(完整版)讲义_直线与圆的位置关系

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、直线和圆的位置关系的定义、性质及判定

1、设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下表:

从另一个角度,直线和圆的位置关系还可以如下表示:

二、切线的性质及判定

1. 切线的性质:

定理:圆的切线垂直于过切点的半径.

推论1:经过圆心且垂直于切线的直线必经过切点. 推论2

:经过切点且垂直于切线的直线必经过圆心. 2. 切线的判定:

定义法:和圆只有一个公共点的直线是圆的切线;

距离法:到圆心距离等于半径的直线是圆的切线;

定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 3. 切线长和切线长定理:

⑴ 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.

⑵ 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. ①切线的判定定理

设OA 为⊙O 的半径,过半径外端A 作l ⊥OA ,则O 到l 的距离d=r ,∴l 与⊙O 相切.因此,我们得到:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.

注:定理的题设①“经过半径外端”,②“垂直于半径”,两个条件缺一不可.结论是“直线是圆的切线”.举例说明:只满足题设的一个条件不是⊙O 的切线.

_ A

_

l _ l _A

_

l

②切线的性质定理及其推论

切线的性质定理:圆的切线垂直于过切点的半径.

三、三角形内切圆

1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.

2. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形. 3.直角三角形的内切圆半径与三边关系

(1) (2)

图(1)中,设a b c ,,分别为ABC ∆中A B C ∠∠∠,,的对边,面积为S 则内切圆半径(1)s r p =,其中()12p a b c =++; 图(2)中,90C ∠=︒,则()1

2

r a b c =+-

四、典例分析:切线的性质及判定

_ O

_F _E

_ D _ C _ B

_ A

_ C

_ B _ A _ C

_ B

_ A

_c

_ b _a

_c

_ b

_a

_T _A

【例1】 如图,AB 是O 的直径,点D 在AB 的延长线上,过点D 作O 的切线,切点为C ,若25A =︒∠,

则D =∠______.

例1

例2

巩固

【例2】 如图,直线AB 与O ⊙相切于点A ,O ⊙的半径为2,若30OBA ∠=︒,则OB 的长为(

)

A .

B .4

C .

D .2

【巩固】如图,AB 与O ⊙相切于点B ,线段OA 与弦BC 垂直于点D ,60AOB ∠=︒,4cm BC =,则切线

AB = cm .

【例3】 如图,若O 的直径AB 与弦AC 的夹角为30︒,切线CD 与AB 的延长线交于点D ,且O 的半

径为2,则CD 的长为( ) A .B .

C .2

D .4

巩固

【巩固】如图,EB 为半圆O 的直径,点A 在EB ,BC AD ⊥于点C ,

2AB =,半圆O 的半径为2,则BC 的长为_______________.

【例4】 如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD 、下底BC 以及腰AB 均相

切,切点分别是D C E ,,.求证:以AB 为直径的圆与CD 相切.

例4 巩固

【巩固】如图,已知以直角梯形ABCD 中,以AB 为直径的圆与CD 相切,求证:以CD 为直径的圆与AB

A

D

_ A _ O

_ C _B

_

M

C

相切.

【例5】 已知:如图,在ABC ∆中,AB AC =,以BC 为直径的半圆O 与边AB 相交于点D ,切线DE AC ⊥,

垂足为点E . 求证:(1)ABC ∆是等边三角形;(2)1

3

AE CE =.

【巩固】如图,MP 切O ⊙于点M ,直线OP 交O ⊙于点A B 、,弦AC MP ∥,求证:MO BC ∥.

【例6】 如图,ABC ∆中,AB AC =,O 是BC 的中点,以O 为圆心的圆与AB 相切于点求证:AC 是O 的切线。

【例7】 如图,已知AB 是O 的直径,BC 为O 的切线,切点为B ,OC 平行于弦AD , OA r =。

(1)求证:CD 是O 的切线;

(2)求AD OC ⋅的值;

(3)若9

2AD OC r +=,求CD 的长。

【巩固】 如图,已知AB 是O 的直径,BC 是和O 相切于点B 的切线,过O 上A 点的直线AD OC ∥,

若2OA =且6AD OC +=,则CD = 。

C

B A

O

D

C

B

A

【巩固】 如图,AB 是半圆(圆心为O )的直径,OD 是半径,BM 切半圆于B ,OC 与弦AD 平行且交BM

于C 。

(1)求证:CD 是半圆的切线;

(2)若AB 长为4,点D 在半圆上运动,设AD 长为x ,点A 到直线CD 的距离为y ,试求出y 与x 之间的函数关系式,并写出自变量x 的取值范围。

【例8】 如图,AC 为O 的直径,B 是O 外一点,AB 交O 于E 点,过E 点作O 的切线,交BC 于

D 点,D

E DC =,作E

F AC ⊥于F 点,交AD 于M 点。

(1)求证:BC 是O 的切线;

(2)EM FM =。

【例9】 如图,割线ABC 与O 相交于B 、C 两点,D 为O 上一点,E 为BC 的中点,OE 交BC 于F ,

DE 交AC 于G ,ADG AGD ∠=∠。

(1)求证:AD 是O 的切线;

(2)如果242AB AD EG ===,,,求O 的半径。

【例10】 如图,已知点E 在ABC ∆的边AB 上,以AE 为直径的O ⊙与BC 相切于点D ,且AD 平分

BAC ∠.求证:AC BC ⊥.

【巩固】AB 是圆的直径,BC 是它的弦,过C 作圆的切线CD ,过B 作BE

ABC EBC ∠=∠.

【例11】 如图,已知Rt ABC ∆中,90ABC ∠=︒,以AB 为直径作O ⊙交AC 于D ,过D 作O ⊙的切线DE

D C

B

A

E

_ A

_ O

_ B

_ C _ D _E

相关文档
最新文档