量子力学教程第三章

合集下载

量子力学讲义第三章讲义详解

量子力学讲义第三章讲义详解

第三章 力学量用算符表达§3.1 算符的运算规则一、算符的定义:算符代表对波函数进行某种运算或变换的符号。

ˆAuv = 表示Â把函数u 变成 v , Â就是这种变换的算符。

为强调算符的特点,常常在算符的符号上方加一个“^”号。

但在不会引起误解的地方,也常把“^”略去。

二、算符的一般特性 1、线性算符满足如下运算规律的算符Â,称为线性算符11221122ˆˆˆ()A c c c A c A ψψψψ+=+ 其中c 1, c 2是任意复常数,ψ1, ψ2是任意两个波函数。

例如:动量算符ˆpi =-∇, 单位算符I 是线性算符。

2、算符相等若两个算符Â、ˆB对体系的任何波函数的运算结果都相同,即ˆˆA B ψψ=,则算符Â和算符ˆB 相等记为ˆˆAB =。

3、算符之和若两个算符Â、ˆB对体系的任何波函数有:ˆˆˆˆˆ()A B A B C ψψψψ+=+=,则ˆˆˆA B C +=称为算符之和。

ˆˆˆˆAB B A +=+,ˆˆˆˆˆˆ()()A BC A B C ++=++ 4、算符之积算符Â与ˆB之积,记为ˆˆAB ,定义为 ˆˆˆˆ()()ABA B ψψ=ˆC ψ= 是任意波函数。

一般来说算符之积不满足交换律,即ˆˆˆˆABBA ≠。

5、对易关系若ˆˆˆˆABBA ≠,则称Â与ˆB 不对易。

若A B B Aˆˆˆˆ=,则称Â与ˆB 对易。

若算符满足ˆˆˆˆABBA =-, 则称ˆA 和ˆB 反对易。

例如:算符x , ˆx pi x∂=-∂不对易证明:(1) ˆ()x xpx i x ψψ∂=-∂i x x ψ∂=-∂ (2) ˆ()x px i x x ψψ∂=-∂i i x xψψ∂=--∂ 显然二者结果不相等,所以:ˆˆx x xpp x ≠ ˆˆ()x x xpp x i ψψ-= 因为是体系的任意波函数,所以ˆˆx x xpp x i -= 对易关系 同理可证其它坐标算符与共轭动量满足ˆˆy y ypp y i -=,ˆˆz z zp p z i -= 但是坐标算符与其非共轭动量对易,各动量之间相互对易。

量子力学_第三章3.8力学量期望值随时间的变化__守恒定律

量子力学_第三章3.8力学量期望值随时间的变化__守恒定律

2. 例子(运动恒量举例)
<1>自由粒子的动量
ˆ2 p ˆ 当粒子不受外力,即 H 时 2 ˆ p ˆ, H ˆ ] i [p ˆ ] j[p ˆ ] k[p ˆ]0 ˆ x,H ˆ y,H ˆ z,H 如果 0 , [p t
dp 0 ,即为量子力学中的动量守恒定律。 则有 dt
ˆ 的本征值 C 1 。 所以 P
Байду номын сангаас
ˆ (x, t) (x, t) ; P ˆ (x, t) (x, t) 即: P 1 1 2 2
ˆ 的本征函数中本征值为 1 的 为有偶宇称态,本征值为 1 称P 1
的 2 为有奇宇称态。
ˆ 在空间反演不变时的宇称守恒: c. H
2 2 ˆ L 2 ˆ 2 , H] ˆ [L ˆ2 , ˆ2 , ˆ 2 , U(r)] 0 [L (r )] [L ] [L 2r 2 r r 2r 2 ˆ ,H ˆ ] 0; ˆ2 ,L ˆ ] 0 , [L ˆ ,H ˆ ] [L ˆ2 , L ˆ ]0, ˆ ,H ˆ ] [L ˆ2 , L ˆ ]0 [L [ L [L z x z
化。因 完全描写态,知道 ( r , t ) 后,即可求得每一个时刻 t 各 dinger 方 程 , 故 o 力 学 量 的 变 化 。 而 态 ( r , t ) 的 变 化 遵 从 Schr
2 dinger 方程不仅可以直接描写 ( r , t ) 的变化,而且还能间 Schr o
二、守恒定律
ˆ 1 d F F ˆ 不显含时间 t ,即 ˆ,H ˆ ] 中,如果 F 1. 在运动方程 [F dt t i ˆ dF F ˆ ˆ =0,即 F 平均值不随 0 ,并且 [F, H] 0 (即对易),则有 dt t

量子力学教程Ch32

量子力学教程Ch32

经典力学中物质运动的状态总用坐标、动量、角 动量、自旋、动能、势能、转动能等力学量以决定论 的方式描述。而量子力学的第一个惊人之举就是引入
了波函数 这样一个基本概念,以概率的特征全面地
描述了微观粒子的运动状态。但 并不能作为量子力
学中的力学量。于是,又引入了一个重要的基本概 念——算符,用它表示量子力学中的力学量。算符与 波函数作为量子力学的核心概念相辅相成、贯穿始终。
若已知粒子在坐标表象中的状态波函数 (r,t) ,
按子照坐波标函(x统, y计, z)解或释rr,的利平用均统值计平均方法,可求得粒
若知道粒子在动量表象中的波函数 C( p,t) ,同理
可求出粒子动量
(Px , Py , Pz )或
P
的平均值。
6
3.1 表示力学量的算符(续1)
Chap.3 The Dynamical variable in Quantum Mechanism
r
C
*
(
P,
t
)rˆC
(
P, t
)d
3
P
rvˆ
ihP
r ih i
Px
r j
Py
v k
Pz
称为坐标算符
Prove: r *(r,t)r (r,t)d3r
1
*(rv,t)rv[
C
(
v P,
t
)e
i h
Pvrv
d
3
v P]d
3rv
(2 h)3/2
1 *(rv,t)[
(2 h)3/2
Chap.3 The Dynamical variable in Quantum Mechanism
第三章 量子力学中的力学量

量子力学 第三章

量子力学 第三章

−ρ / 2
[s(s −1) − l(l + 1)]b0 ρ
令 ν'=ν-1 第一个求和改为
s−2
+ ∑[(ν + s)(ν + s − 1) − l(l + 1)]bν ρν +s−2
ν =1

∑ bν ρ ν
s+ν −1
:
+ ∑[β − (ν + s)]bν ρν +s−1 = 0
ν =0


b ≠ 0 0 s ≥ 1
对应一个本征值有一个以上的本征函数的情况成为简并。 对应一个本征值有一个以上的本征函数的情况成为简并。 对 应同一个本征值的相互独立的本征函数的数目称为简并度。 应同一个本征值的相互独立的本征函数的数目称为简并度。
个取值。 ˆ 对给定的 l , m 有 ( 2l + 1) 个取值。 L2 的本征值是 ( 2l + 1) 度 简并的。 简并的。
∑[(ν + s)(ν + s −1) − l(l +1)]bν ρ ν
=0
+ ∑[β − (ν + s)]bν ρν +s−1 = 0
ν =0

把第一个求和号中ν= 0 项单独写出,则上式改为: 把第一个求和号中ν= 项单独写出,则上式改为:
u αf (ρ )e R= = r ρ =e
−ρ / 2 =0
四、讨论: 讨论:
ˆ ˆ a. Ylm 是 L z , L2 得共同本征函数 .
ˆ L2 Ylm = l(l + 1)h 2 Ylm
ˆ = −ih ∂ 作用于 Ylm 上,有: 而让 L z ∂ϕ ∂ m ˆ L z Ylm (θ, ϕ) = − ih [(−1) m N lm Pl (cos θ)e imϕ ] ∂ϕ

量子力学教程-周世勋-第三章算符

量子力学教程-周世勋-第三章算符
C 为常数
ˆ, B ˆ, B ˆ ] = C[ A ˆ ] C 为常数 [CA
ˆ +A ˆ ,B ˆ ,B ˆ ,B ˆ] ˆ] = [A ˆ]+[A [A 1 2 1 2 ˆA ˆ ˆ ˆ ,B ˆ +A ˆ [A ˆ ,B ˆ] ˆ ]A [A 1 2 , B] = [ A 1 2 1 2
∂ ˆ ˆ ∂ ˆ ˆ ˆ, ∂ B ˆ] [ A, B ] = [ A , B] + [ A ∂t ∂t ∂t
中,因
+ * % d d ˆ + = ⎛ h ∂ ⎞ = ⎛− h ∂ ⎞ = P ˆ 。也可以直接从定义式(3.1-3)出发,来 = − ,所以 P x x ⎜ ⎟ ⎜ ⎟ dx dx ⎝ i ∂x ⎠ ⎝ i ∂x ⎠
ˆ 是厄密算符。 证明 P x


−∞
ˆ φ dx = ϕ *φ |∞ − ϕ *P −∞ x
3.其他对易关系 (1)角动量算符与位置算符之间的对易关系
67
ˆ , x] = [ yP ˆ , zP ˆ , x] = 0 [L x z y ˆ , y ] = [ yP ˆ − zP ˆ , y ] = − z[ P ˆ , y ] = z[ y, P ˆ ] = ihz [L x z y y y
ˆ −1 , FF ˆ =G ˆ ˆ −1 = F ˆ −1 F ˆ = 1。 F
并非所有的算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。
ˆ为 ˆ ( x ) = af ( x ) ,其中 F 对于非齐次线性微分方程: Fu
d 与函数构成的线性算符,a 为常数。 dx
ˆ = 0, 其解 u 可表示为对应齐次方程的通解 u。与非齐次方程的特解 υ 之和,即 u = u0 + v 。因 Fu 0

量子力学 第三章3.7算符的对易关系 两力学量同时有确定值的条件 不确定关系

量子力学 第三章3.7算符的对易关系 两力学量同时有确定值的条件 不确定关系

ˆ ˆ y ] z,p ˆ ˆx 0 [z,p
ˆx,p ˆ y ] p ˆx,p ˆz ˆ y,p ˆz [p p 0
以上可总结为基本对易关系:
x i , p j i ij xi , x j 0 pi , p j 0

ˆ G ˆF ˆ G ˆF ˆG ˆ) a ˆG ˆ ) = (F 则: (F n n
ˆ G ˆF ˆG ˆ) n = a n (F
n
n
ˆF ˆ ˆ G ˆ =F ˆ G ˆG ˆ G ˆF ˆG ˆ) n = F 而 (F n n n n n n
ˆx p ˆ x x 作用在任意波函数 ( x ) 上,即: ˆ x xp 将 x, p
(x (x)) ˆx p ˆ x x (x) x(i ) (x) xp x i x x (x) x (x) (x) i x i x i
定理2(定理1的逆定理):如果两个算符对易,则这
两个算符有组成完全系的共同本征函数。
ˆ 的完全本征函数系,且本征值 证明:设{ n }是 F n
非简并。
ˆ 则: F n n n
n 1,2,3,

ˆ 和G ˆ 对易,则: 而F
ˆF ˆ )= G ˆ ) ˆ = (G ˆ (G F n n n n
ˆ 有确定值 n ,…(按3.6节讲的基本假 有确定值 n , G ˆ ,ˆ ˆ ,… ˆ,G 设)。于是会存在这样的态,在这些态中,H I, F
代表的力学量可同时取确定值。
结论:不同力学量同时具有确定值的充分必要条件
是在这些力学量算符的共同本征态中。
例如:
ˆ y, ˆ x, ˆ z 对易,则它们有完全共同的本 ①动量算符 p p p

量子力学 第三章3.6算符与力学量的关系

量子力学 第三章3.6算符与力学量的关系

定 已归一)
ˆ F C d Fdx
2
ˆ 证明: F dx

C d


ˆ [( C ' ' d' )F ( C d )]dx
' ˆ = C ' C [ ' F dx ] dd
n
C 其中: n n dx ; C dx ;
C
n
2
2
2 n
C d 1 ;
2
C n 为在 ( x ) 态中测 F 得 n 的几率;
C d 为在 ( x ) 态中测 F 得 d 在范围内的
几率;
平均值公式: F
代表的力学量的 F 关系如何?这需引进新的假设,适 合于一般情况,且不能与假定2相抵触,应包含它。
ˆ (1)F的 n 平方可积 ˆ 若 F 是满足一定条件 (2)F的 级数收敛 的厄米算符, ˆ n 且它的正交归一的本征函数系 1 (x)、 2 ( x) … n ( x ) …
即:C ( x ) ( x )dx
(同理可得二、三维的结果)
可见: 力学量在一般的状态中没有确定值, 而有许多可能值, 这些可能值就是表示这个力学量算符的本征值的集合, 且每 个可能值都以确定的几率出现。
三、平均值公式 在 ( x ) 所描写的状态中,F 在 ( x )态的统计平均 值(由几率求平均值)为
ˆ F n C n ( x )F ( x )dx
2 n
dx 1 ) (假定
ˆ ( x )dx 代入完全性 证明: ( x )F

量子力学 第三章3.5厄米算符本征函数的正交性

量子力学 第三章3.5厄米算符本征函数的正交性

'
d
(
'
)
0, ,
' '
于是称{ }为厄米算符 Fˆ 的正交归一本征函数系。
三、厄米算符属于相同本征值的本征函数的正交性(简并情况)
如果 Fˆ的一个本征值 是n 度f简并的,既有 个(f 而不是一个)本
征函数
n1, 都n2属, 于n3相,同的本nf 征值 ,而且是线性无关n
的,则有:
本征值为 ( 1), 2对于确定的 , 其本征函数 是Ym
重简2并1的。用与 对易的Lˆ 算2 符 的本征Lˆ值z 来确定m
态函数 ,此Y时m,它对应的本征值为

这时[,( 波1函) 2数, m是唯] 一确定的。
综合上述讨论可得如下结论:
既然厄密算符本征函数总可以取为正交 归一化的,所以以后凡是提到厄密算符的本 征函数时,都是正交归一化的,即组成正交 归一系。
j, j' 1,2,f
即待定系数
A ji 必须满足的条件有
f (f 1) 2
个方程,其
中 j j' 的归一化条件有 f 个; j j' 的正交条件有
f (f 1) 2
C
2 f
个。
而待定系数 A ji 共有 f 2 个值。
于是只要 f ,1就有
f 2 f,(f即待1) 定系数
2
的个数A大ji
于条件方程的个数,所以 可以有许A多ji 选择方式,使
得函数 满足正交归n一j 化条件。
由简并的这 f 个函数可以线性组合成 f 个独立的新函 数,它们仍属于原本征值且满足正交归一化条件。
说明:在实际计算中,当出现简并时,为了把 Fˆ 的本
征态确定下来,往往用与 Fˆ 对易的其它的力学量算符

量子力学 第三章 表象理论

量子力学  第三章  表象理论

第三章表象理论本章提要:本章讨论态矢和算符的具体表示形式。

首先,重点讨论了本征矢和本征函数、态矢量和波函数之间的关系,指出了函数依赖于表象。

之后,引入投影算符,讨论了不同表象下的态矢展开,尤其是位置和动量表象,并顺带解决了观测值问题。

接着,用投影算符统一了态矢内积与函数内积。

最后,简单介绍了一些矩阵力学的内容。

1.表象:完备基的选择不唯一。

因此可以选用不同的完备基把态矢量展开。

除了态矢量,算符在不同表象下的具体表示也不同。

因此,我们把态矢量和算符的具体表示方式统称为表象 ①使用力学量表象:我们还知道每个力学量对应的(厄米)算符的本征矢都构成一组完备基。

若选用算符G 的(已经标准正交化(离散谱)或规格正交化(连续谱))的本征矢作为态空间的基,就称为使用G 表象的描述②波函数:把态矢展开式中各项的系数(“坐标”)定义为G 表象下的波函数③本征函数与本征矢的关系:设本征方程ψ=ψλQˆ又可写作()()G Q G Q ψψ=ˆ 则两边乘G 有()()ψ===ψ=ψ=ψQ G Q G Q G Q Q G QG ˆˆˆψψ 因此:本征函数()ψ=G G ψ就是Q ˆ的本征态ψ在表象G ˆ下的“坐标”(波函数) 如果离散谱:()ψ=i i G ψ就是Q ˆ的本征态ψ在表象G ˆ的iG 方向上的“坐标” ④结论:算符和态矢量的抽象符号表示不依赖于表象,具体形式依赖于表象选择但本征函数和波函数相当于“坐标”,依赖于态矢(向量)和表象(基)*注意:第二章在展开态矢量、写算符和本征函数时使用都是位置表象(也称坐标表象)2.投影算符:我们将使用这个算符统一函数与矢量的内积符号(1)投影算符:令()()连续谱离散谱dG G Gi i Pi⎰∑==ˆ,称为投影算符(2)算符约定:求和或积分遍历算符G 的标准(或规格)完备正交基矢量(3)本征方程:ψ=ψ=ψI Pˆˆ,表明投影算符就是单位算符 (4)单位算符代换公式:()()连续谱离散谱dQ G G i i I i⎰∑==ˆ3.不同表象下的态矢量展开和波函数:①离散谱:∑=ii iF Fψψ,ψψi i F =为Fˆ表象下的波函数 {}i ψ可表示为一列矩阵,第i 行元素就是ψψi i F =观测值恰为i Q 的概率:用Qˆ表象展开∑=ii i Q Q ψψ,22Pr ψψi i Q ob ==概率归一等价于波函数归一∑==ii 12ψψψ算符Qˆ的观测平均值:ψψψQ Q Q ii i ˆˆ2==∑②连续谱:⎰==dG G GIψψψˆ,ψψG =称为Gˆ表象下的波函数观测值落在dQ Q Q +~范围内的概率:用Qˆ表象展开⎰=dQ Q Qψψ,dQ Q dQ ob 22Pr ψψ==,满足概率归一⎰=12dQ ψ算符Qˆ的观测平均值:()()ψψψQ dQ Q Q Q ˆ,ˆ2==⎰③本征函数和态矢量的内积统一:设f f =,g Q g =,有()g f gdQ f dQ g Q f Q dQ g Q f g I f g f ,ˆ**=====⎰⎰⎰结论:量子态g f 在同一表象Q 下投影得波函数g f ,,则()g f g f ,=算符对本征函数作用:()()ϕψϕψϕψϕψϕψQ Q QQ Qˆˆˆ,ˆˆ,==== 示例:()ϕψϕψϕψϕψϕψϕψp dx pdx x p dx p x x p I pˆ,ˆˆˆˆˆˆ**=====⎰⎰⎰④位置表象与动量表象:4.力学量的测量值问题:①当待测系统处于算符本征态:此时ψ=ψQ Qˆ,对系统中所有粒子的测量结果都是本征态ψ对应的本征值i Q ,显然i Q 的统计平均值还是i Q ,iQ Q =ˆ。

量子力学 第三章3.3电子在库仑场中的运动

量子力学 第三章3.3电子在库仑场中的运动

<4> 能级:
由于 2Zes Zes ( )1 / 2 、 n n r 1 ,考虑 2
2 2


2E
到 E 0 ,则有:
Z e s En 2n 2 2
2
4
, n 1,2,3,
(21)
即束缚态的能量是量子化的,它来源于粒子的波 动性及波函数的有限性。
ˆ 而角向方程 L2 Y L2 Y 的解与辏力场的具体形式无关,即:
L2 ( 1) 2 ,Y Ym (, )
o 所以径向 Schrdinger 方程可以表述为:
1 2 2 ˆ Tr [ 2 (r )] 2 r r r
( 1) 2 ˆ [Tr U(r) E]R 0 2 2r 2 2 ( 1) 2 (r ) U(r ) ]R (r ) ER (r ) 即:[ 2 2 r 2r r 2r
ˆ ˆ 即:[Tr T U(r )] E
球坐标系下的拉 普拉斯算符形式
ˆ 2 pr 1 ˆ T 其中: r [ 2 (r 2 )] 2 r r r 2 ˆ ˆ 1 r r ˆ ˆ ˆ pr ( p p ) 2 r r
2
为径向动能算符



有限性相矛盾,应否定它(不能是无穷级数)。
b.若 f () 级数是有限项,即 f () b s 为多项式,
nr
其最高次幂项为

bnr ,

n r s
0
nr 2 s 1 0。 于是 R e f () e 2 b 0 s b 由 b 1 (s )(s 1) ( 1)

量子力学教程 第三章

量子力学教程 第三章

ˆ d (O ˆ ) * d * O
转置算符 的定义
ˆ )] * [ d * (O ˆ * * dO ~ ˆ * d * O
可以证明: (Ô Â )+ = Â + Ô + (Ô Â Û...)+ = ... Û+ Â + Ô +
( r ) p ( r ) i p p
量子力学
其 分 量 形 式 :
(r ) i p (r ) i y p i z p (r )
x
(r ) p x p (r ) p y p p z p (r )
是对函数 u 微商, 故称为微商算符。 也是算符。 它对 u 作用 是使 u 变成 v3 。
(二)算符的一般特性
(1)线性算符 (2)算符相等 (3)单位算符 (4)算符之和 (5)算符之积 (6)对易关系 (7)对易括号
(8)逆算符 (9)算符函数 (10)复共轭算符 (11)转置算符 (12)厄密共轭算符

dx *

dx * * |


dx *
x

dx * x



由于ψ 、φ 是 任意波函数, 所以

dx * ( x ) 0
~ x
( )0
x
~ x
~ x
x
15
(三)、算符化法则
如果量子力学中的力学量F是具有经典对应的力学量, ˆ 可由经典表示式F(r,p) 则相应于这个力学量的算符 F ˆ i 得到 中将p换成算符 p
表示坐标 的算符就 是坐标自 身

量子力学教程高等教育出版社周世勋课后答案-第三章

量子力学教程高等教育出版社周世勋课后答案-第三章

第三章 量子力学中的力学量3.1 一维谐振子处在基态t i x e x ωαπαψ2222)(--=,求:(1)势能的平均值2221x U μω=; (2)动能的平均值μ22p T =;(3)动量的几率分布函数。

解:(1) ⎰∞∞--==dx e x x U x 2222222121απαμωμωμωμωαμωαπαπαμω ⋅==⋅=22222241212121221ω 41=(2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ ⎰∞∞----=dx e dx d e x x22222122221)(21ααμπα⎰∞∞---=dx e x x 22)1(22222αααμπα][222222222⎰⎰∞∞--∞∞---=dx e x dx e x x ααααμπα ]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222ω 41= 或 ωωω 414121=-=-=U E T(3)*(,)()()p c p t x x dx ψψ=⎰ 2222x iit px e dx αωαππ∞----∞=⎰22122i i x px t ee dxeαωαππ∞----∞=⎰2222221()222ip p i x t edxe αωαααππ-+-∞--∞=⎰2222221()222p ip ix t e edxeαωαααππ--+∞--∞=⎰222222p i t e ωαααππ--=22222p i t e eωααπ--=动量几率分布函数为 2222()(,)p p c p t eαωαπ-==3.2.氢原子处在基态0/301),,(a r e a r -=πϕθψ,求:(1)r 的平均值;(2)势能re 2-的平均值;(3)最可几半径; (4)动能的平均值;(5)动量的几率分布函数。

解:(1) ϕθθπτϕθψππd rd d r re a d r r r a r sin 1),,(0220/23020⎰⎰⎰⎰∞-==⎰∞-=/233004dr a r a a r04030232!34a a a =⎪⎪⎭⎫⎝⎛=2203020/232020/232202/2322214 4 sin sin 1)()2(000a e a a e drr e a e d drd r e a e d drd r e ra e r e U a r a r a r -=⎪⎪⎭⎫ ⎝⎛-=-=-=-=-=⎰⎰⎰⎰⎰⎰⎰∞-∞-∞-ππππϕθθπϕθθπ(3)电子出现在r+dr 球壳内出现的几率为 ⎰⎰=ππϕθθϕθψω02022 sin )],,([)(d drd r r dr r dr r e a a r 2/23004-=2/23004)(r e a r a r -=ω0/2030)22(4)(a r re r a a dr r d --=ω 令0321 , ,0 0)(a r r r drr d =∞==⇒=,ω 当0)( ,0 21=∞==r r r ω时,为几率最小位置/22203022)482(4)(a r e r a r a a dr r d -+-=ω08)(230220<-=-=e a dr r d a r ω ∴ 0a r =是最可几半径。

曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解-力学量用算符表达(圣才出品)

曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解-力学量用算符表达(圣才出品)
则可定义算符 Â 的函数 F(Â)为
3 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台

(2)算符的标积
定义一个量子体系的任意两个波函数(态)ψ 与 的“标积”
以下为常用算符标积运算公式:
式中 c1 与 c2 为任意常数.
7.转置算符 算符 Â 的转置算符 A 定义为
特例 对于
利用
(h 是一个普适常数,不为 0),则有
2.(l2,lz)的共同本征态 称为球谐(spherical harmonic)函数,它们满足
l2 和 lz 的本征值者都是量子化的.l 称为轨道角动量量子数.m 称为磁量子数.
6 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台


式中
称为 Levi—Civita 符号,是一个三阶反对称张量,定义如下:
②角动量算符与动量算符之间的对易关系 ③角动量算符之间的对易关系 分开写出,即
5.逆算符 设
能够唯一地解出 ψ,则可以定义算符 Â 之逆 Â-1 为
6.算符的函数与标积 (1)算符函数 给定一函数 F(x),其各阶导数均存在,幂级数展开收敛,
3.对易力学量完全集(CSCO)与对易守恒量完全集(CSCCO)
(1)对易力学量完全集
设有一组彼此独立而且互相对易的厄米算符
,它们的共同本征态记为
也,表示一组完备的量子.设给定一组量子数 a 之后,就能够确定体系的唯一一个可能状
态,则我们称(Aˆ1,Aˆ2, )构成体系的一组对易可观测量完全集(complete set of
式中 ψ 与 φ 是任意两个波函数.
8.复共轭算符与厄米共轭算符 算符 Â 的复共轭算符 Â*.定义为

量子力学3

量子力学3

量子力学3第三章力学量算符§3.1 算符及其运算规则§3.2 厄米算符及其性质§3.3 连续谱本征函数的归一化§3.4 力学量算符随时间演化§3.5 守恒量与对称性§3.6 全同粒子体系§3.1 算符及其运算规则一、算符的基本运算规则二、算符的函数三、对易关系和对易子四、厄米算符和幺正算符五、量子力学向经典力学的过渡六、角动量算符一、算符的基本运算规则一、算符的基本运算规则量子力学第二公设—算符公设1)线性算符:A ( c1ψ 1 + c 2ψ 2 ) = c1 A ψ 1 + c 2 A ψ 2二、算符的函数二、算符的函数例子一般地,算符的函数可以表为? ? f ( A) = ∑ cn A nn2)单位算符:I?ψ = ψ3)算符之和:( A + B )ψ = A ψ + B ψ ?? ? ? 4)算符之积: ( A B )ψ = A ( B ψ )一个常用的公式:eA = ∑∞ n=0An n!其它的例子例题:若G为算符,t为参数,证明:Gt e = Ge Gt ?t算符之积满足结合律,但不满足交换律(不对易)。

5)算符之逆: A A ?1 = A ?1 A = I?三、对易关系与对易子三、对易关系与对易子对易子的定义: [ A, B ] = A B ? B A例:坐标与动量的对易关系。

解:考虑x p xψ = ? ih x ? p x xψ = ? ih ? ψ ?x对易关系的几个恒等式: [ A, B ] = ?[ B , A ][ A, B + C ] = [ A, B ] + [ A, C ] [ A, BC ] = B[ A, C ] + [ A, B ]C [ AB , C ] = A[ B , C ] + [ A, C ] B [ A, [ B , C ]] + [ B , [C , A ]] + [C , [ A, B ]] = 0(Jacobi恒等式)( xψ ) = ? ih ψ ? ih x ψ ?x ?xx p xψ ? p x x ψ = ih ψ ? [ x , p x ] = ih这样,对任意波函数,均有所以类似可证: [ y , p y ] = ih但[ z , p z ] = ih[ x , p y ] = [ x , p z ] = [ y , p x ] = ...... = 0 ? [ xα , p β ] = ih δ αβ综合式四、厄米算符和幺正算符四、厄米算符和幺正算符进一步的例算1、计算对易子: [ f ( x ), p x ] = ?2、设λ是一个小量,算符 A 之逆 A ?1 存在,求证:~ ? ? 1)算符的转置:∫ ψ * A ? d τ = ∫ ? A ψ * d τ~ ? ? 即(ψ , A ? ) = (? * , A ψ * )注意算符乘积的转置用法 ?* ? * * 2)算符的复共轭:A ψ = ( A ψ )+ ? 3)算符的厄米共轭:(ψ , A ? ) = ( A ψ , ? ) ~ ? ? ? ? 由 ( A ψ , ? ) = (? , A ψ ) * = (? * , A *ψ * ) = (ψ , A *? )~ ? ? 可得 A + = A *( A ? λ B ) ?1 = A ?1 + λ A ?1 B A ?1 + λ 2 A ?1 B A ?1 B A ?1 + ...3、算符A与B不对易,但它们的对易子C与B对易,求证:[ A, B n ] = nCB n ?1 , [ A, f ( B )] = C f ' ( B ), [ A, e B ] = Ce B 算符乘积的厄米共轭4)厄米算符:若算符A满足 A + = A ,则A称为厄米算符。

量子力学 第三章3.5厄米算符本征函数的正交性

量子力学 第三章3.5厄米算符本征函数的正交性


f
f
nj
'
d

i 1 i 1
'
A ji A
*
ji
' '

1, * ni ' d ni 0,
j j
'
f 个
'
j j
'
C f
2

j, j 1 , 2 , f
即待定系数 A j i 必须满足的条件有 中
j j
'
f ( f 1) 2
n3
本征函数

n1
,
,
, 都属于相同的本征值 nf
ˆ F
ni
,而且 n
是线性无关的,则有:
n
ni
i 1、 、 f 2

于是上面的证明不再成立。一般说这些函数并不一定正交。但 我们总可以用 f 2 个常数 A
ji
把这 f 个函数线性组合成 f 个新的
f
nj
线性独立的待定函数 nj ,即: 其中 nj 仍然是
Y m ( , ) N m P
m
(c o s )e
im
组成正交归一系:

0

2
0
Y m ( , ) Y
*
m
'
( , ) sin d d

'

把①②合写

0

2
0
Y m ( , ) Y
*
m
'
( , ) sin d d

量子力学第三章算符

量子力学第三章算符

第三章 算符和力学量算符3.1 算符概述设某种运算把函数u 变为函数v ,用算符表示为:ˆFuv =(3.1-1)ˆF 称为算符。

u与v 中的变量可能相同,也可能不同。

例如,11du v dx =,22xu v =3v =,(,)x t ϕ∞-∞,(,)x i p x hx edx C p t -=,则ddx dx ∞-∞⎰,x ip x he-⋅都是算符。

1.算符的一般运算(1)算符的相等:对于任意函数u ,若ˆˆFuGu =,则ˆˆG F =。

(2)算符的相加:对于任意函数u,若ˆˆˆFuGu Mu +=,则ˆˆˆM F G =+。

算符的相加满足交换律。

(3)算符的相乘:对于任意函数u ,若ˆˆˆFFu Mu =,则ˆˆˆM GF =。

算符的相乘一般不满足交换律。

如果ˆˆˆˆFGGF =,则称ˆF 与ˆG 对易。

2.几种特殊算符 (1)单位算符对于任意涵数u,若ˆIu=u ,则称ˆI 为单位算符。

ˆI 与1是等价的。

(2)线性算符对于任意函数u与v ,若**1212ˆˆˆ()F C u C v C Fu C Fv +=+,则称ˆF 为反线性算符。

(3)逆算符对于任意函数u ,若ˆˆˆˆFGu GFu u ==则称ˆF 与ˆG 互为逆算符。

即1ˆˆGF -=,111ˆˆˆˆˆˆ,1FG FF F F ---===。

并非所有的算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。

对于非齐次线性微分方程:ˆ()()Fu x af x =,其中ˆF为ddx与函数构成的线性算符,a 为常数。

其解u 可表示为对应齐次方程的通解u 。

与非齐次方程的特解υ之和,即0u u v =+。

因0ˆ0Fu =,所以不存在1ˆF -使100ˆˆF Fu u -=。

一般说来,在特解υ中应允许含有对应齐次方程的通解成分,但如果当a=0时,υ=0,则υ中将不含对应齐次方程的通解成分,这时存在1ˆF-使11ˆˆˆˆFFv FF v v --==,从而由ˆFvaf =得:1ˆF af υ-=。

周世勋量子力学教程第二版课件量子力学第三章

周世勋量子力学教程第二版课件量子力学第三章

*

x

ih
d dx

x


dx
*

x
ih
d
dx

x


dx
*

x
pˆ x
x 7

同 理:
py dy * y pˆ x y
pz dz * z pˆ z z
推广至三维情况
1 2πh

dx

i p(xx)
dpe h
*


x

-ih
d dx

x dx


dx

1

dx

2πh

i
eh
p( xx)
dp

*

x
-ih
d
dx

x


dx


dxδ(x

x)
加法结合律 Fˆ Gˆ Kˆ Fˆ Gˆ Kˆ
(4)算符乘积
两算符与之积定义为
FˆGˆ Fˆ Gˆ
若 [Fˆ ,Gˆ ] (FˆGˆ GˆFˆ ) 0 , 为任意函数,即
FˆGˆ GˆFˆ
则称两算符对易。
一般 FˆGˆ ,则GˆF称ˆ 二者不对易。
14
若 Fˆ ,Gˆ (FˆGˆ GˆFˆ ) 0 ,为任意函数,即
FˆGˆ GˆFˆ
则称两算符反对易。
(5)逆算符
设 Fˆ 能唯一的解出,则定义 的逆Fˆ算符为
Fˆ 1

高等量子力学 第三章 本征矢量和本征值

高等量子力学 第三章 本征矢量和本征值
下面分两种情况: (1) A 的本征值 ai 没有简并,这时 B i 与 i 属于同一个本
征子空间,它们只能相差常数倍:
B i bi i
即 i 也同时是 B 的本征矢量,常数 bi 就是 B 的本征值。如果 A 的所
有本征值都没有简并,那么{ i } 就是 A 和 B 的共同本征矢量完全集。
(2)问题在于 A 的那些有简并的本征值。在 A 的二维以上的 本征子空间中随便取一个矢量,未必就是 B 的本征矢量。设 A 的
定理: 若A和B 两算符相似,即对于有逆算符R 有
B RAR1
则A和B有相同的本征值谱,而且每一本征值都有相同的简并度。 证明: 设已知A的全部本征值和相应本征矢量;
Ai ai i ,
i 1, 2, 3,
利用 R1R 1的性质,并用 R 从左作用上式两边,得
RAR1R i ai R i ,
为 aiaj ij 等等。这样会给行文带来方便。而这样一来,对于一部
分连续而另一部分离散的那种本征值谱,随便写成一种形式(取 和或积分)就可以了。
上述矢量成为B的本征矢量的条件是
B j b j
B j c b j c
B j c b j c
用 j 同上式作内积,利用 j j 得
m
j B j c bc
1
( 1,2,m)
这是一个{c }的线性齐次方程组,设其系数 j B j B ,
这一方程组有解的条件是系数行列式为零:
B11 b B12
示各本征值序号的集合,而用{ ai } 表示它们的共同本征矢量,
简单的写成
A ai ai ai
共同本征矢量的完全性关系简写成
ai ai 1
i
§3-4 无穷维空间的情况

量子力学 第三章

量子力学 第三章

ˆ ˆ ˆ ˆ (∆A) (∆B) ≥ (∆Aψ , ∆Bψ ) = (ψ , ∆A∆Bψ )
2
ˆ, ˆ ˆ, ˆ [∆A ∆B]+ [A B] ψ ) + i(ψ , ψ) = (ψ , 2 2i
2
2 2 1 1 ˆ ˆ ˆ ˆψ = (ψ ,[∆A, ∆B]+ψ ) + (ψ ,[A, B] ) 4 4
1 2 1 2 2 1 2 1
ˆ ˆ ˆ ˆ c =1, (ψ1, Aψ2 ) − (Aψ1,ψ2 ) = (Aψ2 ,ψ1) − (ψ2 , Aψ1) ˆ ˆ ˆ ˆ c = i, (ψ1, Aψ2 ) − (Aψ1,ψ2 ) = −(Aψ2 ,ψ1) + (ψ2 , Aψ1) ˆ ˆ ˆ ˆ + : (ψ , Aψ ) = (Aψ ,ψ ), − : (Aψ ,ψ ) = (ψ , Aψ )
± lm
ˆ 因为 lz 的本征值 (m ±1)h非简并,所以 ˆ λ l±Y (θ,ϕ) = λ±Y,m±1(θ,ϕ), ± 是常数 lm l
物理上认为: 描述同一方位, ϕ 物理上认为:ϕ与 + 2π 描述同一方位,
ψ (ϕ +2π ) =ψ (ϕ),
lz = mh, m = 0, ±1, ± 2,L
周期性边界条件 或自然边界条件
满足 (ψm,ψn ) = δmn
1 imϕ ψm (ϕ) = e 2π
ˆ 也是保证 lz 厄米的要求
例2 平面自由转子的本征能量和定态
ˆ ˆ (A− A)ψ = 0 或Aψn= Anψn
即算符的本征态时, 学量有确定测值。 学量有确定测值。
3.2.2 力学量假定
Postulate 3
v v 1. 经典力学中的任一力学量F(r , p) ,对应量 v v ˆ (r , p) = F(r ,−ih∇) ; ˆ v ˆ 子力学中的线性厄密算符 F ˆ的本征值为力学量F的测量值(称可测值); 2. F
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
就是算符,其作用 是对函数 u 微商, 故称为微商算符。
2)x u = v,
x
也是算符。 它对 u 作用 是使 u 变成 v。
(二)算符的一般特性
(1)线性算符 (2)算符相等 (3)单位算符 (4)算符之和 (5)算符之积 (6)对易关系 (7)对易括号
(8)逆算符 (9)算符函数 (10)复共轭算符 (11)转置算符 (12)厄密共轭算符
上面的第四式称为 Jacobi 恒等式。
如果算符Ô与Û反 对易: {Ô,Û }=ÔÛ+ ÛÔ
返回
(8)逆算符
1. 定义: 设Ôψ= φ, 能够唯一的解出 ψ, 则可定义
算符 Ô 之逆 Ô-1 为: Ô-1 φ = ψ
并不是所有算符都存 在逆算符,例如投影 算符(图3.1)就不存在逆.
2.性质 I: 若算符 Ô 之逆 Ô-1 存在,则
pˆ* (i)* i pˆ
(11)转置算符
~ 算 符Uˆ的 转 置 算U符 ˆ定 义 为 :
d*U~ˆ dUˆ *
式 中 和 是 两 个 任 意 函
例 1: ~xx
证 : dx* ~x
(, Uˆ)=(*, U^ *)
dxx* *| dx*x dx*x
(13)厄密算符
(1)线性算符
满足如下运算规律的 算符 Ô 称为线性算符
Ô(c1ψ1+c2ψ2)= c1Ôψ1+c2Ôψ2 其中c1, c2是任意复常数, ψ1, ψ1是任意两个波函数。
动量算符 pˆ i 例如: 单位算符 Iˆ
是线性算符。
d
2
x, ,
dx xy
开方算符、取复共轭就不是线性算符。 注意:描写可观测量的力学量算符都是线性算符,这是态叠加原理的反映。
(6)对易关系
若ÔÛ ≠ ÛÔ,则称Ô 与 Û 不对易。
例如:算符 x
证 ( 1 ): x p ˆ x x ( i x ) i x x
( 2 )p ˆ x x ( i x ) x i i x x
pˆ x
i
x
不对易。
xpˆ x pˆ x x

(xpˆ x pˆ x x) i
因为 是任意波函数,
显然二者结果不相等,所以:
所 以 xpˆ x pˆ x x i
对易
关系
同理可证其它坐标算符
与共轭动量满足
ypˆ y pˆ y y i
zpˆ z
pˆ z z
i
写成通式:
但是坐标算符与其非共轭动量 对易,各动量之间相互对易。
x pˆ pˆ x i
pˆ pˆ pˆ pˆ 0
这样一来, 坐标和动量的对易关系 可改写成如下形式:
为了表述简洁,运算便利和研究量子 力学与经典力学的关系,人们定义了 对易括号: [Ô,Û ]≡ÔÛ - ÛÔ
[x,pˆ]i
不难证明对易括号满足如下对易关系: 1) [Ô,Û] = - [Û,Ô] 2) [Ô,Û+Ê] = [Ô,Û ] + [Ô, Ê] 3) [Ô,ÛÊ] = [Ô,Û]Ê+ Û[Ô,Ê] 4) [Ô,[Û,Ê]] + [Û,[Ê, Ô]] + [Ê,[ Ô,Û]] = 0
Ô Ô-1 = Ô-1 Ô = I , [Ô , Ô-1] = 0
证: ψ = Ô-1φ = Ô-1 (Ô ψ) = Ô-1 Ô ψ 因为ψ是任意函数,所以Ô-1 Ô = I成立. 同理, Ô Ô-1 = I 亦成立.
3.性质 II: 若 Ô, Û 均存在逆算符, 则 (Ô Û)-1 = Û-1 Ô-1
引言
§3.1 表示力学量的算符
(一)算符定义
代表对波函数进行某种运算或变换的符号
Ôu=v 表示 Ô 把函数
u 变成 v, Ô 就是这种变
换的算符。
由于算符只是一种运算符号,所以它单独存 在是没有意义的,仅当它作用于波函数上, 对波函数做相应的运算才有意义,例如:
1)du / dx = v ,
d / dx
反对易。
注意: 当Ô 与 Û 对易,Û 与 Ê 对易,不能推知 Ô 与 Ê 对易与否。 例如:
(I)p ˆx与 p ˆy对 易 p ˆy与 , x对 易 , p ˆx与 但 x不是 对 易 (II )p ˆx与 p ˆy对 易 p ˆy与 , z对 易p ˆx , 与 z对 而易 。
(7)对易括号
势能算符 Vˆ之和。
例如:体系Hamilton 算符 显然,算符求和满足交换率
和结合率。
交换率:Ô+Û =Û+Ô 结合率: Ô+Û+Â =Ô+(Û+Â)
(5)算符之积
若Ô (Ûψ ) = (ÔÛ) ψ =Êψ 则ÔÛ = Ê 其中ψ是任意波函数。
一般来说算符之积不满足 交换律,即
ÔÛ ≠ ÛÔ 这是算符与通常数运算 规则的唯一不同之处。
(2)算符相等
若两个算符 Ô、Û对体系的任何波函数 ψ的运算结果都相 同,即Ôψ= Ûψ,则算符Ô 和算符Û 相等记为Ô = Û。
(3)单位算符Î
(4)算符之和
Hˆ Tˆ Vˆ
表明
Hamilton 算符 Hˆ 等于
体系动能算符 Tˆ和
若两个算符 Ô、Û 对体系的任何波函数ψ 有:
( Ô + Û) ψ= Ôψ+ Ûψ= Êψ 则Ô + Û = Ê 称为算符之和。
, x, y, z
量子力学中最基本的 对易关系。 xpˆzpˆzx0 ypˆzpˆzy0 zpˆypˆyz0 pˆxpˆypˆypˆx0 pˆypˆzpˆzpˆy0 pˆzpˆxpˆxpˆz0
若算符满足
ÔÛ = - ÛÔ, 则称 Ô 和 Û
(9)算符函数
F(x)
x F(n)(0) n n!
n0
设给定一函数 F(x), 其各阶导数均存在, 其幂级数展开收敛
则可定义算符 Û 的函数 F(Û)为:
F(Uˆ)
Uˆ F(n)(0) n n!
n0
例如:
ei H ˆt n1![i H ˆt]n
(10)复共轭算符 n0
例如: 坐标表象中
算符Û的复共轭算符 Û*就是把Û表达式中 的所有量换成共轭复量.
No Image
第三章 量子力学中的力学量
§3.1 表示力学量的算符 §3.2 动量算符和角动量算符 §3.3 电子在库仑场中的运动 §3.4 氢原子 §3.5 厄米算符本正函数的正交性 §3.6 算符和力学量的关系 §3.7 算符的对易关系 不确定关系 §3.8 力学量期望值随时间的变化 守恒定律 §3.9 例题
相关文档
最新文档