1(1-q^n)/(1-q)3、等差数列:若首项a1,公差d,求前n项和:Sn=(n/2)[2a1+(n-1)d]4、立方差数列:若首项a1,公差d,求前n项和:Sn=(n/2)[a1+(n-1)d]^25、容斥原理:Sn=∑a1-∑a2+∑a3-∑a4+…6、勾股定理:a²+b²=c²(a,b,c为边长)7、三角函数定理:sinA/a=sinB/b=sinC/c=2sinA sinBsinC/(ab+bc+ca)8、因式分解:ax²+bx+c=a(x-x1)(x-x2)9、分式的乘法和除法:分母相乘,分子相乘,结果再化简10、斐波那契数列:F0=0,F1=1,Fn=Fn-1+Fn-2(n≥2)11、阶乘:n!=1×2×3×4×5×…×n12、二项式定理:(x+y)²=x²+2xy+y²13、平方差定理:(a+b)²=a²+2ab+b²14、立方差定理:(a+b)³=a³+3a²b+3ab²+b³15、二次函数的凹凸性:二次函数的凹凸性取决于a的正负,a>0则函数是凸函数,a<0则函数是凹函数16、二次函数极值点:二次函数极值点的坐标为(-b/2a,f(-b/2a))17、反比例函数:以x轴为对称轴的反比例函数方程为:y=k/x(其中k为常数)。

中考数学物理化学公式大全

中考数学物理化学公式大全

中考数学物理化学公式大全1.数学公式:1.1代数公式:- 求根公式:对于二次方程ax^2+bx+c=0,其解为x=(-b±√(b^2-4ac))/(2a)。

-因式分解公式:a^2-b^2=(a+b)(a-b)。

- 平方差公式:(a+b)^2=a^2+2ab+b^21.2几何公式:-长方形的面积公式:面积=长×宽。

-圆的面积公式:面积=πr^2,其中r为半径。

-三角形的面积公式:面积=底×高÷2-三角形的勾股定理:a^2+b^2=c^2,其中a、b为直角三角形的两直角边,c为斜边。

1.3概率统计公式:-等可能事件的概率:P(A)=事件A发生的可能性数/总的可能性数。

-加法原理:P(A或B)=P(A)+P(B)-P(A且B)。

-乘法原理:P(A且B)=P(A)×P(B,A)。

2.物理公式:2.1运动学公式:-速度公式:速度=位移/时间。

-加速度公式:加速度=速度变化/时间。

-牛顿第二定律:力=质量×加速度。

- 功公式:功=力×位移×cosθ,其中θ为力和位移间的夹角。

2.2光学公式:- 折射定律:n1sinθ1=n2sinθ2,其中n1和n2为介质的折射率,θ1和θ2为光线与法线的夹角。

-焦距公式:1/f=1/u+1/v,其中f为焦距,u为物体距离透镜的距离,v为像距离透镜的距离。

2.3电学公式:-电压公式:电流=电压/电阻。

-电功率公式:功率=电流×电压。

-电阻公式:电阻=电压/电流。

3.化学公式:3.1反应方程式:-氧化还原反应:aA+bB→cC+dD。

-酸碱反应:酸+碱→盐+水。

-燃烧反应:燃料+氧气→二氧化碳+水。

3.2摩尔计算公式:-摩尔质量公式:摩尔质量=M/n,其中M为物质的质量,n为物质的摩尔数。

-摩尔浓度公式:摩尔浓度=n/V,其中n为溶质的摩尔数,V为溶液的体积。

3.3热力学公式:-熵变公式:ΔS=Q/T,其中ΔS为系统的熵变,Q为系统吸收或放出的热量,T为系统的温度。

小学初中高中数学公式大全_数学基础知识

小学初中高中数学公式大全_数学基础知识

小学初中高中数学公式大全_数学基础知识一、小学阶段的数学公式1.四则运算公式:-加法:a+b=b+a-减法:a-b≠b-a(减法不满足交换律)-乘法:a×b=b×a-除法:a÷b≠b÷a(除法不满足交换律)2.分数公式:- 加法:a/b + c/d = (ad + bc)/(bd)- 减法:a/b - c/d = (ad - bc)/(bd)- 乘法:a/b × c/d = (ac)/(bd)- 除法:(a/b) ÷ (c/d) = ad/bc3.百分数公式:-将小数转化为百分数:小数×100%-将百分数转化为小数:百分数÷1004.面积公式:-三角形面积:面积=底×高÷2-矩形面积:面积=长×宽(高)-正方形面积:面积=边长×边长-圆面积:面积=π×半径²5.周长公式:-三角形周长:周长=边1+边2+边3-矩形周长:周长=2×(长+宽)-正方形周长:周长=4×边长-圆周长:周长=2×π×半径二、初中阶段的数学公式1.代数公式:-求和公式:1+2+3+...+n=n×(n+1)÷2-平方差应用:(a+b)(a-b)=a²-b²- 二次方程求根公式:x = (-b ± √(b² - 4ac)) ÷ 2a- 三角函数公式:sin²θ + cos²θ = 12.平方根近似值公式:-√a≈√b+(a-b)/(2√b)3.等腰三角形公式:-等腰三角形内角相等:∠A=∠B-等腰三角形底边中线平行于两腰中点连线4.三角形面积公式:-海伦公式:面积=√(s(s-a)(s-b)(s-c)),其中s为三角形的半周长5.三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:c² = a² + b² - 2abcosC三、高中阶段的数学公式1.排列组合公式:-排列数公式:An=n!-组合数公式:Cn,m=n!/(m!(n-m)!)2.三角函数公式:- 二倍角公式:sin2θ = 2sinθcosθ,cos2θ = cos²θ - sin²θ- 和差化积公式:sin(α±β) = sinαcosβ ± cosαsinβ3.指数与对数公式:- 指数公式:a^m × a^n = a^(m + n),(a^m)^n = a^(mn)- 对数公式:loga(M × N) = logaM + logaN,loga(M ^ n) = n × logaM4.三角函数和三角恒等式:- 三角函数和差公式:sin(α±β) = sinαcosβ ± cosαsinβ- 三角恒等式:sin²α + cos²α = 1,tanα = sinα/cosα总结:以上是小学、初中和高中阶段的一些数学公式的总结。

中高数理化公式

中高数理化公式

初中数学常用公式一. 代数:1.1 绝对值运算1.2 有理数的运算1.3 整式的乘法运算1.4 整式乘法公式1.5 整式除法公式1.6 分式的运算公式1.7 一元二次方程1.8 因式分解1.9 不等式1.10 二次根式二. 平面几何:2.1 角2.2 三角形2.3 四边形2.4 比例性质2.5 三角函数2.6 与圆有关的公式2.7 点与圆的位置2.8 直线与圆的位置2.9 两圆的位置初中化学常用公式一. 常用计算公式:二. 化学方程式:初中物理常用公式1. 力学2. 热学3. 电学高中数学常用公式一. 代数1. 集合,函数2. 数列3. 不等式4. 复数5. 排列组合与二项式定理二. 三角函数1. 同角关系2. 诱导公式3. 和差公式4. 倍角公式5. 半角公式6. 万能公式7. 正弦定理三. 向量运算1. 向量的加法2. 向量减法3. 实数与向量的积四. 解析几何1. 直线方程2. 两点距离、定比分点3. 两直线关系4. 圆锥曲线五. 立体几何1. 空间两直线平行判定2. 空间两直线垂直判定3. 直线与平面平行4. 直线与平面垂直5. 平面与平面平行6. 平面与平面垂直7. 几何体的侧面积8. 几何体的体积六. 概率与统计1. 概率性质2. 二次分布3. 期望4. 方差5. 正态分布七. 极限八. 导数九. 微分和积分1. 微分:2. 不定积分:3. 定积分:高中化学常用公式1. 有关物质的量(mol)的计算公式2. 有关溶液的计算公式3. 有关溶解度的计算公式(溶质为不含结晶水的固体)4. 平均摩尔质量或平均式量的计算公式5. 化学反应速率的计算公式6. 化学平衡计算公式7. 溶液的pH值计算公式8. 有关物质结构,元素周期律的计算公式9. 烃的分子式的确定方法10. 依含氧衍生物的相对分子质量求算其分子式的方法高中物理常用公式一. 力学1.2 运动学1.3 动力学1.4 冲量与动量、功和能1.5 振动和波二. 热学三. 电磁学四. 光学、原子物理五. 近代物理初中数学常用公式一.代数:1.1 绝对值运算1.2 有理数的运算1.3 整式的乘法运算1.4 整式乘法公式整式乘法公式有平方差公式:(a+b)(a-b)=a^2-b^2完全平方公式(a+b)^2=a^2+2ab+b^2或(a-b)^2=a^2-2ab+b^2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学初高中数学公式概念汇总目录1、初中数学代数公式、定理汇编 (1)1.1一次方程(组)与一次不等式(组) (1)1.2一元二次方程 (2)1.3多项式的四则运算 (4)1.4因式分解 (5)1.5分式与二次根式 (7)1.6二元二次方程 (9)1.7函数与图像 (9)1.8二次函数 (11)2、初中数学几何公式、定理汇编 (13)2.1直线 (13)2.2三角形 (13)2.3四边形 (14)2.4相似 (15)2.5圆 (16)3、初中物理公式概念汇总 (18)3.1声学 (18)3.1光学 (18)3.2电学 (20)3.3热学 (22)3.4力学 (22)3.5单位 (25)4、初中化学公式概念方程式汇总 (29)4.1基本概念 (30)4.2基本知识、理论 (31)4.3物质俗名及其对应的化学式和化学名 (33)4.4常见物质的状态 (34)4.5物质的溶解性 (35)4.6化学之最 (35)4.7化学实验气体物质总结 (36)4.8酸碱和对应的氧化物的关系 (37)4.9基本化学反应 (38)高中数理化公式大全小学公式汇总一.初中数学代数公式、定理汇编一次方程(组)与一次不等式(组)Ⅰ算术解法与代数解法1、未知数和方程用字母x 、y …等,表示所要求的数量,这些字母称为“未知数”用运算符号把数或表示书的字母联结而成的式子,叫做代数式含有未知数的等式,叫做方程,在一个方程中,所含未知数,又成为元;被“+”、“-”号隔开的每一部分称为一项在一项中,数字或表示已知数的字母因数叫做未知数的系数某一项所含有的未知数的指数和,成为这一项的次数不含未知数的项,成为常数项当常数不为零时,它的次数是0,因此常数项也称为零次项2、方程的解与解方程的根据未知数应取的值是指:把所列方程中的未知数换成这个值以后,就使方程变成一个恒等式能使方程左右两边的值相等的未知数的值,叫做方程的解,也叫做根求方程解的过程,叫做解方程解方程的根据是“运算通性”及“等式性质”可以“由表及里”地去掉括号,并将“含有相同未知数且含未知数的次数也相同”的各项结合起来,合并在一起——这叫做合并同类项把方程一边的任一项改变符号后,移到方程的另一边,叫做移项简单说就是“移项变号”把方程两边各同除以未知数的系数(或同乘以系数的倒数),就得到未知数应取的值 综上所述,得到解方程的方法、步骤:a 、去括号b 、移项变号c 、合并同类项,使方程化为最简形式ax =b (a ≠0)、除以未知数的系数,得出 x =b a(a ≠0) Ⅱ一元一次方程1、一元一次方程的概念只含有一个未知数并且次数是1的方程,叫做一元一次方程一般形式:ax +b =0(a ≠0,a 、b 是常数)2、一元一次方程的解法解一元一次方程的一般步骤是:a 、去分母(或化为整系数);b 、去括号;c 、移项变号;d 、合并同类项,化为ax =-b (a ≠0)的形式;e 、方程两边同除以未知数的系数,得出方程的解x =-b a(a ≠0) 一元二次方程Ⅰ平方与平方根1、面积与平方a 、任意两个正数的和的平方,等于这两个数的平方和,再加上这两个数乘积的2倍b 、任意两个正数的差的平方,等于这两个数的平方和,再减去这两个数乘积的2倍 即:任意两个有理数的和(或差)的平方,等于这两个数的平方和,再加上(或减去)这两个数乘积的2倍2、平方根a 、正数有两个平方根,这两个平方根互为相反数;b 、零只有一个平方根,它就是零本身;c 、负数没有平方根3、实数无限不循环小数叫做无理数;有理数和无理数统称为实数Ⅱ平方根的运算1、算术平方根的性质性质1 一个非负数的算术平方根的平方等于这个数本身性质2 一个数的平方的算术平方根等于这个数的绝对值2、算术平方根的乘、除运算a 、算术平方根的乘法a ·b =ab (a ≥0,b ≥0)b 、算术平方根的除法a b =a b(a ≥0,b ≥0)) 注意最终结果分母不含根号。

通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化a 、被开方数的每个因数的指数都小于2;b 、被开方数不含有字母我们把符合这两个条件的平方根叫做最简平方根3、算术平方根的加、减运算如果几个平方根化成最简平方根以后,被开方数相同,那么这几个平方根就叫做同类平方根把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。

Ⅲ一元二次方程及其解法1、一元二次方程只含有一个未知数,且未知数的最高次数是2的方程,叫做一元二次方程2、一般的一元二次方程的解法——直接开平方法用直接开平方法解一元二次方程的一般步骤是:a 、化二次项系数为1 用二次项系数去除方程两边,将方程化为x 2+k =0(k ≤0)的形式b 、移项 把常数项移至方程右边,将方程化为x 2 =-k 的形式c 、开方 方程两边同时开方,得到原一元二次方程的两根x 1,2=±-k——公式法用公式法解一元二次方程的一般步骤是:a 、分别用a 、b 、c 表示原一元二次方程的二次项系数、一次项系数、常数项b 、将二次项系数、一次项系数、常数项(即a 、b 、c )分别带入求根公式x 1,2=-b ±b 2-4ac 2a,就能得到原一元二次方程的两根 ——配方法——配方法用配方法解一元二次方程的一般步骤是:a 、化二次项系数为1 用二次项系数去除方程两边,将方程化为x 2+px +q =0的形式b 、移项 把常数项移至方程右边,将方程化为x 2+px =-q 的形式c 、 配方 方程两边同时加上“一次项系数一半的平方”,是方程左边成为含有未知数的完全平方形式,右边是一个常数d 、由平方根的定义,可知⑴当p 24-q >0时,原方程有两个不等实数根; ⑵当p 24-q =0时,原方程有两个相等的实数根(二重根); ⑶当p 24-q >0时,原方程无实根 e 、开方 两边同时开方,得到原一元二次方程的两根x 1,2=-p 2±p 24-q——因式分解法用因式分解法解一元二次方程的一般步骤是:a 、将原一元二次方程进行因式分解,将方程化为a (x -p )(x -q )=0的形式b 、因为a ≠0,所以x -p =0或x -q =0c 、得到原一元二次方程的两根x 1=p ,x 2=q3、一元二次方程的求根公式一元二次方程ax 2+bx +c =0(a ≠0)的求根公式:当b 2-4ac ≥0时,x 1,2=-b ±b 2-4ac 2a 4、一元二次方程根的判别式方程ax 2+bx +c =0(a ≠0)根的判别式是Δ=b 2-4ac当Δ=b 2-4ac >0时,有两个不相等的实数根;当Δ=b 2-4ac =0时,有两个相等的实数根;当Δ=b 2-4ac <0时,没有实数根5、一元二次方程的根与系数的关系(韦达定理)若方程ax 2+bx +c =0的两根是x 1,x 2,那么原方程可以化为a [x 2-(x 1+x 2)x +x 1·x 2]=0即x 1+x 2=-ba ,x 1·x 2=c a多项式的四则运算Ⅰ单项式与多项式1、单项式仅含有一些数和字母的乘法(包括乘方)运算的式子叫做单项式。

(单独的一个数或字母也是单项式)单项式中的数字因数叫做这个单项式(或字母因数)的数字系数,简称系数当一个单项式的系数是1或-1时,“1”通常省略不写一个单项式中,所有字母的指数的和叫做这个单项式的次数如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项。

所有的常数都是同类项2、多项式由有限个单项式的代数和组成的式子,叫做多项式多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项单项式可以看作是多项式的特例把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变在多项式中,所含的不同未知数的个数,称做这个多项式的元数。

经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数。

所含单项式中最高次项的次数,就称为这个多项式的次数3、多项式的值任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子4、多项式的恒等对于两个一元多项式f(x)、g(x)来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即f(a)=g(a),那么,这两个多项式就称为是恒等的,记为f(x)≡g(x),或简记为f(x)=g(x)性质1 如果f(x)≡g(x),那么,对于任一个数值a,都有f(a)=g(a)性质2 如果f(x)≡g(x),那么,这两个多项式的每个同类项系数就一定对应相等5、一元多项式的根一般地,能够使多项式f(x)的值等于0的未知数x的值,叫做多项式f(x)的根Ⅱ多项式的加、减法,乘法1、多项式的加、减法一般的,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

2、单项式的乘法单项式相乘,用它们系数的积作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式3、多项式的乘法多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的各项,再把所得的积相加4、常用乘法公式公式1 平方差公式(a+b)(a-b)=a2-b2两个数的和与这两个数的差的积等于这两个数的平方差公式2 完全平方公式(a+b) 2=a2+2ab+b2 (a-b) 2=a2-2ab+b2 (a±b) 2=a2±2ab+b2两数(或两式)和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍5、式的除法两个单项式相除,就是它们的系数、同底数的幂分别相除,而对于那些只在被除式里出现的字母,连同它们的指数一起作为商的因式,对于只在除式里出现的字母,连同它们的指数的相反数一起作为商的因式一个多项式处以一个单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。

因式分解Ⅰ因式分解1、因式如果一个次数不低于一次的多项式因式,除这个多项式本身和非零常数外,再也没有其他的因式,那么这个因式(即该多项式)就叫做质因式2、因式分解把一个多项式写成几个质因式乘积形式的变形过程叫做多项式的因式分解a 、提取公因式法b 、运用公式法c 、分组分解法d 、十字相乘法e 、配方法f 、求根公式法3、用待定系数法分解因式将已知多项式分解因式,可以设某些因式的系数为未知数,利用恒等的条件,求出这些未知数。

Ⅱ余式定理余式定理 f (x )除以(x -a )的商为q (x ),余式是常数f (a ),则f (x )=(x -a )q (x )+ f (a )。

相关文档
最新文档