李庆扬-数值分析第五版第7章习题答案(20130824)
李庆扬数值分析第五版习题答案清华大学出版社
李庆扬数值分析第五版习题答案清华大学出版社数值分析是一门研究数值计算方法的学科,它应用于各个领域,解决了许多实际问题。
《李庆扬数值分析第五版习题答案》是一本为读者提供数值分析习题解答的参考书,由清华大学出版社出版。
第一章误差1.1 绝对误差与相对误差在数值计算过程中,由于测量、取近似值和舍入误差等原因,我们常常会得到与真实值有一定偏差的结果。
绝对误差和相对误差是描述数值计算结果与真实值之间误差大小的衡量标准。
绝对误差表示实际值和计算值之间的差别,相对误差则是绝对误差与实际值之比。
1.2 舍入误差与有效数字在数值计算中,由于计算机底层的二进制表示以及计算机在表示无穷和无法精确表示的数字时需要进行近似,会导致舍入误差。
有效数字是用来表示浮点运算结果的一种方式,能够控制舍入误差的影响。
第二章插值与多项式逼近2.1 插值问题的提出插值问题是在有限数据点的基础上,构造一个与这些数据点足够接近的函数。
插值的目的是通过已知数据点之间构造一个函数,使得通过这个函数计算的结果近似于真实的未知数据点的值。
2.2 拉格朗日插值法拉格朗日插值法是通过构造一个基于已知数据点的多项式函数,来实现对未知数据点的预测。
它通过对每个数据点进行加权,以使得插值多项式通过这些数据点。
2.3 牛顿插值法牛顿插值法是通过使用差商的概念,构造一个多项式函数来进行插值。
差商是指由数据点的函数值所决定的差分系数。
第三章数值积分与数值微分3.1 数值积分的基本思想数值积分是通过将区间进行离散化,将连续变量转化为离散变量的和,从而实现对曲线下面积的近似计算。
3.2 复合求积公式复合求积公式将整个区间分割为若干子区间,对每个子区间进行积分,并将结果相加得到最终的数值积分结果。
通过增加子区间的数量,可以提高数值积分的精确度。
3.3 数值微分的基本思想数值微分是通过利用离散数据点之间的差值,来近似计算函数在某个点处的导数。
第四章线性方程组的数值解法4.1 线性方程组的求解线性方程组的求解是数值分析中的一个重要问题。
李庆扬-数值分析第五版第7章习题答案(0824)汇编
第7章复习与思考题求f (X )= 0的零点就等价于求(x )的不动点,选择一个初始近似值X 0,将它代入X =「(X ) 的右端,可求得X 1 h%X °),如此反复迭代有 X k 1 二(X k ), k =0,1,2,..., (X)称为迭代函数,如果对任何X 。
• [a,b],由x k 卜h%x k ),k =0,1,2,...得到的序列〈X k 1有极限则称迭代方程收敛,且X* =®(x*)为®(X )的不动点 故称X k q 二(X k ), k =0,1,2,...为不动点迭代法。
5•什么是迭代法的收敛阶?如何衡量迭代法收敛的快慢?如何确定X k 1 二「(X k )(k =0,1,2,...)的收敛阶P219设迭代过程X k 1'h%X k )收敛于 (X)的根X*,如果当k > 时,迭代误差e k = x k - x *满足渐近关系式—t C,C =const 式 0 e/则称该迭代过程是 p 阶收敛的,特别点,当 p=1时称为线性收敛,P>1时称为超线性收敛, p=2时称为平方收敛。
以收敛阶的大小衡量收敛速度的快慢。
6•什么是求解f(x)=0的牛顿法?它是否总是收敛的?若 f(X*) =0,X*是单根,f 是光 滑,证明牛顿法是局部二阶收敛的。
牛顿法:当| f (X k )卜J 时收敛。
7•什么是弦截法?试从收敛阶及每步迭代计算量与牛顿法比较其差别。
在牛顿法的基础上使用 2点的的斜率代替一点的倒数求法。
就是弦截法。
收敛阶弦截法1.618小于牛顿法2 计算量弦截法 <牛顿法(减少了倒数的计算量)8•什么是解方程的抛物线法?在求多项式全部零点中是否优于牛顿法? P229X-mX k 1 =X kf (X k ) f (X k )设已知方程f (x) = 0的三个近似根,X k,X k^,X k^2,以这三点为节点构造二次插值多项式p(x),并适当选取p2(x)的一个零点X k卅作为新近似根,这样确定的迭代过程称为抛物线法。
李庆扬-数值分析第五版第5章与第7章习题答案
答:根据范数的左义,正确。
(9) 如果线性方程组是良态的,则髙斯消去法可以不选主元。
答:错误,不选主元时,可能除数为0。
(10) 在求解非奇异性线性方程组时,即使系数矩阵病态,用列主元消去法产生的误差也很小。
答:错误。
对于病态方程组,选主元对误差的降低没有影响。
(M) II 如I 讦答:根据范数的定义,正确。
(12)若人是GX 门的非奇异矩阵,则cond(A) = cond(A~*)。
答:正确。
人是CXG 的非奇异矩阵,则A 存在逆矩阵。
cond(A) = ||A||e||A",||根据条件数的定义有:H", , ' , , …,cond (犷)=||A-1| • ||(A -)-1| = | 附 ||-1| 州=||A||. ||f ||所以a :=[如…a.证明:气%2°11 "12。
12。
22设对称矩阵A=,则经过1次髙斯校区法后,有所以A2为对称矩阵。
2、设A 是对称正立矩阵,经过高斯消去法一步后,A约化为A = (a ij\,其中A = (a v)n.证明:(1) A的对角元素勺>0 (i = l,2,・・・/):(2) A?是对称正立矩阵;(1)依次取如=(00…,0」。
…,0几心12…宀则因为A是对称正定矩阵, r所以有5 =x J Ax >0 a(2)人中的元素满足a,)*■V L- “QJ-23・・・y),乂因为A是对称正定5矩阵,满足 5=6、7J = 1,2,…,“,所以a\p = a;j --------- = aa\\即儿是对称矩阵。
3、设厶为指标为R的初等下三角矩阵(除第R列对角元以下元素外,厶和单位阵/相同), 即'1 ■• • •14 = 〔m k^k 1• • •• • •〃山 1求证当i.j>k时,-=1血1»也是一个指标为k的初等下三角矩阵,其中切为初等置换矩阵。
4、试推导矩阵A的Crout分解A=LU的讣算公式,其中L为下三角矩阵,U为单位上三角矩阵。
数值分析第7章答案
第七章非线性方程求根一、重点内容提要 (一)问题简介 求单变量函数方程(7.1) 的根是指求(实数或复数),使得.称为方程(7.1)的根,也称为函数的零点.若可以分解为其中m 为正整数,满足,则是方程(7.1)的根.当m=1时,称为单根;当m>1时,称为m 重根.若充分光滑,是方程(7.1)的m 重根,则有(1)()(*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若在[a,b]上连续且,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法设在[a,b]上连续,,则在(a,b)内有根.再设在(a,b)内仅有一个根.令,计算和.若则,结束计算;若,则令,得新的有根区间;若,则令,得新的有根区间.,.再令计算,同上法得出新的有根区间,如此反复进行,可得一有根区间套且110011*,0,1,2,...,()...()22n n n n n n a x b n b a b a b a --<<=-=-==-.故因此,可作为的近似根,且有误差估计 (7.2) 2.迭代法将方程式(7.1)等价变形为 (7.3)若要求满足则;反之亦然.称为函数的一个不动点.求方程(7.1)的根等价于求的不动点由式(7.3)产生的不动点迭代关系式(也称简单迭代法)为 (7.4)函数称为迭代函数.如果对任意,由式(7.4)产生的序列有极限 则称不动点迭代法(7.4)收敛.定理7.1(不动点存在性定理)设满足以下两个条件: 1.对任意有2.存在正常数,使对任意,都有 (7.5) 则在上存在惟一的不动点.定理7.2(不动点迭代法的全局收敛性定理)设满足定理7.1中的两个条件,则对任意,由(7.4)式得到的迭代序列收敛.到的不动点,并有误差估计式 (7.6) 和 (7.7)定理7.3(不动点迭代法的局部收敛性定理)设为的不动点,在的某个邻域连续,且,则迭代法(7.4)局部收敛.收敛阶的概念 设迭代过程(7.4)收敛于方程的根,如果迭代误差当时成产下列渐近关系式(7.8)则称该迭代过程是p 阶收敛的.特别地,p=1时称线性收敛,p>1时称超线性收敛,p=2时称平方收敛.定理7.4(收敛阶定理)对于迭代过程(7.4),如果在所求根的邻近连续,并且 (7.9)则该迭代过程在点的邻近是收敛的,并有(7.10)斯蒂芬森(Steffensen)迭代法 当不动点迭代法(7.4)只有线性收敛阶,甚至于不收敛时,可用斯蒂芬森迭代法进行加速.具体公式为 (7.11) 此法也可写成如下不动点迭代式(7.12)定理7.5(斯蒂芬森迭代收敛定理) 设为式(7.12)中的不动点,则是的不动点;设存在,,则是的不动点,则斯蒂芬森迭代法(7.11)是2阶收敛的. 3.牛顿迭代法牛顿迭代法是一种特殊的不动点迭代法,其计算公式为 其迭代函数为 (7.13)牛顿迭代法的收敛速度 当时,容易证明,,,由定理7.4知,牛顿迭代法是平方收敛的,且(7.14)重根情形的牛顿迭代法 当是的m 重根时,迭代函数在处的导数,且.所以牛顿迭代法求重根只是线性收敛.若的重数m 知道,则迭代式 (7.15)求重根二阶收敛.当m 未知时,一定是函数的单重零点,此时迭代式1()()'()'()['()]()''()0,1,2,...k k k k k k k k k k x f x f x x x x x f x f x f x k μμ+=-=--= (7.16)也是二阶收敛的.简化牛顿法 如下迭代法 称为简化牛顿法或平行弦法.牛顿下山法 为防止迭代不收敛,可采用牛顿下山法.具体方法见教材. 4.弦截法将牛顿迭代法(7.13)中的用在,处的一阶差商来代替,即可得弦截法 (7.17)定理7.6假设在其零点的邻域内具有二阶连续导数,且对任意有,又初值,,则当邻域充分小时,弦截法(7.17)将按阶收敛到.这里p 是方程的正根. 5.抛物线法弦截法可以理解为用过两点的直线方程的根近似替的根.若已知的三个近似根,,用过的抛物线方程的根近似代替的根,所得的迭代法称为抛物线法,也称密勒(Muller)法.当在的邻近有三阶连续导数,,则抛物线法局部收敛,且收敛阶为.二、知识结构图10[1,2]1x x --=≤≤--∈3-3-6k k 32三、常考题型及典型题精解例7-1 证明方程x 在上有一个实根x*,并用二分法求这个根,要求|x -x*|10.若要求|x -x*|10,需二分区间[1,2]多少次?解 设f(x)=x ,则f(1)=-1<0,f(2)=5>0,故方程f(x)=0在[1,2]上有根x*.又因f'(x)=3x -1,所以当x [1,2]时,f'(x)>0,即f (x)=0在[1,2]上有惟一实根x*.用二分法计算结果如表7-1所示.k 0 1 2 3 4 5 6 7 8 9 1 1 1.25 1.25 1.3125 1.3125 1.3125 1.3204 1.3243 1.3243 2 1.5 1.5 1.375 1.375 1.13438 1.3282 1.3282 1.3282 1.32631.5 1.25 1.375 1.3125 1.3438 1.3282 1.3204 1.3243 1.3263 1.3253+ - + - + + - - + +610x e -≤≤⨯≤≤≤≤≥∈-3-39910-6k k k+101此时x =1.3253满足|x -x*|0.9771010,可以作为x*的近2似值.1若要求|x -x*|,只需|x -x*|10即可,解得k+119.932,2即只需把[1,2]二分20次就能满足精度要求.例7-2 已知函数方程(x-2)=1,(1)确定有根区间[a,b];(2)构造不动点迭代公式使之对任意初始近似x [a,b],31|10.k x ---<k 迭代方法均收敛;(3)用所构造的公式计算根的近似值,要求|x1lim lim x x x x x e e e e →+∞→-∞∞∞∞∈解 (1)令f(x)=(x-2)-1,由于f(2)=-1<0,f(3)=-1>0,因此区间[2,3]是方程f(x)=0的一个有根区间.又因f'(x)=(x-1),f(x)=+,f(x)=-1,f'(1)=--1<0,当x>1时f(x)单增,x<1时f(x)单减,故f(x)=0在(-,+)内有且仅有一根x*,即x*[2,3].2'k k x x x x x x e e e e e e e ϕϕϕ-----∈∈≤≤≤∀∈k+100k+1(2)将(x-2)=1等价变形为x=2+,x [2,3].则(x)=2+.由于当x [2,3]时2(x)3,|(x)|=|-|<1故不动点迭代法x =2+,k=0,1,2,...,对x [2,3]均收敛.(3)取x =2.5,利用x =2+进行迭代计算,结果如表7-2所示.473cos 3120cos c k x x x ϕ--+=∈≤4k+10-30k+1k+1k 例 考虑求解方程2的迭代公式2x =4+,k=0,1,2,...3(1)试证:对任意初始近似x R,该方法收敛;(2)取x =4,求根的近似值x ,要求|x -x |10;(3)所给方法的收敛阶是多少?2解 (1)由迭代公式知,迭代函数(x)=4+3{}os ,(,).|'sin |1(,)x x x ϕϕϕ∈-∞+∞≤<-∞+∞∀∈0k 022由于(x)的值域介于(4-)与(4+)之间,且3322(x)|=|-33故根据定理7.1,7.2知,(x)在内存在惟一的不动点x*,且对x R,迭代公式得到的序列x 收敛于x*.(2) 取x =4,迭代计算结果如表7-3所示.此时已满足误差要求,即(3)由于,故根据定理7 .4知方法是线性收敛的,并且有。
李庆扬-数值分析第五版第5章和第7章习题答案解析
WORD格式.分享第5章复习与思考题1、用高斯消去法为什么要选主元?哪些方程组可以不选主元?k答:使用高斯消去法时,在消元过程中可能出现a的情况,这时消去法无法进行;即kkk时主元素0和舍入增长a,但相对很小时,用其做除数,会导致其它元素数量级的严重kk计误差的扩散,最后也使得计算不准确。
因此高斯消去法需要选主元,以保证计算的进行和算的准确性。
当主对角元素明显占优(远大于同行或同列的元素)时,可以不用选择主元。
计算时一般选择列主元消去法。
2、高斯消去法与LU分解有什么关系?用它们解线性方程组Ax=b有何不同?A要满足什么条件?答:高斯消去法实质上产生了一个将A分解为两个三角形矩阵相乘的因式分解,其中一个为上三角矩阵U,一个为下三角矩阵L。
用LU分解解线性方程组可以简化计算,减少计算量,提高计算精度。
A需要满足的条件是,顺序主子式(1,2,⋯,n-1)不为零。
3、楚列斯基分解与LU分解相比,有什么优点?楚列斯基分解是LU分解的一种,当限定下三角矩阵L的对角元素为正时,楚列斯基分解具有唯一解。
4、哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?具有对称正定系数矩阵的线性方程可以使用平方根法求解。
,切对角元素恒为正数,因此,是一个稳定的平方根法在分解过程中元素的数量级不会增长算法。
5、什么样的线性方程组可用追赶法求解并能保证计算稳定?对角占优的三对角方程组6、何谓向量范数?给出三种常用的向量范数。
向量范数定义见p53,符合3个运算法则。
正定性齐次性三角不等式x为向量,则三种常用的向量范数为:(第3章p53,第5章p165)设n||x|||x|1ii11n22||x||(x)2ii1||x||max|x i|1in7、何谓矩阵范数?何谓矩阵的算子范数?给出矩阵A=(a ij)的三种范数||A||1,||A||2,精品.资料WORD格式.分享||A||∞,||A||1与||A||2哪个更容易计算?为什么?向量范数定义见p162,需要满足四个条件。
数值分析课程第五版课后习题答案(李庆扬等)
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值分析课程第五版课后习题答案李庆扬等
数值分析课程第五版课后习题答案李庆扬等在学习数值分析这门课程的过程中,课后习题的练习与答案的参考对于我们深入理解和掌握知识点起着至关重要的作用。
李庆扬等编写的《数值分析》第五版教材,其课后习题涵盖了丰富的知识点和多种解题思路。
下面,我将为大家详细解析部分课后习题的答案。
首先,让我们来看一道关于插值法的习题。
题目是:给定函数值$f(0)=0$,$f(1)=1$,$f(2)=4$,利用线性插值和抛物插值分别计算$f(15)$的值。
对于线性插值,我们设直线方程为$L_1(x)=ax + b$。
将已知的两个点$(0,0)$和$(1,1)$代入,可得方程组:$\begin{cases}b = 0 \\ a + b = 1\end{cases}$解得$a = 1$,$b = 0$,所以$L_1(x) = x$。
则$f(15) \approxL_1(15) = 15$。
对于抛物插值,设抛物线方程为$L_2(x)=ax^2 + bx + c$。
将三个点$(0,0)$,$(1,1)$,$(2,4)$代入,得到方程组:$\begin{cases}c = 0 \\ a + b + c = 1 \\ 4a + 2b + c =4\end{cases}$解这个方程组,可得$a = 1$,$b = 0$,$c = 0$,所以$L_2(x) = x^2$。
则$f(15) \approx L_2(15) = 225$。
接下来是一道关于数值积分的题目。
求积分$\int_{0}^{1} x^2 dx$的数值解,分别使用梯形公式和辛普森公式。
梯形公式为:$T =\frac{b a}{2} \times f(a) + f(b)$,代入$a = 0$,$b = 1$,$f(x) = x^2$,可得:$T =\frac{1 0}{2} \times 0^2 + 1^2 = 05$辛普森公式为:$S =\frac{b a}{6} \times f(a) + 4f(\frac{a + b}{2})+ f(b)$,代入可得:$S =\frac{1 0}{6} \times 0^2 + 4 \times (\frac{1}{2})^2 + 1^2 =\frac{1}{3}$再看一道关于解线性方程组的习题。
李庆扬 数值分析第五版第7章习题答案20130824
复习与思考题1.什么是方程的有根区间?它与求根有何关系?P213,若f(x)€C[a,b]且f(a)f(b) c O,根据连续函数性质可知f(x) = O在[a,b]内至少有一个实根,这时称[a,b]为f(x)=O的有根区间。
2.什么是二分法?用二分法求f(x)=O的根,f要满足什么条件?P213般地,对于函数f(x)=O如果存在实数C,当x=c时,若f(c)=O,那么把x=c叫做函数f(x)=O的零点。
解方程即要求f(X)=0的所有零点。
假定f(X)=0在区间(X, y)上连续, 先找到a、b属于区间(x,y),使f(a)f(b) cO,说明在区间(a,b)内一定有零点,然后求f((a + b)/2),现在假设f(a) <O, f(b) AO,acb果f((a + b)/2)=O,该点就是零点,如果f((a + b)/2)< O则在区间[(a + b)/2),b]内有零点,从①开始继续使用中点函数值判断。
如果f((a + b)/2) AO,则在区间[a,(a+b)/2)]内有零点,从①开始继续使用中点函数值判断。
这样就可以不断接近零点。
通过每次把f(x)的零点所在小区间收缩一半的方法,使区间的两个端点逐步迫近函数的零点,以求得零点的近似值,这种方法叫做二分法。
从以上可以看出,每次运算后,区间长度减少一半,是线形收敛。
3.什么是函数W(x) =O的不动点?如何确定®(x)使它的不动点等价于f(x)的零点P 215.将方程f(x)=O改写成等价的形式x=W(x),若要求X*满足f(x*) = O,贝y x*=W(x*);反之亦然,称x*为函数申(x)的一个不动点。
4.什么是不动点迭代法?申(X)满足什么条件才能保证不动点存在和不动点迭代序列收敛于④(X)的不动点P 215求f(x)=0的零点就等价于求W (x)的不动点,选择一个初始近似值x0,将它代入x N (x) 的右端,可求得X i =9(X 0),如此反复迭代有 Xk+ =^(X k ),k =0,1,2,..., ®(x)称为迭代函数,如果对任何x^<^[a,b],由兀屮=w (x k ),k =0,1,2,...得到的序列 {xk }有极限kim X k =x* ,则称迭代方程收敛,且X* =^(x*)为甲(X)的不动点,故称Xk+ =®(X k ),k =0,1,2,...为不动点迭代法。
数值分析课程第五版课后习题答案(李庆扬等)(OCR)
根是x,,2…,x-,且V。x,x…·,x)=V,Cx6,x…·)(x-x)…(x-x)。
V,(xo,x,…x-x)=11】 -x,)用a-x,)
[证明]由
可得求证。
=V,(Cx8,x,…,xX))11(x-x)
2、当x=1-1,2时,f(x)=0,-3.4,求f(x)的二次插值多项式。
L,(x)=y%((xx6--xx,)((xx-2x-x22))
y=f(x)=f0.5)=-0.693147,y2=f(x)=f(0.6)=-0.510826,则
L2(x)=y。 (x-x)(x-x2)
(x6-x)x-x)
(x-x)(x-x)
(x-x)(x-x2)
(x-xo)(x-x) (x2-xo)(x2-x)
=-0.916291×.(0(.x4-0-.05.)5()x(-00..64)-0.6-.
30—+2—9.x9583x31 ̄02'=0.8336×104
14、试用消元法解方程x组1+10"x=100
x+x2=2
,假定只有三位数计算,问结果是否
可靠?
[解]精确解为x1=0100-*1 10"-2 ,当使用三位数运 算时,得到
x =1,x2=1,结果可靠。
15、已知三角形面积s=s去= absinc,其中c为弧度,0<c< 且测量a,b,c
位有效数字;x=56.430有5位有效数字;x=7×10有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中x,x;,x,x;均为第3题所给
的数。
(1)x+x2+x:
e(x+x写+x)=>
[解]
E(x)=E(x)+E(x)+E(x;)
3+tx10=1.05×103
(2)xxx;
李庆扬 数值分析第五版 习题答案
第2章 复习与思考题01ii i ii kx x x x 的基函数称为主要性质有 0,()1,k i kx i k()1n l x、什么是牛顿基函数?它与单项式基答:牛顿差值基函数为00101x ),(x x )(x x ),...,(x x )(x x )...(x x )}n 牛顿差值基函数中带有常数项01,,...n x x x ,这有单项式基不同。
阶均差?它有何重要性质 01n 2n 01n 2n -11[,,...,,][,,...,,]n n f x x x f x x x x x xk j 0j 0j-1j j+1j -k x x x x x x x ()...()()...()和k 阶均差的性质0101k-10[,,...,][,,...,]k kf x x x f x x x x x (分子前项多xk )[a,b]上存在阶导数,且节点2n ,[a,b]x ,则1()!f n0()nn n ik k kk k i i ki kx x y l x y x x ,(j 1,2,....,n)个点的牛顿插值多项式01[,,...,]k f x x x ,(k 1,2,....,n)两者的主要差异是未知数不一致。
拉格朗日插值多项式是系数知道,但基函数不知道。
牛顿插值多项式是函数知道,但系数不知道。
与一般多项式基本相同。
y ,其中系数矩阵用下列基底作多项式插值时,120001211112222121...1...1 (1)...n n n n n nnx x x x x x x x x x x x ,无非零元素。
)拉格朗日基底为01{(),(),...,()}n l x l x l x ,已知数为未知数为01{(),(),...,()}n l x l x l x ,则系数矩阵为00101x ),(x x )(x x ),...,(x x )(x x )...(x x )}n ,已,未知数为012{,,,...,}n a a a a ,则系数矩阵为102020211010100...010...01()()...0...............1()()...()n nnnnj j x x x x x x x x x x x x x x x x ,为下三角矩阵,矩阵的上三角元0。
数值分析课程第五版课后习题答案李庆扬等
数值分析课程第五版课后习题答案李庆扬等数值分析作为一门重要的数学课程,对于许多理工科学生来说是必须掌握的知识。
李庆扬等编著的《数值分析》第五版教材备受青睐,而课后习题的答案则成为了同学们检验自己学习成果、加深对知识理解的重要参考。
在学习数值分析的过程中,课后习题起到了巩固和拓展知识的关键作用。
通过完成这些习题,我们能够更加深入地理解数值分析中的各种算法和概念,如插值法、数值积分、常微分方程数值解法等。
而准确的答案则能够帮助我们及时发现自己的错误和不足,从而有针对性地进行改进和提高。
以插值法这一章节的习题为例,我们可能会遇到要求用拉格朗日插值多项式、牛顿插值多项式等方法来构造插值函数,并计算给定节点处的函数值。
在解答这类问题时,需要我们熟练掌握插值公式的推导和计算过程,同时要注意误差的分析和控制。
答案中会详细展示每一步的计算过程,让我们能够清晰地看到如何从给定的节点数据得到最终的插值结果。
对于数值积分部分的习题,可能会涉及到梯形公式、辛普森公式等不同的数值积分方法。
在求解过程中,需要准确确定积分区间和节点,计算相应的系数,并最终得到积分的近似值。
答案会给出具体的计算步骤和结果,同时还会对不同方法的精度和误差进行比较和分析,帮助我们更好地理解各种数值积分方法的特点和适用范围。
常微分方程数值解法的习题则通常要求我们运用欧拉方法、改进的欧拉方法、龙格库塔方法等求解给定的初值问题。
这需要我们对这些方法的原理和公式有深入的理解,并能够正确地进行编程实现或手算求解。
答案中会详细讲解每一种方法的应用过程,以及如何根据给定的精度要求选择合适的解法。
在求解课后习题的过程中,我们不能仅仅满足于得到答案的结果,更要注重理解答案背后的思路和方法。
比如,在遇到错误答案时,要认真分析自己的解题过程,找出错误的原因,并通过与正确答案的对比,加深对知识点的理解。
同时,我们还可以尝试对答案进行拓展和延伸,思考如何将所学的知识应用到实际问题中,提高自己解决实际问题的能力。
数值分析课程第五版课后习题答案(李庆扬等)
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求nx 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x n x n x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫⎝⎛∂∂=++∑x x x x x f x x x e n k k kεεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
精品数值分析第五版课后习题完整答案(李庆扬等)
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值分析课程第五版课后习题答案(李庆扬等)
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值分析课程第五版课后习题答案(李庆扬等)
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值分析课程第五版课后习题答案(李庆扬等)
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习与思考题
1.什么是方程的有根区间?它与求根有何关系?
P213,若 且 ,根据连续函数性质可知 在 内至少有一个实根,这时称 为 的有根区间。
2.什么是二分法?用二分法求 的根, 要满足什么条件?
P213
一般地,对于函数 如果存在实数c,当x=c时,若 ,那么把x=c叫做函数 的零点。解方程即要求 的所有零点。
(1)非线性方程(或方程组)的解通常不唯一(正确)
(2)牛顿法是不动点迭代的一个特例(正确)
(3)不动点迭代法总是线性收敛的(错误)
(4)任何迭代法的收敛阶都不可能高于牛顿法(正确)
(5)求多项式 的零点问题一定是病态的问题(错误)
(7)二分法与牛顿法一样都可推广到多维方程组求解(错误)
(8)牛顿法有可能不收敛(正确)
(3)抛物线法,取
[解]1) , ,
, ,迭代停止。
2) , , ,
,迭代停止。
3) ,其中
, ,故
, , , ,
,
, ,
,下略。
8.分别用二分法和牛顿法求 的最小正根。
解:0是函数的一个根,0~ 时,x单调递增,tanx单调递减,趋于负无穷。在此区间内,函数没有根。所以,最小正根大于 .
当x接近且大于 时,函数值为正,当x接近且大于 时,函数值为负。因此,最小正根区间为( , ),选择x1=2,函数值为-0.185<0,选择x2=4.6,函数值为4.260>0
牛顿法(4.13),m=2。
需要计算到 ,取 。
求重根迭代法(4.14)
需要计算到 ,取 。 。
注:matlab编程计算得出的结果。
12.应用牛顿法于方程 ,导出求立方根 的迭代公式,并讨论其收敛性。
当 时, ,说明迭代数列递增。
当 时, ,说明迭代数列递减。
因此,迭代公式 是收敛的。
13.应用牛顿法于方程 ,导出求 的迭代公式,并求 的值。
(9)不动点迭代法 ,其中 ,若 则对任意处置x0迭代都收敛。(对)
(10)弦截法也是不动点迭代法的特例(正确)
习题
1、用二分法求方程 的正根,要求误差 。
[解]令 ,则 , ,所以有根区间为 ;
又因为 ,所以有根区间为 ;
,所以有根区间为 ;
,所以有根区间为 ;
,所以有根区间为 ;
,所以有根区间为 ;
令
14.应用牛顿法于方程 和 ,分别导出求 的迭代公式,并求 。
的迭代公式:
的迭代公式
15.证明迭代公式 是计算 的三阶方法。假定初值 充分靠近 ,求 。
解:
16.用抛物线法求多项式 的两个零点,再利用降阶求出全部零点。
17.非线性方程组 在 附近有一个解,构造一个不动点迭代法,使它能收敛到这个解,并计算精确到 (按 )。
18.用牛顿法解方程组 取 。
,有根区间为 ;
,有根区间为 ;
,有根区间为 ;
,有根区间为 ;
,有根区间为 ;
,有根区间为 ;
从而 ,共二分10次。
2)使用迭代法 ,则 , ,
, ,
即 ,共迭代4次。
4.给定函数 ,设对一切x, 存在且 ,证明对于范围 内的任意定数 ,迭代过程 均收敛于 的根 。
[证明]由 可知,令 ,则 ,又因为 , ,所以 ,即 ,从而迭代格式收敛。
按二分法计算,略, 。
按牛顿迭代法,其迭代公式为
,取初始值x=4.6,得
9. 研究求 的牛顿公式 ,证明对一切,所以序列是递减的。
10. 对于 的牛顿公式 ,证明
收敛到 ,这里 为 的根。
证:
11.用牛顿法(4.13)和求重根迭代法(4.14)计算方程 的一个近似根,准确到 ,初始值 。
取 ,
这时它与精确解的距离 。
2.为求方程 在 附近的一个根,设将方程改写成下列等价形式,并建立相应的迭代公式:
1) ,迭代公式 ;
2) ,迭代公式 ;
3) ,迭代公式 ;
试分析每种迭代公式的收敛性,并选取一种公式求出具有四位有效数字的近似值。
[解]1)设 ,则 ,从而 ,所以迭代方法局部收敛。
2)设 ,则 ,从而
P215
求 的零点就等价于求 的不动点,选择一个初始近似值 ,将它代入 的右端,可求得
,如此反复迭代有
,
称为迭代函数,如果对任何 ,由 得到的序列
有极限
,则称迭代方程收敛,且 为 的不动点,故称 为不动点迭代法。
5.什么是迭代法的收敛阶?如何衡量迭代法收敛的快慢?如何确定 的收敛阶
P219
设迭代过程 收敛于 的根 ,如果当 时,迭代误差 满足渐近关系式
在牛顿法的基础上使用2点的的斜率代替一点的倒数求法。就是弦截法。
收敛阶弦截法1.618小于牛顿法2
计算量弦截法<牛顿法(减少了倒数的计算量)
8.什么是解方程的抛物线法?在求多项式全部零点中是否优于牛顿法?
P229
设已知方程 的三个近似根, ,以这三点为节点构造二次插值多项式p(x),并适当选取p2(x)的一个零点 作为新近似根,这样确定的迭代过程称为抛物线法。
4从以上可以看出,每次运算后,区间长度减少一半,是线形收敛。
3.什么是函数 的不动点?如何确定 使它的不动点等价于 的零点
P215.
将方程 改写成等价的形式 ,若要求 满足 ,则 ;反之亦然,称 为函数 的一个不动点。
4.什么是不动点迭代法? 满足什么条件才能保证不动点存在和不动点迭代序列收敛于 的不动点
抛物线法的收敛阶1.840大于弦截法1.618,小于牛顿法2
可用于所想是的实根和复根的求解。
9.什么是方程的重根?重根对牛顿法收敛阶有何影响?试给出具有二阶收敛的计算重根方法。
10.什么是求解n维非线性方程组的牛顿法?它每步迭代要调用多少次标量函数(计算偏导数与计算函数值相当)
11.判断下列命题是否正确:
则称该迭代过程是p阶收敛的,特别点,当p=1时称为线性收敛,P>1时称为超线性收敛,p=2时称为平方收敛。
以收敛阶的大小衡量收敛速度的快慢。
6.什么是求解 的牛顿法?它是否总是收敛的?若 , 是单根, 是光滑,证明牛顿法是局部二阶收敛的。
牛顿法:
当 时收敛。
7.什么是弦截法?试从收敛阶及每步迭代计算量与牛顿法比较其差别。
,所以迭代方法局部收敛。
3)设 ,则 ,从而 ,所以迭代方法发散。
4)设 ,则 ,从而
,所以迭代方法发散。
3.比较求 的根到三位小数所需的计算量:
1)在区间 内用二分法; 2)用迭代法 ,取初值 。
[解]1)使用二分法,令 ,则
, ,有根区间为 ;
,有根区间为 ;
,有根区间为 ;
,有根区间为 ;
,有根区间为 ;
5.用斯特芬森迭代法计算第2题中(2)和(3)的近似根,精确到 。
斯特芬森迭代法是一种加速的方法。是埃特金加速方法与不动点迭代结合。
6.设 ,试确定函数 和 ,使求解 且以 为迭代函数的迭代法至少三阶收敛。
7. 用下列方法求 在 附近的根。根的准确值 ,要求计算结果准确到四位有效数字。
(1)牛顿法
(2)弦截法,取
假定 在区间(x,y)上连续,
先找到a、b属于区间(x,y),使 ,说明在区间(a,b)内一定有零点,然后求 ,现在假设
1果 ,该点就是零点,如果 ,则在区间 内有零点,从①开始继续使用中点函数值判断。
2如果 ,则在区间 内有零点,从①开始继续使用中点函数值判断。
3这样就可以不断接近零点。通过每次把f(x)的零点所在小区间收缩一半的方法,使区间的两个端点逐步迫近函数的零点,以求得零点的近似值,这种方法叫做二分法。