数学教育概论重点
数学教育概论
1、简述“新数运动”失败的原因。
20世纪60年代新数运动起因:1957年苏联人造卫星早于美国上天,美国朝野震惊.1958年,美国国会通过国防教育法.以布尔巴基学派为代表的数学家发起“新数学”教育改革,又称为“新数运动”.当时的思潮是,数学教材内容太陈旧,基本上没有反映20世纪的数学成就,一大批新的数学教材在西方各国涌现,用“新数学”代替“旧数学”的改革运动席卷全球.新数运动的指导思想是:1.增加现代数学内容,如集合、逻辑、群、环、域、向量和矩阵、微积分、概率论、二进制数系等等;2.强调公理化方法,提倡“布尔巴基”的结构主义;3.废弃欧几里德几何;4.消减基本运算,用计算器代替基本的运算技能;5.提倡发现教学法,要求学生像数学家发现定理那样去学习数学.经历了20世纪60年代和70年代,新数运动最终以失败告终.原因:向学生提出了不切实际的要求,教学内容过深过难,学生无法真正理解和接受;同时,基本知识和基本技能未能得到足够的重视,学生的数学基本功不扎实,而高深的数学知识又难以学懂.(接着,国际数学教育界提出了“回到基础”)2、如何理解“基础”与“创新”的关系。
万丈高楼平地起。
做任何事情,基础总是重要的。
我国的数学教育,一向注重“双基”的教学,即关注学生的“数学基础知识”和“数学基本技能”的培养。
那么,打好基础又是为了什么呢?当然是为了发展和创造。
缺乏基础的创新是空中阁楼,没有创新指导的打基础是傻练。
因此,优质的数学教育,必须是给学生打下扎实的基础,并且能够培养学生的创新精神,才能获得完美的个性发展。
(基础=四基:基本知识,基本技能,基本思想,基本活动经验。
创新=技巧)3、教学设计的三要素。
教案三要素——完成数学教学设计需要考虑三方面的问题 明确教学目标【教学目标】形成设计意图制定教学过程4、教学过程的基本环节有哪些?教学模式(一堂公开课)(1)创设情境,引入课题;(2)合作探究,发现定理;(3)解决问题,应用定理;(4)动手练习,自主探究;(5)梳理知识,形成系统;(6)分层作业,因材施教。
数学教学概论期末考点
1、中学数学教学内容的编排原则是什么?1 心理原则2系统性原则3 一体化原则4 兼顾性原则2、中学教学内容的编排体系有哪几个形式?直线前进式和螺旋上升式3、数学的特征是什么?思维的严谨性、高度的抽象性、应用的广泛性4、义务教育阶段的数学教学目标是什么?.1、获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。
2. 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题、分析和解决问题的能力。
3. 了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。
总体目标从以前的“双基”发展到现在的“四基” 基础知识、基本技能、基本思想和基本活动经验。
全面的反映出学生的数学综合素养。
强调在学习过程中,发现问题和提出问题与分析解决问题并重。
这就要求我们在围绕“基础知识与基本技能、过程与方法、情感态度与价值观”目标进行教学设计时,创新情境,丰富教学活动;在活动过程中,让学生掌握应有的基础知识和数学技能,增强学生数学思维,培养学生对待学习和其他事物的科学态度。
5、中学数学的教学基本原则主要包括那几个方面?谈谈自己的看法1、严谨性与量力性相结合原则2、抽象与具体相结合原则3、理论与实际相结合原则4、巩固与发展相结合原则5、数与形相结合原则6、传授知识与发展能力相结合原则6、什么叫做教学法?如何看待传统的教学方法?如何看待新的教学方法?两者有何关系?数学教学方法就是在数学教学中教师的工作方式和相应的学生的学习活动方式及其相互之间的有机联系,它包括各种具体的教学方式和手段,其目的就是为了完满地完成预定的数学教学任务。
在长期的中学数学教学中所形成的一些常用的教学方法,这些教学方法在传统的中学数学教学中行之有效,曾经发挥了重要的作用,即使在现代数学教学中这些教学方法也能够经过一定的变化与现代的教学方法相结合而发挥作用,更何况在我国现阶段仍以传统教学为主的情况下,认真地掌握和运用传统的教学方法是极为重要的。
(完整word版)数学教育概论知识点
乔治?波利亚是美籍匈牙利数学家。
他有著名的三本书:《怎样解题》(1944)、《数学的发现》(1954)、《数学与猜想》(1961)。
其中《怎样解题》一书被译成17种文字。
波利亚提供的“怎样解题”表(第48-49页)分四步:1.了解问题;2.拟订计划;3.实行计划;4.回顾。
弗赖登塔尔认识的数学教育有五个主要特征1.情境问题是教学的平台;2.数学化是数学教育的目标;3.学生通过自己努力得到的结论和创造是教育内容的一部分;4.“互动”是主要的学习方式;5.学科交织是数学教育内容的呈现方式。
这些特征可以用三个词来概括——现实、数学化、再创造。
数学化:人们在观察、认识和改造客观世界的过和中,运用数学的思想和方法来分析和研究客观世界的种种现象并加以整理和组织的过程。
再创造:强调学生学习数学是一个经验、理解和反思的过程,是以学生为主体的学习,其核心过程是数学过程再现。
高等师范院校面临新挑战答:高中的新课程标准让广大的高中数学教师有些望而生畏,他们感到许多选修课的内容他们并没有学过,许多课程他们没法开设。
比如,高中选修课系列3涉及高等数学,包括数学史选讲,信息安全与密码,球面上的几何,对称与群,欧拉公式与闭曲面分类,三等分角与数域扩充等。
由于新一轮的课程改革强调要让学生主动参与教学,要鼓励学生积极展开讨论,探索数学知识的来龙去脉和提出问题,因此学生提出的问题中,有许多使教师感到难堪,有的他们没法回答,有的他们回答不清楚。
基本活动经验的类型1.直接数学活动经验;3.间接数学活动经验;3.专门设计的数学活动经验;4.意境联结性数学活动经验。
基础教育部分一.“标准”有哪些改革目标?1.指导思想:以邓小平同志的“教育要面向现代化,面向世界,面向未来”和江泽民同志“三个代表”重要思想为指导。
2.教育目标方面:培养爱国精神和“四有新人”等。
3.课程内容:改变课程内容“难、繁、偏、旧”和过于注重书本知识的现状。
4.课程结构方面:改变过于强调学科本位、科目过多和缺乏整合的现状,设置综合课程。
数学概论知识点总结
数学概论知识点总结数学是一门古老而又深奥的学科,它涵盖了很多方面,包括代数、几何、微积分、概率论、数论等多个分支。
数学的发展史可以追溯到古希腊和古埃及的文明,它在科学、工程、经济学等领域都有重要的应用。
本文将对数学概论的一些基本知识点进行总结,希望读者能够对数学有一个更全面的了解。
1.数学符号和公式数学符号是数学语言的基础,它用于表示数学对象、关系和运算。
常见的数学符号包括加减乘除、平方根、积分、求和、向量等。
这些符号具有明确的含义,可以简洁地表达数学概念和关系。
数学公式是由数学符号组成的表达式,用于描述数学问题和推导数学结论。
数学符号和公式是数学推理和证明的重要工具,也是应用数学的基础。
2.数学基本概念数学的基本概念包括数、集合、函数、等比数列、几何图形等。
数是数学的基本对象,包括自然数、整数、有理数和实数等。
集合是具有某种共同特征的对象的总体,函数是一个映射关系,即每个元素在定义域上对应一个元素在值域上。
等比数列是一种特殊的数列,它的每个元素与前一个元素的比值都相同。
几何图形是平面上的图形,包括点、线、面等。
这些基本概念是数学研究的基础,也是数学建模和解决实际问题的基础。
3.数学推理和证明数学推理是利用数学定律和规则对数学问题进行推导和分析的过程。
数学证明是通过一系列逻辑推理和推断,证明或反驳一个数学结论的过程。
数学推理和证明是数学研究和创新的核心部分,也是数学教学的重要内容。
它们能够帮助人们深刻理解数学问题的本质,提高数学解决问题的能力。
4.代数与几何代数是数学的一个重要分支,它研究数和数学对象之间的关系和运算规律。
代数包括代数方程、多项式、群论、环论、域论等多个分支。
几何是数学的另一个重要分支,它研究空间和图形的性质和关系。
几何包括平面几何和立体几何,它有着丰富的几何定理和几何推理方法。
代数和几何是数学的两大支柱,它们相互补充,共同构成了数学的重要内容。
5.微积分与数理统计微积分是数学的一个重要分支,它研究变化率和积分的概念和方法。
大学数学教育概论知识点总结
大学数学教育概论知识点总结大学数学教育概论知识点总结从小学到大学,可以说我一直都在接受教育,可是坦白说,要不是这学期学习了教育学,我根本就不会知道,除了儒家思想的因材施教这一古文化遗产涉及到教育之外,我所接受的十几年的教育竟然拥有如此广阔的研究领域,胡老师打破传统教学方式采用的理论+案例+我的授课方法更是让我对教育这门学科刮目相看,也改变了之前对教育学的幼稚的偏见。
记得第一次翻开《新编教育学》这本书时,我发现里面的内容特别枯燥乏味,几乎都是一些关于教育与社会呀,教育原则和方法啥的,好像与我们的生活经验、情感体验有很大的距离。
于是就想,学不学教育学用处不大,不学教育学以后照样能教好学。
后来上了胡老师的课之后,我才明白,我完全误解了教育学,更别谈其功能了,特别是自己亲自上讲台谈论《全身反应法在小学英语教学中的运用》后感触更深。
教育学是师范类学生的必修课,其目的是使学生通过教育学的学习掌握教育的基本原理,树立正确的教育思想,培养从事教育教学的工作能力等。
由此可见,教育学对培养未来合格人民教师的作用是确信无疑的。
如果大家都跟我一样继续持有这种偏见,教育的未来和学生的前程就很危险了。
经过一个学期的学习,我发现老师很精明,想必他料到了我们会对教育学产生偏见,并且可能会不喜欢上这门课,所以就采用理论+案例+我的创新教学方法,给我们耳目一新的感觉。
胡老师采用的这种创新教学方法,以理论与实际有机整合为宗旨,遵循教学目的的要求,以案例为基本素材,把整个学期合理整合为课前分组搜寻典型案例、课上学生共同探讨和最后老师分析总结案例三个阶段,将我们引入一个特定事件的真实情境中,培养了我们反思、创新的能力,使理论与实际得到紧密结合。
课前我们在老师的指导下,深入角度地上网搜索具有一定代表性的典型事件及其相关的内容、情节、过程和处理方法等,提高了我们的实际操作能力;课堂上我们以所搜集到的案例为基本素材,或单独站上讲台,或组织团体辩论,思想深刻的胡老师也积极与我们双向和多向互动,_等对话和研讨,培养了我们的批判反思意识及团体合作能力,并促使我们充分理解了课前课上研究现象的复杂性、变化性、多样性等属性,在思索过程中考虑如何将教学理论运用于实际。
第1讲数学教育概论
第1讲数学教育概论
数学教育概论是一门重要的理论课程,是数学教育学科的基础课程,
它包括数学教育发展的历史、内容概念与教学方法、教育心理学等内容,
为数学教育学科建设和数学教育实践提供基础理论依据。
数学教育发展的历史主要从狄拉克对数学运用抽象思维的概念到现代
数学教育理论的发展,反映了数学教育及其发展的实际情况。
狄拉克认为,数学是抽象思维的研究,其历史也追溯到古希腊,他提出了“建立系统的
数学”,代表着数学教育理论的最初阶段,也是现代数学教育理论发展的
基础。
到20世纪的晚期,数学教育理论及其发展又有了新的变化,数学
教育从一般意义上的“讲授”转变为“活动式”的学习数学。
在这种思想
指导下,数学教育走向更广阔的空间,也更加重视学生自主学习的能力。
数学教育内容概念和教学方法涉及到数学内容的认知,这就引出了数
学教育中的意义概念和内容理论、抽象原理的把握和系统建构、解决问题
的策略和方法以及具体数学技能等内容。
数学教学概论重点
第一章课程是指学校学生所应学习的学科总和及其进程与安排。
中国古代的数学教材是《九章算术》,西方常用的数学教材则是欧几里德的《几何原本》。
前苏联基谢廖夫的《几何》、《代数》本教科书。
20世纪60~70年代,世界的数学课程曾经发生重大变革,这就是西方开展的“新数学”运动。
20世纪70年代提出要“回到基础”“教育要面向现代化,面向世界,面向未来20世纪90年代创新教育的口号从新中国成立以来的50余年中,改革头痛医头,脚痛医脚数学新课程改革的背景(Why?)1.时代的发展2.国际潮流3.反思国内现状教育既应提供一个复杂的、不断变动的世界地图,又应提供有助于在这个世界航行的指南针公民的素质要求创新精神实践能力收集和处理合作交流学会学习,终身发展联合国教科文组织提出的教育四大支柱:Learn to know (学会认知)Learn to do (学会做事)Learn to live together(学会与他人共同生活)Learn to be (学会生存)核心learn to innovate (学会创新)美国《2000年教育战略》“leave no one behind ”(不让一个孩子掉队)国际课程改革的共同特征:选择性、现代性、创新性、人文性教师累,学生苦,负担重,效率低教师最大的痛苦,被迫搞应试,学生最大的痛苦,被迫做机器。
我国基础教育的优势与不足优势:中小学生学习勤奋,基本功扎实,基础知识和基本技能熟练,等等.(表现:国际评价中成绩优秀)问题与不足:过分重视知识的传授,忽视学生学习兴趣和态度的培养。
过于注重书本知识的现状,课程内容繁难偏旧过分重视学科体系,忽视课程内容与学生生活以及现代社会发展的联系。
过分强调接受学习、模仿训练,忽视学生的主动探索和合作交流,以及创新意识的培养。
过分强调评价的甄别和选拔作用,忽视对学生纵向发展的关注。
学生负担重义务教育新课程研制与实验1996-1998年,义务教育课程改革酝酿1999年,义务教育课程改革形成决策2000年,义务教育课程改革开始研制2005年秋季,义务教育课程改革全面推广义务教育阶段各起始年级原则上都使用新课程。
数学教育概论总结
THANKS
感谢看
现代数学教育
当前,数学教育不断改革和创新, 注重培养学生的创新能力和实践能 力,同时强调跨学科整合和个性化 教学。
数学教育的重要性
基础学科
思维能力
数学是自然科学、社会科学和技术领域的 基础学科,掌握数学知识和技能对于个人 的职业发展和国家科技发展至关重要。
数学教育能够培养学生的逻辑思维、抽象 思维和创新思维等能力,有助于提高学生 的智力水平和综合素质。
问题解决能力
个人成长
数学问题解决能力是一种重要的实践能力 ,能够帮助学生解决日常生活和工作中的 实际问题。
通过数学学习,学生可以培养自主学习、 团队协作和克服困难的品质,促进个人成 长和发展。
02 数学教学方法和 技巧
数学教学方法和技巧
• 数学教育是培养学生逻辑思维、问题解决和抽象思维能力的关 键学科。本文将概述数学教育的重要性、教学方法和技巧,以 及面临的挑战和未来发展趋势。
数学教育概论总结
汇报人: 202X-01-07
目 录
• 数学教育概述 • 数学教学方法和技巧 • 数学教育的挑战和解决方案 • 数学教育的发展趋势和未来展望 • 数学教育实践案例分析
01 数学教育概述
数学教育的定义和目标
定义
数学教育是培养学生数学素养和思维 能力的重要途径,通过教授数学知识 、技能和思想,帮助学生建立数学基 础,提高解决问题的能力。
目标
培养学生的数学思维能力、问题解决 能力、推理能力和创新精神,同时促 进学生的智力发展和个人成长。
数学教育的历史和发展
古代数学教育
古代文明时期,数学教育主要作 为学术和实用技能进行传授,如 古埃及、古希腊和古印度的数学
教育。
数学教育概论(复习材料)
精心整理数学教育概论期末考查内容:课程标准、数学教育理论、教育观点、教学设计一、普通高中课程标准(实验)❖理念❖教学建议普通高中课程基本理念❖构建共同基础,提供发展平台❖提供多样课程,适应个性选择❖❖❖❖❖❖❖❖内容:1.❖ ❖❖2.❖3.❖❖4.❖❖体现:直观感知、观察发现、归纳类比、空间想像、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构。
❖作用:有助于学生对客观事物中蕴涵的数学模式进行思考和做出判断,在形成理性思维中发挥着独特的作用。
5.发展学生的数学应用意识❖载体:基本内容的实际背景,“数学建模”的学习活动,体现数学某些重要应用的专题课程。
❖作用:力求使学生体验数学在解决实际问题中的作用、数学与日常生活及其他学科的联系,促进学生逐步形成和发展数学应用意识,提高实践能力。
6.与时俱进地认识“双基”❖我国的数学教学具有重视双基的传统,应继续发扬。
❖应重新审视基础知识、基本技能和能力的内涵,形成符合时代要求的新的“双基”。
例如,算法,数据处理、统计知识等作为新的数学基础知识和基本技能;同时,应删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容,克服“双基异化”的倾向。
7.强调本质,注意适度形式化❖要学习形式化的表达,全盘形式化是不可能的,要强调对数学本质的认识。
❖形式化的过程:由现象到形式。
8.体现数学的文化价值❖数学是人类文化的重要组成部分。
数学课程应适当反映数学的历史、应用和发展趋势,数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神。
❖9.❖❖10.❖结果过程❖❖❖❖❖❖❖❖内容:12❖强调对基本概念和基本思想的理解和掌握。
注重体现基本概念的来龙去脉。
引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质。
❖重视基本技能的训练,注意避免过于繁杂和技巧性过强的训练。
❖与时俱进地审视基础知识与基本技能3、注重联系,提高对数学整体的认识❖教学中,要注重数学的不同分支和不同内容之间的联系,数学与日常生活的联系,数学与其他学科的联系。
数学教育学概论
第一章 数学教育学概论
三论观——背景与观点
数学教师需要更多的知识背景,比如关于学生 的知识、关于课程的知识等。同时在更多的研 究发展下,数学教育领域和范围都扩大了,形 成了以“数学学习论、数学教学论和数学课程 论”为主体框架的数学教育研究体系,因此数 学教育研究对象也就变为:数学学习、数学教 学和数学课程。本教材就是主要以此框架进行 设计编写的。
第一章 数学教育学概论
数学教育研究方法——质的研究方法
指深入观察分析教育现象,对这些现象进行 剖析,并在一定意义上进行解释,从而获得 一定结论,给其他人以启示的研究方法。表 现方式常有:个案分析法,案例分析法等。 优点:能够丰富人们对同一教育现象的认识 与理解; 局限:对教育现象的认识不具有确定性,理 论结果的运用有待于使用者个体的理解。
第一章 数学教育学概论
数学教育研究方法——调查法
根据特定的教育研究目的,制定调查方案,收集有关数 学教育活动的材料,然后进行分析处理,得到一定的结 论的方法。 这种方法从范畴上来说是“实证”的方法。 从方式上来看,可有访谈、问卷和测试等; 优点是:材料真实可信; 局限是:对材料的获取和分析可能因人而异,结论也就 可能实际产生偏差; 因此,运用这种方法,制定合理的调查方案显得很重要, 它必然包含一定的理论假设。横向方向:比较研究 纵向方向:群体研究、个体研究
第一章 数学教育学概论
我国基础教育数学课程改革——机遇与 挑战
我国数学课程改革的有关历史
50年代学习苏联,大容量,小步走; 60年代确立自己的特色:双基(基本知识与基本技能)与三大能力(运
算能力,空间想象能力,逻辑思维能力); 80年代高考制度恢复,我国教育特点恢复、调整、提高,并提出素质教 育口号; 90年代,启动的是新教材的教育实验;90年代末,课程标准的编制 (现在已经完成义务教育,高中课程标准(实验稿)的编写),并实验; 2001年秋季,全国分试验区实验。目前,初中以下基本上全国全面实 施新课程,高中在2005年推广,并计划在2007年全面实施。数学教 育历史悠久,数学是传统教育中重要内容
数学教育概论
1、简述“新数运动”失败的原因.20世纪60年代新数运动起因:1957年苏联人造卫星早于美国上天,美国朝野震惊.1958年,美国国会通过国防教育法.以布尔巴基学派为代表的数学家发起“新数学"教育改革,又称为“新数运动".当时的思潮是,数学教材内容太陈旧,基本上没有反映20世纪的数学成就,一大批新的数学教材在西方各国涌现,用“新数学”代替“旧数学”的改革运动席卷全球.新数运动的指导思想是:1.增加现代数学内容,如集合、逻辑、群、环、域、向量和矩阵、微积分、概率论、二进制数系等等;2。
强调公理化方法,提倡“布尔巴基"的结构主义;3。
废弃欧几里德几何;4.消减基本运算,用计算器代替基本的运算技能;5。
提倡发现教学法,要求学生像数学家发现定理那样去学习数学.经历了20世纪60年代和70年代,新数运动最终以失败告终.原因:向学生提出了不切实际的要求,教学内容过深过难,学生无法真正理解和接受;同时,基本知识和基本技能未能得到足够的重视,学生的数学基本功不扎实,而高深的数学知识又难以学懂.(接着,国际数学教育界提出了“回到基础”)2、如何理解“基础”与“创新"的关系。
万丈高楼平地起。
做任何事情,基础总是重要的。
我国的数学教育,一向注重“双基"的教学,即关注学生的“数学基础知识”和“数学基本技能”的培养。
那么,打好基础又是为了什么呢?当然是为了发展和创造.缺乏基础的创新是空中阁楼,没有创新指导的打基础是傻练。
因此,优质的数学教育,必须是给学生打下扎实的基础,并且能够培养学生的创新精神,才能获得完美的个性发展。
(基础=四基:基本知识,基本技能,基本思想,基本活动经验。
创新=技巧)3、教学设计的三要素.教案三要素——完成数学教学设计需要考虑三方面的问题➢明确教学目标【教学目标】➢形成设计意图➢制定教学过程4、教学过程的基本环节有哪些?教学模式(一堂公开课)(1)创设情境,引入课题;(2)合作探究,发现定理;(3)解决问题,应用定理;(4)动手练习,自主探究;(5)梳理知识,形成系统;(6)分层作业,因材施教。
(完整版)大学数学教育概论知识点总结.doc
1. 数学教育: 是一种社会文化现 生自主学习一个最有利,有力的注意: 1. 导入方法的选择要有针 学习动机,兴趣,信心等非智力 象,其社会性决定了数学教育要 “教学工具” 引导学生自主学习, 对性。
2. 导入方法的选择要具有 因素的培养。
6.教学基本功是否扎 与时俱进,不断创新.数学教育 规范学生学习行为,特别是学生 多样性。
3. 导入语言要有艺术性。
实。
如普通话语言是否规范、生中的教育目标、教育内容、教育 放任自流学习时,起最大的限制 [2] 讲解技能: 讲解技能中的一类 动形象;教态是否亲切、自然、 技术等一系列问题都会随着社会 和控制作用。
学生使命:自主学 教学行为,在行为方式上的特点大方;板书是否工整、美观、清 的进步而不断变革与发展.习,借助帮助,利用学习资料加是 “以语言讲述为主 ”的方式;在 楚,是否有较强的课堂掌控能力2. 课程的性质和地位: 是数学教 强学生之间相互协作与对话。
构教学功能上的特点是:传授知识 等。
7.教学效果如何。
教学效率, 育专业的专业基础必修课,是一 建自己完整的学习知识体系。
)5. 和方法、启发思维、表达思想感 学生受益情况等。
8.教学特色如何。
门实践性很强的学科,主要研究学习环境。
6.评价观 情”。
即教学的个人特点,教师的教学 的是数学教育数学理论,是数学 双基: 含义:( 1 )数学基本知识 目的: 传授数学知识和技能。
2. 风格。
论,课程论和学习论的综合。
( 2)数学基本技能启发思维, 培养能力。
3.提高思想 16.课程的改革:3. 教学设计 是根据教学对象和教 8.教学模式: 在一定教学思想和 认识,培养数学学习情感因素。
《标准 1》的基本理念: 1.突出体学目标,确定合适的教学起点与 教育理论指导下形成的教学活动 原则: 1.科学性原则。
2.启发性原 现基础性、普及性和发展性。
2. 终点,将教学诸要素有序、优化 的基本框架结构。
大学数学教育概论知识点总结(可编辑修改word版)
1.数学教育:是一种社会文化现象,其社会性决定了数学教育要识。
)4.师生观。
(教师使命:学生自主学习一个最有利,有力的原则。
3. 趣味性原则。
4.直观性原则。
5.适度性原则。
机会,是否注意知识形成的过程。
4.教学方法上,是否灵活多样,与时俱进,不断创新.数学教育“教学工具”引导学生自主学习,注意:1.导入方法的选择要有针符合实际,是否恰当地运用现代中的教育目标、教育内容、教育技术等一系列问题都会随着社会的进步而不断变革与发展.2. 课程的性质和地位:是数学教育专业的专业基础必修课,是一规范学生学习行为,特别是学生放任自流学习时,起最大的限制和控制作用。
学生使命:自主学习,借助帮助,利用学习资料加强学生之间相互协作与对话。
构对性。
2. 导入方法的选择要具有多样性。
3.导入语言要有艺术性。
[2]讲解技能:讲解技能中的一类教学行为,在行为方式上的特点教学手段等。
5.是否注意情感教育,即课堂气氛是否和谐,是否注重学生学习动机,兴趣,信心等非智力因素的培养。
6.教学基本功是否扎实。
如普通话语言是门实践性很强的学科,主要研究建自己完整的学习知识体系。
)5.学是“以语言讲述为主”的方式;在否规范、生动形象;教态是否亲的是数学教育数学理论,是数学论,课程论和学习论的综合。
3. 教学设计是根据教学对象和教学目标,确定合适的教学起点与终点,将教学诸要素有序、优化习环境。
6.评价观双基:含义:(1)数学基本知识(2)数学基本技能8.教学模式:在一定教学思想和教育理论指导下形成的教学活动教学功能上的特点是:传授知识和方法、启发思维、表达思想感情”。
目的:传授数学知识和技能。
2.启发思维,培养能力。
3.提高思切、自然、大方;板书是否工整、美观、清楚,是否有较强的课堂掌控能力等。
7.教学效果如何。
教学效率,学生受益情况等。
8.教学特色如何。
即教学的个人特地安排,形成教学方案的过程。
它是一门运用系统方法科学解决的基本框架结构。
数学教育概论要点
1、克莱因对数学教育改革有哪些建议?答:1)数学教师应具备较高的数学观点,只有观点高了,事物才能显明了而简单;2)教育应该是发生性的,所以空间的直观,数学上的应用,函数的概念是非常必要的;3)应该用综合起来的一般概念和方法来解决问题,而不要去深钻那种特殊的解法;4)应该把算术、代数和几何学方面的内容,用几何的形式以函数为中心观念综合起来。
2、数学家和心理学家对数学教育的影响主要表现在哪些方面?答:数学家对数学教育的影响主要体现在教学内容的选取和安排上;心理学家的影响主要体现在研究方法指导上。
3、国际上数学教育研究热点的演变答:1972年,在第二届国际数学教育大会上,GeoffreyHowson称数学教育还只是处在形成期,就像一个孩子,一个青少年,但是,现在我们可以称数学教育为年轻人了,可以考虑和探讨数学教育的发展、特点和成就了。
4、数学发展史划分为哪四个阶段?答:1)以《几何原本》为代表的古希腊的公理化数学(公元前700-300);2)以牛顿发明微积分为代表的无穷小算法数学(17-18世纪);3)以希尔伯特为代表的现代公理化数学(19-20世纪中叶);4)以现代计算机技术为代表的信息时代数学(20世纪中叶--今天)。
5、20世纪数学观有什么变化?答:20世纪布尔巴基学派的“结构主义”数学,更把形式主义数学推向新的高峰。
6、你如何认识数学的文化本质?答:我们应该从互动中认识数学的文化本质,并且在数学教学中揭示数学的文化意义,使学生受到深刻的文化感染。
1)数学是人类文明的火车头;2)数学打上了人类各个文化发展的烙印;3)数学应从社会文化中汲取营养;4)数学思维方式对人类文化的独特贡献;5)数学成为描述自然和社会的语言7、简述我国数学教学理念的发展答:1)由关心教师的“教”转向也关注学生的“学”;2)从“双基”与“三大能力”的观点的形成,发展到更宽广的能力关和素质观;3)从听课、阅读、演题,到提倡实验、讨论、探索的学习方式;4)从看重数学的抽象和严谨,到关注数学文化、数学探究和数学应用8、弗莱登塔尔的生平及数学教育方面的主要代表答:他是世界著名的数学家和数学教育家,曾经是荷兰皇家科学院的院士和数学教育研究所所长,专长为李群和拓扑学,1960年后,研究重心转向数学教育,在1967-1970期间任“国际数学教育委员会“主席;代表有《作为教育任务的数学》、《除草于播种》、《数学教育再探》。
数学教育概论考点
数学教育概论考点数学教育概论是培养学生数学素养的过程中的一门重要课程。
通过学习数学教育概论,可以帮助学生了解数学知识与数学学科的重要性、发展历史、特点和意义,并提供一种方法论,帮助学生构建数学知识的框架,培养他们的数学思维和解决问题的能力。
以下是数学教育概论的重要考点。
一、数学的定义、性质和发展历史。
数学是一门研究数量、结构、变化和空间等概念与现象的学科。
它具有抽象性、严谨性和普遍性等特点,是人类思维的一种重要方式。
了解数学的定义和性质,以及数学发展的历史,有助于学生理解数学的内涵和发展趋势。
二、数学教育的意义和目标。
数学教育是培养学生科学素养和创新能力的重要途径之一、了解数学教育的意义和目标,帮助学生理解数学教育的重要性和必要性。
三、数学教育的原则和方法。
数学教育的原则包括启发性原则、巩固性原则、系统性原则和亲和性原则等。
数学教育的方法包括讲授法、研究法、实验法和讨论法等。
理解数学教育的原则和方法,有助于学生改进学习方法,提高学习效果。
四、数学教育的评价和评价工具。
数学教育的评价应该是多元化、全面性和客观性的。
评价工具包括作业、考试、实验报告、小组讨论和口头报告等。
了解数学教育的评价和评价工具,有助于学生对自己的学习情况进行反思和改进。
五、数学教育的发展现状和问题。
了解国内外数学教育的发展现状和问题,有助于学生对数学教育的现实情况有更深入的了解,也有助于学生思考如何改进和创新数学教育的方法。
六、数学教育的结构和内容。
数学教育的结构包括初等数学教育、中等数学教育和高等数学教育等。
数学教育的内容包括数学的基本概念、运算规则、问题解决方法和数学应用等。
了解数学教育的结构和内容,有助于学生对数学知识有系统的了解和掌握。
七、数学教育的创新和发展趋势。
数学教育需要不断创新和发展,以适应社会进步和个体需求的变化。
了解数学教育的创新和发展趋势,有助于学生构建学习的长远发展规划。
总之,数学教育概论是数学教育的基础性课程,通过深入学习数学教育概论的相关知识,可以帮助学生全面了解数学教育的内涵和要求,提高数学学科的学习兴趣和学习效果,为未来深入学习和应用数学打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章
1.数学观的变化
(1)公理化方法、形式演绎仍然是数学的特征之一,但是数学不等于形式。
数学正在走出形式主义的光环。
(2)在计算机技术的支持下,数学注重应用。
(3)数学不等于逻辑,要做“好”的数学。
2. 20世纪我国数学教育观的变化
(1)由关心教师的“教”转向也关注学生的“学”;
(2)从“双基”与“三力”观点的形成,发展到更宽广的能力观和素质观;
(3)从听课、阅读、演题到提倡实验、讨论、探索的学习方式;
(4)从看重数学的抽象和严谨到关注数学文化、数学探究和数学应用。
3. 我国影响较大的几次数学教改实验(P38)
第三章
4.弗赖登塔尔的数学教育理论
倡导数学教育研究要像研究数学一样,以科学论文的形式交流研究心得,并有详细文献支持,因而使数学教育研究不再只停留在经验交流的水平上。
5. 数学教育有五个主要特征:
(1)情境问题是教学的平台;
(2)数学化是数学教育的目标;
(3)学生通过自己努力得到的结论和创造是教育内容的一部分
(4)“互动”是主要的学习方式;
(5)学科交织是数学教育内容的呈现方式。
这些特征可以用三个词加以概括:
现实、数学化、再创造(指通过教师精心设计、创造问题情境,学生自己动手实验研究、合作商讨、探索问题的结果并进行组织的学习方式,其核心是数学过程的再现。
)
6.现实数学教育所说的数学化有两种形式:
(1)实际问题转化为数学问题的数学化
(2)从符号到概念的数学化
7.波利亚的数学教育观
中学数学教育的根本目的是“教会学生思考”。
主动学习。
数学老师必须具备数学内容知识和数学教学法的知识。
9.建构主义的数学教育理论
10. 数学知识是什么
建构主义学说认为,数学知识并非绝对真理,即不是现实世界的纯粹客观的反映。
数学只不过是人们对客观世界的一种解释、假设或假说,并将随着人们认识程度的深入而不断地变革、升华和改写,直至出现新的解释和假设。
11.儿童如何学习数学
数学教学应该符合学生的年龄特征、知识基础以及个性特点,不能不顾教学对象盲目施教。
12.数学教师在建构主义的课堂上就需要做6件事情:
·加强学生的自我管理和激励他们为自己的学习负责;
·发展学生的反省思维;
·建立学生建构数学的“卷宗”;
·观察且参与学生尝试、辨认与选择解题途径的活动;
·反思与回顾解题途径;
·明确活动、学习材料的目的。
13. 我国“双基”数学教学
“数学双基”的内涵有狭义和广义之分。
狭义的“双基”是指记忆和掌握“基本数学公式和程式”、快速且准确地进行计算的“基本技能”,以及能够逻辑地进行数学的“基本论证”。
广义的则泛指和“创新”相对的那一部分,不妨称为“双基平台”。
14. 双基教学的经验
“启发式”教学,这是教师在演讲时永远应当坚持的传统,不能忘记。
“精讲多练”,当年育才中学的经验至今仍不过时。
“变式练习”,保证了数学双基训练不是机械练习。
“小步走,小转弯,小坡度”的三小教学法
“大容量、快节奏、高密度”的复习课,独具特色。
第四章
15.数学教育的基本功能
(1)实用性功能
(2)思维训练功能
(3)选拔性功能
16.数学教学的原则:
·学习数学化原则
·适度形式化原则
·问题驱动原则
·渗透数学思想方法原则
17.数学知识转化为教育形态的方式
一是靠对数学的深入理解,二是要借助人文精神的融合。
18. 数学能力
数学思维能力:人们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想像、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程。
高中数学课程应注意提高学生的数学思维能力,这是数学教育基本目标之一。
19.数学中特有的方法
最重要的是公理化方法。
最常用的是化归方法。
借助坐标系实行数形结合和转换的方法。
函数思想和极限方法。
方程思想方法。
概率统计方法。
20.基本数学活动经验
特征(1)是具有数学目标的主动学习的结果。
(2)专指对具体、形象的事物进行具体操作和探究所获得的经验(区别于广义的抽象数学思维所获得的经验)。
(3)是人们的“数学现实”最贴近生活的部分。
(4)学生积累的丰富的数学活动经验,需要和探究性学习联系在一起,使其善于发现日常生活中的数学问题,提出问题,解决问题。
类型(1)直接数学活动经验:直接联系日常生活经验的数学活动所获得的经验。
(2)间接数学活动经验:创设实际情境构建数学模型所获得的数学经验。
(3)专门设计的数学活动经验:有纯粹的数学活动所获得的经验。
(4)意境联合性数学活动经验:通过实际情境与意境的沟通,借助想象体验数学概念和数学思想的本质。
21. 数学教学模式(5个,后几个重点)
(1)讲授式教学模式
(2)讨论式教学模式
(3)学生活动教学模式
(4)探究式模式
(5)发现式教学模——指学生在教师的指导下,通过阅读、观察、实验、思考、讨论等方式,像数学家那样去发现问题、研究问题,进而解决间题、总结规律,成为知识的发现者。
第五章
22.数学教学中数学本质的揭示(P107-109)
23. 数学概念学习的APOS理论
操作(action)阶段——过程(process)阶段——对象(object)阶段
——概型(scheme)阶段(也叫图式阶段)
第六章
24.《普通高中数学课程标准》的基本理念
(1)给高中数学课程定位:基础性和选择性。
(2)“高中标准”倡导积极主动、勇于探索的学习方式,以提高学生的数学思维能力,加强学生对数学应用意识。
(3)“高中标准”与时俱进地认识“双基”,防止过度形式化,注意揭示数学文化的人文价值。
(4)“高中标准”重视“数学教育技术”的使用。
25.数学建模与数学课程(P168)
掌握本节内容,熟悉建模过程,了解建模如何渗透到中学数学教学中。
第七章
26.数学问题
数学问题指数学上要求回答或解释的疑问。
广义的数学问题是指在数量关系或空间形式中出现的困难和矛盾。
狭义的数学问题则是已经明显地表示出来题目。
第十章数学课堂教学基本技能训练
27. 如何吸引学生?
28. 如何启发学生?
(1)定向,即明确希望学生解决什么样的问题;
(2)架桥,即考虑希望学生解决的问题与学生现实之间的距离,应该设计哪些问题或进行哪些活动架桥铺路化解困难;
(3)置疑,即设置一些疑难问题引起学生思想的交锋和深层次的思考;
(4)揭晓,即将学生原先想做而不会做的正确做法,想说而说不出的正确想法用精炼而明了的语言重述一遍。
29.如何与学生交流
教师在数学课堂教学情境中与学生交流是师生之间的教学信息传递与反馈的行为过程,良好的师生交流能建立并保持高度互动的课堂气氛,以师生之间、学生之间的教学对话为主要形式,对话的质量是决定数学课堂教学质量的主要因素。
30.如何组织学生
第十一章数学教学设计
31.教学目标:是由课程标准规定的,教师的任务是将目标进一步细化和清晰化。
我们当然要关注“学生要学什么数学”,但更重要的是“学生学完这些数学能够做什么”。
32.数学教学目标:是设计者希望通过数学教学活动达到的理想状态,是数学教学活动的结果,也是数学教学设计的起点。
33.教学目标按实现周期长短来分:长期目标、近期目标。
34.教学重点:一般地,在学习中那些贯穿全局、带动全面、应用广泛、对学生认知结构起核心作用、在进一步学习中起基础作用和纽带作用的内容是教学的重点。
35.教学难点:是指学生接受起来比较困难的知识点,往往是由于学生的认知能力、接受水平与新老知识之间的矛盾造成的,也可能是学新知识时,所用到的旧知识不牢固造成的。
一般地,知识过于抽象,知识的内在结构过于复杂,概念的本质属性比较隐蔽,知识由旧到新要求用新的观点和方法去研究,以及各种逆运算都是产生难点的因素。