理论力学课件讲解
合集下载
《理论力学课件》PPT课件
1、物体的受力分析:分析物体(包括物体系)受哪些力, 每个力的作用位置和方向,并画出物体的受力图。
2、力系的等效替换(或简化):用一个简单力系等效代替 一个复杂力系。 3、力系的平衡条件:建立各种力系的平衡条件,并应用这 些条件解决一些工程实际问题 。
.
14
在各种工程中,都有大量的静力学问题。 起重机
8
上课时主动思考,跟上教学进度。尽量不缺课。
按时独立做好布置的作业,作业中的图要画清楚,算式 要写清楚。
要做大量的习题和思考题。
.
9
2 在学习中遇到困难怎么办?
阅读相关教材和习题解答 找老师答疑 答疑时间: 答疑地点:
发送电子邮件 Email: cyliu@
访问扬州大学理论力学教学网 /course2/lllx
.
7
理论力学的学习方法
1 如何学好理论力学
学习理论力学必须深刻地反复地理解它的基本概念和公 理或定律
要透彻理解由基本概念、公理或定律导出的定理和结论, 以及由这些定理和结论引出的基本方法,它们是理论力 学的主要内容。
掌握抽象化的方法,理论联系实际,要逐步培养把具体 实际问题抽象成为力学模型的能力
.
但是这种变形,往往非常小,在研究平衡问题以及研究力与运 动变化关系的问题时,可以完全忽略。因此在理论力学中,通 常我们假设所处理的对象均为刚体。
.
21
§0-3 结构的构件与分类
工程结构:由工程材料制成的构件,按合理方式组成为能支承 荷载,传递力,起骨架作用的整体或某一部分。 构件按几何特征可分为三类:杆、板壳、块体
理论力学课件
扬州大学水利科学与工程学院
.
1
绪论
*理论力学的研究对象和内容 *学习目的和学习方法 *教学参考书
2、力系的等效替换(或简化):用一个简单力系等效代替 一个复杂力系。 3、力系的平衡条件:建立各种力系的平衡条件,并应用这 些条件解决一些工程实际问题 。
.
14
在各种工程中,都有大量的静力学问题。 起重机
8
上课时主动思考,跟上教学进度。尽量不缺课。
按时独立做好布置的作业,作业中的图要画清楚,算式 要写清楚。
要做大量的习题和思考题。
.
9
2 在学习中遇到困难怎么办?
阅读相关教材和习题解答 找老师答疑 答疑时间: 答疑地点:
发送电子邮件 Email: cyliu@
访问扬州大学理论力学教学网 /course2/lllx
.
7
理论力学的学习方法
1 如何学好理论力学
学习理论力学必须深刻地反复地理解它的基本概念和公 理或定律
要透彻理解由基本概念、公理或定律导出的定理和结论, 以及由这些定理和结论引出的基本方法,它们是理论力 学的主要内容。
掌握抽象化的方法,理论联系实际,要逐步培养把具体 实际问题抽象成为力学模型的能力
.
但是这种变形,往往非常小,在研究平衡问题以及研究力与运 动变化关系的问题时,可以完全忽略。因此在理论力学中,通 常我们假设所处理的对象均为刚体。
.
21
§0-3 结构的构件与分类
工程结构:由工程材料制成的构件,按合理方式组成为能支承 荷载,传递力,起骨架作用的整体或某一部分。 构件按几何特征可分为三类:杆、板壳、块体
理论力学课件
扬州大学水利科学与工程学院
.
1
绪论
*理论力学的研究对象和内容 *学习目的和学习方法 *教学参考书
理论力学课件 第一章力的投影,主矩主矢
•
•
v Fn
=
X niv
•
+ Yn
vj
+
v Znk
z
Fn O x
Fi
F1 y
F2
∑ X1 + X 2 +L+ X n = X
∑ Y1 + Y2 + L + Yn = Y
∑ Z1 + Z2 + L + Zn = Z
v FV
=
(∑
X
)iv
+ (∑Y )vj
+ (∑ Z )kv
1.1 力的投影、力系的主矢、汇交力系的合力
1.1 力的投影、力系的主矢、汇交力系的合力
合力解析表达式Fv形R式= (−153.6iv −170.5 vj )N
合力的大小和方向
∑ ∑ FR = ( X )2 + ( Y )2 = 229.5N
θ
=
arctan
∑Y ∑X
= 47.98°
y
θO x
FR
1.1 力的投影、力系的主矢、汇交力系的合力 2、汇交力系合成的几何法
例1-4:边长为a的正方体受到四个大小都等于F的力, 方向如图,求此力系的主矢。
z A
G
F4
O
F1
E x
B
F2
H
F3
C y
D
1.1 力的投影、力系的主矢、汇交力系的合力
z
解
A
B 四力的矢量解析表达式:
G
F2
H
v F1
=
F
⎜⎜⎝⎛
2
v i
+
2
2 2
v j
理论力学学习PPT
第1章 静力学的基本公理与物体的受力分析
结论与讨论
1. 静力学研究作用于物体上力系的平衡。 静力学研究作用于物体上力系的平衡。
物体的受力分析; ★ 物体的受力分析; 力系的等效替换(或简化); ★ 力系的等效替换(或简化); 建立各种力系的平衡条件。 ★ 建立各种力系的平衡条件。
2. 力是物体间相互的机械作用,这种作用使物体的 力是物体间相互的机械作用, 机械运动状态发生变化(包括变形)。 机械运动状态发生变化(包括变形)。 3. 静力学公理是力学的最基本、最普遍的客观规律。 静力学公理是力学的最基本、最普遍的客观规律。
第一篇
静力学
★ 物体的受力分析 ★ 力系的等效替换(或简化) 力系的等效替换(或简化) ★ 建立各种力系的平衡条件
第1章 静力学的基本公理与物体的受力分析
§1-1 刚体和力的概念
刚体——在外界的任何作用下形状和大小都始终保 刚体 在外界的任何作用下形状和大小都始终保 持不变的物体。 或者在力的作用下, 持不变的物体。 或者在力的作用下,任意 两点间的距离保持不变的物体。 两点间的距离保持不变的物体。 刚体是一种理想的力学模型。 刚体是一种理想的力学模型。 一个物体能否视为刚体, 一个物体能否视为刚体,不仅取决于变形的 大小,而且和问题本身的要求有关。 大小,而且和问题本身的要求有关。
第1章 静力学的基本公理与物体的受力分析
公理二(加减平衡力系公理) 公理二(加减平衡力系公理) 可以在作用于 刚体 的任何一个力系上加上或去掉 几个互成平衡的力,而不改变原力系对刚体的作用。 几个互成平衡的力,而不改变原力系对刚体的作用。 推论1 推论1 (力在刚体上的可传性) (力在刚体上的可传性) 力在刚体上的可传性 上的力, 作用于 刚体 上的力,其作用点可以沿作用线在该 刚体内前后任意移动,而不改变它对该刚体的作用。 刚体内前后任意移动,而不改变它对该刚体的作用
第十四章理论力学PPT教学课件
2、运动分析:
虚位移(按虚
速度对应法分析);
rrBA
BP AP
3、建立动力学关系:虚位移原理;
F A δrAF B δrB0
4、求解:
FAFBtan
2020/12/12
13
例14-2
已知:如图所示曲柄压榨机构中,M=50Nm,
OA=r,
BD=DC=ED=l, ; A
若杆重均不计、
B
忽略各处摩擦, E
W F r
(2)集中力偶的虚功: W M
2)约束力:
(1)光滑面、光滑铰链、固定端等约束力的功:
2020/12/12
s
F
做功均为零;
8
(2)滑动摩擦力的功: A、静滑动摩擦力的功:为零; 如:只滚不滑;
Fs
B、动滑动摩擦力的功:不为零; 4、理想约束:
1)做功为零的约束称为理想约束:光滑面、光滑铰 链、静滑动摩擦力等;
且机构在图示 求位:置求平压衡榨.力 P。
o M
D C
P
2020/12/12
14
PPT教学课件
谢谢观看
Thank You For Watching
15
第十四章 虚位移原理
虚位移原理 一种用动力学的原理求解静 力学问题的方法;
§14-1 约束 · 虚位移 · 虚功
一、几个基本概念:
1、自由度:空间物体在三维空间内自由运 动的程度;
2、完全自由的物体在三维空间内的自由度:
2020/12/12
1
完全自由的物体在空间可以沿三根独立的坐标
轴做移动运动、同时还可以绕三根坐标轴做转动运
故,非完全自由的物体的自由度为:6-约 束方程的个数。
理论力学说课PPT课件
机械运动实例
总结词
机械运动是理论力学的传统应用领域,涉及 各种实际机械系统的运动规律。
详细描述
机械运动是理论力学中最为常见的应用领域 之一。各种实际机械系统,如汽车、飞机、 机器和机器人等的运动规律,都需要通过理 论力学进行分析和描述。通过研究机械运动, 可以深入理解力矩、动量、动能等力学概念, 以及它们在机械系统中的具体应用。
自我评价
通过本课程的学习,我掌握了理论力 学的基本知识和分析方法,对物理学
的理解更加深入
我认为自己的逻辑思维、抽象思维和 创新能力得到了提高,解决问题的能 力也有所增强
建议
建议增加一些与实际应用相关的案例 和实验,以更好地理解理论力学的应 用价值
对于一些较难理解的概念和公式,希 望能够有更多的解释和练习题
详细描述
力的分析方法包括矢量表示法、直角坐标表示法和极坐标表 示法等。通过力的合成与分解,可以确定物体运动状态的变 化。力矩的计算则涉及到转动惯量、角速度和动量矩等概念 。
运动分析方法
总结词
运动分析方法主要研究物体运动轨迹、速度和加速度等参数。
详细描述
运动分析方法包括对质点和刚体的运动学分析,通过求解运动微 分方程或积分方程,可以确定物体的运动轨迹、速度和加速度等 参数。这些参数对于理解力学系统的运动规律和相互作用至关重 要。
本课程总结
提高了学生解决实际问题的能力 改进方向
针对不同专业需求,调整教学内容和深度,更好地满足学生需求
本课程总结
01
加强实验和实践环节,提高学生 的动手能力和实践经验
02
引入更多现代技术和方法,更新 教材和教学方法,保持课程的前 沿性
力学发展历程与展望
力学发展史
《理论力学》课件
《理论力学》PPT课件
# 理论力学PPT课件 本PPT课件将为你介绍理论力学的基础概念和知识。
物理学基础
经典力学方程
牛顿式方程、拉格朗日方程等经典力学方程
基础知识
力学、热学、光学等基础知识
运动学基础
1 运动学方程
位移、速度、加速度等运动学基本概念
2 轨迹分析
运动学方程、轨迹分析等
动力学基础
1 动力学方程
2 一维运动的应用
力的概念、牛顿三定律等动力学基本概念
动力学方程、一维运动的应用等刚体动力学1Fra bibliotek刚体运动学和动力学
刚体运动学和动力学的基本概念
2 刚体角动量定理
刚体角动量定理、刚体动量定理等
振动与波动
1 单自由度系统 2 多自由度和耦合振动 3 声波和光波
简谐振动分析
多自由度和耦合振动分析
声波和光波等基本概念
相对论力学
1 相对论的基本概念和理论
相对论的基本概念和理论
2 Minkowski时空和洛伦兹变换
Minkowski时空和洛伦兹变换等
结语
基本概念和知识
本PPT课件为您提供了理论力学方面的基本概念和知识,希望对您的学习和工作有所帮助。
# 理论力学PPT课件 本PPT课件将为你介绍理论力学的基础概念和知识。
物理学基础
经典力学方程
牛顿式方程、拉格朗日方程等经典力学方程
基础知识
力学、热学、光学等基础知识
运动学基础
1 运动学方程
位移、速度、加速度等运动学基本概念
2 轨迹分析
运动学方程、轨迹分析等
动力学基础
1 动力学方程
2 一维运动的应用
力的概念、牛顿三定律等动力学基本概念
动力学方程、一维运动的应用等刚体动力学1Fra bibliotek刚体运动学和动力学
刚体运动学和动力学的基本概念
2 刚体角动量定理
刚体角动量定理、刚体动量定理等
振动与波动
1 单自由度系统 2 多自由度和耦合振动 3 声波和光波
简谐振动分析
多自由度和耦合振动分析
声波和光波等基本概念
相对论力学
1 相对论的基本概念和理论
相对论的基本概念和理论
2 Minkowski时空和洛伦兹变换
Minkowski时空和洛伦兹变换等
结语
基本概念和知识
本PPT课件为您提供了理论力学方面的基本概念和知识,希望对您的学习和工作有所帮助。
理论力学课件
力偶矩矢是自由矢量. 14
3-5.力偶系旳合成与平衡
设一空间力偶系由 n 个力偶构成,其力偶矩矢 分别为: m1 , m2 ,…, mn .因为力偶矩矢是自由矢 量,则n 个力偶矩矢构成一种汇交矢量系.利用合 矢量投影定理进行力偶系旳合成与平衡.
(1)力偶系旳合成
mx = mix
m = mi
my = miy
Q
By
mS = (b j -a i)×(-S k)
S
=-bSi-aSj
mix = 0
bQ-bS=0
(1)
miy = 0
aP-aS=0
(2)
联立(1)(2)两式得:
D
Q
C
x
P
b
P
P 1 S = P
Q
23
例题3-5. 若三个力偶作用于楔块上使其保 持平衡.设Q = Q=150N.求力P与F旳大小.
力矩旳三要素:力矩旳大小;力矩平面旳
方位;力矩在力矩平面内旳转向.
力矩旳几何意义: mo(F) =±2OAB面积=±Fd 力矩旳单位: N·m 或 kN·m
3
同一种力对不同矩心之矩旳关系:
F
mA(F) = r1×F mB(F) = r2×F mA(F) - mB(F) = (r1 - r2)×F
= R ×F
F = 75 N
miz = 0 -0.6P + 60 = 0
P = 100 N
P
y
25
阅读材料和作业
• 阅读材料 – (1)P53---P65; P150---P162 – (2)P64---P83
• 作业 – (1)2---31 ; 2---34 ;4---4 – (2)3---6; 3---15; 3---20
3-5.力偶系旳合成与平衡
设一空间力偶系由 n 个力偶构成,其力偶矩矢 分别为: m1 , m2 ,…, mn .因为力偶矩矢是自由矢 量,则n 个力偶矩矢构成一种汇交矢量系.利用合 矢量投影定理进行力偶系旳合成与平衡.
(1)力偶系旳合成
mx = mix
m = mi
my = miy
Q
By
mS = (b j -a i)×(-S k)
S
=-bSi-aSj
mix = 0
bQ-bS=0
(1)
miy = 0
aP-aS=0
(2)
联立(1)(2)两式得:
D
Q
C
x
P
b
P
P 1 S = P
Q
23
例题3-5. 若三个力偶作用于楔块上使其保 持平衡.设Q = Q=150N.求力P与F旳大小.
力矩旳三要素:力矩旳大小;力矩平面旳
方位;力矩在力矩平面内旳转向.
力矩旳几何意义: mo(F) =±2OAB面积=±Fd 力矩旳单位: N·m 或 kN·m
3
同一种力对不同矩心之矩旳关系:
F
mA(F) = r1×F mB(F) = r2×F mA(F) - mB(F) = (r1 - r2)×F
= R ×F
F = 75 N
miz = 0 -0.6P + 60 = 0
P = 100 N
P
y
25
阅读材料和作业
• 阅读材料 – (1)P53---P65; P150---P162 – (2)P64---P83
• 作业 – (1)2---31 ; 2---34 ;4---4 – (2)3---6; 3---15; 3---20
理论力学知识点ppt课件
图 (a)
图 (b)
图 (c)
6
静力学
第一章 静力学公理和物体的受力分析
由此可见,对于刚体来说,作用其上力的三要素是:力的 大小、方向和作用线。此时,力是一个滑动矢量。
公理3 力的平行四边形法则
作用于物体上同一点的两个力,可以合成一个合力。合力 的作用点仍在该点,其大小和方向由这两个力为边构成的平行 四边形的对角线来确定。如图(a)所示。即
பைடு நூலகம்
FR=F1+F2
也可以由力的三角形来确定合力的大小和方向,如图 (b)(c )。
图(a)
图(b)
7
图(c)
静力学
第一章 静力学公理和物体的受力分析
推论 三力平衡汇交定理
作用于刚体上三个相互平衡的力,若其中任意两个力 的作用线汇交于一点,则第三个力的作用线必交于同一点, 且三个力的作用线在同一平面内。
5
静力学
第一章 静力学公理和物体的受力分析
由此公理可以导出下列推论: 推论 力的可传性
作用于刚体上某点的力,可以沿其作用线移到刚体内 任意一点,并不改变该力对刚体的作用。
证明:刚体上的点A处作用有力F,如图(a)所示。根 据公理2,可在力F的作用线上任取一点B,加上一对平衡 力F1和F2,使其 F=F2 = - F1 ,如图 (b)所示。再根据公 理2,去掉一对平衡力系F和 F1 ,这样只剩下力 F2 = F,如 图 (c )所示,即将力 F沿其作用线移到了点B。
根据力的定义,约束对其被约束物体的作用,实际上就 是力的作用,这种力称为约束力。它的大小是未知的,以后 可用平衡条件求出,但它的方向必与该约束对被约束的物体 所能阻止的位移方向相反。
11
静力学
理论力学完整ppt课件
理论力学
主讲 王卫东
可编辑课件PPT
1
可编辑课件PPT
2
绪
论
一、理论力学的研究对象和内容 二、理论力学发展简史 三、学习理论力学的目的 四、理论力学的研究方法
可编辑课件PPT
3
可编辑课件PPT
真汽 车 碰 撞 仿
4
可编辑课件PPT
5
可编辑课件PPT
6
一、理论力学的研究对象和内容
理论力学——研究物体机械运动规律的科学。
可编辑课件PPT
15
都江堰
岷江上的大型引水枢纽工程,也是现有世界上历史最长的无坝 引水工程。始建于公元前256~前251年。
可编辑课件PPT
16
赵州桥(安济桥)
591~599年,跨度37.4米,采用拱高只有7米的浅拱-敞肩拱,
敞肩拱的运用为世界桥梁史上的首创,并有“世界桥梁鼻祖”
的美誉。
可编辑课件PPT
3 随着科学技术的发展,交叉学科的地位也越来越 重要。力学与其它学科的渗透形成了生物力学、爆 炸力学、物理力学等边缘学科,这就需要我们有坚 实的理论力学基础。
4 培养分析问题、解决问题的方法。
可编辑课件PPT
24
四、理论力学的研究方法
是从实践出发,经过抽象化、综合、归纳、建立 公理,再应用数学演绎和逻辑推理而得到定理和结论, 形成理论体系,然后再通过实践来验证理论的正确性。
17
张衡与地动仪
东汉时期,中国发生地震的次数是比较多的,为了测定地
震方位,及时地挽救人民的生命财产,公元126年,张衡在第二
ቤተ መጻሕፍቲ ባይዱ
次担任太史令之后, 就注意掌握收集地震的情报和记录,经过
多年的潜心研究,终于在公元132年(东汉顺帝阳嘉元年),发明
主讲 王卫东
可编辑课件PPT
1
可编辑课件PPT
2
绪
论
一、理论力学的研究对象和内容 二、理论力学发展简史 三、学习理论力学的目的 四、理论力学的研究方法
可编辑课件PPT
3
可编辑课件PPT
真汽 车 碰 撞 仿
4
可编辑课件PPT
5
可编辑课件PPT
6
一、理论力学的研究对象和内容
理论力学——研究物体机械运动规律的科学。
可编辑课件PPT
15
都江堰
岷江上的大型引水枢纽工程,也是现有世界上历史最长的无坝 引水工程。始建于公元前256~前251年。
可编辑课件PPT
16
赵州桥(安济桥)
591~599年,跨度37.4米,采用拱高只有7米的浅拱-敞肩拱,
敞肩拱的运用为世界桥梁史上的首创,并有“世界桥梁鼻祖”
的美誉。
可编辑课件PPT
3 随着科学技术的发展,交叉学科的地位也越来越 重要。力学与其它学科的渗透形成了生物力学、爆 炸力学、物理力学等边缘学科,这就需要我们有坚 实的理论力学基础。
4 培养分析问题、解决问题的方法。
可编辑课件PPT
24
四、理论力学的研究方法
是从实践出发,经过抽象化、综合、归纳、建立 公理,再应用数学演绎和逻辑推理而得到定理和结论, 形成理论体系,然后再通过实践来验证理论的正确性。
17
张衡与地动仪
东汉时期,中国发生地震的次数是比较多的,为了测定地
震方位,及时地挽救人民的生命财产,公元126年,张衡在第二
ቤተ መጻሕፍቲ ባይዱ
次担任太史令之后, 就注意掌握收集地震的情报和记录,经过
多年的潜心研究,终于在公元132年(东汉顺帝阳嘉元年),发明
理论力学_动力学ppt课件
12 4 3
33
5. 回转半 径
z
Jz m
惯性半径(回转半径)
J z mρ 2
34
例题 3
已知: m ,R 。
求:角加速度
解:取圆轮为研究对象
J mgR O
JO
1 2
mR 2
mR 2
3 2
mR 2
解得: 2g
3R
FOy FOx
C O
mg
35
12.4 刚体的平面运动 微分方程
刚体平面运动 =
a. 常力 b. 变力
I Ft
dI Fdt
I 0t Fdt
冲量为矢量,其单位与动量单位相同为 N·s
15
§11-2 动量定理
1. 质点的动量定理
dp d(mv) ma F dt dt
dp d(mv) Fdt
质点动量的增量等于作用于质点上的力的元冲量。
mv mv0 0t Fdt I
质点系的动量 ——质点系中各质点动量的矢量和,称为 质点系的动量,又称为质点系 动量的主矢。
n
p mivi
i 1
13
根据质点系质心的位矢公式
rC
miri mi
miri m
mvC mivi
p mivi mvC
O
vC
O
C
z
mn
m2
m1
C
mi
rC ri
o y
x
vC
C
14
2冲量 力在作用时间上的累积效应——力的冲量
23
[例1] 滑轮A:m1,R1,J1 滑轮B:m2,R2,J2 ; R1=2R2 物体C:m3 求系统对O轴的动量矩。
解:LO = LOA + LOB + LOC
(PPT幻灯片版)理论力学课件
F1
刚体
大小相等 | F1 | = | F2 | 方 向相反 F1 =-F2 (矢量) 且 在同一直线上。
F2
说明:①对刚体来说,上面的条件是充要的; ②对变形体来说,上面的条件只是必要条件。
绳子
F2
平衡
F1
F2 不平衡
F1
F2
绳子
不平衡
F1
对多刚体不成立
理论力学
中南大学土木建筑学院
11
③二力构件:只在两个力作用下平衡的刚体叫二力构件。
中南大学土木建筑学院
57
[例] 画出下列各构件的受力图
D
F2
B
F1
A
FAy FBy FBx B
E
FAx
FCx
C
FCy F2
E
FB
FE
FD F3
G
F3 FC
G FCx
FBy
B
F1 二力构件
F1 二力杆
F2
F2
注意:二力构件是不计自重的。
公理3 加减平衡力系原理
在已知的任意力系上加上或减去任意一个平衡力系, 并不改变原力系对刚体的作用。
理论力学
中南大学土木建筑学院
12
推论1:力的可传性 作用于刚体上的力可沿其作用线移到同一刚体内的任一
点,而不改变该力对刚体的作用效应。
A F B 等效 A F F B F 等效 A F F B F
理论力学
中南大学土木建筑学院
46
理论力学
中南大学土木建筑学院
47
(3)止推轴承(圆锥轴承)
约束特点:止推轴承比径向轴承多一个轴向的位移限制。 约束力:比径向轴承多一个轴向的约束力,亦有三个正
理论力学第一章PPT课件
一般不必分析销钉受力,当要分 析时,必须把销钉单独取出.
-
36
(3) 固定铰链支座
约束特点: 由上面构件1或2 之一与地面或机架固定而成. 约束力:与圆柱铰链相同
以上三种约束(径向轴承、光滑圆柱铰链、固定铰链支 座)其约束特性相同,均为轴与孔的配合问题,都可称作 光滑圆柱铰链.
-
37
固定铰链支座
(3)光滑铰链——FAy , FAx
(4)滚动支座—— F⊥N 光滑面
球铰链——空间三正交分力
止推轴承——空间三正交分力
-
45
§1-3 物体的受力分析和受力图 力学模型与力学简图
物体的受力分析和受力图
在受力图上应画出所有力,主动力和约束力(被动力) 画受力图步骤: 1.取所要研究物体为研究对象(分离体),画出其简图
-
15
推理2 三力平衡汇交定理
作用于刚体上三个相互平衡的力,若其中两个力的作 用线汇交于一点,则此三力必在同一平面内,且第三个力 的作用线通过汇交点。
-
16
注意: 三力平衡不一定汇交
特例
F
2F
F
杆称
-
17
公理4 作用和反作用定律
作用力和反作用力总是同时存在,同时消失,等值、 反向、共线,作用在相互作用的两个物体上.
绪
论
-
1
一、理论力学的研究对象和内容
1、研究对象 是研究物体机械运动一般规律的科学
机械运动是指物体在空间的位置随时间的改变
平衡 指物体相对于地面保持静止或匀速直线运
动的状态,平衡是机械运动的一种特殊形式。
-
2
2、理论力学的研究内容:
静力学
运动学
动力学
理论力学精品PPT课件
动能定理
作业题 18-21,18-41
14
2019/11/21
15
4
2
A
mrd 2Nd 2Ndt
2N d d dz 6g dz
mr dt dz dt 3r 2 2 dt
dz u sin 3gz
dt
42
N mr g 3gz 2 mg 2 r 6z 2 4
B
13
第五章 质系动力学基本定理
4
4
4
dT 1 mu2 2sint cost d t mu2 sin 2tdt
4
4
5
第五章 质系动力学基本定理
动能定理
Ae 0
Ai dT 1 mu2 sin 2t dt 4
在任意时刻t:
Ai
T
T0
1 4
mgh 2mgmax
1 2
k2max
0
max 2mg / k 4(mg / k)2 2mgh / k
9
第五章 质系动力学基本定理
动能定理
例5-9 设圆柱上有一条光滑
的螺旋槽,其升角 ,质
4
A
量与柱相等的小球可沿着槽
运动,圆柱可绕竖直轴AB转 动。设初始时刻圆柱和小球
第五章 质系动力学普遍定理
§5-3 质系动能定理
柯尼希定理
“质系动能等于质系相对质心运动的动 能加上位于质心上质量为质系总质量的 质点的动能。” 或者:“质系的动能 等于跟随质心平动的动能加上相对质心 平动坐标系运动的动能。”
T
1 2
Mvc2
作业题 18-21,18-41
14
2019/11/21
15
4
2
A
mrd 2Nd 2Ndt
2N d d dz 6g dz
mr dt dz dt 3r 2 2 dt
dz u sin 3gz
dt
42
N mr g 3gz 2 mg 2 r 6z 2 4
B
13
第五章 质系动力学基本定理
4
4
4
dT 1 mu2 2sint cost d t mu2 sin 2tdt
4
4
5
第五章 质系动力学基本定理
动能定理
Ae 0
Ai dT 1 mu2 sin 2t dt 4
在任意时刻t:
Ai
T
T0
1 4
mgh 2mgmax
1 2
k2max
0
max 2mg / k 4(mg / k)2 2mgh / k
9
第五章 质系动力学基本定理
动能定理
例5-9 设圆柱上有一条光滑
的螺旋槽,其升角 ,质
4
A
量与柱相等的小球可沿着槽
运动,圆柱可绕竖直轴AB转 动。设初始时刻圆柱和小球
第五章 质系动力学普遍定理
§5-3 质系动能定理
柯尼希定理
“质系动能等于质系相对质心运动的动 能加上位于质心上质量为质系总质量的 质点的动能。” 或者:“质系的动能 等于跟随质心平动的动能加上相对质心 平动坐标系运动的动能。”
T
1 2
Mvc2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 点的合成运动
相对某一参考体的运动可由相对于其他参考体的 几个运动的组合而成-合成运动。
§8-1 相对运动·牵连运动·绝对运动
两个坐标系
定坐标系(定系) 动坐标系(动系)
三种运动
绝对运动:动点相对于定系的运动。 相对运动:动点相对于动系的运动。 牵连运动:动系相对于定系的运动。
相对轨迹
相对速度 vr 相对加速度 ar
绝对轨迹
绝对速度 绝对加速度
va aa
牵连速度 ve 和牵连加速度 ae
在动参考系上与动点相重合的那一点(牵连点)的 速度和加速度称为动点的牵连速度和牵连加速度。
练习:已知 , ,小球的相对速度u,OM=l。 求:牵连速度和牵连加速度
y x'
y'
M
O
φ
x
实例一:车刀的运动分析
动点:车刀刀尖 动系:工件 绝对运动:直线运动 牵连运动:定轴转动 相对运动:曲线运动(螺旋运动)
已知:r,相对速度v, =ωt, t0 0。
求:点M的绝对运动方程。
解: 动点:M点 动系:Oxy
相对运动方程
x OO1 O1M cos y O1M sin
代入 vt
r
已知:r,相对速度v, =ωt, t0 1
cos
vt r
y
r
sin
vt r
等角速度 逆时针转向转动。
求:车刀在工件圆端面上切出的痕迹。
已知:x bsin t, t 求: f x, y 0
解: 动点:M 动系:工件 Oxy
相对运动方程
x ' OM cost bsint cost b sin 2t
2 y OM sin t b sin 2 t b (1 cos 2t)
动杆O1B绕定轴O1摆动。设曲柄长为OA=r,两轴间
距离OO1=l。
求:曲柄在水平
位置时摇杆的角
速度 1 。
已知: , OA r, OO1 l, OA水平。求 :1 ?。
解: 1、动点:滑块 A 动系:摇杆 O1B 2、运动分析:
绝对运动-绕O点的圆周运动;相对运动-沿 O1B的直线运动;牵连运动-绕O1轴定轴转动。
大小 v1 v2
?
方向 √ √
?
vr va2 ve2 2vave cos 60 3.6 m s arcsin(ve sin 60o ) 46o12
vr
例8-6 圆盘半径为R,以角速度ω1绕水平轴CD 转动,支承CD的框架又以角速度ω2绕铅直的AB轴转 动,如图所示。圆盘垂直于CD,圆心在CD与AB的 交点O处。
度为 v1 4 m s,方向与铅直线成300角。已知 传送带B水平传动速度 v2 3m s 。
求:矿砂相对于传送带B的速度。
已知: v1 4m s , v2 3m s。求:vr。
解:1、动点:矿砂M 动系:传送带B
2、绝对运动:直线运动( v1)
牵连运动:平移(v2)
相对运动:未知
3、
va ve vr
绝对运动方程
x
x cos
y sin
r 1
cos
vt r
cost
r
sin
vt r
sin
t
y
x sin
y cos
r 1
cos
vt r
sin
t
r
sin
vt r
cost
例8-2 用车刀切削工件的直径端面,车刀刀尖 M沿水平轴x作往复运动,如图所示。设Oxy为定坐
标系,刀尖的运动方程为 x bsin t 。工件以
3、
√√√
ve va sin r sin
1
ve O1 A
r 2
l2 r2
例8-4 如图所示半径为R、偏心距为e的凸轮, 以角速度ω绕O轴转动,杆AB能在滑槽中上下平移, 杆的端点A始终与凸轮接触,且OAB成一直线。
求:在图示位置时,杆AB的速度。
已知: , e , AC R 。求:vAB 。
实例二:回转仪的运动分析
动点:M点 动系:框架
相对运动:圆周运动 牵连运动:定轴转动 绝对运动:空间曲线运动
绝对、相对和牵连运动之间的关系
动点:M 动系:O ' x ' y '
绝对运动运动方程
x x t
y
y t
相对运动运动方程
x xt
y
yt
由坐标变换关系有
x
y
求:当连线OM在水平位 置时,圆盘边缘上的点M的绝 对速度。
已知: R , 1 , 2 , OM 水平。求:vM。
解:1、动点:M点 动系:框架 BACD 2、绝对运动:未知
相对运动:圆周运动(圆心O点)
牵连运动:定轴转动(AB轴)
3、 大小 方向
va ve vr
? R2 R1
?√ √
va ve2 vr2 R 12 22
arctan
ve vr
arctan
2 1
§8-3点的加速度合成定理
xO yO
x cos x sin
y sin y cos
例8-1 点M相对于动系 Oxy 沿半径为r的圆周 以速度v作匀速圆周运动(圆心为O1 ) ,动系 Oxy相 对于定系 Oxy 以匀角速度ω绕点O作定轴转动,如 图所示。初始时 Oxy与 Oxy 重合,点M与O重合。
求:点M的绝对运动方程。
2 相对运动轨迹
x2 y b 2 b2 2 4
§8-2 点的速度合成定理
例:小球在金属丝上的运动
速度合成定理的推导
定系:Oxyz,动系:O ' x ' y ' z ,' 动点:M
rM rO r '
r ' xi ' yj 'zk '
rM rM
M ' 为牵连点
vr
dr ' dt
解:1、动点:AB杆上A 动系:凸轮
2、绝对运动:直线运动(AB)
相对运动:圆周运动(半径R)
牵连运动:定轴运动(轴O)
3、
va ve vr
大小 ? OA ?
方向 √ √ √
va
ve
cot
OA
e OA
e
例8-5 矿砂从传送带A落入到另一传送带B 上,如图所示。站在地面上观察矿砂下落的速
xi
'
yj '
zk
'
导数上加“~”表示相对导数。
ve
drM dt
rO xi ' yj ' zk '
va
drM dt
rO xi ' yj ' zk ' xi ' yj ' zk '
得
va ve vr
点的速度合成定理:动点在某瞬时的绝对速度等于
它在该瞬时的牵连速度与相对速度的矢量和。
例8-3 刨床的急回机构如图所示。曲柄OA的 一端A与滑块用铰链连接。当曲柄OA以匀角速度ω 绕固定轴O转动时,滑块在摇杆O1B上滑动,并带
相对某一参考体的运动可由相对于其他参考体的 几个运动的组合而成-合成运动。
§8-1 相对运动·牵连运动·绝对运动
两个坐标系
定坐标系(定系) 动坐标系(动系)
三种运动
绝对运动:动点相对于定系的运动。 相对运动:动点相对于动系的运动。 牵连运动:动系相对于定系的运动。
相对轨迹
相对速度 vr 相对加速度 ar
绝对轨迹
绝对速度 绝对加速度
va aa
牵连速度 ve 和牵连加速度 ae
在动参考系上与动点相重合的那一点(牵连点)的 速度和加速度称为动点的牵连速度和牵连加速度。
练习:已知 , ,小球的相对速度u,OM=l。 求:牵连速度和牵连加速度
y x'
y'
M
O
φ
x
实例一:车刀的运动分析
动点:车刀刀尖 动系:工件 绝对运动:直线运动 牵连运动:定轴转动 相对运动:曲线运动(螺旋运动)
已知:r,相对速度v, =ωt, t0 0。
求:点M的绝对运动方程。
解: 动点:M点 动系:Oxy
相对运动方程
x OO1 O1M cos y O1M sin
代入 vt
r
已知:r,相对速度v, =ωt, t0 1
cos
vt r
y
r
sin
vt r
等角速度 逆时针转向转动。
求:车刀在工件圆端面上切出的痕迹。
已知:x bsin t, t 求: f x, y 0
解: 动点:M 动系:工件 Oxy
相对运动方程
x ' OM cost bsint cost b sin 2t
2 y OM sin t b sin 2 t b (1 cos 2t)
动杆O1B绕定轴O1摆动。设曲柄长为OA=r,两轴间
距离OO1=l。
求:曲柄在水平
位置时摇杆的角
速度 1 。
已知: , OA r, OO1 l, OA水平。求 :1 ?。
解: 1、动点:滑块 A 动系:摇杆 O1B 2、运动分析:
绝对运动-绕O点的圆周运动;相对运动-沿 O1B的直线运动;牵连运动-绕O1轴定轴转动。
大小 v1 v2
?
方向 √ √
?
vr va2 ve2 2vave cos 60 3.6 m s arcsin(ve sin 60o ) 46o12
vr
例8-6 圆盘半径为R,以角速度ω1绕水平轴CD 转动,支承CD的框架又以角速度ω2绕铅直的AB轴转 动,如图所示。圆盘垂直于CD,圆心在CD与AB的 交点O处。
度为 v1 4 m s,方向与铅直线成300角。已知 传送带B水平传动速度 v2 3m s 。
求:矿砂相对于传送带B的速度。
已知: v1 4m s , v2 3m s。求:vr。
解:1、动点:矿砂M 动系:传送带B
2、绝对运动:直线运动( v1)
牵连运动:平移(v2)
相对运动:未知
3、
va ve vr
绝对运动方程
x
x cos
y sin
r 1
cos
vt r
cost
r
sin
vt r
sin
t
y
x sin
y cos
r 1
cos
vt r
sin
t
r
sin
vt r
cost
例8-2 用车刀切削工件的直径端面,车刀刀尖 M沿水平轴x作往复运动,如图所示。设Oxy为定坐
标系,刀尖的运动方程为 x bsin t 。工件以
3、
√√√
ve va sin r sin
1
ve O1 A
r 2
l2 r2
例8-4 如图所示半径为R、偏心距为e的凸轮, 以角速度ω绕O轴转动,杆AB能在滑槽中上下平移, 杆的端点A始终与凸轮接触,且OAB成一直线。
求:在图示位置时,杆AB的速度。
已知: , e , AC R 。求:vAB 。
实例二:回转仪的运动分析
动点:M点 动系:框架
相对运动:圆周运动 牵连运动:定轴转动 绝对运动:空间曲线运动
绝对、相对和牵连运动之间的关系
动点:M 动系:O ' x ' y '
绝对运动运动方程
x x t
y
y t
相对运动运动方程
x xt
y
yt
由坐标变换关系有
x
y
求:当连线OM在水平位 置时,圆盘边缘上的点M的绝 对速度。
已知: R , 1 , 2 , OM 水平。求:vM。
解:1、动点:M点 动系:框架 BACD 2、绝对运动:未知
相对运动:圆周运动(圆心O点)
牵连运动:定轴转动(AB轴)
3、 大小 方向
va ve vr
? R2 R1
?√ √
va ve2 vr2 R 12 22
arctan
ve vr
arctan
2 1
§8-3点的加速度合成定理
xO yO
x cos x sin
y sin y cos
例8-1 点M相对于动系 Oxy 沿半径为r的圆周 以速度v作匀速圆周运动(圆心为O1 ) ,动系 Oxy相 对于定系 Oxy 以匀角速度ω绕点O作定轴转动,如 图所示。初始时 Oxy与 Oxy 重合,点M与O重合。
求:点M的绝对运动方程。
2 相对运动轨迹
x2 y b 2 b2 2 4
§8-2 点的速度合成定理
例:小球在金属丝上的运动
速度合成定理的推导
定系:Oxyz,动系:O ' x ' y ' z ,' 动点:M
rM rO r '
r ' xi ' yj 'zk '
rM rM
M ' 为牵连点
vr
dr ' dt
解:1、动点:AB杆上A 动系:凸轮
2、绝对运动:直线运动(AB)
相对运动:圆周运动(半径R)
牵连运动:定轴运动(轴O)
3、
va ve vr
大小 ? OA ?
方向 √ √ √
va
ve
cot
OA
e OA
e
例8-5 矿砂从传送带A落入到另一传送带B 上,如图所示。站在地面上观察矿砂下落的速
xi
'
yj '
zk
'
导数上加“~”表示相对导数。
ve
drM dt
rO xi ' yj ' zk '
va
drM dt
rO xi ' yj ' zk ' xi ' yj ' zk '
得
va ve vr
点的速度合成定理:动点在某瞬时的绝对速度等于
它在该瞬时的牵连速度与相对速度的矢量和。
例8-3 刨床的急回机构如图所示。曲柄OA的 一端A与滑块用铰链连接。当曲柄OA以匀角速度ω 绕固定轴O转动时,滑块在摇杆O1B上滑动,并带