高中数学离散型随机变量综合测试题(附答案)
离散型随机变量的均值与方差(含答案)
离散型随机变量的均值与方差测试题(含答案)一、选择题1.设随机变量()~,B n p ξ,若()=2.4E ξ,()=1.44D ξ,则参数n ,p 的值为( ) A .4n =,0.6p = B .6n =,0.4p = C .8n =,0.3p = D .24n =,0.1p =【答案】B【解析】由随机变量()~,B n p ξ,可知()==2.4E np ξ,()=(1)=1.44D np p ξ-,解得6n =,0.4p =.考点:二项分布的数学期望与方差. 【难度】较易2.已知随机变量X 服从二项分布(),B n p ,若()()30,20E X D X ==,则p =( ) A .13B .23C .15D .25【答案】A考点:二项分布的数字特征. 【题型】选择题 【难度】较易3.若随机变量),(~p n B ξ,91035==ξξD E ,,则=p ( ) A. 31 B. 32 C. 52D.53 【答案】A【解析】由题意可知,()5,3101,9E np D np p ξξ⎧==⎪⎪⎨⎪=-=⎪⎩解得5,1,3n p =⎧⎪⎨=⎪⎩故选A.考点:n 次独立重复试验.【题型】选择题 【难度】较易4.若随机变量ξ的分布列如下表,其中()0,1m ∈,则下列结果中正确的是( )ξ0 1Pm nA .()()3,E m D n ξξ== B .()()2,E m D n ξξ== C .()()21,E m D m m ξξ=-=- D .()()21,E m D m ξξ=-=【答案】C考点:离散型随机变量的概率、数学期望和方差. 【题型】选择题 【难度】较易5.已知ξ~(,)B n p ,且()7,()6E D ξξ==,则p 等于( )A.71 B.61 C.51D.41 【答案】A【解析】∵ξ~(,)B n p ,∴()7,()(1)6E np D np p ξξ===-=,∴149,7n p ==,故选A.考点:二项分布的期望与方差. 【题型】选择题 【难度】较易6.设随机变量ξ~(5,0.5)B ,若5ηξ=,则E η和D η的值分别是( )A .252和254 B .52和54 C .252和1254 D .254和1254【答案】C【解析】因为随机变量ξ~(5,0.5)B ,所以5.25.05=⨯=ξE ,25.15.05.05=⨯⨯=ξD ,所以E η=252,D η=1254. 考点:二项分布,数学期望,方差. 【题型】选择题 【难度】较易7.设随机变量ξ的分布列为下表所示,且 1.6E ξ=,则a b -= ( )A .-0.2B .0.1C .0.2D .-0.4 【答案】A【解析】由题中分布列可得0.8a b +=,20.3 1.6a b ++=,则0.3,0.5a b ==,0.2a b -=-,故选A.考点:随机变量的期望. 【题型】选择题 【难度】较易8.有5支竹签,编号分别为1,2,3,4,5,从中任取3支,以X 表示取出竹签的最大号码,则EX 的值为( ) A .4B .4.5C .4.75D .5【答案】B考点:随机变量的期望.【题型】选择题【难度】较易9.随机变量X的分布列如表所示,2EX=,则实数a的值为( )Xa234P 13b1614A.0B.13C.1D.32【答案】A【解析】11111,3644b b+++=∴=Q,又11112342,03464a a⨯+⨯+⨯+⨯=∴=Q.考点:随机变量的期望. 【题型】选择题【难度】较易10.某班有14的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数ξ服从二项分布1(5,)4B,则()Eξ-的值为()A.14B.14-C.54D.5 4 -【答案】D【解析】因为1(5,)4Bξ:,所以15()5.44E Eξξ-=-=-⨯=-故选D.考点:二项分布的含义和性质. 【题型】选择题【难度】较易11.已知102a <<,随机变量ξ的分布列如下表,则当a 增大时 ( ) ξ1-0 1Pa12a - 12A.()E ξ增大,()D ξ增大B.()E ξ减小,()D ξ增大C.()E ξ增大,()D ξ减小D.()E ξ减小,()D ξ减小 【答案】B考点:离散型随机变量的期望与方差. 【题型】选择题 【难度】一般12.甲命题:若随机变量2~(3,)N ξσ,若(2)0.3P ξ≤=,则(4)0.7P ξ≤=.乙命题:随机变量~(,)B n p η,且300E η=,200D η=,则13p =,则正确的是( ) A .甲正确,乙错误 B .甲错误,乙正确 C .甲错误,乙也错误 D .甲正确,乙也正确 【答案】D考点:正态分布,期望,方差,命题的真假判定. 【题型】选择题 【难度】一般13.据气象预报,某地区下月有小洪水的概率为0.2,有大洪水的概率为0.05.该地区某工地上有一台大型设备,两名技术人员就保护设备提出了以下两种方案:方案一:建一保护围墙,需花费4000元,但围墙无法防止大洪水,当大洪水来临时,设备会受损,损失费为30 000元.方案二:不采取措施,希望不发生洪水,此时小洪水来临将损失15000元,大洪水来临将损失30000元.以下说法正确的是( )A .方案一的平均损失比方案二的平均损失大B .方案二的平均损失比方案一的平均损失大C .方案一的平均损失与方案二的平均损失一样大D .方案一的平均损失与方案二的平均损失无法计算 【答案】A 【解析】用1X 表示方案i (1,2i =)的损失,则1()300000.054000150040005500E X =⨯+=+=,2()300000.05150000.2150030004500E X =⨯+⨯=+=.综上可知,采用方案一的平均损失大.考点:期望的实际应用. 【题型】选择题【难度】一般14.若X 是离散型随机变量,1221(),()33P X x P X x ====且12x x <,又42(),()39E X D X ==,则12x x +的值为( )A .3B .53C .73D .113【答案】A考点:离散型随机变量期望与方差.【题型】选择题 【难度】一般15.设随机变量()2,X B p :,随机变量()3,Y B p :,若()519P X ≥=,则()31D Y +=( )A .2B .3C .6D .7 【答案】C【解析】∵随机变量()2,X B p :,∴()()()20251101C 19P X P X p ≥=-==--=,解得13p =, ∴()1223333D Y =⨯⨯=,∴()231963D Y +=⨯=,故选C . 考点:二项分布,方差. 【题型】选择题 【难度】一般16.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望()ξE 为( ) A .24181 B .26681 C .27481 D .670243【答案】B【解析】依题意知,ξ的所有可能值为2,4,6,设每两局比赛为一轮,则该轮结束时比赛停止的概率为95313222=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有()952==ξP ,()812095944=⋅==ξP ,()81169462=⎪⎭⎫ ⎝⎛==ξP ,故()812668116681204952=⨯+⨯+⨯=ξE ,故选B.考点:离散型随机变量的数学期望. 【题型】选择题 【难度】一般17.已知离散型随机变量X 的分布列如下表.若()0,()1E X D X ==,则,a b 的值分别是( )X 1-0 1 2Pabc112A.51,248B.51,62C.31,53D.51,124【答案】D考点:离散型随机变量的期望与方差. 【题型】选择题 【难度】一般 二、填空题18.已知随机变量η=23+ξ,且()2D ξ=,则()D η=________. 【答案】18【解析】η=23+ξ,则()()99218D D ηξ==⨯=. 考点:方差的性质. 【题型】填空题 【难度】较易19.已知随机变量X 的分布列如下表所示,则(68)E X += .X 1 2 3 P 0.2 0.40.4【答案】21.2 【解析】由分布列得()2.24.034.022.01=⨯+⨯+⨯=X E ,则()()2.218686=+=+X E X E .考点:离散型随机变量与分布列. 【题型】填空题 【难度】较易20.已知随机变量()~5,0.2X B ,21Y X =-,则()E Y =,标准差()Y σ= .【答案】1;455考点:二项分布,期望与标准差. 【题型】填空题 【难度】一般21.设p 为非负实数,随机变量ξ的分布列如下表,则()D ξ的最大值为_________.ξ0 1 2p12p - p12【答案】1【解析】由随机变量ξ的分布列的性质,得101,201,p p ⎧≤-≤⎪⎨⎪≤≤⎩解得0≤p ≤12.()1E p ξ=+,则()D ξ=()()()22222111501112112224p p p p p p p p ⎛⎫⎛⎫--⨯-+--⨯+--⨯=--+=-++ ⎪ ⎪⎝⎭⎝⎭,∴当0p =时,()D ξ取最大值,()max D ξ=15144-+=.考点:离散型随机变量及其分布列.【题型】填空题【难度】一般三、解答题22.某大学依次进行A科、B科考试,当A科合格时,才可考B科,且两科均有一次补考机会,两科都合格方通过.甲同学参加考试,已知他每次考A科合格的概率均为23,每次考B科合格的概率均为12.假设他不放弃每次考试机会,且每次考试互不影响.(1)求甲恰好3次考试通过的概率;(2)记甲参加考试的次数为ξ,求ξ的分布列和期望.【答案】(1)518(2)分布列见解析,期望()83Eξ=考点:独立事件的概率,随机变量的概率和期望. 【题型】解答题【难度】一般23.第31届夏季奥林匹克运动会将于2016年8月5日—21日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).第30届伦敦第29届北京第28届雅典第27届悉尼第26届亚特兰大中国3851322816俄罗斯2423273226(1)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);(2)甲、乙、丙三人竞猜今年中国代表团和俄罗斯代表团中的哪一个获得的金牌数多(假设两国代表团获得的金牌数不会相等),规定甲、乙、丙必须在两个代表团中选一个,已知甲、乙猜中国代表团的概率都为45,丙猜中国代表团的概率为35,三人各自猜哪个代表团的结果互不影响.现让甲、乙、丙各猜一次,设三人中猜中国代表团的人数为X,求X的分布列及数学期望EX.【答案】(1)茎叶图见解析,中国代表团获得的金牌数的平均值高于俄罗斯代表团获得的金牌数的平均值,俄罗斯代表团获得的金牌数比较集中,中国代表团获得的金牌数比较分散(2)分布列见解析,115 EX考点:茎叶图,独立事件的概率,随机变量的概率和期望. 【题型】解答题 【难度】一般24.为推行“新课堂”教学法,某地理老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表,记成绩不低于70分者为“成绩优良”.分数 [5059),[6069),[7079),[8089),[90100),甲班频数 5 6 4 4 1 乙班频数13565(1)由以上统计数据填写下面22⨯列联表,并判断能否在犯错误的概率不超过0.025的前提下认为“成绩优良与教学方式有关”?甲班 乙班 总计 成绩优良 成绩不优良 总计附:()()()()()()2n ad bc K n a b c d a c b d a b c d -==+++++++.临界值表:()20P K k ≥0.10 0.05 0.025 0.010k 2.706 3.841 5.024 6.635(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核,在这8人中,记成绩不优良的乙班人数为X,求X的分布列及数学期望.【答案】(1)列联表见解析,在犯错误的概率不超过0.025的前提下认为“成绩优良与教学方式有关” (2)分布列见解析,4 5考点:独立性检验,离散型随机变量的期望与方差.【题型】解答题【难度】一般25.某校高三年级有400人,在省普通高中学业水平考试中,用简单随机抽样的方法抽取容量为50的样本,得到数学成绩的频率分布直方图(如图).(1)求第四个小矩形的高;(2)估计该校高三年级在这次考试中数学成绩在120分以上的学生大约有多少人?(3)样本中,已知成绩在[140,150]内的学生中有三名女生,现从成绩在[140,150]内的学生中选取3名学生进行学习经验推广交流,设有X名女生被选取,求X的分布列和数学期望.【答案】(1)0.028(2)280(3)分布列见解析,3 2考点:频率分布直方图,离散型随机变量的分布列和期望.【题型】解答题【难度】一般26.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级:050:为优;51100:为良;100151:为轻度污染;151200:为中度污染;201300:为重度污染;大于300为严重污染.一环保人士记录去年某地某月10天的AQI 的茎叶图如下.(1)利用该样本估计该地本月空气质量优良(AQI 100≤)的天数;(按这个月总共30天计算)(2)将频率视为概率,从本月随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.【答案】(1)18 (2)分布列见解析,1.8考点:古典概型,二项分布. 【题型】解答题 【难度】一般27.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h的有20人,不超过100km/h的有25人.(1)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(2)以上样本述数据来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【答案】(1)列联表见解析,有99.5%的把握认为平均车速超过100km/h与性别有关(2)分布列见解析,65考点:独立性检验,离散型随机变量的分布列.【题型】解答题【难度】一般28.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生50,100内,发布成绩使用等级制.各等级划分标准见下表,规定:的原始成绩均分布在[]C B A 、、三级为合格等级,D 为不合格等级.为了解该校高一年级学生身体素质情况,从中抽取了n 名学生的原始成绩作为样本进行统计,按照[)50,60,[)[)[)[)60,70,70,80,80,90,90,100的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示. (1)求n 和频率分布直方图中的,x y 的值;(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生中任选3人,求至少有1人成绩是合格等级的概率;(3)在选取的样本中,从A C 、两个等级的学生中随机抽取了3名学生进行调研,记ξ表示所抽取的3名学生中为C 等级的学生人数,求随机变量ξ的分布列及数学期望.百分制 85分及以上70分到84分60分到69分60分以下等级A B C D【答案】(1)50,0.004n x ==,0.018y = (2)9991000 (3)分布列见解析,94E ξ=所以ξ的分布列为:ξ0 1 2 3P12202722027552155()127272190123.22022055554Eξ=⨯+⨯+⨯+⨯=考点:频率分布直方图及对立事件的概率公式,数学期望计算公式等有关知识的综合运用.【题型】解答题【难度】一般。
高中数学离散型随机变量的均值与方差综合测试题(附答案)-文档资料
高中数学离散型随机变量的均值与方差综合测试题(附答案)散型随机变量的均值与方差习题课一、选择题1.已知随机变量X的分布列是X 1 2 3P 0.4 0.2 0.4则E(X)和D(X)分别等于()A.1和0 B.1和1.8C.2和2 D.2和0.8[答案] D[解析] E(X)=10.4+20.2+30.4=2D(X)=(2-1)20.4+(2-2)20.2+(2-3)20.4=0.8. 2.已知随机变量X的分布列为X 0 1 2P 715715115且=2X+3,且E()等于()A.35B.65C.215D.125[答案] C[解析] ∵E(X)=0175+1715+2115=35,E()=E(2X+3)=2E(X)+3=215.3.某人从家乘车到单位,途中有3个交通岗.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯次数的均值为()A.0.4 B.1.2C.0.43 D.0.6[答案] B[解析] ∵途中遇红灯的次数X服从二项分布,即X~B(3,0.4),E(X)=30.4=1.2=65.4.已知X的分布列为X 1 2 3 4P 14131614则D(X)的值为()A.2912B.121144C.179144D.1712[答案] C[解析] ∵E(X)=114+213+316+414=2912,E(X2)=1214+2213+3216+4214=8512,D(X)=E(X2)-(E(X))2=179144.5.已知X的分布列为X -1 0 1P 121316若=2X+2,则D()的值为()A.-13 B.59C.109D.209[答案] D[解析] E(X)=-112+013+116=-13,D(X)=-1+13212+0+13213+1+13216=59,D()=D(2X+2)=4D(X)=459=209.6.从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是25,设X为途中遇到红灯的次数,则随机变量X的方差为() A.65 B.1825C.625D.18125[答案] B[解析] 由X~B3,25,D(X)=32535=1825.7.已知X服从二项分布B(n,p),且E(3X+2)=9.2,D(3X +2)=12.96,则二项分布的参数n、p的值为()A.n=4,p=0.6B.n=6,p=0.4C.n=8,p=0.3D.n=24,p=0.1[答案] B[解析] 由E(3X+2)=3E(X)+2,D(3X+2)=9D(X),及X~B(n,p)时E(X)=np.D(X)=np(1-p)可知3np+2=9.29np(1-p)=12.96n=6p=0.48.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表甲的成绩环数 7 8 9 10频数 5 5 5 5乙的成绩环数 7 8 9 10频数 6 4 4 6丙的成绩环数 7 8 9 10频数 4 6 6 4s1、s2、s3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有()A.s3s2 B.s2s3C.s1s3 D.s2s1[答案] B[解析] 计算可得甲、乙、丙的平均成绩为8.5.s1=120[5(7-8.5)2+5(8-8.5)2+5(9-8.5)2+5(10-8.5)2]=2520.同理,s2=2920,s3=2120,s2s3,故选B.二、填空题9.牧场的10头牛,因误食疯牛病毒污染的饲料被感染,已知该病的发病率为0.02,设发病牛的头数为X,则D(X)等于________.[答案] 0.196[解析] 由题意知,随机变量服从二项分布,所以D(X)=npq =100.02(1-0.02)=0.196.10.(2019福州)设有m升水,其中含有n个大肠杆菌,今任取1升水检验,设其中含大肠杆菌的个数为X,则E(X)=________.[答案] nm[解析] 设A=“在所取的1升水中含有一个大肠杆菌”,则P(A)=1m,P(X=k)=Pn(k)=Ckn(1m)k(1-1m)n-k(k=0,1,2,3,…,n),X~B(n,1m).则E(X)=n1m=nm.11.某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或选错得0分.小王选对每题的概率为0.8,则其第一大题得分的均值为________.[答案] 48[解析] 设小王选对个数为X,得分为=5X,则X~B(12,0.8),E(X)=np=120.8=9.6,E()=E(5X)=5E(X)=59.6=48.12.若X的分布列如下表:X 1 2 3 4P 14141414则D14X=________.[答案] 564[解析] E(X)=14(1+2+3+4)=52,D(X)=1-522+2-522+3-522+4-52214=54,D14X=116D(X)=564.三、解答题13.一名工人要看管三台机床,在一小时内机床不需要工人照顾的概率对于第一台是0.9,第二台是0.8,第三台是0.85,求在一小时的过程中不需要工人照顾的机床的台数X的数学期望(均值).[解析] 由题意,可知X的所有可能的值为0,1,2,3,记事件A为第一台机床不需照顾;事件B为第二台机床不需照顾,事件C为第三台机床不需照顾,由独立事件和互斥事件的概率公式可知,P(X=0)=P(ABC)=P(A)P(B)P(C)=0.10.20.15=0.003,P(X=1)=P(ABC+ABC+ABC)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=0.056,同上可得P(X=2)=0.329,P(X=3)=0.612,所以E(X)=00.003+10.056+20.329+30.612=2.55台.14.为拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的12,13,16.现有3名工人独立地从中任选一个项目参与建设.(1)求他们选择的项目所属类别互不相同的概率;(2)记为3人中选择的项目属于基础设施工程或产业建设工程的人数,求的分布列及均值.[解析] 考查离散型随机变量的概率分布和数学期望.解:记第i名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件Ai,Bi,Ci,i=1,2,3.由题意知A1,A2,A3相互独立,B1,B2,B3相互独立,C1,C2,C3相互独立,Ai,Bj,Ck(i,j,k=1,2,3,且i,j,k互不相同)相互独立,且P(Ai)=12,P(Bj)=13,P(Ck)=16.(1)他们选择的项目所属类别互不相同的概率为:P=3!P(A1B2C3)=6P(A1)P(B2)P(C3)=6121316=16.(2)解法一:设3名工人中选择的项目属于民生工程的人数为,由已知~B3,13,且=3-.所以P(=0)=P(=3)=C33133=127,P(=1)=P(=2)=C2313223=29,P(=2)=P(=1)=C1313232=49,P(=3)=P(=0)=C03233=827.故的分布列为0 1 2 3P 1272949827的均值E()=0127+129+249+3827=2.解法二:由题设条件知,基础设施工程和产业建设工程这两类项目的个数占总数的12+16=23.3名工人独立地从中任选一个项目,故每人选到这两类项目的概率都是23,故~B3,23.即:P(=k)=Ck323k133-k,k=0,1,2,3.0 1 2 3P 1272949827的均值E()=323=2.15.袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一球,表示所取球的标号.(1)求的分布列、均值和方差;(2)若=a+b,E()=1,D()=11,试求a,b的值.[解析] (1)的分布列为:0 1 2 3 4P 1212011032015E()=012+1120+2110+3320+415=1.5.D()=(0-1.5)212+(1-1.5)2120+(2-1.5)2110+(3-1.5)2320+(4-1.5)215=2.75.(2)由D()=a2D(),得a22.75=11,即a=2.又E()=aE()+b,所以当a=2时,由1=21.5+b,得b=-2;当a=-2时,由1=-21.5+b,得b=4,a=2,b=-2或a=-2,b=4即为所求.16.(2019湖南理,17)下图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.(1)求直方图中x的值;(2)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列和数学期望(均值).[分析] (1)由频率和为1,列式求出x的值;(2)从图中知用水为3至4吨的概率为0.1,又本抽样为有放回抽样,故符合X~B(3,0,1),其中X=0,1,2,3.列出分布列并求出数学期望(均值).[解析] (1)依题意及频率分布直方图知,0.02+0.1+x+0.37+0.39=1,解得x=0.12.(2)由题意知,X~B(3,0.1).因此P(X=0)=C030.93=0.729,P(X=1)=C130.10.92=0.243,P(X=2)=C230.120.9=0.027,P(X=3)=C330.13=0.001.故随机变量X的分布列为X 0 1 2 3P 0.729 0.243 0.027 0.001X的数学期望为E(X)=30.1=0.3.[点评] 本题通过频率分布直方图,将统计知识与概率结合起来.考查了二项分布,离散型随机变量的分布列与数学期望(均值).第 11 页。
离散型随机变量练习题
离散型随机变量的分布列1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是A.5B.9C.10D.25 2.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)等于A.C 1012(83)10·(85)2 B.C 911(83)9(85)2·83 C.C 911(85)9·(83)2D.C 911(83)9·(85)2 3.现有一大批种子,其中优质良种占30%,从中任取5粒,记ξ为5粒中的优质良种粒数,则ξ的分布列是______.4.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P (ξ≤6)=_______.5.(2004年天津,理18)从4名男生和2名女生中任选3人参加演讲比赛.设随机变量ξ表示所选3人中女生的人数.(1)求ξ的分布列;(2)求ξ的数学期望;(3)求“所选3人中女生人数ξ≤1”的概率.6.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ表示取出的3只球中的最大号,写出随机变量ξ的分布列.7.(2004年春季安徽)已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次数,求ξ的分布列及E ξ.8.(05重庆卷)在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖。
某顾客从此10张券中任抽2张,求:(1) 该顾客中奖的概率;(2) 该顾客获得的奖品总价值ξ (元)的概率分布列和期望E ξ。
答案1.B2.B3.3513 4. P (ξ=k )=C k 50.3k 0.75-k ,k =0,1,…,5 5.(1)ξ的分布列为(2)E ξ=1. (3)“所选3人中女生人数ξ≤1”的概率为P (ξ≤1)=54. 6.ξ的分布列为7. 的分布列为.9E ξ=8. (Ⅰ),324530)(210241614==+=C C C C P (Ⅱ)ξ的分布列求法同解法一由于10张券总价值为80元,即每张的平均奖品价值为8元,从而抽2张的平均奖品价值ξE =2×8=16(元).离散型随机变量的期望值和方差1.设服从二项分布B (n ,p )的随机变量ξ的期望和方差分别是2.4与1.44,则二项分布的参数n 、p 的值为A.n =4,p =0.6B.n =6,p =0.4C.n =8,p =0.3D.n =24,p =0.1 2.一射手对靶射击,直到第一次命中为止每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为 A.2.44 B.3.376C.2.376D.2.4 3.设投掷1颗骰子的点数为ξ,则A.E ξ=3.5,D ξ=3.52B.E ξ=3.5,D ξ=1235C.E ξ=3.5,D ξ=3.5D.E ξ=3.5,D ξ=1635 4.设导弹发射的事故率为0.01,若发射10次,其出事故的次数为ξ,则下列结论正确的是A.E ξ=0.1B.D ξ=0.1C.P (ξ=k )=0.01k ·0.9910-k D.P (ξ=k )=C k 10·0.99k ·0.0110-k 5.已知ξ~B (n ,p ),且E ξ=7,D ξ=6,则p 等于 A.71 B.61 C.51 D.41 6.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则D ξ等于A.0.2B.0.8C.0.196D.0.8047.甲从学校乘车回家,途中有3个交通岗,假设在各交通岗遇红灯的事件是相互独立的,并且概率都是52,则甲回家途中遇红灯次数的期望为_______.8.袋中有4只红球,3只黑球,今从袋中随机取出4只球.设取到一只红球得2分,取到一只黑球得1分,试求得分ξ的概率分布和数学期望.答案1—6. BCBAAC 7. 1.2.8. P (ξ=5)=473314C C C =354, P (ξ=6)=472324C C C =3518,P (ξ=7)=471334C C C =3512, P (ξ=8)=470344C C C =351,E ξ=5×354+6×3518+7×3512+8×351=35220=744.。
(完整版)离散型随机变量综合测试题(附答案)
离散型随机变量综合测试题(附答案)选修2-3 2.1.1 离散型随机变量一、选择题 1.①某机场候机室中一天的旅客数量X;②某寻呼台一天内收到的寻呼次数X;③某篮球下降过程中离地面的距离X;④某立交桥一天经过的车辆数X.其中不是离散型随机变量的是( ) A.①中的X B.②中的X C.③中的X D.④中的X [答案] C [解析] ①,②,④中的随机变量X可能取的值,我们都可以按一定次序一一列出,因此,它们都是离散型随机变量;③中的X可以取某一区间内的一切值,无法按一定次序一一列出,故③中的X不是离散型随机变量. 2.一个袋子中有质量相等的红,黄,绿,白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是( ) A.小球滚出的最大距离 B.倒出小球所需的时间C.倒出的三个小球的质量之和 D.倒出的三个小球的颜色的种数[答案] D [解析] A小球滚出的最大距离不是一个随机变量,因为不能明确滚动的范围;B倒出小球所需的时间不是一个随机变量,因为不能明确所需时间的范围;C三个小球的质量之和是一个定值,可以预见,但结果只有一种,不是随机变量,就更不是离散型随机变量;D颜色的种数是一个离散型随机变量. 3.抛掷两枚骰子,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为ξ,则“ξ>4”表示的试验结果是( ) A.第一枚6点,第二枚2点B.第一枚5点,第二枚1点 C.第一枚2点,第二枚6点 D.第一枚6点,第二枚1点 [答案] D [解析] 只有D中的点数差为6-1=5>4,其余均不是,应选D. 4.设某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则ξ的值可以是( ) A.2 B.2或1 C.1或0 D.2或1或0 [答案] C[解析] 这里“成功率是失败率的2倍”是干扰条件,对1次试验的成功次数没有影响,故ξ可能取值有两种0,1,故选C. 5.下列变量中,不是离散型随机变量的是( ) A.从2010张已编号的卡片(从1号到2010号)中任取一张,被取出的号数ξ B.连续不断射击,首次命中目标所需要的射击次数η C.某工厂加工的某种钢管内径与规定的内径尺寸之差ξ1 D.从2010张已编号的卡片(从1号到2010号)中任取2张,被取出的卡片的号数之和η1 [答案] C [解析] 离散型随机变量的取值能够一一列出,故A,B,D都是离散型随机变量,而C不是离散型随机变量,所以答案选C. 6.给出下列四个命题:①15秒内,通过某十字路口的汽车的辆数是随机变量;②在一段时间内,候车室内候车的旅客人数是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后从某一出口退场的人数是随机变量.其中正确命题的个数是( ) A.1 B.2 C.3 D.4 [答案] D [解析] 由随机变量的概念知四个命题都正确,故选D. 7.随机变量X是某城市1天之中发生的火警次数,随机变量Y是某城市1天之内的温度.随机变量ξ是某火车站1小时内的旅客流动人数.这三个随机变量中不是离散型随机变量的是( ) A.只有X和ξB.只有Y C.只有Y和ξ D.只有ξ [答案] B [解析] 某城市1天之内的温度不能一一列举,故不是离散型随机变量,故选B. 8.①某电话亭内的一部电话1小时内使用的次数记为X;②某人射击2次,击中目标的环数之和记为X;③测量一批电阻,阻值在950Ω~1200Ω之间;④一个在数轴上随机运动的质点,它在数轴上的位置记为X. 其中是离散型随机变量的是( ) A.①②B.①③ C.①④ D.①②④ [答案] A [解析] ①②中变量X所有可能取值是可以一一列举出来的,是离散型随机变量,而③④中的结果不能一一列出,故不是离散型随机变量. 9.抛掷一枚均匀骰子一次,随机变量为( ) A.掷骰子的次数 B.骰子出现的点数 C.出现1点或2点的次数 D.以上都不正确 [答案] B 10.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是( ) A.第5次击中目标 B.第5次末击中目标 C.前4次未击中目标 D.第4次击中目标 [答案] C [解析] 击中目标或子弹打完就停止射击,射击次数为ξ=5,则说明前4次均未击中目标,故选C. 二、填空题11.一木箱中装有8个同样大小的篮球,编号为1、2、3、4、5、6、7、8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有______种. [答案] 21 [解析] 从8个球中选出3个球,其中一个的号码为8,另两个球是从1、2、3、4、5、6、7中任取两个球.∴共有C27=21种. 12.同时抛掷5枚硬币,得到硬币反面向上的个数为ξ,则ξ的所有可能取值的集合为________. [答案] {0,1,2,3,4,5} 13.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出3个球,以ξ表示取出的最大号码,则ξ=6表示的试验结果是___________________________________________________________ ________________________________________________________________________ _____________. [解析] 从6个球中选出3个球,其中有一个是6号球,其余的2个球是1,2,3,4,5号球中的任意2个. [点评] “ξ=6”表示取出的3个球的最大号码是6,也就是说,从6个球中随机选出3个球,有一个球是6号球,其余的2个球是1,2,3,4,5号球中的任意2个. 14.一用户在打电话时忘记了号码的最后三个数字,只记得最后三个数字两两不同,且都大于5,于是他随机拨最后三个数字(两两不同),设他拨到所要号码的次数为ξ,则随机变量ξ的可能取值共有________种. [答案] 24 [解析] 后三个数字两两不同且都大于5的电话号码共有A34=24(种).三、解答题 15.盒中有9个正品和3个次品零件,每次从中取一个零件,如果取出的是次品,则不再放回,直到取出正品为止,设取得正品前已取出的次品数为ξ. (1)写出ξ的所有可能取值;(2)写出ξ=1所表示的事件. [解析] (1)ξ可能取的值为0,1,2,3. (2)ξ=1表示的事件为:第一次取得次品,第二次取得正品. 16.写出下列随机变量的可能取值,并说明随机变量的所取值表示的随机试验的结果: (1)从标有1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和; (2)某单位的某部电话在单位时间内收到的呼叫次数Y. [解析] (1)设所取卡片的数字之和为ξ,则ξ的可能取值为3,4,…,11,其中ξ=3,表示取出标有1,2的两张卡片,…,ξ=11,表示取出标有5,6的两张卡片. (2)Y 可取0,1,2,…,n,…,Y=i,表示被呼叫i次,其中i=0,1,2,…. 17.小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1 000元,3 000元,6 000元的奖品(不重复设奖),小王对三关中每个问题回答正确的概率依次是45,34,23,且每个问题回答正确与否相互之间没有影响,用X表示小王所获奖品的价值,写出X的所有可能取值及每个值所表示的随机试验的结果. [解析] X的可能取值为0,1 000,3 000,6 000. X=0,表示第一关就没有通过; X=1 000,表示第一关通过,而第二关没有通过; X=3 000,表示第一、二关通过,而第三关没有通过; X=6 000,表示三关都通过. 18.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果. (1)一个袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数ξ; (2)一袋中装有5只同样大小的球,编号为1,2,3,4,5.现从该袋中随机取出3只球,被取出的最大号码数ξ; (3)电台在每个整点都报时,报时所需时间为0.5分钟,某人随机打开收音机对表,他所等待的时间ξ分. [解析] (1)ξ可取0,1,2. ξ=i,表示取出的3个球中有i个白球,3-i个黑球,其中i=0,1,2. (2)ξ可取3,4,5. ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3,5或2,4,5或3,4,5. (3)ξ的可能取值为区间[0,59.5]内任何一个值,每一个可能取值表示他所等待的时间.。
离散型随机变量练习题
离散型随机变量练习题离散型随机变量(Discrete Random Variable)是概率论中的一个重要概念。
它描述了一种只能取到有限个或者可列无限个值的变量。
离散型随机变量可以用概率函数或者概率质量函数来描述其概率分布。
在本文中,我将为您介绍一些与离散型随机变量相关的练习题,帮助您更好地理解和应用这一概念。
练习题一:假设某次考试有40个学生参加,其中A、B、C、D四个成绩档次,按照如下分数划分:A档:90分及以上;B档:80-89分;C档:70-79分;D档:60-69分。
请问,如果随机选择一个参加考试的学生,他得到A档的概率是多少?解答一:设随机变量X表示某个学生的考试成绩。
由题意可知,X是一个离散型随机变量,它的取值为A、B、C、D四个档次。
我们需要计算X等于A档的概率,即P(X=A)。
根据题目给出的分数划分,可知A档的分数范围是90分及以上。
而考试的总分为100分,因此X等于A档的概率可以表示为:P(X=A) = (X取值为90及以上的人数)/(总人数)由于有40个学生参加考试,我们需要统计得分为90及以上的学生人数。
假设有10个学生得到了90分及以上的分数,那么:P(X=A) = 10/40 = 0.25因此,随机选择一个参加考试的学生,他得到A档的概率是0.25。
练习题二:某大型超市销售一种特殊商品。
根据历史数据,该商品的每日销售量(以件计)服从离散型随机变量X,其概率分布如下:X=0,P(X=0)=0.1X=1,P(X=1)=0.2X=2,P(X=2)=0.3X=3,P(X=3)=0.2X=4,P(X=4)=0.1X>4,P(X>4)=0.1请问,该商品每天销售量不超过3件的概率是多少?解答二:设随机变量X表示该商品的每日销售量。
根据题目给出的概率分布,我们可以得到以下信息:P(X≤3) = P(X=0) + P(X=1) + P(X=2) + P(X=3) = 0.1 + 0.2 + 0.3 + 0.2= 0.8因此,该商品每天销售量不超过3件的概率是0.8。
高中数学离散型随机变量的分布列综合测试题(附答案)
高中数学离散型随机变量的分布列综合测试题(附答案)第二课时离散型随机变量的分布列2一、选择题1.下列表中可以作为离散型随机变量的分布列是()A.1 0 1P 141214B.0 1 2P -143412C.0 1 2P 152535D.-1 0 1P 141412[答案] D[解析] 本题考查分布列的概念与性质.即的取值应互不相同且P(0,i=1,2,…,n,i=1nP(i)=1.A中的取值出现了重复性;B中P(=0)=-140,C中i=13P(i)=15+25+35=651.2.若在甲袋内装有8个白球,4个红球,在乙袋内装有6个白球,6个红球,今从两袋里任意取出1个球,设取出的白球个数为,则下列概率中等于C18C16+C14C16C112C112的是()A.P(=0) B.P(2)C.P(=1) D.P(=2)[答案] C[解析] 即取出白球个数为1的概率.3.已知随机变量X的分布列为:P(X=k)=12k,k=1、2、…,则P(2<X4)=()A.316B.14C.116D.516[答案] A[解析] P(2<X4)=P(X=3)+P(X=4)=123+124=316.4.随机变量的概率分布列为P(=k)=ck(k+1),k=1,2,3,4,其中c是常数,则P12<<52则值为()A.23B.34C.45D.56[答案] D[解析] c12+c23+c34+c45=c1-12+12-13+13-14+14-15=45c=1.c=54.P12<<52=P(=1)+P(=2)=54112+123=56.5.一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10.现从中任取4个球,有如下几种变量:①X表示取出的最大号码;②Y表示取出的最小号码;③取出一个黑球记2分,取出一个白球记1分,表示取出的4个球的总得分;④表示取出的黑球个数.这四种变量中服从超几何分布的是()A.①② B.③④C.①②④ D.①②③④[答案] B[解析] 依据超几何分布的数学模型及计算公式,或用排除法.6.(2019东营)已知随机变量的分布列为P(=i)=i2a(i=1,2,3),则P(=2)=()A.19B.16C.13D.14[答案] C[解析] 由离散型随机变量分布列的性质知12a+22a+32a =1,62a=1,即a=3,P(=2)=1a=13.7.袋中有10个球,其中7个是红球,3个是白球,任意取出3个,这3个都是红球的概率是()A.1120B.724C.710D.37[答案] B[解析] P=C37C03C310=724.8.用1、2、3、4、5组成无重复数字的五位数,这些数能被2整除的概率是()A.15B.14C.25D.35[答案] C[解析] P=2A44A55=25.二、填空题9.从装有3个红球、3个白球的袋中随机取出2个球,设其中有个红球,则随机变量的概率分布为:0 1 2P[答案] 15 35 1510.随机变量的分布列为:0 1 2 3 4 5P 192157458451529则为奇数的概率为________.[答案] 81511.(2019常州)从6名男同学和4名女同学中随机选出3名同学参加一项竞技测试,则在选出的3名同学中,至少有一名女同学的概率是______.[答案] 5612.一批产品分为四级,其中一级产品是二级产品的两倍,三级产品是二级产品的一半,四级产品与三级产品相等,从这批产品中随机抽取一个检验质量,其级别为随机变量,则P(>1)=________.[答案] 12[解析] 依题意,P(=1)=2P(=2),P(=3)=12P(=2),P(=3)=P(=4),由分布列性质得1=P(=1)+P(=2)+P(=3)+P(=4)4P(=2)=1,P(=2)=14.P(=3)=18.P(>1)=P(=2)+P(=3)+P(=4)=12.三、解答题13.箱中装有50个苹果,其中有40个合格品,10个是次品,从箱子中任意抽取10个苹果,其中的次品数为随机变量,求的分布列.[解析] 可能取的值为0、1、2、...、10.由题意知P(=m) =Cm10C10-m40C1050(m=0、1、2、...、10),的分布列为0 1 ... k (10)P C010C1040C1050C110C940C1050… Ck10C10-k40C1050… C1010C040C105014.设随机变量X的分布列PX=k5=ak,(k=1、2、3、4、5).(1)求常数a的值;(2)求P(X)35;(3)求P110<X<710.[分析] 分布列有两条重要的性质:Pi0,i=1、2、…;P1+P2+…+Pn=1利用这两条性质可求a的值.(2)(3)由于X的可能取值为15、25、35、45、1.所以满足X35或110710的X值,只能是在15、25、35、45、1中选取,且它们之间在一次试验中相互独立,只要求得满足条件的各概率之和即可.[解析] (1)由a1+a2+a3+a4+a5=1,得a=115. (2)因为分布列为PX=k5=115k (k=1、2、3、4、5)解法一:PX35=PX=35+PX=45+P(X=1)=315+415+515=45;解法二:PX35=1-PX=15+PX=25=1-115+215=45.(3)因为110<X<710,只有X=15、25、35时满足,故P110<X<710=PX=15+PX=25+PX=35=115+215+315=25.15.(2009福建)盒子中装着标有数字1,2,3,4,5的卡片各2张,从盒子中任取3张卡片,每张卡片被取出的可能性都相等,用表示取出的3张卡片上的最大数字,求:(1)取出的3张卡片上的数字互不相同的概率;(2)随机变量的概率分布.[解析] (1)记“一次取出的3张卡片上的数字互不相同的事件”为A,则P(A)=C35C12C12C12C310=23.(2)由题意可能的取值为2,3,4,5,P(=2)=C22C12+C12C22C310=130,P(=3)=C24C12+C14C22C310=215,P(=4)=C26C12+C16C22C310=310,P(=5)=C28C12+C18C22C310=815.所以随机变量的概率分布为:2 3 4 5P 13021531081516.(2019福建理,16)设S是不等式x2-x-60的解集,整数m,nS.(1)记“使得m+n=0成立的有序数组(m,n)”为事件A,试列举A包含的基本事件;(2)设=m2,求的分布列.[解析] 本小题主要考查概率与统计、不等式等基础知识,考查运算求解能力、应用意识,考查分类与整合思想、必然与或然思想、化归与转化思想.解题思路是先解一元二次不等式,再在此条件下求出所有的整数解.解的组数即为基本事件个数,按照古典概型求概率分布列,注意随机变量的转换.(1)由x2-x-60得-23,即S={x|-23}.由于m,nZ,m,nS且m+n=0,所以A包含的基本事件为:(-2,2),(2,-2),(-1,1),(1,-1),(0,0).(2)由于m的所有不同取值为-2,-1,0,1,2,3,所以=m2的所有不同取值为0,1,4,9.且有P(=0)=16,P(=1)=26=13,P(=4)=26=13,P(=9)=16.故的分布列为:0 1 4 9P 161313。
离散型随机变量 有答案
高二数学离散型随机变量及其分布1.抛掷2枚骰子,所得点数之和记为,那么表示的随机试验结果是( )A .2枚都是4点B .1枚是1点,另1枚是3点C .2枚都是2点D .1枚是1点,另1枚是3点,或者2枚都是2点 【解题思路】由随机变量的意义可解. 【解答过程】A 表示的是随机试验中的其中一个结果,B ,C 中表示的是随机试验中的部分结果,而D 是代表随机试验中的所有试验结果.故选:D.2.某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验成功次数,则)0(=ξP 等于( ) A. 0 B.31 C. 21 D.32解析:该项试验一次结果只有成功和失败,随机变量ξ描述一次试验成功次数,则ξ的取值为1和0,设p P ==)1(ξ,则p P -==1)0(ξ,条件得)1(2p p -=,即得32=p 所以31)0(==ξP 答案:B 3.设X 是一个离散型随机变量,其分布列为X234P1212q -22q则q 等于( ) A .1 B .212-C .12D .212+【答案】C【分析】利用分布列的性质求得正确答案. 【详解】依题意2213122=22=122q q q q +-+-+,即()22441=21=0q q q -+-,解得12q =, 经检验可知,12q =符合题意. 故选:C4. 设随机变量X 的分布列为)4,3,2,1()(===i aii X P ,则=<<)2721(X P ( ) A.52 B. 21 C.53 D.107解析:1)4()3()2()1(==+=+=+=X P X P X P X P 得,14321=+++aa a a 得10=a 所以531041)4(1)2721(=-==-=<<X P X P , 答案:C 5.(多选题)下列变量:①某机场候机室中一天的旅客数量为X ;②某寻呼台一天内收到的寻呼次数为X ; ③某水电站观察到一天中长江的水位为X ;④某立交桥一天内经过的车辆数为X . 其中是离散型随机变量的是( ) A .①中的X B .②中的X C .③中的XD .④中的X9.ABD【分析】利用离散型随机变量的概念,对选项逐一分析判断即可得解. 【详解】因为所有取值可以一一列出的随机变量为离散型随机变量, 而①②④中的随机变量X 的可能取值,我们都可以按一定的次序一一列出, 因此它们都是离散型随机变量;而③中的X 可以取某一区间内的一切值,无法按一定次序一一列出, 因此它不是离散型随机变量. 故选:ABD.6.离散型随机变量的概率分布规律为,其中是常数,则.【解题思路】利用概率和为可构造方程求得的值,由可求得结果.【解答过程】,,解得:,.故答案为:.7.某中学生准备到各类古遗迹打卡,这些古遗迹可分为文化纪念地、史迹等五类.已知该学生打卡第一类、第二类的概率都是23,打卡第三类、第四类和第五类的概率都是12,且是否打卡这五类古遗迹相互独立.用随机变量X 表示该学生打卡的类别数,则(4)P X ==____________.14.答案:29解析:记该学生打卡第一类、第二类的类别数为ξ,打卡第三类、第四类和第五类的类别数为η,因此,随机变量X ξη=+,则(4)(1,3)(2,2)P X P P ξηξη====+===1130202113222323211121112C C C C 332233229⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 8.现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答,试求: (1)所取的2道题都是甲类题的概率;(2)设所取的2道题乙类题道数为X ,求X 的分布列和数学期望. 【答案】(1)25(2)23,分布列答案见解析。
2025年高考数学一轮复习-离散型随机变量及其分布列、均值与方差-专项训练【含答案】
离散型随机变量及其分布列、均值与方差-专项训练[基础强化]一、选择题1.设随机变量X 的分布列如下:X 1234P161316p则p 为()A .16B .13C .23D .122.随机变量ξ的分布列如下:ξ-101Pabc其中a ,b ,c 成等差数列,则P (|ξ|=1)等于()A .13B .14C .12D .233.已知X 是离散型随机变量,P (X =1)=14,P (X =a )=34,E (X )=74,则D (2X -1)=()A .25B .34C .35D .564.设随机变量ξ的分布列为=ak (k =1,2,3,4,5),则P ξ等于()A .35B .45C .25D .155.设随机变量ξ的分布列为P (ξ=k )=k,k =1,2,3,则m 的值是()A .1736B .2738C .1719D .27196.一个袋中有形状大小完全相同的3个白球和4个红球,从中任意摸出两个球,用0表示两个球都是白球,用1表示两个球不全是白球,则满足条件X 的分布列为()7.已知随机变量X的分布列为P(X=i)=i2a(i=1,2,3),则P(X=2)=()A.19B.16C.13D.148.节日期间,某种鲜花进货价是每束2.5元,销售价为每束5元;节日卖不出去的鲜花以每束1.6元的价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量X服从如表所示的分布:X200300400500P0.200.350.300.15若购进这种鲜花500束,则利润的均值为()A.706元B.690元C.754元D.720元9.已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到三次结束为止.某考生一次发球成功的概率为p(0<p<1),发球次数为X.若X的数学期望E(X)>1.75,则p的取值范围为()A.0,12B0,712C.12,1D712,1二、填空题10.已知离散型随机变量X的分布列如下:X01P9C2-C3-8C则常数C=________.11.设随机变量X的概率分布列为X1234P13m1416则P(|X-3|=1)=________.12.随机变量X的取值为0,1,2,P(X=0)=0.2,D(X)=0.4,则E(X)=________.[能力提升]13.设0<a<1.随机变量X的分布列是X0a1P131313则当a在(0,1)内增大时()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大14.(多选)随机变量ξ的分布列为ξ012P a b2b2其中ab≠0,则下列说法正确的是()A.a+b=1B.E(ξ)=3b2C.D(ξ)随b的增大而减小D.D(ξ)有最大值15.甲、乙两工人在一天生产中出现的废品数分别是两个随机变量X,Y,其分布列分别为:X0123P0.40.30.20.1Y012P0.30.50.2若甲、乙两人的日产量相等,则甲、乙两人中技术较好的是________.16.据统计,一年中一个家庭万元以上的财产被窃的概率为0.005,保险公司开办一年期万元以上家庭财产保险,交保险费100元,若一年内万元以上财产被窃,保险公司赔偿a 元(a>1000),为确保保险公司有可能获益,则a的取值范围是________.参考答案与解析1.B 由分布列的性质可知16+13+16+p =1.∴p =13.2.D ∵a ,b ,c 成等差数列,∴a +c =2b ,由分布列的性质可知a +b +c =1,∴b =13,∴P (|ξ|=1)=P (ξ=-1)+P (ξ=1)=1-P (ξ=0)=1-13=23.3.B 由题意知:1×14+a ×34=74,∴a =2.∴D (2X -1)=4D (X )=×14+×34=34.故选B.4.C 由题意知,分布列为ξ152535451P a 2a 3a 4a 5a由分布列的性质可得,a +2a +3a +4a +5a =1,解得a =115.所以ξ=++=115+215+315=25,故选C.5.B 由题意得,+49+=1,∴m =2738.6.A 由题可知P (X =0)=C 23C 27=321=17,P (X =1)=1-P (X =0)=1-17=67.7.C 由分布列的性质可知,12a +22a +32a =62a =1,得a =3,P (X =2)=22a =13.8.A E (X )=200×0.20+300×0.35+400×0.30+500×0.15=340,∴利润为(340×5+160×1.6)-500×2.5=706.故选A.9.A 由题可知P (X =1)=p ,P (X =2)=(1-p )p ,P (X =3)=(1-p )2p +(1-p )3=(1-p )2,则E (X )=P (X =1)+2P (X =2)+3P (X =3)=p +2(1-p )p +3(1-p )2>1.75,解得p >52或p <12.由p ∈(0,1),得p .故选A.10.13解析:由9C 2-C +3-8C =1,得C =13或C =23,又当C =23时,9C 2-C =9×49-23>1,不合题意,当C =13时符合题意.∴C =13.11.512解析:由分布列的性质知13+m +14+16=1,得m =14.P (|X -3|=1)=P (X =4)+P (X =2)=16+14=512.12.1解析:∵随机变量X 的取值为0,1,2,P (X =0)=0.2,D (X )=0.4,∴设P (X =1)=a ,则P (X =2)=0.8-a ,0≤a ≤0.8.则E (X )=0×0.2+a +2(0.8-a )=1.6-a .又D (X )=(a -1.6)2×0.2+(a -0.6)2a +(a +0.4)2(0.8-a )=0.4,整理得a 2-0.2a -0.24=0,解得a =0.6或a =-0.4(舍),∴E (X )=1.6-0.6=1.13.D 由题意可得,E (X )=1(a +1),所以D (X )=(a +1)227+(1-2a )227+(a -2)227=6a 2-6a +627=29+34,所以当a 在(0,1)内增大时,D (X )先减小后增大.故选D.14.ABD 根据分布列的性质得a +b 2+b2=1,即a +b =1,故A 正确;根据数学期望公式得E (ξ)=0×a +1×b+2×b 2=3b2,故B 正确;根据方差公式得D (ξ)2×a 2×b 22×b 2=-94b 2+52b =-942+2536,因为0<b <1,所以当b =59时,D (ξ)取得最大值2536,故C 不正确,D 正确.故选ABD.15.乙解析:E (X )=0×0.4+1×0.3+2×0.2+3×0.1=1,E (Y )=0×0.3+1×0.5+2×0.2=0.9.因为E (Y )<E (X ),所以乙技术好.16.(1000,20000)解析:假设公司应要求顾客交保险金为100元,其公司收益的随机变量ξ的分布列为ξ100100-a P 0.9950.005则E (ξ)=0.995×100+0.005×(100-a )>0,解得a <20000,故a 的取值范围为(1000,20000).。
离散型随机变量及其分布列测试题(含答案)
离散型随机变量及其分布列测试题一、选择题:1、如果X 是一个离散型随机变量,则假命题是( )A.X 取每一个可能值的概率都是非负数;B.X 取所有可能值的概率之和为1;C.X 取某几个值的概率等于分别取其中每个值的概率之和;D.X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和2①某寻呼台一小时内收到的寻呼次数X ;②在(0,1)区间内随机的取一个数X ;③某超市一天中的顾客量X 其中的X 是离散型随机变量的是( ) A .①; B .②; C .③; D .①③3、设离散型随机变量ξ的概率分布如下,则a 的值为( )X1 2 3 4P16 13 16aA .12 B .16 C .13 D .144、设随机变量X 的分布列为()()1,2,3,,,k P X k k n λ===⋯⋯,则λ的值为( )A .1;B .12; C .13; D .145.给出下列四个命题:①15秒内,通过某十字路口的汽车的数量是随机变量; ②在一段时间内,某侯车室内侯车的旅客人数是随机变量; ③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量. 其中正确的个数是( D )A.1 B.2 C.3 D.46、设随机变量X 等可能取1、2、3...n 值,如果(4)0.4p X ≤=,则n 值为( )A. 4B. 6C. 10D. 无法确定7、投掷两枚骰子,所得点数之和记为X ,那么4X =表示的随机实验结果是( )A. 一枚是3点,一枚是1点B. 两枚都是2点C. 两枚都是4点D. 一枚是3点,一枚是1点或两枚都是2点8.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( )A .恰有1只是坏的B .4只全是好的C .恰有2只是好的D .至多有2只是坏的9.(2007年湖北卷第1题)如果nx x ⎪⎭⎫ ⎝⎛-3223 的展开式中含有非零常数项,则正整数n 的最小值为A.3B.5C.6D.1010.(2007年湖北卷第9题)连掷两次骰子得到的点数分别为m 和n ,记向量a =(m,n)与向量b =(1,-1)的夹角为θ,则⎥⎦⎤ ⎝⎛π∈θ20,的概率是A.125 B.21 C.127 D.65 11.(2007年北京卷第5题)记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一行,2位老人相邻但不排在两端,不同的排法共有A .1440种 B.960种 C .720种 D.480种12.(2007年全国卷Ⅱ第10题)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有 (A)40种 (B) 60种 (C) 100种 (D) 120种 二、填空题:13、下列表中能成为随机变量X 的分布列的是(把全部正确的答案序号填上)()2,1,2,3,,21n P X k k n ===-14、已知2Y X =为离散型随机变量,Y 的取值为1,2,3,,10,则X 的取值为15、一袋中装有5只同样大小的白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出的球的最大号码数X 可能取值为16.(2007年重庆卷第4题)若1nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和为64,则展开式的常数项为_____三、解答题:17、某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量 (1)求租车费η关于行车路程ξ的关系式; (2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?18、一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数X 的分布列.分析:欲写出ξ的分布列,要先求出ξ的所有取值,以及ξ取每一值时的概率. 19.(2007年重庆卷第6题)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率20.(2007年辽宁卷)一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球. 若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为多少21、一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n 次终止的概率是n21(n =1,2,3,…).记X 为原物体在分裂终止后所生成的子块数目,求(10)P X ≤.22.(本题满分12分)(2010·浙江杭州高二检测)甲、乙等五名奥运志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率;X -1 0 1 p0.3 0.4 0.4X 1 2 3 p0.4 0.7 -0.1X 5 0 -5 p0.3 0.6 0.1②()1,2,3,4,5,P X k k k===④ ⑤(2)求甲、乙两人不在同一个岗位服务的概率;(3)设随机变量X 为这五名志愿者中参加A 岗位服务的人数,求X 的分布列.高中数学系列2—3单元测试题(2.1)参考答案一、选择题:1、D2、D3、C4、B5、D6、C7、D8、C9、B 10、C 11、B 12、B 二、填空题: 13、 ③④14、13579,1,,2,,3,,4,,52222215、 3,4,5 16、 20三、解答题:17、解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2 (2)由38=2ξ+2,得ξ=18,5×(18-15)=15. 所以,出租车在途中因故停车累计最多15分钟. 18、解:设黄球的个数为n ,由题意知绿球个数为2n ,红球个数为4n ,盒中的总数为7n .∴44(1)77n P X n ===,1(0)77n P X n ===,22(1)77n P X n =-==. 所以从该盒中随机取出一球所得分数X 的分布列为X 10 -1 P74 71 72 19、解从总数为10的门票中任取3张,总的基本事件数是C 310=120,而“至少有2张价格相同”则包括了“恰有2张价格相同”和“恰有3张价格相同”,即C 25+C 9033351822172315=++⋅+⋅⋅C C C C C C (种).所以,所求概率为.4312090= 20解P (A )=112211122232562122326=⨯⨯-⨯=-C C C .21、解:依题意,原物体在分裂终止后所生成的数目X 的分布列为X2 4 8 16 ...n 2 ... P21 41 81 161 ... n21 ...∴(10)(2)(4)(8)P X P X P X P X ≤==+=+==8842=++.22.[解析] (1)记甲、乙两人同时参加A 岗位服务为事件E A ,那么P (E A )=A 33C 25A 44=140.即甲、乙两人同时参加A 岗位服务的概率是140.(2)记甲、乙两人同时参加同一岗位服务为事件E ,那么P (E )=A 44C 25A 44=110.所以,甲、乙两人不在同一岗位服务的概率是P (E )=1-P (E )=910.(3)随机变量X 可能取的值为1,2,事件“X =2”是指有两人同时参加A 岗位服务,则P (X =2)=C 25A 33C 25A 44=14.所以P (X =1)=1-P (X =2)=34,X 的分布列为:。
高中数学选修2-3离散型随机变量的分布列精选题目(附答案)
高中数学选修2-3离散型随机变量的分布列精选题目(附答案)(1)离散型随机变量的分布列的定义及性质①一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,以表格形式表示为:表示为P(X=x i)=p i,i=1,2,…,n,离散型随机变量分布列还可以用图象表示.(2)特殊分布①两点分布X的分布列为两点分布,就称X服从两点分布,并称p=P(X=1)为成功概率.②超几何分布一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=C k M C n-kN-MC n N,k=0,1,2,…,m,即其中m=如果随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布.一、离散型随机变量的分布列1.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,以X表示取出球的最大号码.(1)求X的分布列;(2)求X的取值不小于4的概率.解:(1)随机变量X的可能取值为3,4,5,6,P(X=3)=C33C36=120,P(X=4)=C11C23C36=320,P(X=5)=C11C24C36=310,P(X=6)=C11C25C36=12,所以随机变量X的分布列为(2)X的取值不小于P(X≥4)=P(X=4)+P(X=5)+P(X=6)=320+310+12=1920.注:求离散型随机变量分布列的一般步骤:(1)确定X的所有可能取值x i(i=1,2,…)以及每个取值所表示的意义;(2)利用概率的相关知识,求出每个取值相应的概率P(X=x i)=p i(i=1,2,…);(3)写出分布列;(4)根据分布列的性质对结果进行检验.2.一袋中装有5个球,编号分别为1,2,3,4,5.在袋中同时取3个球,以X表示取出3个球中的最小号码,写出随机变量X的分布列.解:随机变量X的可能取值为1,2,3.当X=1时,即取出的3个球中最小号码为1,则其他2个球只能在编号为2,3,4,5的4个球中取,故有P(X=1)=C24C35=610=35;当X=2时,即取出的3个球中最小号码为2,则其他2个球只能在编号为3,4,5的3个球中取,故有P(X=2)=C23C35=310;当X=3时,即取出的3个球中最小号码为3,则其他2个球只能是编号为4,5的2个球,故有P (X =3)=C 22C 35=110.因此,X 的分布列为3.若随机变量X则当P (X <a ) A .(-∞,2] B .[1,2] C .(1,2] D .(1,2)解析:选C 随机变量X 的分布列,知P (X <-1)=0.1,P (X <0)=0.3,P (X <1)=0.5,P (X <2)=0.8,则当P (X <a )=0.8时,实数a 的取值范围是(1,2].故选C.4.若随机变量X 的分布列如下表所示,则a 2+b 2的最小值为( )A.124B.116C.18D.14解析:选C 由分布列性质可知a +b =12,而a 2+b 2≥(a +b )22=18.故选C. 5.已知随机变量ξ的分布列为P (ξ=k )=a (11-2k ),k =1,2,3,4,5,其中a 为常数,则P ⎝ ⎛⎭⎪⎫52<ξ<235=( )A.35B.1325C.45D.825解析:选D 由a (9+7+5+3+1)=1可得a =125,所以P ⎝ ⎛⎭⎪⎫52<ξ<235=P (ξ=3)+P (ξ=4)=525+325=825,故选D.6.已知随机变量X 所有可能取值的集合为{-2,0,3,5},且P (X =-2)=14,P (X =3)=12,P (X =5)=112,则P (X =0)的值为( )A .0 B.14 C.16 D.18解析:选C 由分布列的性质可知,P (X =0)=1-P (X =-2)-P (X =3)-P (X =5)=16. 7.已知随机变量ξ的分布列为设η=ξ2-2ξ解析:由题意,可知P (η=3)=P (ξ=-1)+P (ξ=3)=14+112=13. 答案:13二、离散型随机变量分布列的性质1.设随机变量X 的分布列为P ⎝ ⎛⎭⎪⎫X =k 5=ak (k =1,2,3,4,5).(1)求常数a 的值; (2)求P ⎝ ⎛⎭⎪⎫X ≥35;(3)求P ⎝ ⎛⎭⎪⎫110<X <710.解: 题目所给随机变量X 的分布列为(1)由a +2a +3a 得a =115.(2)法一:P ⎝ ⎛⎭⎪⎫X ≥35=P ⎝ ⎛⎭⎪⎫X =35+P ⎝ ⎛⎭⎪⎫X =45+P (X =1)=15+415+13=45.法二:P ⎝ ⎛⎭⎪⎫X ≥35=1-P ⎝ ⎛⎭⎪⎫X ≤25=1-⎝ ⎛⎭⎪⎫115+215=45.(3)因为110<X <710,所以P ⎝ ⎛⎭⎪⎫110<X <710=P ⎝ ⎛⎭⎪⎫X =15+P ⎝ ⎛⎭⎪⎫X =25+P ⎝ ⎛⎭⎪⎫X =35=115+215+15=25.注:(1)利用离散型随机变量的分布列的两个性质可以求与概率有关的参数的取值或范围,还可以检验所求分布列是否正确.(2)一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.2.设X 是一个离散型随机变量,其分布列为:(1)求q 的值;(2)求P (X <0),P (X ≤0)的值. 解:(1)由分布列的性质得 ⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+(1-2q )+q 2=1,解得q =1-22.(2)P (X <0)=P (X =-1)=12;P (X ≤0)=P (X =-1)+P (X =0)=12+1-2⎝⎛⎭⎪⎫1-22=2-12.三、两点分布及超几何分布1.在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X 的分布列; (2)顾客乙从10张奖券中任意抽取2张, ①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值为Y 元,求Y 的分布列.解: (1)从10张奖券中任意抽取1张,只有中奖与不中奖两种情况,X 的取值只有1和0,故属于两点分布.(2)从10张奖券中任意抽取2张,属于超几何分布.(1)抽奖一次,只有中奖和不中奖两种情况,故X 的取值只有0和1两种情况.P (X =1)=C 14C 110=410=25,则P (X =0)=1-P (X =1)=1-25=35. 因此X 的分布列为(2)2张奖券中有1张中奖或2张都中奖.故所求概率P =C 14C 16+C 24C 06C 210=3045=23.②Y 的所有可能取值为0,10,20,50,60,且P (Y =0)=C 04C 26C 210=1545=13,P (Y =10)=C 13C 16C 210=1845=25,P (Y =20)=C 23C 06C 210=345=115,P (Y =50)=C 11C 16C 210=645=215,P (Y =60)=C 11C 13C 210=345=115,因此随机变量Y 的分布列为注:(1)由于在两点分布中,只有两个对立结果,求出其中的一个概率,便可求出另一个概率.(2)可用超几何分布解决的题目涉及的背景多数是生活、生产实践中的问题,如产品中的正品和次品,盒中的白球和黑球,同学中的男生和女生等,往往由差异明显的两部分组成.2.某市A,B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X的分布列.解:(1)由题意知,参加集训的男生、女生各有6人.代表队中的学生全从B中学抽取的概率为C33C34C36C36=1100,因此,A中学至少有1名学生入选代表队的概率为1-1100=99100.(2)根据题意,X的所有可能取值为1,2,3.P(X=1)=C13C33C46=15,P(X=2)=C23C23C46=35,P(X=3)=C33C13C46=15.所以X的分布列为3ξ去描述1次试验的成功次数,则P(ξ=0)等于()A.0 B.12 C.13 D.23解析:选C设失败率为p,则成功率为2p,ξ的分布列为即“ξ=0”表示试验失败,“ξ=1”表示试验成功,由p+2p=1,得p=1 3,所以P (ξ=0)=13.故选C.4.已知10名同学中有a 名女生,若从这10名同学中随机抽取2名作为学生代表,恰好抽到1名女生的概率是1645,则a =( )A .1B .2或8C .2D .8解析:选B 设抽取的女生人数为X ,则X 服从超几何分布,P (X =1)=C 1a C 110-aC 210=a (10-a )45=1645,解得a =2或a =8,故选B.5.生产方提供一批50箱的产品,其中有2箱不合格产品.采购方接收该批产品的准则是:从该批产品中任取5箱产品进行检测,若至多有1箱不合格产品,便接收该批产品,则该批产品被接收的概率为________.解析:以50箱为一批产品,从中随机抽取5箱,用X 表示“5箱中不合格产品的箱数”,则X 服从参数为N =50,M =2,n =5的超几何分布,这批产品被接收的条件是5箱中没有不合格的或只有1箱不合格的,所以被接收的概率为P (X ≤1)=P (X =0)+P (X =1)=C 02C 548C 550+C 12C 448C 550=243245.故该批产品被接收的概率是243245.答案:2432456.在8个大小相同的球中,有2个黑球,6个白球,现从中取3个球,求取出的球中白球个数X 的分布列.解:X 的可能取值是1,2,3,P (X =1)=C 16·C 22C 38=328;P (X =2)=C 26·C 12C 38=1528;P (X =3)=C 36·C 02C 38=514.故X 的分布列为7.老师要从102篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的分布列; (2)他能及格的概率.解:(1)设抽到他能背诵的课文的数量为X ,则X 的所有可能取值为0,1,2,3.P (X =0)=C 06C 34C 310=130,P (X =1)=C 16C 24C 310=310,P (X =2)=C 26C 14C 310=12,P (X =3)=C 36C 04C 310=16.所以X 的分布列为(2)他能及格的概率为P (X ≥2)=P (X =2)+P (X =3)=12+16=23.巩固练习:1.设随机变量X 等可能地取值为1,2,3,4,…,10.又设随机变量Y =2X -1,则P (Y <10)的值为( )A .0.3B .0.5C .0.1D .0.2解析:选B Y <10,即2X -1<10,解得X <5.5,即X =1,2,3,4,5,所以P (Y <10)=0.5.2.离散型随机变量X 的分布列中部分数据丢失,丢失数据以“x ”“y ”(x ,y ∈N )代替,其表如下:则P ⎝ ⎛⎭⎪⎫32<X <113等于( )A .0.25B .0.35C .0.45D .0.55解析:选B 根据分布列的性质可知,随机变量的所有取值的概率和为1,得x =2,y =5.故P ⎝ ⎛⎭⎪⎫32<X <113=P (X =2)+P (X =3)=0.35.3.一个盒子里装有大小相同的黑球10个,红球12个,白球4个,从中任取2个,其中白球的个数记为X ,则下列概率中等于C 122C 14+C 222C 226的是( )A .P (0<X ≤2)B .P (X ≤1)C .P (X =2)D .P (X =1)解析:选B 由已知,得X 的所有可能取值为0,1,2.P (X =0)=C 222C 226,P (X =1)=C 122C 14C 226,P (X =2)=C 24C 226,∴P (X ≤1)=P (X =0)+P (X =1)=C 122C 14+C 222C 226.4.设随机变量X 的分布如下表,则P (|X -3|=1)=( )A.712B.512C.14D.16解析:选B 因为|X -3|=1,所以X =2或X =4,所以P (|X -3|=1)=P (X =2)+P (X =4)=1-13-14=512.5.设X 是一个离散型随机变量,其分布列为则q =________.解析:由离散型随机变量分布列的性质,可知⎩⎪⎨⎪⎧12+(1-2q )+q 2=1,0≤1-2q ≤1,0≤q 2≤1,故q=1-22.答案:1-226.袋中有4个红球3个黑球,从袋中任取4个球,取到1个红球得1分,取到1个黑球得3分,设得分为随机变量ξ,则P (ξ≤6)=________.解析:取出的4个球红球个数可能为4,3,2,1,黑球相应个数为0,1,2,3,其分值为ξ=4,6,8,10分.P (ξ≤6)=P (ξ=4)+P (ξ=6)=C 44C 03C 47+C 34C 13C 47=1335.答案:13 357.某班50位学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的分布列.解:(1)由(0.006×3+0.01+0.054+x)×10=1,解得x=0.018.(2)分数在[80,90),[90,100]的人数分别是50×0.018×10=9(人),50×0.006×10=3(人).所以ξ的可能取值为0,1,2,其服从参数为N=12,M=3,n=2的超几何分布.则P(ξ=0)=C03C29C212=3666=611,P(ξ=1)=C13C19C212=2766=922,P(ξ=2)=C23C09C212=366=122.所以随机变量ξ的分布列为ξ01 2P 6119221228.某班50名同学参加智力答题活动,每人回答3个问题,答对题目的个数及对应的人数如下表:答对题目的个数012 3人数5102015(1)从50名同学中任取2名,求答对题目的个数之和为4或5的概率;(2)从50名同学中任选2名,设随机变量ξ为这2名同学答对题目的个数之差的绝对值,求ξ的分布列.解:(1)记“从50名同学中任选2名,答对题目的个数之和为4或5”为事件A,从50名同学中任选2名,基本事件总数为C250,事件A所包含的基本事件分为三类:第一类,从答对1个问题及答对3个问题的同学中各选1人,共有C110C115种选法;第二类,从答对2个问题及答对3个问题的同学中各选1人,共有C120C115种选法;第三类,从答对2个问题的同学中选2人,共有C220种选法.由古典概型的概率计算公式,可得P(A)=C110C115+C120C115+C220C250=128245.(2)ξ的所有可能取值0,1,2,3.P(ξ=0)=C25+C210+C220+C215C250=27,P(ξ=1)=C15C110+C110C120+C120C115C250=2249,P(ξ=2)=C15C120+C110C115C250=1049,P(ξ=3)=C15C115C250=349.所以ξ的分布列为。
2021新高考数学专项训练题-离散型随机变量(含解析)
离散型随机变量问题一、单选题(共9题;共18分)1.(2021·贵阳二模)设随机变量,满足:,,若,则()A. 4B. 5C. 6D. 72.(2020·大连模拟)从装有除颜色外完全相同的3个白球和m个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X,已知,则A. B. C. D.3.(2018·榆社模拟)若随机变量服从二项分布,则()A. B.C. D.4.(2021·深圳模拟)已知随机变量,有下列四个命题:甲:乙:丙:丁:如果只有一个假命题,则该命题为()A. 甲B. 乙C. 丙D. 丁5.(2021·天河模拟)在某次数学测试中,学生成绩服从正态分布,若在内的概率为0.6,则任意选取两名学生的成绩,恰有一名学生成绩不高于80的概率为()A. 0.16B. 0.24C. 0.32D. 0.486.(2020高二上·黄冈期末)设随机变量服从正态分布,函数没有零点的概率是,则等于()A. 1B. 2C. 4D. 不能确定7.(2020·青岛模拟)已知某市居民在2019年用于手机支付的个人消费额(单位:元)服从正态分布,则该市某居民手机支付的消费额在内的概率为()附:随机变量服从正态分布,则,,.A. 0.9759B. 0.84C. 0.8185D. 0.47728.(2020·哈尔滨模拟)下列说法正确的是()A. 命题“ ,”的否定形式是“ ,”B. 若平面,,,满足,则C. 随机变量服从正态分布(),若,则D. 设是实数,“ ”是“ ”的充分不必要条件9.(2020·桂林模拟)已知随机变量X服从正态分布,,()A. B. C. D.二、多选题(共2题;共6分)10.(2020·枣庄模拟)下列结论正确的有()A. 若随机变量,,则B. 若,则C. 已知回归直线方程为,且,,则D. 已知一组数据丢失了其中一个,剩下的六个数据分别是3,3,5,3,6,11,若这组数据的平均数、中位数、众数依次成等差数列,则丢失数据的所有可能值的和为2211.(2020·济南模拟)已知在某市的一次学情检测中,学生的数学成绩服从正态分布,其中90分为及格线,120分为优秀线.下列说法正确的是().附:随机变量服从正态分布,则,,A. 该市学生数学成绩的期望为100B. 该市学生数学成绩的标准差为100C. 该市学生数学成绩及格率超过0.8D. 该市学生数学成绩不及格的人数和优秀的人数大致相等三、填空题(共3题;共3分)12.(2021·八省联考)对一个物理量做次测量,并以测量结果的平均值作为该物理量的最后结果.已知最后结果的误差,为使误差在的概率不小于0.9545,至少要测量________次(若,则).13.(2021·淄博零模)已知随机变量,若,则________.14.(2020·淄博模拟)设随机变量,若实数a满足,则a的值是________四、解答题(共12题;共120分)15.(2021·韶关模拟)在一次大范围的随机知识问卷调查中,通过随机抽样,得到参加问卷调查的100人的得分统计结果如下表所示:得分(1)由频数分布表可以大致认为,此次问卷调查的得分,近似为这100人得分的平均值(同一组中的数据用该组区间的左端点值作代表).①求的值;②若,求的值;(2)在(1)的条件下,为此次参加问卷调查的市民制定如下奖励方案:①得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;②每次获赠的随机话费和对应的概率为:现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.16.(2020·济宁模拟)过去五年,我国的扶贫工作进入了“精准扶贫”阶段.目前“精准扶贫”覆盖了全部贫困人口,东部帮西部,全国一盘棋的扶贫格局逐渐形成.到2020年底全国830个贫困县都将脱贫摘帽,最后4335万贫困人口将全部脱贫,这将超过全球其他国家过去30年脱贫人口总和.2020年是我国打赢脱贫攻坚战收官之年,越是到关键时刻,更应该强调“精准”.为落实“精准扶贫”政策,某扶贫小组,为一“对点帮扶”农户引种了一种新的经济农作物,并指导该农户于2020年初开始种植.已知该经济农作物每年每亩的种植成本为1000元,根据前期各方面调查发现,该经济农作物的市场价格和亩产量均具有随机性,且两者互不影响,其具体情况如下表:(1)设2020年该农户种植该经济农作物一亩的纯收入为X元,求X的分布列;(2)若该农户从2020年开始,连续三年种植该经济农作物,假设三年内各方面条件基本不变,求这三年中该农户种植该经济农作物一亩至少有两年的纯收入不少于16000元的概率;(3)2020年全国脱贫标准约为人均纯收入4000元.假设该农户是一个四口之家,且该农户在2020年的家庭所有支出与其他收入正好相抵,能否凭这一亩经济农作物的纯收入,预测该农户在2020年底可以脱贫?并说明理由.17.(2020·沈阳模拟)《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A、B+、B、C+、C、D+、D、E共8个等级.参照正态分布原则,确定各等级人数所占比例分别为、、、、、、、.选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到、、、、、、、八个分数区间,得到考生的等级成绩.某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布.(1)求物理原始成绩在区间的人数;(2)按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间的人数,求X的分布列和数学期望.(附:若随机变量,则,,)18.(2020·南昌模拟)某产品自生产并投入市场以来,生产企业为确保产品质量,决定邀请第三方检测机构对产品进行质量检测,并依据质量指标Z来衡量产品的质量.当时,产品为优等品;当时,产品为一等品;当时,产品为二等品.第三方检测机构在该产品中随机抽取500件,绘制了这500件产品的质量指标Z的条形图.用随机抽取的500件产品作为样本,估计该企业生产该产品的质量情况,并用频率估计概率.(1)从该企业生产的所有产品中随机抽取4件,求至少有1件优等品的概率;(2)现某人决定购买80件该产品.已知每件成本1000元,购买前,邀请第三方检测机构对要购买的80件产品进行抽样检测,买家、企业及第三方检测机构就检测方案达成以下协议:从80件产品中随机抽出4件产品进行检测,若检测出3件或4件为优等品,则按每件1600元购买,否则按每件1500元购买,每件产品的检测费用250元由企业承担.记企业的收益为X元,求X的分布列与数学期望.19.(2020·江西模拟)冠状病毒是一个大型病毒家族,可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.出现的新型冠状病毒(nCoV)是从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检测血液中的指标A.现从采集的血液样品中抽取500份检测指标A的值,由测量结果得下侧频率分布直方图:(1)求这500份血液样品指标A值的平均数和样本方差(同一组数据用该区间的中点值作代表,记作);(2)由频率分布直方图可以认为,这项指标的值X服从正态分布,其中近似为样本平均数,近似为样本方差.在统计学中,把发生概率小于3‰的事件称为小概率事件(正常条件下小概率事件的发生是不正常的).该医院非常关注本院医生健康状况,随机抽取20名医生,独立的检测血液中指标A的值,结果发现4名医生血液中指标A的值大于正常值20.03,试根据题中条件判断该院医生的健康率是否正常,并说明理由.附:参考数据与公式:,,;若,则① ;② ;③.,,,.20.(2020·漯河模拟)十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加,为了制定提升农民收入、实现2020年脱贫的工作计划,该地扶贫办统计了2019年50位农民的年收入并制成如下频率分布直方图:附参考数据:,若随机变量X服从正态分布,则,,.(1)根据频率分布直方图,估计50位农民的平均年收入(单位:千元);(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布,其中近似为年平均收入,近似为样本方差,经计算得=6.92,利用该正态分布,求:①在扶贫攻坚工作中,若使该地区约有占总农民人数的的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入标准大约为多少千元?②为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?21.(2020·龙岩模拟)交强险是车主必须为机动车购买的险种,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系.每年交强险最终保险费计算方法是:交强险最终保险费,其中a为交强险基础保险费,A为与道路交通事故相联系的浮动比率,同时满足多个浮动因素的,按照向上浮动或者向下浮动比率的高者计算.按照我国《机动车交通事故责任强制保险基础费率表》的规定:普通6座以下私家车的交强险基础保险费a为950元,交强险费率浮动因素及比率如下表:上一个年度未发生有责任道路交通事故上两个年度未发生有责任道路交通事故上三个及以上年度未发生有责任道路交通事故上一个年度发生一次有责任不涉及死亡的道路交通事故上一个年度发生两次及以上有责任道路交通事故上一个年度发生有责任道路交通死亡事故某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了100辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计结果如下表:以这100辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题.(1)记X为一辆该品牌车在第四年续保时的费用,求X的分布列与数学期望(数学期望值保留到个位数字);(2)某二手车销售商专门销售这一品牌的二手车,且将经销商购车后下一年的交强险最终保险费高于交强险基础保险费a的车辆记为事故车,假设购进一辆事故车亏损3000元,购进一辆非事故车盈利5000元.①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至少有一辆是事故车的概率;②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望.22.(2020·南京模拟)某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成.(1)求出甲考生正确完成题数的概率分布列,并计算数学期望;(2)若考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.试从至少正确完成2题的概率分析比较两位考生的实验操作能力.23.(2020·厦门模拟)一款小游戏的规则如下:每轮游戏要进行三次,每次游戏都需要从装有大小相同的2个红球,3个白球的袋中随机摸出2个球,若摸出的“两个都是红球”出现3次获得200分,若摸出“两个都是红球”出现1次或2次获得20分,若摸出“两个都是红球”出现0次则扣除10分(即获得-10分).(1)设每轮游戏中出现“摸出两个都是红球”的次数为X,求X的分布列;(2)玩过这款游戏的许多人发现,若干轮游戏后,与最初的分数相比,分数没有增加反而减少了,请运用概率统计的相关知识分析解释上述现象.24.(2020·莆田模拟)为了解某地网民浏览购物网站的情况,从该地随机抽取100名网民进行调查,其中男性、女性人数分别为45和55.下面是根据调查结果绘制的网民日均浏览购物网站时间的频率分布直方图,将日均浏览购物网站时间不低于40分钟的网民称为“网购达人”,已知“网购达人”中女性有10人.参考公式:,其中.参考数据:0.102.7063.841 5.024 6.635 7.879 10.828(1)根据已知条件完成下面的列联表,并判断是否有90%的把握认为是否为“网购达人”与性别有关;(2)将上述调査所得到的频率视为概率,现在从该地的网民中随机抽取3名,记被抽取的3名网民中的“网购达人”的人数为X,求X的分布列、数学期望和方差.25.(2020·池州模拟)某市教学研究室为了对今后所出试题的难度有更好的把握,提高命题质量,对该市高三理科数学试卷的得分情况进行了调研.从全市参加考试的理科考生中随机抽取了100名考生的数学成绩(满分150分),将数据分成9组:,,,,,,,,,并整理得到如图所示的频率分布直方图.用统计的方法得到样本标准差,以频率值作为概率估计值.(Ⅰ)根据频率分布直方图,求抽取的100名理科考生数学成绩的平均分及众数;(Ⅱ)用频率估计概率,从该市所有高三理科考生的数学成绩中随机抽取3个,记理科数学成绩位于区间内的个数为,求的分布列及数学期望;(Ⅲ)从该市高三理科数学考试成绩中任意抽取一份,记其成绩为,依据以下不等式评判(表示对应事件的概率):① ,② ,③ ,其中.评判规则:若至少满足以上两个不等式,则给予这套试卷好评,否则差评.试问:这套试卷得到好评还是差评?26.(2020·辽宁模拟)港珠澳大桥是一座具有划时代意义的大桥.它连通了珠海香港澳门三地,大大缩短了三地的时空距离,盘活了珠江三角洲的经济,被誉为新的世界七大奇迹.截至2019年10月23日8点,珠海公路口岸共验放出入境旅客超过1400万人次,日均客流量已经达到4万人次,验放出入境车辆超过70万辆次,2019年春节期间,客流再次大幅增长,日均客流达8万人次,单日客流量更是创下11.3万人次的最高纪录.2019年从五月一日开始的连续100天客流量频率分布直方图如下(1)①同一组数据用该区间的中点值代替,根据频率分布直方图.估计客流量的平均数.②求客流量的中位数.(2)设这100天中客流量超过5万人次的有天,从这天中任取两天,设为这两天中客流量超过7万人的天数.求的分布列和期望.答案解析部分一、单选题1.【答案】A【解析】【解答】由题意可得:,解得:,则:,故答案为:A。
高考数学专题《离散型随机变量的分布列》习题含答案解析
专题11.5 离散型随机变量的分布列1.(2021·全国·高二课时练习)某商店购进一批西瓜,预计晴天西瓜畅销,可获利1000元;阴天销路一般,可获利500元;下雨天西瓜滞销,会亏损500元,根据天气预报,未来数日晴天的概率为0.4,阴天的概率为0.2,下雨的概率为0.4,试写出销售这批西瓜获利的分布列.【答案】答案见解析. 【分析】根据已知数据列表格. 【详解】用X 表示获利,则X 的取值分别是1000,500,-500,分布列如下表:的分布列如下表所示,求a 的值. 【答案】0.2 【分析】由分布列中所有概率和为1计算. 【详解】由题意0.30.51a ++=,解得0.2a =3.(2021·全国·高二课时练习)抛一枚均匀的硬币,设1,,0,,X ⎧=⎨⎩出现正面出现反面写出X 的分布列. 【答案】答案见解析. 【分析】X 的值分别为0,1,求出概率后得分布列.【详解】抛一枚均匀的硬币,有两种可能,正面向上或反面向上,两种情况的可能性相同,X 0=或1,1(0)(1)2P X P X ====, 分布列如下:练基础ξ只能取两个值0,1,又知ξ取0的概率是取1的概率的3倍,写出ξ的分布列. 【答案】答案见解析 【分析】根据概率之和为1可求出. 【详解】由题意及分布列满足的条件知P (ξ=0)+P (ξ=1)=3P (ξ=1)+P (ξ=1)=1, 所以()114P ξ==,故()314P ξ==. 所以ξ的分布列为ξ的分布列如下,求k 的值.【答案】121nk =- 【分析】根据离散型随机变量ξ的概率性质即可求解参数. 【详解】因为1=k +2k +…+2n -1k =k (1+2+…+2n -1)=k ·1212n--=(2n -1)k ,所以121n k =-.6.(2021·全国·高二课时练习)某射击运动员射击一次所得环数的分布列如下表所示.(1)求常数a 的值; (2)求(6)P ξ>.【答案】 (1)0.28 (2)0.85 【分析】(1)由分布列中所有概率和为1计算;(2)计算(7)(8)(9)(10)P P P P ξξξξ=+=+=+=即可 . (1)由题意0.030.050.070.080.260.231a ++++++=,解得0.28a =; (2)(6)P ξ>=(7)(8)(9)(10)P P P P ξξξξ=+=+=+==0.080.260.280.230.85+++=.7.(2021·全国·高二课时练习)从装有6个白球和4个红球的口袋中任取1个球,用X 表示取得的白球数,求X 的分布列. 【答案】答案见解析. 【分析】确定X 的可能值,计算出概率后得分布列. 【详解】X 的所有可能值是0,1.42(0)105P X ===,63(1)105P X ===, 所以X 的分布列如下:X 服从参数为0.3的两点分布. (1)求()0P X =;(2)若21Y X =+,写出Y 的分布列. 【答案】 (1)0.7(2)答案见解析. 【分析】(1)根据二项分布的概念求解; (2)求出Y 的可能值,写出分布列即可. (1)(0)10.30.7P X ==-=.(2)X 0=时,1Y =,1X =时,3Y =,所以Y 的分布列为:X 的分布列,并说明理由: (1)(2)【答案】(1)不是,理由见解析. (2)不是,理由见解析. 【分析】(1)根据分布列中所有概率和为1说明; (2)由概率的范围说明. (1)由于0.20.20.20.20.3 1.11++++=>,因此此表格不是随机变量X 的分布列 (2)表格中事件1X =的概率是0.2-,这是不可能的,概率在[0,1]范围内.因此此表格不是随机变量的分布列.10.(2021·全国·高二单元测试)设离散型随机变量X 的分布列为(2)()39P Y <≤的值.【答案】(1)分布列见解析;(2)0.7.【分析】(1)先由分布列的性质解出m ,然后按步骤写出分布列即可; (2)根据(1)中的分布列可计算出答案. 【详解】由分布列的性质知,0.20.10.10.31m ++++=,解得0.3m =.(1)由题意可知,()()21100.2P X P X +====,()()21310.1P X P X +====,()()21520.1P X P X +====,()()21730.3P X P X +====,()()21940.3P X P X +====, 所以21Y X =+的分布列为:(2)395790.10.30.30.7P Y P Y P Y P Y <≤==+=+==++=.1.(2022·江苏·高三专题练习)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1,则随机变量ξ的取值对应的概率正确的是( ). A .P (ξ=0)=411 B .P (ξ=111C .P (ξ=1)=611D .P (ξ=122【答案】ABC 【分析】根据题设,结合正方体的性质求两条棱相交、平行、异面的可能情况数,再写出对应ξ=0、ξ=1、ξ. 【详解】由题设,ξ的可能取值为0,1.若两条棱相交,交点必在正方体的顶点处,过任意一个顶点的棱有3条,则P (ξ=0)=232128C C =411, 若两条棱平行,它们的距离为16对,∴P (ξ=2126C =111,故P (ξ=1)=1-P (ξ=0)-P (ξ)=1-411-111=611,练提升ξ分布列如下:故选:ABC2.(2021·全国·高二课时练习)若随机变量X的分布列如下表所示:.【答案】1 8【分析】首先根据分布列的性质得到12a b+=,再利用基本不等式的性质求解即可.【详解】由分布列的性质,知11144a b+++=,即12a b+=.因为()222128a ba b++≥=,当且仅当14a b==时取等号.所以22a b+的最小值为1 8 .故答案为:1 83.(2021·全国·高二课时练习)将3个小球任意地放入4个大玻璃杯中,一个杯子中球的最多个数记为X,则X的分布列是________.【答案】将3个小球任意地放入4个玻璃杯中,杯子中球的个数最多为3个,那么对于各种情况下的概率值进行计算得到分布列.由题意知X 的可能取值为1,2,3()3433=148A P X ==; ()223439=2416C A P X ==;()1431=3416A P X ==故答案为:相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列; 【答案】(1)见解析. 【解析】(1)由题意知,X 所有的可能取值为200,300,500,由表格数据知 ()2162000.290P X +===,()363000.490P X ===,()25745000.490P X ++===. 因此X 的分布列为5.(2021·X . (1)说明1X =表示的是什么事件,并求出(1)P X =; (2)求X 的分布列. 【答案】(1)事件见解析,1(1)2P X ==; (2)分布列见解析.(1)根据X表示的意义确定事件,并计算概率.(2)X的可能值为0,1,2,求出各概率后得分布列.(1)1X=表示正面向上的次数为1的事件,1221 (1)22CP X===.(2)X的可能值为0,1,2,则221(0)24CP X===,2221(2)24CP X===,X的分布列如下:5发子弹,如果命中就停止射击,否则一直到子弹用尽.若已知每次射击命中的概率均为0.9,求该运动员这次训练耗用的子弹数X的分布列.【答案】答案见详解.【分析】X的可能取值为1,2,3,4,5,分别求出相应的概率,由此能求出耗用的子弹数X的分布列.【详解】根据题意1,2,3,4,5X=,()10.9P X==,()20.10.90.09P X==⨯=,()30.10.10.90.009P X==⨯⨯=,()40.10.10.10.90.0009P X==⨯⨯⨯=,()50.10.10.10.10.10.10.10.10.10.90.0001P X==⨯⨯⨯⨯+⨯⨯⨯⨯=.∴X的分布列为:),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.【答案】(1)310;(2)答案见解析.【分析】(1)由古典概型概率公式与互斥事件的概率公式求解即可;(2)求出X的可能取值,再用古典概型概率公式与互斥事件的概率公式求出概率,即可求解【详解】(1)记“当天商品销售量为0件”为事件A,“当天商品销售量为1件”为事件B,“当天商店不进货”为事件C,则()()()153 202010P C P A P B=+=+=;(2)由题意知,X的可能取值为2,3.P(X=2) =P(当天商品销售量为1件)=51 204;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=1953 2020204++=,故X的分布列为:8.(2021·全国·高二课时练习)从集合{}1,2,3,4,5的所有非空子集中,随机地取出一个.(1)求所取出的非空子集中所有元素之和为10的概率;(2)记所取出的非空子集中的元素个数为X,求X的分布列.【答案】(1)331;(2)答案见解析.【分析】(1)计算基本事件总数和满足条件的基本事件数,利用古典概型的概率公式即得解;(2)X 的所有可能取值为1,2,3,4,5,计算对应的概率,列出分布列即可. 【详解】(1)记“所取出的非空子集中所有元素之和为10”为事件A .基本事件总数1234555555C C C C C 31n =++++=,事件A 包含的基本事件有{}1,4,5,{}2,3,5,{}1,2,3,4,共3个,故()331P A =. (2)依题意,X 的所有可能取值为1,2,3,4,5.()151131C 53P X ===,()2510231C 13P X ===,()3510331C 13P X ===,()454131C 53P X ===,()555131C 13P X ===.故X 的分布列为X . (1)写出X 的分布列; (2)求(5)P X <;(3)求“点数和大于9”的概率. 【答案】 (1)答案见解析 (2)16(3)16.【分析】(1)X 的可能值为2,3,4,5,6,7,8,9,10,11,12,分别计算出概率后可得分布列; (2)由(2)(3)(4)P X P X P X =+=+=可得; (3)由(10)(11)(12)P X P X P X =+=+=可得. (1)由题意X 的可能值依次为2,3,4,5,6,7,8,9,10,11,12,两枚骰子的点数和列表如下(第一行是一个骰子的点数,第一列是另一个骰子的点数,其他格子中为两个骰子点数和,共36个:1(2)(12)36P X P X ====,21(3)(11)3618P X P X =====, 31(4)(10)3612P X P X =====,41(5)(9)369P X P X =====, 5(6)(8)36P X P X ====,61(7)366P X ===, X 的分布列如下:(2)(5)(2)(3)(4)361812366P X P X P X P X <==+=+==++==; (3)1111(9)(10)(11)(12)1218366P X P X P X P X >==+=+==++=. 10.(2021·全国·高二单元测试)某市高考模拟考试数学试卷解答题的网上评卷采用“双评+仲裁”的方式:两名老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于或等于1分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于1分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分;当一、二评分数和仲裁分数差值的绝对值相同时,取仲裁分数和一、二评中较高的分数的平均分为该题得分.有的学生考试中会做的题目答完后却得不了满分,原因多为答题不规范,比如:语言不规范、缺少必要文字说明、卷面字迹不清、得分要点缺失等等,把这样的解答称为“缺憾解答”.该市教育研训部门通过大数据统计发现,满分为12分的题目,这样的“缺憾解答”,阅卷老师所评分数及各分数所占比例如表:将这个表中的分数所占比例视为老师对满分为12分题目的“缺憾解答”所评分数的概率,且一、二评与仲裁三位老师评分互不影响.已知一个同学的某道满分为12分题目的解答属于“缺憾解答”.(1)求该同学这个题目需要仲裁的概率; (2)求该同学这个题目得分X 的分布列.【答案】(1)18;(2)分布列见解析.【分析】(1)记A 表示事件:" 该同学这个解答题需要仲裁 " ,设—评、二评所打分数分别为 , ,x y 由题设知事件A 的所有可能情况有: 119x y =⎧⎨=⎩ 或 911x y =⎧⎨=⎩由此能求出该同学这个题目需要仲裁的概率; (2)随机事件X 的可能取值为 9 , 9 . 5 , 10 , 10 . 5 , 11 , 分别求出相应的概率,由此能求出 X 的分布列. 【详解】(1)设事件A 表示“该同学这个题目需要仲裁”,一评、二评所打分数分别为x ,y ,由题意知事件A 的所有可能情况有119x y =⎧⎨=⎩或911x y =⎧⎨=⎩,∴()1191111191144448x x P A P P y y ⎛⎫⎛⎫==⎧⎧=+=⨯+⨯= ⎨⎪ ⎨⎪==⎩⎩⎝⎭⎝⎭. (2)随机事件X 的取值范围为{}9,9.5,10,10.5,11,设仲裁所打分数为z ,则 ()911911111111391199444444443299x x x P X P P y P y y z z ⎛⎫⎛⎫==⎧⎧⎛⎫=⎧ ⎪ ⎪⎪⎪==+=+==⨯+⨯⨯+⨯⨯=⎨⎪⎨⎨ ⎪ ⎪=⎩⎝⎭⎪⎪ ⎪ ⎪==⎩⎩⎝⎭⎝⎭, ()910111119.510942244x x P X P P y y ⎛⎫⎛⎫==⎧⎧==+=⨯+⨯= ⎨⎪ ⎨⎪==⎩⎩⎝⎭⎝⎭,()101111010224x P X P y ⎛⎫=⎧===⨯= ⎨⎪=⎩⎝⎭,()911101110.511911101010x x x x P X P P P y P y y y z z ⎛⎫⎛⎫==⎧⎧⎛⎫⎛⎫==⎧⎧ ⎪ ⎪⎪⎪==++=+= ⎨⎪ ⎨⎪⎨⎨ ⎪ ⎪==⎩⎩⎝⎭⎝⎭⎪⎪ ⎪ ⎪==⎩⎩⎝⎭⎝⎭11111111115244244244216=⨯+⨯+⨯⨯+⨯⨯=, ()11911111111113119111144444444321111x x x P X P P P y y y z z ⎛⎫⎛⎫==⎧⎧⎛⎫=⎧ ⎪⎪ ⎪⎪==++=⨯+⨯⨯+⨯⨯=== ⎨⎪⎨⎨ ⎪ ⎪=⎩⎝⎭⎪⎪ ⎪ ⎪==⎩⎩⎝⎭⎝⎭,∴X 的分布列为:1.(2021·湖南·高考真题)端午节吃粽子是我国的传统习俗.设一盘中装有6个粽子,其中肉粽1个,蛋黄粽2个,豆沙粽3个,这三种粽子的外观完全相同,从中任意选取2个. (1)用ξ表示取到的豆沙粽的个数,求ξ的分布列; (2)求选取的2个中至少有1个豆沙粽的概率. 【答案】(1)分布列见解析;(2)45. 【分析】(1)首先求随机变量0,1,2ξ=,再利用古典概型求概率; (2)根据(1)的结果求概率. 【详解】(1)由条件可知0,1,2ξ=,()2326105C P C ξ===,()113326315C C P C ξ===,()2326125C P C ξ===,所以ξ的分布列,如下表,则选取的2个中至少有1个豆沙粽的概率14155P . 2.(2019年高考北京卷理选)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由. 【答案】(1)0.4;(2)分布列见解析,E (X )=1;(3)见解析.【解析】(1)由题意知,样本中仅使用A 的学生有18+9+3=30人,仅使用B 的学生有10+14+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100−30−25−5=40人.所以从全校学生中随机抽取1人,该学生上个月A ,B 两种支付方式都使用的概率估计为400.4100=. (2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”. 由题设知,事件C ,D 相互独立,且93141()0.4,()0.63025P C P D ++====. 所以(2)()()()0.24P X P CD P C P D ====,(1)()P X P CD CD == ()()()()P C P D P C P D =+ 0.4(10.6)(10.4)0.6=⨯-+-⨯0.52=,(0)()()()0.24P X P CD P C P D ====.所以X 的分布列为(3)记事件E 为“2000元”. 假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化, 则由上个月的样本数据得33011()C 4060P E ==. 答案示例1:可以认为有变化.理由如下:P (E )比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下: 事件E 是随机事件,P (E )比较小,一般不容易发生, 但还是有可能发生的,所以无法确定有没有变化.3.(2018年理数天津卷选)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查. (I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II )若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列;(ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.【答案】(Ⅰ)从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i )答案见解析;(ii )67. 【解析】(Ⅰ)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人. (Ⅱ)(i )随机变量X 的所有可能取值为0,1,2,3.P (X =k )=C 4k ⋅C 33−k C 73(k =0,1,2,3).所以,随机变量X 的分布列为事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”, 则A =B ∪C ,且B 与C 互斥,由(i )知,P (B )=P (X =2),P (C )=P (X =1), 故P (A )=P (B ∪C )=P (X =2)+P (X =1)=67.所以,事件A 发生的概率为67.4.(2017山东,理18选)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示. (I )求接受甲种心理暗示的志愿者中包含A 1但不包含1B 的频率. (II )用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列. 【答案】(I )(II)X 的分布列为因此X 的分布列为 5.(2017北京,理17选)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.5.18(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率; (Ⅱ)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列.【答案】(Ⅰ)0.3. (Ⅱ)见解析. 【解析】(Ⅰ)由图知,在服药的50名患者中,指标y 的值小于60的有15人,所以从服药的50名患者中随机选出一人,指标y 的值小于60的有15人,所以从概率为150.350=. (Ⅱ)由图知,A,B,C,D 四人中,指标x 的值大于1.7的有2人:A 和C. 所以ξ的所有可能取值为0,1,2.21122222222444C C C C 121(0),(1),(2)C 6C 3C 6P P P ξξξ=========.所以ξ的分布列为6.(2017·天津高考真题(理))从甲地到乙地要经过个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和均值. (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【答案】(1)见解析;(2)11()()48P A P B +=. 【解析】(Ⅰ)解:随机变量X 的所有可能取值为0,1,2,3.()111101112344P X ⎛⎫⎛⎫⎛⎫==-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()11111111111111111123423423424P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ()111111111121112342342344P X ⎛⎫⎛⎫⎛⎫==-⨯⨯+⨯-⨯+⨯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()1111323424P X ==⨯⨯=.所以,随机变量X 的分布列为随机变量X 的数学期望()1111113012342442412E X =⨯+⨯+⨯+⨯=. (Ⅱ)解:设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为()()()()()()()10,11,00110P Y Z P Y Z P Y Z P Y P Z P Y P Z +====+=====+==1111111142424448=⨯+⨯=. 所以,这2辆车共遇到1个红灯的概率为1148.。
离散型随机变量及其分布列练习题和答案
高二理科数学测试题(9-28)1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )2.投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )(A )0.648 (B )0.432 (C )0.36 (D )0.3123.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )4.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为152,既刮风又下雨的概率为101,则在下雨天里,刮风的概率为( ) A.2258B.21C.83 D.43 5.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)等于( ).A.15B.25C.35D.456.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则==)12(ξP ( ) A.2101012)85()83(⋅C B.83)85()83(29911⨯C C.29911)83()85(⋅C D. 29911)85()83(⋅C 7.袋中有5个球,3个白球,2个黑球,现每次取一个,无放回地抽取两次,第二次抽到白球的概率为( ) A.53 B.43 C.21 D.1038.6位同学参加百米短跑初赛,赛场有6条跑道,已知甲同学排在第一跑道,则乙同学排在第二跑道的概率( )A. 52B.51C.92D. 73 9.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇数的条件下第二张也是奇数的概率( ) A.52 B.51 C.21 D. 7310.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上向右的概率都是21,质点P 移动5次后位于点(2,3)的概率是( ) A.3)21( B.525)21(C C.335)21(C D.53525)21(C C 11.若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为( )(A )8 (B )15 (C )16 (D )3212.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则)0(=ξP 等于( ) A.0 B.21 C. 31 D.32 解答题 13.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:⑴全部成活的概率; ⑵全部死亡的概率;⑶恰好成活3棵的概率; ⑷至少成活4棵的概率14.某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为12,13,23.(1)求该高中获得冠军个数X 的分布列; (2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分η的分布列.15.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率;(2)求按比赛规则甲获胜的概率.16.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列.1--5:CAACD 6-12: BABCB CC13. ⑴5550.90.59049C =; ⑵5550.10.00001C =; ⑶()3325530.90.10.0729P C =⋅=; ⑷()()55450.91854P P P =+=14.解 (1)∵X 的可能取值为0,1,2,3,取相应值的概率分别为∴X 的分布列为(2)∵得分η=5X +2(3-∵X 的可能取值为0,1,2,3.∴η的可能取值为6,9,12,15,取相应值的概率分别为P (η=6)=P (X =0)=19,P (η=9)=P (X =1)=718, P (η=12)=P (X =2)=718,P (η=15)=P (X =3)=19.∴得分η的分布列为15.解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为12,乙获胜的概率为12. 记事件A =“甲打完3局才能取胜”,记事件B =“甲打完4局才能取胜”, 记事件C =“甲打完5局才能取胜”.①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜∴甲打完3局取胜的概率为33311()()28P A C ==. ②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负∴甲打完4局才能取胜的概率为2231113()()22216P B C =⨯⨯⨯=. ③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负∴甲打完5局才能取胜的概率为22241113()()()22216P C C =⨯⨯⨯=. (2)事件D =“按比赛规则甲获胜”,则D A B C =++,又因为事件A 、B 、C 彼此互斥,故1331()()()()()816162P D P A B C P A P B P C =++=++=++=. 16.(1):107。
数学选修2-3离散型随机变量及其分布列练习题含答案
数学选修2-3离散型随机变量及其分布列练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________ 1. 已知离散型随机变量X的分布列如右表,则常数q的值为()A.−1B.1C.13D.122. (1)某机场候机室中一天的游客数量为ξ;(2)某寻呼台一天内收到的寻呼次数为ξ;(3)某水文站观察到一天中长江水位为ξ;(4)某立交桥一天经过的车辆数为ξ,则()不是离散型随机变量.A.(1)中的ξB.(2)中的ξC.(3)中的ξD.(4)中的ξ3.设随机变量X的概率分布列如下:则P(X<4)=( )A.0.15B.0.3C.0.65D.0.54. 已知随机变量X的分布列如图,则p的值为()A.1 4B.12C.34D.15. 随机变量X的分布列如下,则m等于()A.1 3B.12C.16D.146. 设随机变量ξ的分布列为P(ξ=k)=m(23)k,k=1,2,3,则m的值是()A.17 36B.2738C.1719D.27197. 随机变量ξ的分布列为P(ξ=k)=ck(1+k),k=1,2,3,其中c为常数,则P(ξ≥2)等于()A.89B.23C.13D.298. 一个袋中有形状大小完全相同的3个白球和4个红球,从中任意摸出两个球,用0表示两个球都是白球,用1表示两个球不全是白球,则满足条件X的分布列为.A.B.C.9. 已知随机变量X的概率分布列如表所示:且X的数学期望EX=6,则()A.a=0.3,b=0.2B.a=0.2,b=0.3C.a=0.4,b=0.1D.a=0.1,b=0.410. 已知离散型随机变量X的分布列为则X的数学期望E(x)=()A.3 2B.2C.52D.311. 设随机变量X的概率分布列为则P(|X−3|=1)=()A.7 12B.512C.14D.1612. 备注:试题题型错误。
A.PB.13C.aD.b若E(X)=1,则E(aX+b)=13. 已知离散型随机变量X的分布列为14. 已知随机变量ξ的分布列为:则m=________.15.设离散型随机变量X的概率分布如下:则a的值为________.16. 已知随机变量X的分布列为:.17. 某市对该市小微企业资金短缺情况统计如下表:(1)试估计该市小微企业资金缺额的平均值;(2)某银行为更好的支持小微企业健康发展,从其第一批注资的A行业4家小微企业和B行业的3家小微企业中随机选取4家小微企业,进行跟踪调研.设选取的4家小微企业中是B行业的小微企业的个数为随机变量ξ,求ξ的分布列.18. 某射手每次射击击中目标的概率是2,且各次射击的结果互不影响.3假设这名射手射击5次,求恰有2次击中目标的概率;假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总分数,求ξ的分布列.19. 学校游园活动有这样一个游戏项目:甲箱子里装有3个白球,2个黑球,乙箱子里装有1个白球,2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(1)求在1次游戏中:①摸出3个白球的概率;②获奖的概率;(2)求在2次游戏中获奖次数X的分布列.20. 某市9月份空气质量为:9天良、12天轻度污染、6天中度污染、3天重度污染.若9月份的重度污染都发生在一个星期内,且这个星期只有一天是轻度污染,其余三天空气质量好坏是随机的,求评级为良的天数X的分布列.21. 将4封不同的信随机地投入到3个信箱里,记有信的信箱个数为ξ,试求ξ的分布列.22. 某校对数学、物理两科进行学业水平考前辅导,辅导后进行测试,按照成绩(满分均为100分)划分为合格(成绩大于或等于70分)和不合格(成绩小于70分).现随机抽取两科各100名学生的成绩统计如下:(1)试分别估计该校学生数学、物理合格的概率;(2)设数学合格一人可以赢得4小时机器人操作时间,不合格一人则减少1小时机器人操作时间;物理合格一人可以赢得5小时机器人操作时间,不合格一人则减少2小时机器人操作时间.在(1)的前提下,(I)记X为数学一人和物理一人共同赢得的机器人操作时间(单位:小时)总和,求随机变量X的分布列和数学期望;(II)随机抽取4名学生,求这四名学生物理考前辅导后进行测试所赢得的机器人操作时间不少于13小时的概率.参考答案与试题解析数学选修2-3离散型随机变量及其分布列练习题含答案一、选择题(本题共计 12 小题,每题 3 分,共计36分)1.【答案】D【考点】离散型随机变量及其分布列【解析】利用概率的基本性质即可得出.【解答】解:由概率的规范性可得:12+q2+q2=1,化为2q2+q−1=0,又q≥0,解得q=12.故选D.2.【答案】C【考点】离散型随机变量及其分布列【解析】根据离散型随机变量的定义:其可能取到的不相同的值是有限个或可列为有限个,分析题干的四个变量可得,(1)(2)(4)中的ξ,都可以一一列举,是离散型随机变量;(3)中的ξ,水文站观察到一天中长江水位即ξ的值是连续的,无法按一定次序一一列出,不符合定义,不是离散型随机变量;即可得答案.【解答】解:根据离散型随机变量的定义:其可能取到的不相同的值是有限个或可列为有限个,即可以按一定次序一一列出;分析题干的四个变量可得(1)中的ξ,符合定义,是离散型随机变量;(2)中的ξ,符合定义,是离散型随机变量;(3)中的ξ,水文站观察到一天中长江水位即ξ的值是连续的,无法按一定次序一一列出,不符合定义,不是离散型随机变量;(4)中的ξ,符合定义,是离散型随机变量;故选C.3.【答案】D【考点】离散型随机变量及其分布列【解析】此题暂无解析【解答】解:由题意知:P(X<4)=0.3+0.2=0.5.4.【答案】B【考点】离散型随机变量及其分布列【解析】利用概率的性质,建立方程,即可求得p的值.【解答】解:由题意,14+p+14=1∴p=12故选B.5.【答案】D【考点】离散型随机变量及其分布列【解析】此题暂无解析【解答】由概率和为1,求解得m=14.6.【答案】B【考点】离散型随机变量及其分布列【解析】先根据所给的随机变量ξ的分布列,写出各个变量对应的概率,然后根据分布列中各个概率之和是1,把所有的概率表示出来相加等于1,得到关于m的方程,解方程求得m 的值.【解答】解:∵随机变量ξ的分布列为P(ξ=k)=m(23)k,k=1,2,3∴P(ξ=1)=2m3,P(ξ=2)=4m9,P(ξ=3)=8m27,∵2m3+4m9+8m27=1,∴m=2738,故选B.7.【答案】C离散型随机变量及其分布列 【解析】先根据分布列中所有的概率和为1求出参数c ,再判断出满足 条件的ξ≥2的值,代入分布列求出值. 【解答】解:根据分布列中所有的概率和为1,得c1×2+c2×3+c3×4=1, 解得c =43∴ P(ξ=k)=431k(1+k)∴ P(ξ≥2)=P(ξ=2)+P(ξ=3)=43(12×3+13×4)=13故选C . 8.【答案】 A【考点】离散型随机变量及其分布列 【解析】先计算P(x =0),即从7个球中任意摸出两个球,取到两个白球的概率,利用古典概型概率的计算方法,先求总的基本事件数,再求所研究事件包含的基本事件数,即可得其概率,最后利用排除法即可得正确选项 【解答】解:从7个球中任意摸出两个球,共有c 72=21种取法摸出的俩个球都是白球,共有c 32=3种取法 故P(x =0)=321=17故选A 9. 【答案】 A【考点】离散型随机变量及其分布列 【解析】利用概率的和为1,以及期望求出a 、b ,即可. 【解答】解:由表格可知:0.4+a +b +0.1=1, 又EX =6,可得:2+6a +7b +0.8=6, 解得b =0.2,a =0.3, 故选:A . 10.【答案】 A【考点】离散型随机变量及其分布列 【解析】在离散型随机变量X的分布列中,随机变量各个取值的概率和等于1,本题可利用该性质求a,再利用期望计算公式求期望.【解答】解:因为a=1−35−110=310,所以E(x)=1×35+2×310+3×110=32,故选:A.11.【答案】B【考点】离散型随机变量及其分布列【解析】利用概率分布的定义得出:13+m+14+16=1,求出m,得出分布列,判断P(|X−3|=1)=P(4)+P(2),求解即可.【解答】解:根据概率分布的定义得出:13+m+14+16=1.得m=14,随机变量X的概率分布列为∴P(|X−3|=1)=P(4)+P(2)=512故选:B.12.【答案】A【考点】离散型随机变量及其分布列【解析】本题考查期望的算法和超几何分布等.【解答】解:由题可得:E(x)=a+2b=1a+b=2 3∴ a=13b=13E(ax+b)=aE(x)+b=13×1+13=23故答案为23.故选A.二、填空题(本题共计 4 小题,每题 3 分,共计12分)13.【答案】1−√2 2【考点】离散型随机变量及其分布列【解析】由分布列的性质可得0.5+1−2q+q2=1,解得q的值.【解答】解:由分布列的性质可得0.5+1−2q+q2=1,解得q=1+√22(舍去),或q=1−√22.故答案为:1−√22.14.【答案】13【考点】离散型随机变量及其分布列【解析】欲求出m值,只要利用分布列的性质:概率之和为1,列式14+13+m+112=1,即可求得.【解答】解:由分布列性质得:1 4+13+m+112=1,∴m=13.故答案为:13.15.【答案】13【考点】离散型随机变量及其分布列【解析】利用离散型随机变量的分布列的性质求解.【解答】解:由离散型随机变量ξ的分布列,知:1 6+13+16+a=1,解得a=13.故答案为:13.16.【答案】512【考点】离散型随机变量及其分布列【解析】根据随机变量取各个值的概率之和等于1,求得m的值,再根据本题即求X=3和X=4的概率之和,利用X的分布列求得X=3和X=4的概率之和.【解答】解:根据概率分布列的性质可得13+m+14+16=1,解得m=14.故有P(|X−3|=1)=P(X=2,或X=4)=14+16=512,故答案为512.三、解答题(本题共计 6 小题,每题 10 分,共计60分)17.【答案】(1)解:由统计表得:该市小微企业资金缺额的平均值x¯=10×0.05+30×0.1+50×0.35+70×0.3+90×0.2=60(万元).−−−−−4分(2)由题设ξ的所有可能取值为0,1,2,3,P(ξ=0)=C44C74=135,P(ξ=1)=C43C31C74=1235,P(ξ=2)=C42C32C74=1835,P(ξ=3)=C41C33C74=435,所以ξ的分布列为−−−−−−13分.【考点】离散型随机变量及其分布列【解析】(1)利用统计表中的数据,结合平均数计算公式能求了该市小微企业资金缺额的平均值.(2)由题设知ξ的所有可能取值为0,1,2,3,分别求出P(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),由此能求出ξ的分布列.【解答】(1)解:由统计表得:该市小微企业资金缺额的平均值x ¯=10×0.05+30×0.1+50×0.35+70×0.3+90×0.2=60(万元).−−−−−4分(2)由题设ξ的所有可能取值为0,1,2,3, P(ξ=0)=C 44C 74=135,P(ξ=1)=C 43C 31C 74=1235,P(ξ=2)=C 42C 32C 74=1835, P(ξ=3)=C 41C 33C 74=435,所以ξ的分布列为−−−−−−13分.18. 【答案】解 设X 为射手在5次射击中击中目标的次数,则X ∼B (5,23).在5次射击中,恰有2次击中目标的概率为P (X =2)=C 52×(23)2×(1−23)3=40243. 设“第i 次射击击中目标”为事件A i (i =1,2,3). 由题意可知,ξ的所有可能取值为0,1,2,3,6. P (ξ=0)=P (A 1¯A 2¯A 3¯)=(13)3=127;P(ξ=1)=P(A 1A 2¯A 3¯)+P(A 1¯A 2A 3¯)+P(A 1¯A 2¯A 3)=23×(13)2+13×23×13+(13)2×23=29;P (ξ=2)=P (A 1A 2¯A 3)=23×13×23=427;P(ξ=3)=P(A 1A 2A 3¯)+P(A 1¯A 2A 3)=(23)2×13+13×(23)2=827; P (ξ=6)=P (A 1A 2A 3)=(23)3=827. 所以ξ的分布列是注意:解本题第(2)问易因不明独立事件与独立重复试验的区别,误认为是n 次独立重复试验,可导致求得P =C 53(23)3×(13)2=80243这一错误结果.【考点】离散型随机变量及其分布列 【解析】 此题暂无解析 【解答】 略 略 19.【答案】解:(1)①设“在1次游戏中摸到i 个白球”为事件A i (i =0, 1, 2, 3), 则P(A 3)=C 32⋅C 21C 52⋅C 32=15;②设“在一次游戏中获奖”为事件B ,则B =A 2∪A 3,又P(A 2)=C 32C 52⋅C 22C 32+C 31⋅C 21C 52⋅C 21C 32=12,且A 2、A 3互斥,所以P(B)=P(A 2)+P(A 3)=12+15=710. (2)由题意可知X 的所有可能取值为0,1,2. P(X =0)=(1−710)2=9100,P(X =1)=C 21710(1−710)=2150, P(X =2)=(710)2=49100,所以X 的分布列是:离散型随机变量及其分布列 【解析】(2)确定在3次游戏中获奖次数X 的取值是0、1、2、3,求出相应的概率,即可写出分布列. 【解答】解:(1)①设“在1次游戏中摸到i 个白球”为事件A i (i =0, 1, 2, 3),则P(A 3)=C 32⋅C 21C 52⋅C 32=15;②设“在一次游戏中获奖”为事件B ,则B =A 2∪A 3, 又P(A 2)=C 32C 52⋅C 22C 32+C 31⋅C 21C 52⋅C 21C 32=12,且A 2、A 3互斥,所以P(B)=P(A 2)+P(A 3)=12+15=710.(2)由题意可知X 的所有可能取值为0,1,2.P(X =0)=(1−710)2=9100,P(X =1)=C 21710(1−710)=2150,P(X =2)=(710)2=49100,所以X 的分布列是:【答案】解:把30天的天气看成是30个可能事件,由题意已经去掉了15个可能事件(3天重度可能,12天轻度污染可能)所以要解决原题,即从剩下的15种天气可能中(包含9个“良”的可能以及其余6个“非良”的可能)随机取出3个,求为“良”的个数X 的分布列问题. 易知X 的所有可能取值为:0,1,2,3, 则P(X =0)=C 63C 153=491;P(X =1)=C 62C 91C 153=2791; P(X =2)=C 61C 92C 153=216455;P(x =3)=C 93C 153=84455.故X 的分布列为:.【考点】离散型随机变量及其分布列 【解析】虽然是一共有30个各种天气可能结果,但由题意已经先把3种重度污染结果去掉,再去掉12种轻度污染结果,然后从剩下的15种天气结果随机选出三种,求选到的为“良”的可能数X 的分布列的问题,此时就剩15种天气结果,由研究的问题可以看成两种情况:9个“良”的可能,6个“非良”的可能,则借助于组合数公式,容易算出当良的个数分别为0,1,2,3时的概率,则分布列迎刃而解. 【解答】解:把30天的天气看成是30个可能事件,由题意已经去掉了15个可能事件(3天重度可能,12天轻度污染可能)所以要解决原题,即从剩下的15种天气可能中(包含9个“良”的可能以及其余6个“非良”的可能)随机取出3个,求为“良”的个数X 的分布列问题. 易知X 的所有可能取值为:0,1,2,3, 则P(X =0)=C 63C 153=491;P(X =1)=C 62C 91C 153=2791; P(X =2)=C 61C 92C 153=216455;P(x =3)=C 93C 153=84455.故X 的分布列为:.21.【答案】解:由题意知变量ξ的可能取值是1,2,3, P(ξ=1)=C 3134=127, P(ξ=2)=C 32(2C 41+C 42)34=1427,P(ξ=3)=C 42A 3334=1227,∴ ξ的分布列是【考点】离散型随机变量及其分布列 【解析】根据题意得到变量的可能取值是1,2,3,结合变量对应的事件根据等可能事件的概率公式写出变量对应的概率,写出分布列. 【解答】解:由题意知变量ξ的可能取值是1,2,3,P(ξ=1)=C 3134=127, P(ξ=2)=C 32(2C 41+C 42)34=1427,P(ξ=3)=C 42A 3334=1227,∴ ξ的分布列是22. 【答案】解:(1)数学合格率p 1=40+32+8100=45, (1)物理合格率p 2=40+29+6100=34. (2)(2)(I)随机事件X 的取值为9,4,2,−3, P(X =9)=45×34=35,….3 P(X =4)=(1−45)×34=320,…4 P(X =2)=45×(1−34)=15,…5 P(X =−3)=(1−45)×(1−34)=120, (6)X 的分布列:EX =9×35+4×320+2×15+(−3)×120=254. (8)(II)设这4名学生物理辅导后测试合格人数为n(n =0, 1, 2, 3, 4),则由题意得:5n −2(4−n)≥13,解得n ≥3,故n =3或n =4, (10)∴ 这四名学生物理考前辅导后进行测试所赢得的机器人操作时间不少于13小时的概率:p =C 43(34)3(1−34)+C 44(34)4=189256. (12)【考点】离散型随机变量及其分布列 【解析】(1)由等可能事件概率计算公式能求出数学合格率和物理合格率.(2)(I)随机事件X 的取值为9,4,2,−3,分别求出相应的概率,由此能求出X 的分布列和EX .(II)设这4名学生物理辅导后测试合格人数为n(n =0, 1, 2, 3, 4),则由题意得:5n −2(4−n)≥13,由此能求出这四名学生物理考前辅导后进行测试所赢得的机器人操作时间不少于13小时的概率. 【解答】解:(1)数学合格率p 1=40+32+8100=45, (1)物理合格率p 2=40+29+6100=34. (2)(2)(I)随机事件X 的取值为9,4,2,−3, P(X =9)=45×34=35, (3)P(X =4)=(1−45)×34=320,…4 P(X =2)=45×(1−34)=15, (5)P(X =−3)=(1−45)×(1−34)=120,…6 X 的分布列:EX =9×35+4×320+2×15+(−3)×120=254. (8)(II)设这4名学生物理辅导后测试合格人数为n(n =0, 1, 2, 3, 4),则由题意得:5n −2(4−n)≥13,解得n ≥3,故n =3或n =4, (10)∴ 这四名学生物理考前辅导后进行测试所赢得的机器人操作时间不少于13小时的概率:p =C 43(34)3(1−34)+C 44(34)4=189256. (12)。
高中数学2-3检测:离散型随机变量(附解析)
1.下列变量中,不是随机变量的是()A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数2.下列命题中,正确的个数是()①15秒内,通过某十字路口的汽车的辆数是随机变量;②在一段时间内,候车室内候车的旅客人数是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后从某一出口退场的人数是随机变量.A.1 B.2 C.3 D.43.判断下面问题是否构成随机试验.(1)京哈T17次特快列车到达哈尔滨站是否正点.(2)1976年辽宁海城地震.4.已知下列随机变量:①10件产品中有2件次品,从中任选3件,取到次品的件数X;②某教学资源网站一天内的点击量X;③某运动员在一次110米跨栏比赛中的成绩X;④在体育彩票的抽奖中,一次摇号产生的号码数X.其中X是离散型随机变量的是()A.①②③B.②③④C.①②④D.③④5.抛掷两颗骰子,所得点数之差的绝对值为X,那么X=4表示的随机试验的结果是() A.一颗是1点,一颗是5点B.一颗是2点,一颗是6点C.两颗都是2点D.一颗是1点,一颗是5点或一颗是2点,一颗是6点6.从学号分别为1,2,3,4,5,6的6名同学中,随意选出2名同学去打扫卫生,设选出的2名同学的学号之和为X,则X的所有可能取值的个数为()A.11 B.8 C.9 D.107.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是()A.第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.第4次击中目标8.若用随机变量X表示从一个装有1个白球、3个黑球、2个黄球的袋中取出的4个球中不是黑球的个数,则X 的取值不可能为()A.0 B.1 C.2 D.39.在一次比赛中,需回答三个问题,比赛规则规定:每题回答正确得100分,回答不正确得-100分,则选手甲回答这三个问题的总得分ξ的所有可能取值是____________.10.小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),用ξ表示小王所获奖品的价值,则ξ的可能取值为________________.1.下列变量中,不是随机变量的是()A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数[解析]标准状态下,水沸腾时的温度是一个确定值,而不是随机变量.故选B.2.下列命题中,正确的个数是()①15秒内,通过某十字路口的汽车的辆数是随机变量;②在一段时间内,候车室内候车的旅客人数是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后从某一出口退场的人数是随机变量.A.1 B.2 C.3 D.4[解析]由随机变量的概念知四个命题都正确.[答案] D3.判断下面问题是否构成随机试验.(1)京哈T17次特快列车到达哈尔滨站是否正点.(2)1976年辽宁海城地震.[解](1)是随机试验.因为它满足随机试验的三个条件:即在相同的情况下可重复进行(每天一次);所有可能的结果是明确的(正点或误点);试验之前不能肯定会出现哪种结果.(2)不是随机试验.因为它不可重复进行.4.已知下列随机变量:①10件产品中有2件次品,从中任选3件,取到次品的件数X;②某教学资源网站一天内的点击量X;③某运动员在一次110米跨栏比赛中的成绩X;④在体育彩票的抽奖中,一次摇号产生的号码数X.其中X是离散型随机变量的是()A.①②③B.②③④C.①②④D.③④[解析]③中X的值可在某一区间内取值,不能一一列出,故不是离散型随机变量.[答案] C 5.抛掷两颗骰子,所得点数之差的绝对值为X,那么X=4表示的随机试验的结果是() A.一颗是1点,一颗是5点B.一颗是2点,一颗是6点C.两颗都是2点D.一颗是1点,一颗是5点或一颗是2点,一颗是6点[解析]因为|5-1|=4,|6-2|=4,所以选D.[答案] D6.从学号分别为1,2,3,4,5,6的6名同学中,随意选出2名同学去打扫卫生,设选出的2名同学的学号之和为X,则X的所有可能取值的个数为()A.11 B.8 C.9 D.10[解析]易知X的所有可能取值为3,4,5,6,7,8,9,10,11,共9个.[答案] C7.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是()A.第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.第4次击中目标[解析]ξ=5表示射击5次,即前4次均未击中目标,否则不可能射击第5次,但第5次是否击中目标不一定.故选C.8.若用随机变量X表示从一个装有1个白球、3个黑球、2个黄球的袋中取出的4个球中不是黑球的个数,则X的取值不可能为()A.0 B.1 C.2 D.3[解析]由于白球和黄球的个数和为3,黑球的个数是3,所以4个球中不是黑球的个数分别可能是1,2,3,X不可能取0.故选A.9.在一次比赛中,需回答三个问题,比赛规则规定:每题回答正确得100分,回答不正确得-100分,则选手甲回答这三个问题的总得分ξ的所有可能取值是____________.[解析]因为答对的个数可以取0,1,2,3,所对应的得分为-300,-100,100,300,∴ξ可取-300,-100,100,300.[答案]-300,-100,100,30010.小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),用ξ表示小王所获奖品的价值,则ξ的可能取值为________________.[解析]若第一关错,没有获得奖励,则ξ=0;若第一关答对,第二关答错,则ξ=1000;若第一、二关答对,第三关错,则ξ=3000;若第一、二、三关都答对,则ξ=6000.综上可得ξ可取0,1000,3000,6000. [答案]0,1000,3000,6000。
高三复习数学211_离散型随机变量(有答案)
2.1.1 离散型随机变量一、解答题。
1. 解答下列小题:随机变量:如果随机试验的结果可以用________来表示,那么这样的变量叫作随机变量.随机变量常用希腊字母ξ、η等表示;离散型随机变量:对于随机变量可能取的值,可以________,这样的随机变量叫作离散型随机变量;连续型随机变量:对于随机变量可能取的值,可以________,这样的随机变量叫作连续型随机变量.2. (2016⋅福州模拟题)投掷均匀硬币一次,随机变量为()A.掷硬币的次数B.出现正面的次数C.出现正、反面次数之和D.出现正面或反面的次数3. 如果X是一个离散型随机变量,则假命题是()A.X取某几个值的概率等于分别取其中每个值的概率之和;B.X取每一个可能值的概率都是非负数;C.X在某一范围内取值的概率大于它取这个范围内各个值的概率之和;D.X取所有可能值的概率之和为1;4. 下列随机变量中不是离散型随机变量的是()A.某人早晨在火车站等出租车的时间XB.盒子里有除颜色不同,其他完全相同的红球和白球各5个,从中摸出3个球,白球的个数XC.某人投篮10次投入的次数XD.小明答20道选择题答对的道数X5. ①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ.其中的ξ是连续型随机变量的是()A.③B.①C.①②③D.②6. 某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费,若行驶路程超出4km,则按每超出1km加收2元计费(超出不足1km的部分按1km 计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按1km路程计费),这个司机—次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费也是一个随机变量.求租车费η关于行车路程ξ的关系式;已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?7. 袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,取后不放回,直到取出的球是白球为止,求所需要的取球次数.8. 袋中有3个白球、5个黑球,从中任取2个,可以作为随机变量的是()A.取到白球的个数B.至少取到1个白球C.取到的球的个数D.至多取到1个白球9. 写出下列随机变量的可能取的值,并说明随机变量所取的值和所表示的随机试验的结果.从标有数字1,2,3,4,5,6的6张卡片中任取两张,所取卡片上的数字之和.10. 小结与反思__________________________________________________________________________________________________________________________________________________________________________________________________________________________参考答案与试题解析2.1.1 离散型随机变量一、解答题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学离散型随机变量综合测试题(附答案)选修2-3 2.1.1 离散型随机变量
一、选择题
1.①某机场候机室中一天的旅客数量X;②某寻呼台一天内收到的寻呼次数X;③某篮球下降过程中离地面的距离X;
④某立交桥一天经过的车辆数X.其中不是离散型随机变量的是()
A.①中的X B.②中的X
C.③中的X D.④中的X
[答案] C
[解析] ①,②,④中的随机变量X可能取的值,我们都可以按一定次序一一列出,因此,它们都是离散型随机变量;
③中的X可以取某一区间内的一切值,无法按一定次序一一列出,故③中的X不是离散型随机变量.
2.一个袋子中有质量相等的红,黄,绿,白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是()
A.小球滚出的最大距离
B.倒出小球所需的时间
C.倒出的三个小球的质量之和
D.倒出的三个小球的颜色的种数
[答案] D
[解析] A小球滚出的最大距离不是一个随机变量,因为不能明确滚动的范围;B倒出小球所需的时间不是一个随机变量,因为不能明确所需时间的范围;C三个小球的质量之和是一个定值,可以预见,但结果只有一种,不是随机变量,就更不是离散型随机变量;D颜色的种数是一个离散型随机变量.
3.抛掷两枚骰子,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为,则“4”表示的试验结果是()
A.第一枚6点,第二枚2点
B.第一枚5点,第二枚1点
C.第一枚2点,第二枚6点
D.第一枚6点,第二枚1点
[答案] D
[解析] 只有D中的点数差为6-1=54,其余均不是,应选D.
4.设某项试验的成功率是失败率的2倍,用随机变量描述1次试验的成功次数,则的值可以是()
A.2 B.2或1
C.1或0 D.2或1或0
[答案] C
[解析] 这里“成功率是失败率的2倍”是干扰条件,对1次试验的成功次数没有影响,故可能取值有两种0,1,故选
C.
5.下列变量中,不是离散型随机变量的是()
A.从2019张已编号的卡片(从1号到2019号)中任取一张,被取出的号数
B.连续不断射击,首次命中目标所需要的射击次数
C.某工厂加工的某种钢管内径与规定的内径尺寸之差1 D.从2019张已编号的卡片(从1号到2019号)中任取2张,被取出的卡片的号数之和1
[答案] C
[解析] 离散型随机变量的取值能够一一列出,故A,B,D 都是离散型随机变量,而C不是离散型随机变量,所以答案选C.
6.给出下列四个命题:
①15秒内,通过某十字路口的汽车的辆数是随机变量;
②在一段时间内,候车室内候车的旅客人数是随机变量;
③一条河流每年的最大流量是随机变量;
④一个剧场共有三个出口,散场后从某一出口退场的人数是随机变量.
其中正确命题的个数是()
A.1 B.2
C.3 D.4
[答案] D
[解析] 由随机变量的概念知四个命题都正确,故选D. 7.随机变量X是某城市1天之中发生的火警次数,随机变量Y是某城市1天之内的温度.随机变量是某火车站1小时内的旅客流动人数.这三个随机变量中不是离散型随机变量的是()
A.只有X和 B.只有Y
C.只有Y和 D.只有
[答案] B
[解析] 某城市1天之内的温度不能一一列举,故不是离散型随机变量,故选B.
8.①某电话亭内的一部电话1小时内使用的次数记为X;
②某人射击2次,击中目标的环数之和记为X;
③测量一批电阻,阻值在950~1200之间;
④一个在数轴上随机运动的质点,它在数轴上的位置记为X. 其中是离散型随机变量的是()
A.①② B.①③
C.①④ D.①②④
[答案] A
[解析] ①②中变量X所有可能取值是可以一一列举出来的,是离散型随机变量,而③④中的结果不能一一列出,故不是离散型随机变量.
9.抛掷一枚均匀骰子一次,随机变量为()
A.掷骰子的次数
B.骰子出现的点数
C.出现1点或2点的次数
D.以上都不正确
[答案] B
10.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为,则“=5”表示的试验结果是() A.第5次击中目标
B.第5次末击中目标
C.前4次未击中目标
D.第4次击中目标
[答案] C
[解析] 击中目标或子弹打完就停止射击,射击次数为=5,则说明前4次均未击中目标,故选C.
二、填空题
11.一木箱中装有8个同样大小的篮球,编号为1、2、3、4、5、6、7、8,现从中随机取出3个篮球,以表示取出的篮球的最大号码,则=8表示的试验结果有______种.
[答案] 21
[解析] 从8个球中选出3个球,其中一个的号码为8,另两个球是从1、2、3、4、5、6、7中任取两个球.共有C27=21种.
12.同时抛掷5枚硬币,得到硬币反面向上的个数为,则的所有可能取值的集合为________.
[答案] {0,1,2,3,4,5}
13.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出3个球,以表示取出的最大号码,则=6表示的试验结果是
___________________________________________________ _____________________
___________________________________________________ _____________________.
[解析] 从6个球中选出3个球,其中有一个是6号球,其余的2个球是1,2,3,4,5号球中的任意2个.
[点评] “=6”表示取出的3个球的最大号码是6,也就是说,从6个球中随机选出3个球,有一个球是6号球,其余的2个球是1,2,3,4,5号球中的任意2个.
14.一用户在打电话时忘记了号码的最后三个数字,只记得最后三个数字两两不同,且都大于5,于是他随机拨最后三个数字(两两不同),设他拨到所要号码的次数为,则随机变量的可能取值共有________种.
[答案] 24
[解析] 后三个数字两两不同且都大于5的电话号码共有A34=24(种).
三、解答题
15.盒中有9个正品和3个次品零件,每次从中取一个零件,如果取出的是次品,则不再放回,直到取出正品为止,设取得正品前已取出的次品数为.
(1)写出的所有可能取值;
(2)写出=1所表示的事件.
[解析] (1)可能取的值为0,1,2,3.
(2)=1表示的事件为:第一次取得次品,第二次取得正品.16.写出下列随机变量的可能取值,并说明随机变量的所取值表示的随机试验的结果:
(1)从标有1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和;
(2)某单位的某部电话在单位时间内收到的呼叫次数Y.
[解析] (1)设所取卡片的数字之和为,则的可能取值为
3,4,…,11,其中=3,表示取出标有1,2的两张卡片,…,=11,表示取出标有5,6的两张卡片.
(2)Y可取0,1,2,…,n,…,Y=i,表示被呼叫i次,其中i=0,1,2,….
17.小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1 000元,3 000元,6 000
元的奖品(不重复设奖),小王对三关中每个问题回答正确的概率依次是45,34,23,且每个问题回答正确与否相互之间没有影响,用X表示小王所获奖品的价值,写出X的所有可能取值及每个值所表示的随机试验的结果.
[解析] X的可能取值为0,1 000,3 000,6 000.
X=0,表示第一关就没有通过;
X=1 000,表示第一关通过,而第二关没有通过;
X=3 000,表示第一、二关通过,而第三关没有通过;
X=6 000,表示三关都通过.
18.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.
(1)一个袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数;
(2)一袋中装有5只同样大小的球,编号为1,2,3,4,5.现从该袋中随机取出3只球,被取出的最大号码数;
(3)电台在每个整点都报时,报时所需时间为0.5分钟,某人随机打开收音机对表,他所等待的时间分.
[解析] (1)可取0,1,2.
=i,表示取出的3个球中有i个白球,3-i个黑球,其中i=0,1,2.
(2)可取3,4,5.
=3,表示取出的3个球的编号为1,2,3;
=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;
=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3,5或2,4,5或3,4,5.
(3)的可能取值为区间[0,59.5]内任何一个值,每一个可能取值表示他所等待的时间.。