三次函数的对称性

合集下载

三次函数的对称性中心问题

三次函数的对称性中心问题

三次函数的对称性中心问题而)3()3()3()3]()3(3[)3(2323a b c a b b d a b a a b c a b a d a b a -++-=-++-)3(ab f -=)0()(23≠+++=a d cx bx ax x f 的图象关于))3(,3(a b f a b --对称。

证明3:设函数)0()(23≠+++=a d cx bx axx f 的对称中心为(m ,n )。

按向量),(a n m --=将函数的图象平移,则所得函数n m x f y -+=)(是奇函数,所以2)()(=-+-++n m x f m x f+++++++d m x c m x b m x a )()()(23dm x c m x b m x a ++-++-++-)()()(23-2n=0化简得:上式对恒成立,故⎩⎨⎧=-+++=+00323n d cm bm am b am 得,。

所以,函数的对称中心是()。

定理3:若三次函数有极值,则它的对称中心是两个极值点的中点证明:不妨设0232=++c bx ax 为)(x f 的导方程,判别式01242>-=∆ac b ,设)(x f 两极值点为))(,()),(,(2211x f x B x f x A[][]acx x a b x x d x x c x x x x b x x x x x x a dx x c x x b x x a d cx bx ax d cx bx ax x f x f 3,322)(2)(3)()(2)()()()()(2121212122121221212122213231222321213121=-=++++-++-++=++++++=+++++++=+∴ 又dabc a b b a b a da b c a c b a b b a c a b a a b a x f x f 2)3(2)3(2)3(22)32(32323)32(332)()(232321+-+-+-=+-+-⎪⎭⎫⎝⎛-+--⎪⎭⎫ ⎝⎛-=+∴)3(2)(21ab f x x f -=+∴所以此时的对称中心是两个极值点的中点,同时也是函数)(x f 的拐点。

高考数学考点 三阶函数的对称中心

高考数学考点  三阶函数的对称中心

结合三个函数的图像,我们能得到一个这样的结论:三次函数的对称点所在的直线是导函数的对称轴所在的直线,还是二阶导函数的零点所在的直线,如图中的C点所在的垂直于x轴的直线,在高中阶段我们不研究B点,在大学微积分中B点叫做拐点,即B点是函数凸凹性发生改变的点,关于凸凹性在函数性质中提到过,因此我们求三次函数的对称点只需要求三次函数的二阶导数的零点即可,即:
很显然二阶导数为y=3x²-8x+1,我们把导函数图像和三次函数图像作在一起:
从上面图中可以看出二次函数的正负决定三次函数的增减,又因为二次函数是对称的平滑函数,所以三次函数必定也是对称函数,我们在导数中研究的是导函数的零点就是三次函数的极值点,但是我们没有研究过导函数的对称轴与三次函数是什么关系,初步猜测,导函数对称轴所在的直线与三次函数的交点处就是三次函数的对称点,如图上的B点,我们研究了三次函数的导函数,不妨再看看三次函数的二阶导函数,下面将三次函数、导函数、二阶导函数放在同一个图中:
结合三个函数的图像,我们能得到一个这样的结论:三次函数的对称点所在的直线是导函数的对称轴所在的直线,还是二阶导函数的零点所在的直线,如图中的C点所在的垂直于x轴的直线,在高中阶段我们不研究B点,在大学微积分中B点叫做拐点,即B点是函数凸凹性发生改变的点,关于凸凹性在函数性质中提到过,因此我们求三次函数的对称点只需要求三次函数的二阶导数的零点即可,即:
上述结论如在考试中遇到,直接用就行。

看一个有意思的关于三次函数对称性的题目:。

三次函数对称轴

三次函数对称轴

三次函数对称轴三次函数是指具有三次方项的多项式函数,其一般形式可以表示为f(x) = ax^3 + bx^2 + cx + d,其中 a、b、c、d 是常数且a ≠ 0。

对于三次函数,一个重要的特性是它的对称轴。

对称轴是指将函数图像分为两部分并且两部分是镜像对称的一条直线。

本文将探讨三次函数对称轴的性质和确定方法。

一、三次函数对称轴的性质三次函数的对称轴具有以下性质:1. 对称轴与 x 轴平行:三次函数的对称轴与 x 轴平行,这意味着对称轴的斜率为零。

从几何意义上理解,对称轴是函数图像左右对称的直线,因此与 x 轴平行。

2. 在对称轴上对称:对于三次函数,对称轴上的一点和它关于对称轴对称的点的纵坐标相等。

这是对称轴的定义,也是三次函数图像的基本性质。

3. 确定函数图像的形状:对称轴是确定三次函数图像形状的关键特征之一。

在对称轴上的点对称地分布在函数图像的两侧,因此对于左右对称的三次函数,对称轴将函数图像分为镜像对称的部分。

二、确定三次函数对称轴的方法确定三次函数的对称轴的方法如下:1. 利用函数的一般形式:对于一般形式为 f(x) = ax^3 + bx^2 +cx + d 的三次函数,可以通过观察系数 b 和 c 的关系来确定对称轴。

如果 b = 0,则对称轴为竖直线 x = 0;如果 c = 0,则对称轴为竖直线 x = -b/3a;如果b ≠ 0 且c ≠ 0,则对称轴为竖直线 x = -b/3a。

2. 利用函数图像的性质:三次函数的对称轴可以通过观察函数图像的形状来确定。

首先绘制函数的图像,然后观察图像左右对称的部分。

对称轴将图像分为两份,并且两份是镜像对称的。

找到对称轴上的一点,并确定其关于对称轴的对称点,连接这两点就是对称轴。

三、实例分析接下来通过实例分析来具体说明三次函数对称轴的确定方法。

例1:考虑三次函数 f(x) = 2x^3 - 4x^2 - x + 3。

首先观察系数,这里 a = 2,b = -4,c = -1。

三次函数的特性总结

三次函数的特性总结

三次函数的特性总结三次函数,也被称为三次方程或者三次方程函数,是指具有三次幂的多项式函数。

它的一般形式可以表示为:f(x) = ax^3 + bx^2 + cx + d其中,a、b、c、d为函数的系数,且a不等于0。

在本文中,我们将总结三次函数的几个主要特性。

1. 零点和因式分解三次函数的零点即为函数与x轴交点的横坐标。

为了求解零点,我们可以利用因式分解的方法。

对于一个三次函数f(x),如果x=a是它的零点,那么(x-a)就是它的一个因式。

通过将函数进行因式分解,我们可以更方便地确定它的零点。

2. 对称性三次函数有两个常见的对称性质:关于y轴的对称和关于原点的对称。

对于一个三次函数f(x),如果f(-x) = f(x),则该函数具有关于y轴的对称性。

如果f(-x) = -f(x),则该函数具有关于原点的对称性。

3. 变化趋势三次函数的变化趋势可以通过函数的导数和导数的二次项来判断。

函数的导数表示了函数的变化速率,导数的符号则表示了函数的增减性。

如果函数的导数大于0,那么函数在该点上升;如果导数小于0,则函数在该点下降。

其次,导数的二次项可以用来判断函数的拐点位置。

如果导数的二次项大于0,则函数有一个拐点,该拐点位于导数为0的点处。

4. 最值点对于三次函数而言,它可能存在最大值或最小值点。

为了找到函数的最值点,我们可以计算函数的导数,令导数为0,并求解对应的x值。

通过找到导数等于0的点,我们可以确定函数的局部最值点。

5. 图像特征三次函数的图像通常呈现出“S”形状曲线。

当a>0时,函数的图像开口向上,底部为最小值点;当a<0时,函数的图像开口向下,顶部为最大值点。

同时,函数可能经过x轴的一次或两次。

通过观察函数的图像特征,我们可以初步判断函数的性质和行为。

总结起来,三次函数作为一种多项式函数,具有许多独特的特性。

通过研究它的零点、对称性、变化趋势、最值点以及图像特征,我们可以更好地理解和利用三次函数的性质。

初中数学教案三次函数的图像与性质

初中数学教案三次函数的图像与性质

初中数学教案三次函数的图像与性质三次函数是中学数学中的一个重要知识点,它具有独特的图像和性质。

本教案将以图像为线索,详细介绍三次函数的特点和性质,帮助学生深入理解和掌握这一概念。

一、三次函数的基本形式三次函数的一般形式为:$y = ax^3+bx^2+cx+d$,其中$a,b,c,d$为实数且$a\neq0$。

二、三次函数的图像为了研究三次函数的图像,我们将从以下几个方面进行讲解。

1. 零点与轨迹在$x$轴上,三次函数的零点对应的是方程$ax^3+bx^2+cx+d=0$的解。

解方程的方法是通过因式分解、配方法、求根公式等来求得。

2. 极值点与拐点三次函数的极值点和拐点可以通过求导数的方法得到。

求解导函数$y' = 3ax^2+2bx+c$,令其等于零,即可求得极值点和拐点的横坐标。

然后再代入原函数中,求得对应的纵坐标。

3. 对称性三次函数具有奇函数的对称性,即$f(-x) = -f(x)$。

这意味着如果某一点$(x_0, y_0)$在图像上,那么点$(-x_0, -y_0)$也在图像上。

三、三次函数的性质除了图像特点之外,我们还需要讲解三次函数的其他性质,包括:1. 定义域和值域三次函数的定义域为全体实数。

值域则需要通过观察图像或者进行计算得到。

2. 单调性三次函数的单调性与系数$a$的正负有关。

当$a>0$时,函数单调递增;当$a<0$时,函数单调递减。

3. 凹凸性通过分析二阶导函数$y''=6ax + 2b$的正负,可以判断三次函数的凹凸性。

当$y''>0$时,函数凹;当$y''<0$时,函数凸。

4. 渐近线对于三次函数而言,它可能有水平渐近线、垂直渐近线以及斜渐近线等。

通过求解极限或观察图像,可以确定渐近线的方程。

四、教学实例与练习为了帮助学生更好地掌握三次函数的图像和性质,我们可以设计一些教学实例和练习题,如:1. 画出函数$y=2x^3-3x^2-12x+5$的图像,并求出其所有零点和拐点的坐标。

三次函数的性质

三次函数的性质

三次函数的性质
三次函数是指满足某一条件的函数,它是一类定义在实数域上的函数。

三次函数的标准形式则是 y=ax+bx+cx+d,其中a、b、c和d 为常数,x为变量。

下面就具体介绍下三次函数的性质。

1、首先,三次函数的最大和最小值,由于三次函数的曲线的形状受参数a的变化影响较大,当a>0时,函数准心在x轴上有1个极值点,它位于 f(x)=ax+bx+cx+d, x=-b/(3a)这个立方根上,由此可以知道,a>0时函数有1个极小值点;当a<0时,函数准心在x轴上有1个极大值点,它位于 f(x)=ax+bx+cx+d, x=-b/(3a)这个立方根上,由此可以知道,a<0时函数有1个极大值点。

2、其次,三次函数的翻转,由于三次函数的曲线的形状受参数a的变化影响较大,当a>0时,曲线上的点沿着y轴正方向递减;当a<0时,曲线上的点沿着y轴正方向递减,这就是三次函数的翻转。

3、再次,三次函数的对称,由于三次函数的曲线的形状受参数a的变化影响较大,当a=0时,三次函数具有对称性,即函数围绕x 轴对称。

4、最后,三次函数的拐角,由于三次函数的曲线的形状受参数a的变化影响较大,当a>0时,函数的拐点处的斜率由正数变为负数,拐点处的斜率由负数变为正数;当a<0时,函数的拐点处的斜率由正数变为负数,拐点处的斜率由负数变为正数,这就是三次函数的拐角。

综上所述,三次函数的形状受参数a的变化影响较大,它具有极值、翻转、对称和拐角等性质,是求解函数最重要的一类函数。

了解
三次函数的性质,对求解函数会有很大帮助。

三次函数的对称性中心问题

三次函数的对称性中心问题

三次函数再探讨---对称中心问题武汉市长虹中学 郭永清三次函数存在对称中心吗?我们先从几个特殊的函数入手,三次函数cx ax x f +=3)((0≠a )是奇函数,其图象关于)0,0(对称,三次函数d bx ax x f ++=3)((0≠a )的图象关于点),0(d 对称,那么对于一般的三次函数)0()(23≠+++=a d cx bx ax x f 有没有对称中心呢?答案是肯定的,有对称中心,其对称中心是))3(,3(ab f a b --。

在证明之前,先回忆一个结论: 定理1:函数)(x f y =的图像关于点),(b a M 对称,则在b x a f x f 2)2()(=-+ 证明:设),(y x A 是)(x f y =图像上任意一点,则A 关于点),(b a M 的对称点)2,2(y b x a B --也在函数)(x f y =图像上,即)2(2x a f y b -=-, 又)(x f y =,所以b x a f x f 2)2()(=-+ 定理2:三次函数)0()(23≠+++=a d cx bx ax x f 的对称中心是))3(,3(ab f a b -- 证明1:设),(y x A 是)(x f y =图像上任意一点,只要能证明点))3(2,32-(y a b f x a b B --- 也在函数图像上。

cx bx ax d a bc a b d cx abc bx a x b a b ax bx x a b a b d x ab c x a b b x a b a x a b f ---+-=+--+++----=+--+--+--=--23232223322232332274323494234278)32()32()32()32( d cx bx ax x f y d ab c a b b a b a a b f +++==+-+-+-=-2323)()3()3()3()3(cx bx ax d a bc a b d cx bx ax d a b c a b b a b a y a b f ---+-=----+-+-+-=--23232323322742)3(2)3(2)3(2)3(2 所以)3(2)32()(ab f x a b f x f -=--+ 所以三次函数)0()(23≠+++=a d cx bx ax x f 的对称中心是))3(,3(ab f a b --证明2:因为)0()(3≠+=a bx ax x f 的对称中心是(0,0),所以0030)()()(y x x b x x a x f +-+-=的对称中心为),(00y x ,即))(,(00x f xdcx bx ax x f +++=23)(d cx ab a x a b a a b x a b x a b x a ++--+++=323223)3()3(3])3()3(333[ d ab a xc a b a a b x a +---+=323)3(])3(3[)3( )3]()3(3[)3()3]()3(3[)3(2323a b c a b ad a b a a b x c a b a a b x a -++-+--+= 而)3()3()3()3]()3(3[)3(2323a b c a b b d a b a a b c a b a d a b a -++-=-++-)3(ab f -= )0()(23≠+++=a d cx bx ax x f 的图象关于))3(,3(a b f a b --对称。

三次函数的对称性

三次函数的对称性

三次函数的对称性二次函数是轴对称图形,如)0()(2≠++=a c bx ax x f 的)对称轴方程式是a b x 2-=。

三次函数cx ax x f +=3)(是奇函数,其图象关于)0,0(对称,三次函数d bx ax x f ++=3)(的图象关于点),0(d 对称,那么对于一般的三次函数)0()(23≠+++=a d cx bx ax x f 有没有对称中心呢?答案是肯定的,有对称中心,其对称中心是))3(,3(a b f a b --。

下面给出证明。

证明1:二次函数通过配方可以消去一次项。

类似得,三次函数通过配方可以消去二次项。

=++=cx bx ax x f 23)(d cx ab a x a b a a b x a b x a b x a ++--+++=323223)3()3(3])3()3(333[ d ab a xc a b a a b x a +---+=323)3(])3(3[)3( )3]()3(3[)3()3]()3(3[)3(2323a b c a b ad a b a a b x c a b a a b x a -++-+--+= 而)3()3()3()3]()3(3[)3(2323a b c a b b d a b a a b c a b a d a b a -++-=-++-)3(ab f -= )0()(23≠+++=a d cx bx ax x f 的图象关于))3(,3(a b f a b --对称。

证明2:设函数)0()(23≠+++=a d cx bx ax x f 的对称中心为(m ,n )。

按向量),(a n m --=将函数的图象平移,则所得函数n m x f y -+=)(是奇函数,所以 02)()(=-+-++n m x f m x f化简得:上式对恒成立,故,得 ,。

所以,函数的对称中心是()。

可见,y =f(x)图象的对称中心在导函数)(x f y '=的对称轴上,且又是两个极值点的中点。

高考数学专题《三次函数的对称性、穿根法作图象》填选压轴题及答案

高考数学专题《三次函数的对称性、穿根法作图象》填选压轴题及答案

专题09 三次函数的对称性、穿根法作图象【方法点拨】对于三次函数f (x )=ax 3+bx 2+cx +d (其中a ≠0),给出以下常用结论:(1)当a >0,b 2-3ac >0时,三次函数的图象为N 字型;当a <0,b 2-3ac >0时,三次函数的图象为反N 字型;当a >0,b 2-3ac ≤0时,单调递增,当a <0,b 2-3ac ≤0时,单调递减.(2)三次函数有对称中心(x 0,f (x 0)),f ″(x 0)=0.【典型题示例】例1 (2021·全国乙卷·理10)设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则( ) A. a b <B. a b >C. 2ab a <D.2ab a >【答案】D【分析】先考虑函数的零点情况,注意零点左右附近函数值是否编号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到,a b 所满足的关系,由此确定正确选项.【解析】若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故a b ≠.()f x ∴有x a =和x b =两个不同零点,且在x a =左右附近是不变号,在x b =左右附近是变号的.依题意,为函数的极大值点,∴在x a =左右附近都是小于零的.当0a <时,由x b >,()0f x ≤,画出()f x 的图象如下图所示:故2ab a >.由图可知b a <,0a <,()0f x >,画出()f x 的图象如当0a >时,由x b >时,下图所示:由图可知b a >,0a >,故2ab a >. 综上所述,2ab a >成立. 故选:D例2 若函数2()f x x x a =-在区间[0,2]上单调递增,则实数a 的取值范围是 . 【答案】(,0][3,)-∞+∞【解析】 222(),()(),x x a x af x x x a x x a x a⎧-≥⎪=-=⎨--<⎪⎩.函数()f x 的一个极值点是0x =,所以以0为界与a 比较,进行分类讨论.①当0a >时,如图一,由2()320f x x ax '=-+=得,0x =或23ax =,欲使函数2()f x x x a =-在区间[0,2]上单调递增,只需223ax =≥,即3a ≥. ②当0a ≤时,如图二,2()f x x x a =-在区间[0,2]上单调递增,满足题意. 综上知,实数a 的取值范围是(,0][3,)-∞+∞.点评:作三次函数f (x )=a (x -x 1) 2(x -x 2)(其中a ≠0,x 1≠x 2)示意图的方法要点有二:aOxy(图一)xyOa(图二)(1)当a >0时,三次函数的图象为N 字型(最右区间增);当a <0时,三次函数的图象为反N 字型(最右区间减).公众号拾穗者的杂货铺x 思维方糖研究所(2)x 1既是函数的零点,又是函数的极值点,从形上看,函数图象此时与x 轴相切(或称“奇穿偶回”,即x 1、x 2都是函数的零点,x 1是二重根,图象到此不穿过x 轴,即“回”,这种作函数图象的方法称为“穿根法”).例3 已知a ,b ∈R 且ab ≠0,若(x –a )(x–b )(x–2a–b )≥0在x ≥0上恒成立,则( ) A. a <0 B. a >0 C. b <0 D. b >0【答案】C【分析】本题的实质是考察三次函数的图象,设()()()(2)f x x a x b x a b =----,欲满足题意,从形上看则必须在x ≥0 时有两个重合的零点才可以,对a 分0a >与0a <两种情况讨论,结合三次函数的性质分析即可得到答案.【解析】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 的零点为123,,2x a x b x a b ===+当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <,即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <. 综上一定有0b <. 故选:C例4 已知a 3-3a 2+5a =1,b 3-3b 2+5b =5,那么a +b 的值是 . 【答案】2【分析】本题的难点在于发现函数的对称性、变形为“结构相同”后逆用函数的单调性. 【解析】由题意知a 3-3a 2+5a -3=-2,b 3-3b 2+5b -3=2,设f (x )=x 3-3x 2+5x -3,则f (a )=-2,f (b )=2. 因为f (x )图象的对称中心为(1,0),所以a +b =2.【巩固训练】1.函数()32351f x x x x =-+-图象的对称中心为_____.2.已知直线l 与曲线31y x x =-+有三个不同的交点()11,A x y ,()22,B x y ,()33,C x y ,且||||AB AC =,则()31iii x y =+=∑__________.3.若函数在内有且只有一个零点,则在上的最大值与最小值的和为 .32()21()f x x ax a =-+∈R (0,)+∞()f x [1,1]-4.已知函数的导函数为,若函数在处取到极小值,则实数的取值范围是 .5.若函数2()(2)f x x x a =--在区间[2,4]上单调递增,则实数a 的取值范围是 . 6. 设a R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =______________. 7. 已知函数3)(2-=x x x f ,[]m x ,0∈,其中R m ∈,且0>m ,如果函数)(x f 的值域是[]2,0,则实数m 的取值范围为________.8.已知,a R ∈函数2()f x x x a =-,则函数y =f (x )在区间[1,2]上的最小值是 . 9.已知函数2()12f x x x =-的定义域是[0,]m ,值域是2[0,]am ,则实数a 的取值范围是 .【答案或提示】1.【答案】()1,2【解析一】由题意设对称中心的坐标为(),a b ,则有()()2b f a x f a x =++-对任意x ∈R 均成立,代入函数解析式得,()()()()()()32322351351b a x a x a x a x a x a x =+-+++-+---+--整理得到:()()()()()()32322351351b a x a x a x a x a x a x =+-+++-+---+--,整理得到()232266261020b a x a a a =-+-+-= 对任意x ∈R 均成立,所以32660261022a a a a b -=⎧⎨-+-=⎩,所以1a =,2b =. 即对称中心()1,2.【解析二】∵f ″(x )=6x -6 令f ″(x )=6x -6=0 解得x =1 将x =1代入得f (x )得f (1)=2 ∴对称中心()1,2. 2.【答案】3【解析】由题意,函数3y x x =-是奇函数,则函数3y x x =-的图象关于原点对称, 所以函数31y x x =-+的函数图象关于点(0,1)对称,因为直线l 与曲线31y x x =-+有三个不同的交点()()()112233,,,,,A x y B x y C x y ,且||||AB AC =,()f x ()(2)()(0)f x ax x x a a '=+-≠()f x 2x =-a ∈所以点A 为函数的对称点,即(0,1)A ,且,B C 两点关于点(0,1)A 对称, 所以1231230,3x x x y y y ++=++=,于是()313iii x y =+=∑.3.【答案】3-【解析】因为(0)1f =,且由21()62=6()03f x x ax x x a '=--=得: 0x =或13x a =所以函数的图象是增-减-增型,且在0x =或13x a =处取得极值欲使函数在内有且只有一个零点,当且仅当32()2()()1033303aa a f a a ⎧=⋅-⋅+=⎪⎪⎨⎪>⎪⎩解之得3a =.当[]1,0x ∈-时,增;[]0,1x ∈时,减, 故max ()(0)1f x f ==,{}min ()min (1),(1)4f x f f =-=-, 所以在上的最大值与最小值的和为3-. 4.【答案】 ()(),20,-∞-⋃+∞ 5.【答案】(,2][5,)-∞+∞6.【答案】7.【答案】12m ≤≤8. 【答案】⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤<-≤<≤-=;37,1;372),2(4;21,0;1,1时当时当时当时当a a a a a a a m【解析】设此最小值为m.①当.)(]21[123ax x x ,f ,,a -=≤上在区间时因为:),2,1(,0)32(3223)(/∈>-=-=x a x x ax x x f ()f x (0,)+∞()f x ()f x ()f x [1,1]-23=a则f(x)是区间[1,2]上的增函数,所以m=f(1)=1-a..②当1<a 0)(:0)(,0)(]21[22===≥-=≤a f m a f a x x x ,f ,,知由上在区间时.③当a>2时,在区间[1,2]上,.)(32x ax x f -=).32(332)(2/x a x x ax x f -=-=若,3≥a 在区间(1,2)内f /(x)>0,从而f(x)为区间[1,2]上的增函数,由此得:m=f(1)=a-1.若2<a<3,则2321<<a 当;,x f x f a x 上的增函数为区间从而时]321[)(,0)(,321/><< 当.]2,32[)(232/上的减函数为区间从而时a x f ,x << 因此,当2<a<3时,m=f(1)=a-1或m=f(2)=4(a-2).当)2(4,1)2(4372-=-≤-≤<a m a a ,a 故时; 当.1),2(41337-=-<-<<a m a ,a a 故时 综上所述,所求函数的最小值⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤<-≤<≤-=;37,1;372),2(4;21,0;1,1时当时当时当时当a a a a a a a m9.【答案】1a ≥【解析一】易知:当02x ≤≤,()f x增;当2x ≤≤()f x减;当x ≥,()f x 增,且(2)(4)16f f ==.① 当02m <≤时,()f x [0,]m 增∴22(12)m m am --=,[)124,a m m=-+∈+∞; ② 当24m <≤时, 216am =,[)2161,4a m=∈; ③ 当4m ≥时,22(12)m m am -=,()121,a m m=-∈+∞; 综上,1a ≥.【解析二】仅考虑函数()f x 在0x >时的情况,可知331223()1223x x x f x x x x ⎧-<⎪=⎨-⎪⎩.,,,≥函数()f x 在2x =时,取得极大值16.令31216x x -=,解得,4x =. 作出函数的图象(如右图所示).函数()f x 的定义域为[0,]m ,值域为2[0]am ,,分为以下情况考虑:(1)当02m <<时,函数的值域为2[0(12)]m m -,,有22(12)m m am -=,所以12a m m=-,因为02m <<,所以4a >;(2)当24m ≤≤时,函数的值域为[016],,有216am =,所以216a m =,因为24m ≤≤,所以14a ≤≤;(3)当4m >时,函数的值域为2[0(12)]m m -,,有22(12)m m am -=,所以12a m m=-,因为4m >,所以1a >;综上所述,实数a 的取值范围是1a ≥.16O2 4xy。

三次函数的对称性试题赏析

三次函数的对称性试题赏析

1 x2 + 3x - 5 + cos( x - π + 1) ,
2
12
2
则 g( 20113) + g( 20213) + g( 20313) + g( 20413) + … + g( 22001123) =
1006. 其中正确命题的序号为
( 把所有正确命题的序
号都填上) .
解析: ①②. 对于 ①② 明显正确; 对于 ③,任意的三次函数
1,则可求得: f ( 20112) + f ( 20212) + … + f ( 42002122) + f ( 42002132) =

2. ( 2012 福州市高三质量检查) 已知 m,t ∈ R,函数 f ( x) = ( x - t) 3 + m.
( Ⅰ) 当 t = 1 时,
( i) 若 f ( 1) = 1,求函数 f ( x) 的单调区间; ( ii) 若关于 x 的不等式 f ( x) ≥ x3 - 1 在区间[1,2]上有解,
( 3) 一般地,三次函数 f ( x) = ax3 + bx2 + cx + d( a ≠ 0) 的
“拐点”是(

b 3a
,f


b 3a


,它就是 f (
x)
的对称中心. 或者: 任
何一个三次函数都有拐点; 任何一个三次函数都有对称中心;
任何一个三次函数平移后可以是奇函数 .
点评: 该两题属于信息创新题. 要求学生对新颖的信息、情
求实数 b 的值;
( Ⅱ) 令 h( x) = f ( x) - g( x) .

三次函数揭秘三次函数的定义和性质

三次函数揭秘三次函数的定义和性质

三次函数揭秘三次函数的定义和性质三次函数是由幂次为3的多项式所表示的函数。

它是一种非线性函数,具有许多特殊的性质和表现形式。

在本文中,我们将深入探讨三次函数的定义和性质,并分析其在数学和实际应用中的重要性。

一、定义三次函数的一般形式可表示为:f(x) = ax^3 + bx^2 + cx + d,其中a、b、c和d为实数,且a不等于零。

这个函数拥有四个系数,分别对应着三次、二次、一次和常数。

二、特殊形式1. 单位三次函数当a=1,b=0,c=0,d=0时,三次函数的特殊形式为f(x) = x^3。

这称为单位三次函数,它的图像关于原点对称,过原点,斜率逐渐增大,具有一个拐点。

2. 正三次函数当a大于零时,三次函数的图像呈现出从左下方向右上方的上凸弧形。

这种形式的三次函数被称为正三次函数。

3. 负三次函数当a小于零时,三次函数的图像呈现出从左上方向右下方的下凸弧形。

这种形式的三次函数被称为负三次函数。

三、性质1. 奇函数偶函数性质三次函数的奇偶性取决于其各项系数的奇偶性。

当a、c为奇数次幂系数,且b为偶数次幂系数时,三次函数为奇函数;当a、c为偶数次幂系数,且b为奇数次幂系数时,三次函数为偶函数。

2. 零点、极值和拐点三次函数可能具有1至3个零点。

其中,零点是函数与x轴交点的横坐标,可以通过化简方程组或者使用数学软件进行求解。

三次函数的极值点可能有2至3个。

它们分别对应函数的最大值、最小值和可能存在的一个拐点。

极值点可以通过求导数等方法进行计算。

3. 对称性三次函数的图像可能具有关于y轴对称、关于x轴对称或者关于原点对称的特点。

对称性可以通过函数的系数来确定。

四、应用三次函数在数学和实际应用中发挥着重要作用。

它们常常用于建模和问题求解,如物理学和经济学中的曲线拟合、数据分析和趋势预测等。

在物理学中,三次函数可以用于描述物体的运动和变化规律。

例如,弹簧的伸长长度与加载力之间的关系可以使用三次函数来表示。

三次函数与四次函数的图像

三次函数与四次函数的图像

三次函数与四次函数的图像在高中数学中,我们经常学习各种不同类型的函数。

其中,三次函数和四次函数是两种常见的多项式函数。

本文将介绍三次函数和四次函数的图像特征以及它们在数学中的应用。

首先,让我们来了解三次函数。

一个三次函数的一般形式为y = ax^3 + bx^2 +cx + d,其中a、b、c、d是实数且a不等于零。

三次函数的图像通常表现为一种弯曲的形状。

以下是三次函数的几个关键特点:1. 零点和极值:与其他多项式函数一样,三次函数可以有零点和极值。

零点是函数曲线与x轴相交的点,在函数图像中表现为函数曲线穿过x轴的点。

而极值则代表函数的最高点或最低点。

2. 对称性:三次函数可以是奇函数或偶函数。

如果一个三次函数关于y轴对称,即f(-x) = -f(x),则函数为奇函数。

如果一个三次函数关于原点对称,即f(-x) = f(x),则函数为偶函数。

3. 变化趋势:当x的值改变时,三次函数的曲线可能会上升或下降。

曲线的上升或下降趋势与函数的系数有关。

例如,当a的值为正时,曲线向上凸起,而当a的值为负时,曲线向下凸起。

接下来,让我们看看四次函数的图像。

一个四次函数的一般形式为y = ax^4 +bx^3 + cx^2 + dx + e,其中a、b、c、d、e是实数且a不等于零。

四次函数的图像一般呈现更加复杂的形态,以下是它的一些关键特点:1. 零点和极值:与三次函数类似,四次函数也可以有零点和极值。

在函数图像中,零点是函数曲线与x轴相交的点,而极值则代表函数的最高点或最低点。

2. 对称性:四次函数可以是奇函数或偶函数,同样的奇偶性定义也适用于四次函数。

奇函数的图像关于原点对称,而偶函数的图像关于y轴对称。

3. 变化趋势:四次函数的曲线可以有多个极值点,并且曲线的上升或下降趋势可能会出现多次变化。

这取决于函数的系数和它们的取值范围。

在数学中,三次函数和四次函数具有广泛的应用。

它们可以用于建模和解决各种实际问题。

二次函数与三次函数的性质

二次函数与三次函数的性质

二次函数与三次函数的性质函数是数学中的重要概念,而二次函数和三次函数是函数的两种特殊形式。

它们在数学和实际应用中都扮演着重要的角色。

本文将探讨二次函数和三次函数的性质,并比较它们之间的异同点。

一、二次函数的性质二次函数是一个以二次项为最高次幂的多项式函数。

它的一般形式为:f(x) = ax^2 + bx + c其中,a、b、c为实数且a不等于0。

二次函数的性质如下:1. 平移性质:二次函数可以沿x轴和y轴的方向进行平移。

当函数表达式中加上常数h时,图像沿x轴的正方向平移h个单位;当函数表达式中加上常数k时,图像沿y轴的正方向平移k个单位。

2. 对称性质:二次函数的图像关于抛物线的对称轴对称。

对称轴的方程为x = -b/2a,即抛物线的顶点坐标为(-b/2a, f(-b/2a))。

3. 开口方向:当a大于0时,二次函数的图像开口向上;当a小于0时,二次函数的图像开口向下。

4. 最值:当二次函数的开口向上时,函数的最小值为顶点的纵坐标;当二次函数的开口向下时,函数的最大值为顶点的纵坐标。

5. 零点:二次函数的零点是函数图像与x轴的交点,即f(x) = 0的解。

一般来说,二次函数有两个零点。

二、三次函数的性质三次函数是一个以三次项为最高次幂的多项式函数。

它的一般形式为:f(x) = ax^3 + bx^2 + cx + d其中,a、b、c、d为实数且a不等于0。

三次函数的性质如下:1. 平移性质:与二次函数类似,三次函数也可以进行平移。

当函数表达式中加上常数h时,图像沿x轴的正方向平移h个单位;当函数表达式中加上常数k时,图像沿y轴的正方向平移k个单位。

2. 对称性质:三次函数的图像可能存在关于某个点的对称性,这取决于函数的具体形式。

3. 开口方向:三次函数的图像可能存在开口向上或开口向下的情况,这取决于函数的a的正负。

4. 最值:三次函数没有固定的最值。

它的图像可能存在局部最小值或局部最大值,但不一定存在全局最小值或全局最大值。

三次函数性质总结

三次函数性质总结

三次函数性质总结三次函数是指函数的最高次项是3次的函数,一般的三次函数的函数表达式可以写成y=ax^3+bx^2+cx+d。

以下是关于三次函数的性质的总结:1.对称性:三次函数一般具有对称性,即关于y轴对称。

这是因为三次函数中只有偶次次项,所以具有对称性。

这可以通过函数图像来观察,如果一条曲线对称于y轴,则表示这个函数是一个三次函数。

2.零点:三次函数可能有一个或多个零点。

如果函数的零点为x=a,那么乘以(x-a)后,函数会变为二次函数,这是因为函数中的三次项会被消去,变成了二次项。

因此,三次函数的零点可以用来快速确定函数的根的个数。

3.单调性:三次函数的单调性与系数a有关。

当a>0时,三次函数是上凹的,即函数的曲线开口向上,为增函数;当a<0时,三次函数是下凹的,即函数的曲线开口向下,为减函数。

4.驻点:三次函数的导数是二次函数,因此导数为零的点称为驻点。

三次函数的驻点有最大值或最小值,可以通过求导数来求得驻点的位置。

5. 渐近线:三次函数可能有水平渐近线、垂直渐近线或斜渐近线。

水平渐近线是指当x趋于正无穷或负无穷时,函数值趋于一些常数;垂直渐近线是指当x等于一些常数时,函数值趋于正无穷或负无穷;斜渐近线是指当x趋于正无穷或负无穷时,函数值趋于ax^2+bx+c。

6.奇偶性:三次函数的奇偶性与系数b有关。

当b为奇数时,三次函数是奇函数,对称于原点,函数图像关于原点对称;当b为偶数时,三次函数是偶函数,对称于y轴,函数图像关于y轴对称。

7.映射性:三次函数的图像可以映射到整个坐标平面上,因为三次函数没有任何限制,所以可以取得任意的y值。

8.随着函数系数的变化,函数图象会发生相应的形变。

例如,当a的绝对值变大时,函数的曲线会变得更陡峭;当b的绝对值变大时,函数的曲线会向原点靠拢;当c的绝对值变大时,函数的曲线会上下平移;当d 的绝对值变大时,函数的曲线会上下平移。

总之,三次函数具有丰富的性质和特点,可以通过系数的变化来改变函数的图像和性质。

三次函数-

三次函数-

三次函数三次函数是一种椭圆形状的曲线,它是二次函数的一种升级版,因为它比二次函数更加复杂和灵活。

三次函数的表达式为y = ax³ + bx² + cx + d,其中a、b、c、d是常数,x为自变量,y为因变量。

在这篇文章中,我将探讨三次函数的定义、特点、应用和解法,让读者更好地理解和应用三次函数。

一、三次函数的定义三次函数是指一个以三次幂为最高次方的多项式函数。

一般的三次函数的表达式为y = ax³ + bx² + cx + d,其中a、b、c、d是常数,x为自变量,y为因变量。

三次函数的图像是一条平滑的曲线,通常呈现出椭圆形状。

它的导数是一个二次函数,它的图像呈现出一条抛物线。

二、三次函数的特点1. 对称性三次函数的对称轴为一条直线,该直线平分曲线的两侧,并且与曲线的最高点和最低点相交。

对称轴的方程式为x = -b / 3a。

2. 零点三次函数通常有三个零点,但是有时候会有一个或两个重根。

这些零点可以通过求解所给方程的根来获得,其中方程的系数a、b、c和d是已知的。

当三次函数与x轴相交时,y等于0,因此方程式可以写成ax³ + bx² + cx + d = 0。

3. 最值三次函数有局部最高点和局部最低点。

可以通过求导数来获得最高点和最低点的位置。

三、三次函数的应用下面是一些三次函数的应用领域:1. 经济学三次函数通常用于经济学中的成本和利润分析。

基于不同的成本和利润相关的方程,可以得出三次函数的表达式。

这对分析和管理公司的经济活动非常有用。

2. 物理学三次函数也常用于物理学中的运动方程。

例如,弹道学家可以使用三次函数来描述抛物线的运动,而声学专家则可以使用三次函数来描述声波等物理量的传播。

3. 生物学在生物统计学中,三次函数通常用于研究生长曲线。

这些曲线可以描述有机体个体生长的趋势,并对某些遗传因素的作用进行分析。

四、三次函数的解法三次函数的解法与二次函数有很大的不同。

二次函数与三次函数的性质比较

二次函数与三次函数的性质比较

二次函数与三次函数的性质比较在高中数学中,二次函数和三次函数都是很重要的函数类型。

它们在数学及其它学科中有广泛的应用,因此,深入了解它们的性质及其比较是很重要的。

以下是二次函数与三次函数的性质比较。

1. 定义二次函数是指函数 $y = ax^2+bx+c$,其中 $a\ne 0$。

它是一个二次多项式函数,其图像为开口向上或向下的抛物线。

三次函数是指函数 $y = ax^3+bx^2+cx + d$,其中 $a\ne 0$。

它是一个三次多项式函数,其图像通常呈现 S 曲线形态。

2. 对称性质二次函数的图像是关于其顶点对称的,在抛物线的开口方向垂直于轴线的方向与轴断面重合的位置处,有一个顶点。

顶点的横坐标为 $x = -\frac{b}{2a}$,纵坐标为 $y = c-\frac{b^2}{4a}$。

此外,二次函数的图像在横轴上有一条对称轴,其方程为 $x = -\frac{b}{2a}$。

而三次函数的图像通常具有对称性,其对称轴通常是 $x$ 轴或 $y$ 轴,或经过其中某个极值点。

3. 单调性二次函数的单调性和其开口方向有关。

若开口向上,则函数在$(-\infty,-\frac{b}{2a})$ 上单调递增,在 $(-\frac{b}{2a},+\infty)$ 上单调递减;若开口向下,则函数在 $(-\infty,-\frac{b}{2a})$ 上单调递减,在 $(-\frac{b}{2a},+\infty)$ 上单调递增。

三次函数的单调性则要依据其导数的正负性来分析。

当导数 $f'(x)>0$ 时,函数单调递增;当导数 $f'(x)<0$ 时,函数单调递减。

4. 零点二次函数的零点可以通过求解 $ax^2+bx+c=0$ 得到。

其判别式为 $D=b^2-4ac$,若 $D>0$,则有两个不同实根;若 $D=0$,则有一个重根;若 $D<0$,则无实根。

感悟三次函数的中心对称性

感悟三次函数的中心对称性
。 ,
定 理 2 若 函数 ( ) a 。 z 一 x +k 。 + +d( 口
≠O )有极值 ,则 它 的对 称 中心 是 两个 极 值 点 的
中点 .
2(麦一o而 厂 )Y, 一 )

证 明 由厂 一 3x +2 十C 0 △= 4b a 如 一 ( (
3c a )> O )的 两 根 为 z , 2得 lz ,
一 一
一 一
十 +
十 +


43 b


① 当 口> 1时 , — 2 1 口<一 1 由 f ( > 0 , ) ,
2 c+ 2 b

解 得 z> 一 1或 z < 1 2 ; — a
② 由 口一 1 1 a 时, —2
2( f

1 则 /( ) ( , 一 z
证 明:
ห้องสมุดไป่ตู้
, 2或 = 4时 , l 易证 .
,: 3或 ,≥ 5时 , l z 由上 知 口 ,2… , 成等 1a , a
比数 列 , n , , , 也 成等 比数列 , 公 比 故 … 口 口 且
均 为 a. 2
所 以 a + a, … + a l 2 +
+ + ∞一 。b+ 誓02 筹一 一  ̄ + x o
+ 凹 。一 0,
纱 , 用这个 性质 , 多 问题可 以简单 求解 . 利 很
1 三次 函数 的中心对 称性
所 以 2厂( 一 ) y 一 o: 厂( 2 ~ b— z


6a
) ,
定理 1 函数 , )一 船 。 b +C ( + x。 X+d a (

三次函数的对称性中心问题

三次函数的对称性中心问题

三次函数的对称性中心问题集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#三次函数再探讨---对称中心问题武汉市长虹中学 郭永清三次函数存在对称中心吗我们先从几个特殊的函数入手,三次函数cx ax x f +=3)((0≠a )是奇函数,其图象关于)0,0(对称,三次函数d bx ax x f ++=3)((0≠a )的图象关于点),0(d 对称,那么对于一般的三次函数)0()(23≠+++=a d cx bx ax x f 有没有对称中心呢答案是肯定的,有对称中心,其对称中心是))3(,3(ab f a b --。

在证明之前,先回忆一个结论:定理1:函数)(x f y =的图像关于点),(b a M 对称,则在b x a f x f 2)2()(=-+ 证明:设),(y x A 是)(x f y =图像上任意一点,则A 关于点),(b a M 的对称点)2,2(y b x a B --也在函数)(x f y =图像上,即)2(2x a f y b -=-, 又)(x f y =,所以b x a f x f 2)2()(=-+定理2:三次函数)0()(23≠+++=a d cx bx ax x f 的对称中心是))3(,3(a b f a b -- 证明1:设),(y x A 是)(x f y =图像上任意一点,只要能证明点))3(2,32-(y a b f x a b B --- 也在函数图像上。

所以)3(2)32()(ab f x a b f x f -=--+ 所以三次函数)0()(23≠+++=a d cx bx ax x f 的对称中心是))3(,3(ab f a b -- 证明2:因为)0()(3≠+=a bx ax x f 的对称中心是(0,0),所以0030)()()(y x x b x x a x f +-+-=的对称中心为),(00y x ,即))(,(00x f x 而)3()3()3()3]()3(3[)3(2323a b c a b b d a b a a b c a b a d a b a -++-=-++-)3(ab f -=)0()(23≠+++=a d cx bx ax x f 的图象关于))3(,3(a b f a b --对称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三次函数的对称性
二次函数是轴对称图形,如)0()(2≠++=a c bx ax x f 的)对称轴方程式是a b x 2-=。

三次函数cx ax x f +=3)(是奇函数,其图象关于)0,0(对称,三次函数d
bx ax x f ++=3)(的图象关于点),0(d 对称,那么对于一般的三次函数)0()(23≠+++=a d cx bx ax x f 有没有对称中心呢?答案是肯定的,有对称中心,其对称中心是))3(,3(a b f a b --。

下面给出证明。

证明1:二次函数通过配方可以消去一次项。

类似得,三次函数通过配方可以消去二次项。

=
++=cx bx ax x f 23)(d cx a
b a x a b a a b x a b x a b x a ++--+++=323223)3()3(3])3()3(333[ d a
b a x
c a b a a b x a +---+=323)3(])3(3[)3( )3]()3(3[)3()3]()3(3[)3(2323a b c a b a
d a b a a b x c a b a a b x a -++-+--+
= 而)3()3()3()3]()3(3[)3(2323a b c a b b d a b a a b c a b a d a b a -++-=-++-)3(a
b f -= )0()(23≠+++=a d cx bx ax x f 的图象关于))3(,3(a b f a b --
对称。

证明2:设函数)0()(23≠+++=a d cx bx ax x f 的对称中心为(m ,n )。

按向量),(a n m --=将函数的图象平移,则所得函数n m x f y -+=)(是奇函数,所以 02)()(=-+-++n m x f m x f
化简得:
上式对恒成立,故
,得 ,。

所以,函数的对称中心是()。

可见,y =f(x)图象的对称中心在导函数)(x f y '=的对称轴上,且又是两个极值点的中点。

(Ⅰ)已知函数3(x)=x -x f ,其图象记为曲线C 。

(i )求函数(x)f 的单调区间;
(ii )证明:若对于任意非零实数1x ,曲线C 与其在点111P (x ,f(x ))处的切线交于另一点 222P (x ,f(x )),曲线C 与其在点222P (x ,f(x ))处的切线交于另一点333P (x ,f(x )),线段 11223122P P ,P P ,S ,S C S 与曲线所围成封闭图形的面积分别记为S 则
为定值; (Ⅱ)对于一般的三次函数32g(x)=ax +bx +cx+d(a 0),≠请给出类似于(Ⅰ)(ii )的正
确命题,并予以证明。

(2010福建理)
记函数)0()(23≠+++=a d cx bx ax x g 的图象为曲线C ',类似(Ⅰ)(ⅱ)的正确命题为:若对对任意不等于的实数,曲线与其在点处的切线交于另一点,曲线与其在点处的切线交于另一点,线段与曲线所围成的封闭图形的面积分别记为,则为定值
证明如下,因为平移变换不改变面积的大小,故可将曲线的对称中平移至坐标原点因而不妨设,类似的计算可得,411427x S =,041627412≠⨯=x S ,故161S S 21=。

相关文档
最新文档