第十六章分式全章测试

合集下载

第16章分式单元测试题(人教新课标初二下)doc初中数学

第16章分式单元测试题(人教新课标初二下)doc初中数学

41224vv第16章分式单元测试题(人教新课标初二下)doc 初中数学A .x 1x 12x 1 DC .2x 1 x2x 1x 23•假2------- -0,那么x 等于xx 6A . ± 2B . — 2C . 24.把分式2(a b)中的a 和b 都扩大4倍,那么分式的值abA . 扩大为原先的 4倍B .扩大为原先的2倍C . 缩小为原先的1D .不变45. 以 下运 算 正 确 的 选〔 〕A.y y x yxy22x yC .x yx y1一 26 . 假设分 式与5 x2 3x〔 〕5A . —2 . 4B—1211 0 27•将一,3,42x y 2B .—3x y 3 D .y x1 22x yx y的 值互为 相反数,那么xC .— 8D . 2. 4〔〕D . 5个〔 〕1 1 X2 13 1亠 1•在一、一、、、a中分式的个数x 22x ymA . 2个B . 3个C . 4个2•以下分式中 疋有意义的是、选择题241224vv勺顺序排列,正确的结果是 〔 〕1 1C .4 2V3 0V 14 D .0 21 3 V 4 V -41 8 .-1 3,那么 5x xy 5y 的值为〔 〕x yx xy y14 .不改变分式的值,使分式的分子、分母中各项系数都为整数,0.2x 0.012 x 0.053- 2 2a b a b 15 .化简:3ab —2a 2ab b116 . 一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:-+1 1 v =f720720匕720 匕 720A . 5B . 548 x 48 48 48 x720 720 c 720 720 c C . 5D . 548 x48 48 x、填空题求提早5天交货,设每天应多做x 件,那么x 应满足的方程为13.科学家发觉一种病毒的长度约为9.假如关于x 的方程72 -C.-2 7无解,那么m 的值为5 x2 D. -7〔 〕10.能使分式 2x-2x的值为零的所有 的值是C .112的3x 2 4x 7___ 6x 2 8xC .12 .某厂接到加工720件衣服的订单,估量每天做 48件, 正好按时完成, 后因客户要0. 000043mm ,科学记数法表示 0. 000043的结果 假设f = 6厘米,v = 8厘米,那么物距u = 厘米.a 2b 218. a 0, a b, x 1是方程ax 2 bx 10 0的一个解,那么代数式-一—的值2a 2b是 ____________ .三、解答题17.: a5,那么a 4 a 2 119•运算:10y 21x 2;x 1) x 3 F _2)x 2 4x 420.先化简代数式g 2,然后请你任意先择一组你自己 a b (a b)(a b)2所喜爱的a,b 的值代入求值.21•解方程:〔1〕J —1;〔2〕6 x 2 11 1111111 1 11 1 1 1 11 ~~ ___________X — ——x- -2 2 23 2 3 34 3 44 54 5〔2〕 验证一下你写出的等式是否成立.〔3〕 1 利用等式运算: 111122.下面一列等式.〔1〕请你按这些等式左边的结构特点写出它的一样性等式:x(x 1) (x 1)(x 2) (x 2)(x 3) (x 3)(x 4)误,请讲出每一步解法的依据.24.用价值为100元的甲种涂料与价值为 200元的乙种涂料配制成一种新涂料,其每千克的售价比甲种涂料每千克的售价少 3元,比乙种涂料每千克的售价多 1元,求这种新涂料每千克售价是多少元?25.为加快西部大开发,某自治区决定新修一条公路, 甲、乙两工程队承包此项工程. 假如甲工程队单独施工, 那么刚好如期完成;假如乙工程队单独施工就要超过6个月才能完成.现在甲、乙两队先共同施工 4个月,剩下的由乙队单独施工,那么刚好 如期完成.咨询原先规定修好这条公路需多长时刻?23 •假设方程2x a 1的解是正数,求a 的取值范畴.关于这道题,有位同学做出x 2如下解答:解:去分母得,2x a x 2.化简,得3x2 a欲使方程的根为正数,必须> 0,得a v 2.3因此,当a v 2时,方程红上1的解是正数.x 2上述解法是否有误?假设有错误请讲明错误的缘故,2 a .故 x2 a ~3~并写出正确解答;假设没有错26.为增强市民节水意识, 某自来水公司水费运算方法如下: 假设每户每月用水不超过5m 3,那么每立方米收费1.5元;假设每户每月用水超过 5m 3,那么超过部分每立22月份,小王家用水量是小李家用水量的-,小王家当3月水费是17. 5元,?小李家当月水费是27. 5元,求超过5m 3的部分每立方米收二、填空题 三、解答题22 .〔 1 〕参考答案 费多少元?、选择题 1-5 BACCD 6-10 DABDA 11-12 AD19.〔 1〕20. 化简结果为a b ,〔取值要求:b 丨.21.〔1〕n(n 1) n(n1)n(n 1)n n 1因此J3月. 4x 2 4x26. 2元/吨.23.有错,当a v 2时, 因此结果为 a v 2且a分母有可能为零; 改正: 24. 9 元. 因为x 2 ,25 . 12 个方米收取较高的定额费用.13. 4.3 10 5 14.100x 6 15. 2ab 16.24 17. 24 18.500x 25;〔2〕。

华师大版八年级数学下册 第十六章《分式》整章水平测试.docx

华师大版八年级数学下册  第十六章《分式》整章水平测试.docx

八年级数学下册第十六章《分式》整章水平测试(总分:100分,时间:40分钟)一、 试试你的身手(每小题4分,共28分)1.若分式11x x -+的值为零,则x 的值为 . 2.不改变分式的值,把分式10.720.3a b a b-+的分子与分母的各项系数化为整数为: . 3.当a 时,分式2521a a -+的值不小于0. 4.化简:3222222232a b a b a ab ab a ab b a b +--÷++-= . 5.生物学家发现一种病毒的长度约为0.000043㎜,用科学记数法表示0.000043的结果为㎜.6.若方程56x x a x x -=--有增根,则a 的值可能是 . 7.把题目补充完整:轮船在顺流中航行64km 与逆流中航行34km 一共用去的时间等于该船在静水中航行180km 所用的时间,已知水流的速度是每小时3km ,求该船 .设 ,依题意列方程 .二、相信你的选择(每小题4分,共32分)1.在有理式21121,,(),,,,(15)321x x x m n m n R x a m n yππ-+--+中,分式有( ). (A )1个 (B )2个 (C )3个 (D )4个2.如果226x x x ---=0,则x 等于( ). (A )±2 (B )-2 (C )2 (D )33.分式2232x x y-中的,x y 同时扩大2倍,则分式的值( ). (A )不变 (B )是原来的2倍 (C )是原来的4倍 (D )是原来的21 4.下列各式从左到右的变形正确的是( ). (A )122122x y x y x y x y --=++(B )0.220.22a b a b a b a b ++=++(C )11x x x y x y +--=-- (D )a b a b a b a b +-=-+ 5.已知111,11ab M a b ==+++,11a b N a b =+++,则M 与N 的大小关系为( ). (A )M >N (B )M=N (C )M <N (D )不确定6.关于x 的方程(1)43a x x +=+的解是负数,则a 的取值范围是( ).(A )a =3 (B )a <3且a ≠-1 (C )a ≥3 (D )a ≤3且a ≠-17.在正数范围内定义一种运算“※”,其规则为a ※b =11a b +,根据这个规则方程x ※(1x +)=0的解为( ).(A )1 (B )0 (C )无解 (D )12- 8.学生有m 个,若每n 个人分配1间宿舍,则还有一人没有地方住,问宿舍的间数为( ).(A )1m n + (B )1m n - (C )1m n - (D )1m n + 三、挑战你的技能(本大题共37分) 1.(本题8分)解方程:214 1.11x x x +-=--2.(本题10分)先化简代数式222222()()()a b a b ab a b a b a b a b +--÷-+-+,然后请选择一组你喜欢的,a b 的值代入求值.3.(本题12分)同一条高速公路沿途有三座城市A 、B 、C ,C 市在A 市与B 市之间,A 、C 两市的距离为540千米,B 、C 两市的距离为600千米.现有甲、乙两辆汽车同时分别从A 、B 两市出发驶向C 市,已知甲车比乙车的速度慢10千米/时,结果两辆车同时到达C 市.求两车的速度.四、拓广探索(本大题共12分)请阅读某同学解下面分式方程的具体过程. 解方程1423.4132x x x x +=+----解:13244231x x x x -=-----, ① 222102106843x x x x x x -+-+=-+-+, ② 22116843x x x x =-+-+, ③ ∴22684 3.x x x x -+=-+ ④ ∴5.2x =把52x =代入原方程检验知52x =是原方程的解. 请你回答:(1)得到①式的做法是 ;得到②式的具体做法是 ;得到③式的具体做法是 ;得到④式的根据是 .(2)上述解答正确吗?如果不正确,从哪一步开始出现错误?答: .错误的原因是 .(3)给出正确答案(不要求重新解答,只需把你认为应改正的加上即可).参考答案:一、1.1 2.57310a b a b -+ 3.a ≤524.2ab 5.54.310-⨯6.6 7.在静水中的速度,船在静水中的速度为x km/h ,64348033x x x +=+-. 二、 1.D 2.C 3.B 4.A 5.B 6.B 7.D 8.C三、1.无解.2.a b +,答案不唯一.3.甲车的速度为90千米/ 时,乙车的速度为100千米/ 时.提示:设乙车的速度为x 千米/ 时,则甲车的速度为(10x -)千米/ 时,由题意可得方程:540600.10x x=- 四、(1)移项,方程两边分别通分,方程两边同除以210x -+,分式值相等,分子相等,则分母相等;(2)有错误.从第③步出现错误,原因:210x -+可能为零;(3)当2100x -+=时,210,5x x -=-=,经检验知5x =也是原方程的解, 故原方程的解为55,.2x x ==初中数学试卷桑水出品。

人教版数学第十六章分式单元检测卷

人教版数学第十六章分式单元检测卷

八年级数学《第十六章 分式》单元测试卷班级 姓名一、填空题(每小题3分,共30分)1、当χ 时,分式χ+13χ-2的值为1;2、若χ3 = y 4 = z 7,则3χ+y+z y= 。

3、已知χ=1时,分式χ+2b χ-a 无意义;χ=4时,分式的值为零,则a+b= 。

4、等式a+1a-2 = (a+1)(a-3)(a-2)(a-3) 成立的条件是 。

5、分式方程χ3χ-7 + a3-2χ= 1的解为χ= 0,则a = 。

6、若χ=2012,y=2013,则(χ+ y ).4422yx y x -+= 。

7、如果方程1χ+1 + 2χ-1 =142-x 有增根,那么增根是 。

8、若χ+1χ=3,则2x +χ+ 1χ + 21x = 。

9、若a χ+2 与bχ-2的和为442-x x ,则a + b= 。

10、若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________。

二、选择题:(每小题3分,共30分)11、下列各式:()3222,5 ,1,2 ,34 ,151-+---x xx x x y x x x π其中)个。

A 、2B 、3C 、4D 、512、分式222222,,,a c ab xy y xz a b a b x y ----,22y x y x ++中,最简分式有 ( ) A .1个 B .2个 C .3个 D .4个13、化简323234242()()()x xz z y z y xy-÷-⨯的结果是 ( )A .-x 2B .-x 3C .-x 2y 4D .-4z x14、若分式xx -22有意义 ,则χ应满足条件为 ( ) A 、χ≠1 B 、χ≠0 C 、χ≠1或χ≠0 D 、χ≠1且χ≠015、如果χ>y >0,那么y+1χ+1 - yχ的值是 ( )A .零B .正数C .负数 D.无法确定16、如果xy y x 2322=- (χ>0,y >0),那么χ+2yχ-y的值 ( )A .52B .- 52C .14 D.- 7217、若把分式xyyx 2+中的x 和y 都扩大6倍,那么分式的值 ( ) A 、扩大6倍 B 、不变 C 、缩小6倍 D 、缩小12倍18、A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) A 、9448448=-++x x B 、9448448=-++x x C 、9448=+x D 、9496496=-++x x 19、若χy χ+y =1,yz y+z =2,z χz+χ =3,则χ的值是 ( )A .1B .125C .512D.-1 20、已知ba ba b a ab b a -+>>=+则且,0622的值为 ( ) A 、2 B 、2± C 、2 D 、2±三、化简求值(每小题6分,共12分)21、 ( 1χ - 22x )÷(1- 2χ), 其中χ= 322、 1,2,1)(222222==+--+÷+-b a ba ab a a b ab a ab 其中四、解方程(每小题6分,共12分) 23、132321+-=+-x x x x 24、13132=-+--xx x五、解答题(每小题8分,共16分) 25、 已知 1a + 1b = 7a+b , 求 b a + ab 的值.26、 若,0258622=+--+y x y x 求分式y χ - χy 的值.六、应用题(每小题10分,共20分)27、某车间有甲、乙两组,甲组的工作效率比乙组的高25%,因此甲组加工2000个零件所用的时间比乙组加工1800个零件所用的时间少半小时,问甲、乙两组每小时各加工多少个零件? 解:28、某一工程队,在工程招标时,接到甲、乙工程队的投标书;每施工一天,•需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案.(1)甲队单独完成此项工程刚好如期完工; (2)乙队单独完成此项工程要比规定工期多用5天;(3)若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工. 你觉得哪一种施工方案最节省工程款? 解:(1)。

初二下册数学 人教八下第十六章分式整章水平测试

初二下册数学 人教八下第十六章分式整章水平测试
2
2
三、解答题:(共 56 分)
19.计算:(1)
1 x

1 2x

1 3x

2)3xy2
6y2 x
20. 计算:
(1)
2m2n 2
3n3
3m
2
(2)
(
x
x
y

2y x y
)gx
xy 2y

(
1 x

1 y
)
1
22. 先化简,后求值:
(a
a b

a2

a2 2ab

b2
)
(a
a
b

a2 a2 b2
)
1 ,其中
a

2 3
,b

3
23. 解下列分式方程.
(1)
x
1
2

1 3x
(3)
1 x
x 2

2
1
x

2
(2)
1 x 1

2 x 1

4 x2 1
(4)
3 2x
2

1
1
x
3
四、拓广探索(本大题共 12 分)
请阅读某同学解下面分式方程的具体过程.
知水流速度为 4 千米/时,若设该轮船在静水中的速度为 x 千米/时,则可列方程( )
A.
48 x4

48 x4

9
C.
48 x

4

9
B.
48 4 x

48 4x

9
D.
96 x4

八年级数学下册第十六章分式整章水平测试

八年级数学下册第十六章分式整章水平测试

八年级数学下册第十六章《分式》整章水平测试一、精心选一选,相信你一定能选对!(每题3分,共30分)1.代数式-32x ,4x y-,x+y ,22x π+,错误!不能通过编辑域代码创建对象。

,55b a ,98,中是分式的有( ). A .1个 B .2个 C .3个 D .4个2.当x≠-1时,对于分式11x -总有( ). A .11x -=21x + B .11x -=211x x +- C .11x -=211x x -- D .11x -=13x -- 3.下列变形正确的是( ).A .a b a b c c -++=-;B .a a b c b c-=--- C .a b a b a b a b -++=--- D . 4.分式325x y xy-中的字母x ,y 都扩大为原来的4倍,则分式的值( ). A .不变 B .扩大为原来的4倍 C .扩大为原来的8倍 D .缩小为原来的14 5.将(16)-1,(-2)0,(-3)2这三个数按从小到大的顺序排列,正确的结果是( ). A .(-2)0<(16)-1<(-3)2 B .(16)-1<(-2)0<(-3)2C .(-3)2<(-2)0<(16)-1D .(-2)0<(-3)2<(16)-16.若分式2112(4)x x --的值为正数,则x 的值为( ). A .x<2 B .2<x<4 C .x>2 D .x>2且x≠47.若关于x 的分式方程2344m x x=+--有增根,则m 的值为( ). A .-2 B .2 C .±2 D .4天数与乙班植70棵树所用的天数相等,若设甲班每天植树x 棵,•则根据题意列出方程是( ).A .80705x x =-B .80705x x =+C .80705x x =+D .80705x x =- 9.一个人从A 地到B 地,去时速度为xkm/h ,回时速度为ykm/h ,•则这个人往返的平均速度为( )km/h .A .2x y +B .2xy x y +C .xy x y +D .2()x y xy+ 10.实数a ,b 满足ab=1,记M=11a ++11b +,N=1a a ++1b b +,则M 、N 的大小关系为( ).A .M>NB .M=NC .M<ND .不确定二、细心填一填,相信你填得又快又准!(每题3分,共30分)11.当x=_______时,分式43x x --无意义;当x=______时,分式||99x x -+的值等于零. 12.某城市高科技园区超级计算机中心内,被称为“神州1 ”的计算机的运算速度为每秒384000000000次,•保留四个有效数字,•用科学记数法表示每秒钟的次数为________.13.已知3a=4b ,则a a b ++b a b --222a ab -=______. 14.观察下面的一组有规律的数:13,28,315,424,535,648……根据其规律可得第n 个数应是_______(n 为正整数). 15.下列各式①3027b a ;②22y x x y -+;③22y x x y++;④2m m ;⑤233x x +-中分子与分母没有公因式的分式是_______.(填序号).16.对于公式12111f f f =+(f 2≠f ),若已知f ,f 2,则f 1=________. 17.某车间要制造a 个零件,原计划每天制造x 个,需要______天才能完成;若每天多制造b 个,则可提前_______天完成.18.用价值100元的甲种涂料与价值240元的乙种涂料配制成一种新涂料,其每千克售价比甲种涂料每千克售价少3元,比乙种涂料每千克的售价多1元,求这种新涂料每千克的售价是多少元?若设这种新涂料每千克的售价为x 元,•则根据题意可列方程为________.19.有一个分式,三位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:分式有意义时x 的取值范围是x≠±1;丙:当x=-2时,分式的值为1,•请你写出满足上述20.如果记y=221xx+=f(x),并且f(1)表示当x=1时y的值,即f(1)=22111+=12;f(12)表示当x=12时y的值,即f(12)=221()12151()2=+,那么f(1)+f(2)+f(12)+f(3)+f(13)+……+f(n)+f(1n)=_______(结果用含n的代数式表示,n为正整数).三、耐心选一选,千万别漏选!(每题4分,共8分,错选一项得0分,•对而不全酌情给分)21.已知x+2x=4,则点(x+2x,x-2x)在().A.第一象限B.第二象限C.第三象限D.第四象限22.某地要修筑一水坝,需要在规定日期内完成,如果由甲队去做,恰好如期完成;如果由乙队去做,则需要超过规定日期三天,现由甲、乙两队合做2天后,•余下的工作由乙队独做,恰好在规定日期内完成,求规定日期x,下列所列方程中正确的是().A.2x+3xx+=1 B.2x=33x+C.(1x+13x+)×2+13x+·(x-2)=1 D.1x+3xx+=1四、认真算一算,培养你的计算能力!23.化简与求值:(3分×3=9分)(1)化简:22x yx y-+-24()2x x y yx y-+-;(2)先化简再求值:2222a ba b ab--÷(1+222a bab+),其中,.(3)已知2+23=22×23,3+38=32×38,4+415=42×415,……,若10+a b =102×a b(a ,b 为正整数),求分式22222a ab b ab a b+++的值.24.解方程:(4分×2=8分)(1)23x x ++1=726x +;(2)12x x --=12x--2.五、仔细读一读,展示你的应变能力!25.(5分)先仔细看(1)题,再解答(2)题.(1)a 为何值时,方程3x x -=2+3a x -会产生增根? 解 方程两边同时乘以(x-3),得x=2(x-3)+a ,①因为x=3是原方程的增根,•但却是方程①的根,所以将x=3代入①得:3=2×(3-3)+a ,所以a=3.(2)当m 为何值时,方程1y y --22m y y -=1y y-会产生增根?六、动脑想一想,数学就在身边!26.(8分)某自来水公司水费计算办法如下:若每户每月用水不超过5m3,则每立方米收费1.5元;若每户每月用水超过5m3,则超过部分每立方米收取较高的定额费用.•2月份,小王家用水量是小李家用水量的23,小王家当月水费是17.5元,•小李家当月水费是27.5元,求超过5m3的部分每立方米收费多少元?27.(10分)某班13名同学参加每周一次的卫生大扫除,按学校的卫生要求需要完成总面积为80m2的三个项目的任务,三个项目的面积比例和每人每分钟完成各项目的工作量如下图所示.(1)从上述统计图可知:每人每分钟能擦课桌椅_______m2;擦玻璃、•擦课桌椅及扫地、拖地的面积分别是______m2,_______m2,________m2;(2)如果x人每分钟擦玻璃的面积是ym2,则y与x之间的函数关系式是______.(3)他们一起完成扫地和拖地的任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅.如果你是卫生委员,该如何分配这两组的人数,才能同时完成任务?28.(12分)某商人用7200元购进甲、乙两种商品,然后卖出,•若每种商品均用去一半的钱,则一共可购进750件;若用23的钱买甲种商品,其余的钱买乙种商品,•则要少购进50件,卖出时,甲种商品可盈利20%,乙种商品可盈利25%.(1)求甲、•乙两种商品的购进价和卖出价;(2)因市场需求总量有限,每种商品最多只能卖出600件,•那么该商人应采取怎样的购货方式才能获得最大利润?最大利润是多少?参考答案:1.C 2.B 3.D 4.D 5.A 6.D 7.A 8.D 9.B10.B 提示:运用差的比较法进行比较. 11.3,912.3.840×1011 13.97 14.2(1)1n n +-,也可写成(2)n n n + 15.③、⑤ 16.22ff f f- 17.a x ;()ab x x b + 18.10024010024031x x x++=+- 提示:甲、乙两种涂料质量之和等于新涂料的质量. 19.答案不唯一,如231x -,2||11x x +-,1||1x -等 20.n-12 提示:f (n )+f (1n )=221n n ++221()11()n n+=221n n ++211n+=1 21.A 、D 提示:∵(x-2x )2=(x+2x )2-4x·2x =42-8=8,∴x-2x=±22.A 、B 、C23.(1)-x ;(2)2a b+,1; (3)由题意,得a=10,b=102-1=99,原式=109990a b ab += 24.(1)x=16;(2)x=2是增根,故原方程无解 25.(2)m=±126.设超过5m 3的部分每立方米收费x 元,根据题意,得 5+17.55 1.5x -⨯=23×(5+27.55 1.5x-⨯), 解之,得x=2,经检验,x=2是原方程的解,且符合题意,所以超过5m 3的部分每立方米收费2元.27.(1)12;16,20,44;(2)y=14x ; (3)设派x 人去擦玻璃,则派(13-x )人去擦课桌椅,根据题意,得错误!不能通过编辑域代码创建对象。

第十六章分式单元测试题

第十六章分式单元测试题

第十六章 分式综合测试题一、选一选(请将唯一正确答案代号填入题后的括号内)1、在式子:23123510,,,,,94678xy a b c x y x a x yπ+++中,分式的个数是( )A :2B :3C :4D :52、若(x-2)0=1,则x 不等于( ) A 、 -2 B 、2 C 、 3 D 、0 3、化简1x x y x÷⋅的结果是( )A :1B :xyC :y xD :x y4、若把分式xy x 23+的x 、y 同时扩大10倍,则分式的值()A :扩大10倍B :缩小10倍C :不变D :缩小5倍5、化简2293mm m --的结果是( )A :3+m m B :3+-m m C :3-m m D :mm -36、对于分式23x -有意义,则x 应满足的条件是( )A :3x ≥B :3x >C :3x ≠D :3x < 7、若分式392+-x x 的值为0,则x 的值是( )A 、-3B 、3C 、±3D 、0 8、若关于x 的方程1331--=--x m x x 无解,则m 的值为( )A 、-3B 、-1C 、2D 、-29、用科学记数法表示-0.0000064记为( )A :-64×10-7B :-0.64×10-4C :-6.4×10-6D :-640×10-810、若分式112--x x 的值为0,则x 的取值为( )A :1=xB :1-=xC :1±=xD :无法确定 11、下列等式成立的是( ) A :9)3(2-=-- B :()9132=--C :2222b a ba⨯=⨯-- D :b a ab b a +=--2212、若方程342(2)a x xx x =+--有增根,则增根可能为( )A :0B :2C :0或2D : 13、以下是分式方程1211=-+xx x 去分母后的结果,其中正确的是( )A 、112=--xB 、112=+-xC 、x x 212=-+D 、x x 212=+- 14、化简212293mm +-+的结果是( ). (A )269m m +- (B)23m - C)23m + (D )2299m m+-15.分式方程1212x x =--( ).(A )无解 (B )有解x=1 (C )有解x=2 (D )有解x=0 16.若分式21x +的值为正整数,则整数x 的值为( )(A )0 (B )1 (C )0或1 (D )0或-1 二、填一填1、计算:=-321)(b a ;=+-23π ;2、方程xx 527=-的解是 ;3、分式,21x xyy51,212-的最简公分母为 ;4、约分:=-2264xyy x ;932--x x = ;5、若关于x 的方程211=--ax a x 的解是x=2,则a= ;6、计算ab bba a -+-= ;7、如果分式121+-x x 的值为-1,则x 的值是 ; 8、已知31=b a ,分式b a ba 52-+的值为 ;9若分式312+-x x 的值是负数,那么x 的取值范围是 。

人教版-数学-八年级上册-第十六章分式单元测试

人教版-数学-八年级上册-第十六章分式单元测试

第十六章分式单元测试班级 姓名 成绩一、请你认真填(每小题4分,共24分) 1.x 时,分式42-x x有意义。

2.当x= 时,分式2152xx --的值为零。

3.如果ba=2,则2222b a b ab a ++-= 。

4.①())0(,10 53≠=a axy xy a ②()1422=-+a a 。

5.约分:①=ba ab2205__________,②=+--96922x x x __________。

6.若分式231-+x x 的值为负数,则x 的取值范围是__________。

二、请你选一选(每题4分,共40分)7.下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有( )个。

A .2B .3C .4D .58. 若m,n 为正整数,则下列各式错误的是( )A .nm n m a a a a -⋅=÷ B.n n nb a b a -=⎪⎭⎫ ⎝⎛C.()mn nm a a =-- D. nn am am 1=-A .x >3B .x <3C .x <3且x ≠0D .x >--3且x ≠010.如果正数x 、y 同时扩大10倍,那么下列分式中值保持不变的是( )A .11--y x B .11++y x C .32yxD .yx x + 11.下列化简结果正确的是( )A .222222z y z x y x -=+-B .))((22b a b a b a -+--=0C .yx yx 263=3x 3D .12-+m m a a =a 3A .--22nmB .--3n m C .--4m n D .--n13.使分式2222---x x x 的值是整数的整数x 的值是( )A. 0=xB. 最多2个C. 正数D. 共有4个 14.下列四个题中,计算正确的是( )A.)(313131b a b a +=+ B.aa b a b 11=+- C.011=-+-a b b a D.abmb m a m 2=+ 15.下列约分正确的是( )A .313m m m +=+ B .212y x y x -=-+ C .123369+=+a b a b D .()()y x a b y b a x =-- 16.在一段坡路,小明骑自行车上坡的速度为每小时V1千米,下坡时的速度为每小时V2千米,则他在这段路上、下坡的平均速度是每小时( )。

八年级数学下册第十六章分式整章水平测试(B)

八年级数学下册第十六章分式整章水平测试(B)

八年级数学下册第十六章《分式》整章水平测试(B )(总分:100分,时间:40分钟)一、填空(每题4分,共24分) 1. 对于分式392+-x x ,当x__________时,分式无意义;当x__________时,分式的值为0; 2. 计算=-----nm z mn y nm x _________;3. 若5922=-+ba b a ,则a :b =__________;4. 某种微粒的直径约为4280纳米,用科学记数法表示为______________________米;5. 已知13a a -=,那么221a a+=_________ ;6. 若分式732-x x的值为负数,则x 的取值范围为_______________; 二、选择题:(每题4分,共24分)7. 下面各分式:4416121222222+-+---++-x x x x x y x yx x x x ,,,,其中最简分式有( )个。

A. 4B. 3C. 2D. 18. 下面各式,正确的是( )A. 326xxx= B. ba cb ca =++C. 1=++ba ba D. 0=--ba ba9. 如果m 为整数,那么使分式13++m m 的值为整数的m 的值有( )(A )2个 (B )3个 (C )4个 (D )5个10.已知1=ab ,则⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-b b a a 11的值为( )A. 22aB. 22bC. 22a b -D. 22b a -11. “五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 ( )A .32180180=+-x xB .31802180=-+x xC .32180180=--x xD .31802180=--xx 12. 在正数范围内定义一种运算☆,其规则为a ☆b =ba 11+,根据这个规则x ☆23)1(=+x 的解为( )A .32=xB .1=xC .32-=x 或1 D .32=x 或1-三、解答题(52分)13. 计算:(每小题10分,共20分)(1)xx x -+-++1111112;(2)xx x x x x x 4126)3(446222--+⋅+÷+-- ;14. 解方程:(共10分)1613122-=--+x xx;15. 化简或求值:(共10分)若21<<x ,化简xx xx x x +-----1122 ;16. 应用题:(共12分) 阅读下面对话:小红妈:“售货员,请帮我买些梨。

2021-2022学年度华东师大版八年级数学下册第十六章分式章节测评试题(含详细解析)

2021-2022学年度华东师大版八年级数学下册第十六章分式章节测评试题(含详细解析)

华东师大版八年级数学下册第十六章分式章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果关于x 的不等式组45253m x x x ->⎧⎨+≥+⎩所有整数解中非负整数解有且仅有三个,且关于y 的分式方程2301322my y y --=--有正整数解,则符合条件的整数m 有( )个 A .1 B .2 C .3 D .42、若关于x 的一元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩的解集为x a ≤-,且关于x 的分式方程32222ax x x x +=+--有非负整数解,则所有满足条件的整数a 的值之和是( )A .14-B .5-C .9-D .6- 3、要使式子5a b a b -+值为0,则( ) A .a ≠0 B .b ≠0 C .5a =bD .5a =b 且b ≠0 4、根据分式的基本性质,分式22m -可以变形为( ) A .11m - B .22m -- C .22m -+ D .21m-5、下列关于x 的方程,是分式方程的是( )A .325xx -= B .11523x y -= C .32xx x π=+ D .1212x x=-+ 6、已知分式2ab a b +的值为25,如果把分式2ab a b+中的,a b 同时扩大为原来的3倍,那么新得到的分式的值为( )A .25 B .45 C .65 D .4257、下列运算正确的是( )A .22352a b a b -=-B .()22448a b a b -= C .()224--= D .()22224a b a b -=- 8、已知5a b +=,3ab =,则b a a b+的值为( ) A .6 B .193 C .223 D .89、若关于x 的一元一次不等式组()21122x x x m ⎧+-<+⎨-≤⎩的解集为1x <;关于x 的分式方程2422x m m x x ++=--的解为非负整数.则满足条件的整数m 的值之和是( )A .13B .12C .14D .1510、一辆汽车以60千米/时的速度行驶,从A 城到B 城需t 小时,如果该车的速度每小时增加v 千米,那么从A 城到B 城需要( )小时.A .60t v B .6060t v + C .60vt v + D .60vt 第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、计算下列各题:(1)|3﹣4|﹣1=_____;(2=_____;(3)30=_____;(4)32y xy x+=_____. 2、计算:24133--+=--m m m m _________. 3、如果分式2356x x x --+的值为零,那么x =____. 4、将0.000927用科学计数法表示为______.5、当x ≠4时,(x ﹣4)0=___.6、计算:1322x x x -+=++________. 7、已知ab =﹣4,a +b =3,则11a b +=_____. 8、若分式21x +无意义,则x 的值为__. 9、化简:1111x x x ⎛⎫+÷= ⎪--⎝⎭______. 10、计算:02202211122-⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭______. 三、解答题(5小题,每小题6分,共计30分)1、如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①11x x -+;②222a b a b --;③22x y x y +-,其中是“和谐分式”的是 (填写序号即可); (2)若a 为整数,且214x x ax --++为“和谐分式”,写出满足条件的a 的值为 ; (3)在化简22344a ab ab b b -÷-时,小明和小娟分别进行了如下三步变形:小明:原式22222323232232444444()()a a a a a b a ab b ab b b b ab b b ab b b --=-⋅=-=---, 小娟:原式22223222444444()()()a a a a a a ab ab b b b b a b b b a b --=-⋅=-=---, 你比较欣赏谁的做法?先进行选择,再根据你的选择完成化简过程,并说明你选择的理由.2、计算(1)()()()223a b a b a a b -+-+ (2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭3、计算:()03.14π-4、计算:1111x y x y ----+-. 5、计算:(1)()()()23123a a a a -+--(2)()254111x x x x x --⋅++---参考答案-一、单选题1、B【解析】【分析】解不等式组和分式方程得出关于x 的范围,根据不等式组有且仅有非负整数解和分式方程的解为正整数解得出m 的范围,继而可得整数m 的个数.解:解不等式45m x ->,得:54m x -<, 解不等式253x x +≥+,得:2x ≥-,不等式组有且仅有三个非负整数解,4234m -∴<≤, 解得:1216m <≤,解关于y 的分式方程2301322my y y --=--, 23013(2)my y --=-,(13)58m y -=, 得:1358y m =-, 分式方程有正整数解, ∴58013m >-,且58213m ≠-,即42m ≠, 解得:13m >且42m ≠,综上,1316m <≤,所以所有满足条件的整数m 的值为14,15,一共2个.故选:B .【点睛】本题主要考查分式方程的解和一元一次不等式组的解,解题的关键是熟练掌握解分式方程和不等式组的能力,并根据题意得到关于m 的范围.2、B【解析】先解不等式组根据解集x a ≤-,求出得a 的范围,再解分式方程,根据非负整数解,求出a 的值即可求解.【详解】 解一元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩得5x x a ≤⎧⎨≤-⎩ ∵元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩的解集为x a ≤-∴5a ≥-,即5a ≥-解关于x 的分式方程32222ax x x x +=+--得61x a =-+ ∵分式方程32222ax x x x+=+--有非负整数解, ∴11a +=-或12a +=-或13a +=-或16a +=-,解得2a =-或3a =-或4a =-或7a =-, ∵621x a =-≠+ ∴4a ≠-∵5a ≥-∴2a =-或3a =-∴2(3)5-+-=-或3a =-故选:B【点睛】本题考查分式方程、一元一次不等式组,熟练掌握分式方程、一元一次不等式组的解法,注意分式方程增根的情况是解题的关键.3、D【解析】【分析】根据分式有意义的条件,即可求解.【详解】解:根据题意得:50a b -= 且0a b +≠ ,∴5a b = 且0b ≠ .故选:D【点睛】本题主要考查了,熟练掌握分式有意义的条件是分式的分子等于0且分母不等于0是解题的关键.4、B【解析】【分析】根据分式的基本性质即可求出答案.【详解】 解:原式2222m m =---, 故选B .【点睛】本题考查的是分式的基本性质,即分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.5、D【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.【详解】解:A.方程分母中不含未知数,故不是分式方程,不符合题意;B.方程分母中不含未知数,故不是分式方程,不符合题意;C.方程分母中不含表示未知数的字母,π是常数,故不是分式方程,不符合题意;D.方程分母中含未知数x,故是分式方程,符合题意.故选:D.【点睛】本题主要考查了分式方程的定义,解题的关键是掌握判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).6、C【解析】【分析】直接利用分式的基本性质进而化简得出答案.【详解】解:把分式2aba b+中的,a b都扩大为原来的3倍,则分式223392263333()55ab a b aba b a b a b===⨯=+++,故选:C.【点睛】本题主要考查了分式的基本性质,解题的关键是正确化简分式.7、B【解析】【分析】由题意依据合并同类项和积、幂的乘方以及负指数幂和完全平方差公式逐项进行运算判断即可.【详解】解:A. 222352a b a b a b -=-,本选项运算错误;B. ()22448a b a b -=,本选项运算正确; C. ()2124--=,本选项运算错误; D. ()222244a b a ab b -=-+,本选项运算错误.故选:B.【点睛】本题考查整式的混合运算以及完全平方差公式,熟练掌握合并同类项和积、幂的乘方以及负指数幂运算是解题的关键.8、B【解析】【分析】 将原式同分,再将分子变形为2()2a b ab ab+-后代入数值计算即可. 【详解】解:∵5a b +=,3ab =, ∴2222()25231933b a a b a b ab a b ab ab ++--⨯+====, 故选:B .【点睛】此题考查了分式的化简求值,正确掌握完全平方公式的变形计算是解题的关键.9、B【解析】【分析】由关于x 的一元一次不等式组可得m ≥-1,关于x 的分式方程的解为83m x -=,根据题意得出所有满足条件的整数m 的值,求和即可.【详解】解:解不等式组2(1)122x x x m +-<+⎧⎨-≤⎩得,12x x m <⎧⎨≤+⎩, 因为不等式组的解集为1x <;所以21m +≥,解得,1m ≥-; 解分式方程2422x m m x x ++=--得,83m x -=, 因为关于x 的分式方程2422x m m x x ++=--的解为非负数. 所以,803m -≥且823m -≠, 解得,8m ≤且2m ≠,又因为方程的解是非负整数,则整数m 的值为-1,5,8;它们的和为:-1+5+8=12;故选:B【点睛】本题主要考查了分式方程的解,一元一次不等式组的解集,有理数的混合运算.考虑解分式方程可能产生增根是解题的关键.10、B【解析】【分析】根据题意求出全程,及后来行驶的速度,相除即可得到时间.【详解】解:一辆汽车以60千米/时的速度行驶,从A城到B城需t小时,故全程为60t千米,该车的速度每小时增加v千米后的速度为每小时(60+v)千米,则从A城到B城需要6060tv+小时,故选:B.【点睛】此题考查了分式的实际应用,正确理解题意是解题的关键.二、填空题1、 0 3 1 5 x【解析】【分析】(1)先化简绝对值,再计算减法运算即可得;(2)先计算有理数的乘方,再计算算术平方根即可得;(3)计算零指数幂即可得;(4)根据分式的加法运算法则即可得.【详解】解:(1)原式11110=--=-=,故答案为:0;(2)原式3==,故答案为:3;(3)原式1=,故答案为:1;(4)原式325x x x+==, 故答案为:5x .【点睛】本题考查了零指数幂、算术平方根、分式的加法等知识点,熟练掌握各运算法则是解题关键.2、-1【解析】【分析】根据同分母分式的加法法则计算即可.【详解】 解:241241313333m m m m m m m m m---+--+===-----. 故答案为:-1.【点睛】本题考查了同分母分式的加减运算,同分母分式的加减法则:分母不变,分子相加减.3、3-【解析】【分析】根据分时的值为0的条件,可得30x -= 且2560x x -+≠ ,即可求解.【详解】 解:根据题意得:30x -= 且2560x x -+≠ ,即3x =± 且()()230x x --≠ ,∴3x =± 且2x ≠ 且3x ≠ ,∴3x =- .故答案为:3-【点睛】本题主要考查了分时的值为0的条件,熟练掌握当分式的分子等于0,且分母不等于0时,分时的值为0是解题的关键.4、9.27×10-4【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000927=9.27×10-4,故答案为:9.27×10-4.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5、1【解析】【分析】根据零指数幂的定义:a0=1(a≠0),求解即可.【详解】解:∵x≠4,∴x-4≠0,∴(x-4)0=1.故答案是:1.【点睛】本题考查了零指数幂,掌握运算法则是解答本题的关键.6、1【解析】【分析】根据b c b ca a a++=计算即可.【详解】∵1322 xx x-+++=13222 x xx x-++=++=1,故答案为:1.【点睛】本题考查了同分母分式的加法,熟练掌握同分母分式的加减法的法则是解题的关键.7、3 4 -【解析】先通分:11a ba b ab++=,然后再代入数据即可求解.【详解】解:由题意可知:113344a ba b ab++===--,故答案为:34 -.【点睛】本题考查了分式的加减运算及求值,属于基础题,计算过程中细心即可.8、-1【解析】【分析】根据使分式无意义的条件“分母为0”,计算即可.【详解】根据题意有10x+=,解得:1x=-.故答案为:-1.【点睛】本题考查使分式无意义的条件.掌握使分式无意义的条件是分母为0是解答本题的关键.9、1【解析】【分析】根据分式的加减运算法则以及乘除运算法则即可求出答案.解:原式=1111x xx x +--⨯-=11x xx x-⨯-=1故答案为:1.【点睛】本题考查分式的混合运算,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型.10、-4【解析】【分析】先运用乘方、零次幂、负整数次幂化简,然后计算即可.【详解】解:02 202211122-⎛⎫⎛⎫-+--⎪ ⎪⎝⎭⎝⎭=114-+-=-4.故答案为-4.【点睛】本题主要考查了乘方、零次幂、负整数次幂等知识点,灵活运用相关运算法则成为解答本题的关键.三、解答题1、(1)②(3)我欣赏小娟的做法,见解析【解析】【分析】(1)根据和谐分式的定义判断即可得出答案;(2)根据完全平方公式和十字相乘法即可得出答案;(3)小娟利用了和谐分式,通分时找到了最简公分母,完成化简即可.(1)解:①分子或分母都不可以因式分解,不符合题意;②分母可以因式分解,且这个分式不可约分,符合题意;③这个分式可以约分,不符合题意;故答案为:②;(2)解:将分母变成完全平方公式得:244x x ±+,此时4a =±;将分母变形成(1)(4)x x ++,此时5a =;故答案为:4±或5;(3)我欣赏小娟的做法, 原式222444()a a ab b a b -+=- 24()ab b a b =- 4()a b a b =-, 理由:小娟利用了和谐分式,通分时找到了最简公分母.解:我欣赏小娟的做法, 原式222444()a a ab b a b -+=- 24()ab b a b =- 4()a b a b =-, 理由:小娟利用了和谐分式,通分时找到了最简公分母.【点睛】本题考查了分式的混合运算,解题的关键是掌握在分式的混合运算中,能因式分解的多项式要分解因式,便于约分.2、 (1)243b ab -- (2)21x x -- 【解析】【分析】(1)根据单项式乘多项式和平方差公式可以解答本题;(2)先因式分解,再根据分式的减法和除法解答本题.(1)解:(1)()()()223a b a b a a b -+-+()22243a b a ab =--+22243a b a ab =---243b ab =--(2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭()()()()222212111x x x x x x x x -+-⎡⎤+=÷-⎢⎥---⎣⎦ ()()()()222211x x x x x -+-+⎡⎤=÷⎢⎥--⎣⎦()()()()()222121x x x x x ⎡⎤-+-=⎢⎥-+-⎢⎥⎣⎦ 21x x -=- 【点睛】本题考查整式的混合计算,分式的混合运算、单项式乘多项式、平方差公式,熟悉相关性质是解答本题的关键.3、6【解析】【分析】先运用零次幂、算术平方根的性质、立方根的知识化简,然后计算即可.【详解】解:()03.14π-=1+2-(-3)=1+2+3=6.【点睛】本题主要考查了零次幂、算术平方根、立方根等知识点,灵活运用相关知识是解答本题的关键.4、y x y x+-. 【解析】【分析】根据负整数指数幂、分式的加减法与除法法则即可得.【详解】 解:原式1111x y x y+=-y x xy xy y x xy xy+=- y xxy y xxy+=- y x y x+=-. 【点睛】本题考查了负整数指数幂、分式的加减法与除法,熟练掌握分式的运算法则是解题关键.5、 (1)3a + (2)11x - 【解析】【分析】(1)先利用单项式乘多项式和多项式乘多项式运算法则计算,然后再合并即可;(2)运用分式的四则混合运算法则计算即可.(1)解:()()()23123a a a a -+--=2262253a a a a -+-+=3a +.(2) 解:()254111x x x x x --⋅++-- =()()()541111x x x x x x --⋅+++-- =5411x x x x --+-- =541x x x -+-- =11x -. 【点睛】本题主要考查整式乘法混合运算、分式四则混合运算等知识点,灵活运用相关知识点成为解答本题的关键.。

第十六章《分式》整章参考答案

第十六章《分式》整章参考答案

第十六章《分式》整章参考答案第十六童分式16.1.1从分数到分式16.2.2分式的加减〔―〕1. ±- m + n Ww)、曲、。

44 4. _3 为任意实数 6. C 7. C 8. C 9. D 10. (1) -<x<2; (2) 4⑶ x=2: 16.1.2 分式的差不多性质h-a 1. ------- 2a-ba-2b 2a-b 2. 4x+20 5x-10 3. 12(G -1)2(°-2)2 4. A 5. D 6. (1)— n (2) 兀+ 2 2 ;⑶-8(x —y)4:⑷ -----------4厂 x + 77. (1) 5ac 2b 2「…:⑵芈,卑:⑶ \0crb c 10“T c 6x^y 6A "y 时'梟:⑷y+1 T12c 16.2.1 分式的乘除〔一〕 1 jy 2.一丛 2 3・ 4. 9.v 5. C 6. C A 9.1 10・⑴•严+严+・・・ + x+l (2) 2咖—1 16.2.1 分式的乘除〔二〕 1. A 2・ B 1 3-D 4•乔 5. 4 —6. 4x4-6 7. 4-2/7? 8・不正确, 原式=%•—- x — 2 x — 2 1 X (X —2)2 9. 10.(吟 X+1 2加 2 X 5$ 1.⑴ ——:(2) v-y2.⑴ —:(2) a+b3.——4. 正5. a X x-l7. A 8. C 9. (1) X :(2) 1 10. 1211. 3 12.- x + 2 1+G 36, 3尸一/1•⑴ 0, (2) m+n 2. 9. 1 AM (2)-=——+------------- n 77 + 1 n{n +1) 16.2.2分式的加减〔二〕 ] 2x + 6 3. 10.二―,-1 a + b a+b 4・ 2 5・ D 6. A 7. ——!— x + 2 11.— 11 12・(1) □ , O 分不表示6和30, 16.2.3整数指数幕2•⑴一右’⑵W 3- 16.2.3整数指数幕 〔一〕 D 4- 5. 12" 6. %10 匚〕 1. (1) 9xl0"5, (2) 5.6X10-4 2. 0. 0002 3. 0. 0000000302 4. D 5. (1) 1.2x10二 ⑵ 9 6・ 2.667xlO 23〔个),1.675x10® (千克) 16.3分式方程〔一〕3. — 14. 5 5・ 1 6. A 7. C 8. D 9. A 10.⑴ x = 2\ (2)无解 11 •⑴ ⑴:⑵无解12. 31 B. m< — 2 16.3分式方程〔二〕 £ 1- (l4)xl 4 120 4. C 5・ B 6. B (1) 60 天,(2) 24 天 8.科普书7. 5元/本.文学书5元/本;(2)科普书2本.文学书3本 9•此 商品进价是500元, 第二个月共销售128件. 10. (1) 12 间,(2) 8000 元.8500 元 16.3分式方程[三〕 15 15 11.—— ----- =—x 1.2% 2 2. C 3. 5千米/时 4・甲速度24千米/时,乙速度60千米/时 5. 2元/米' 6. (1)优待率为32・5%: (2)标价750元 7.乙先到达第16童《分式》童节复习22. (1)丄•丄=丄一丄;⑵ n 〃 +1 n n +11 n n + \ n(n +1) n(n +1) n(n + l)元/吨・第十六章《分式》童节测试一、 选择题1-5 DDCBC 6-10 CDCBA 11-12 DD二、 填空题 13・ U 2 3.5, 2 14.—— 15. (v + 1)316. xv? I? (斗-3 18. 1 “一一 R a-h a 2 -ZZL 、 解答题4 a 4 \ + m y 19. (1)心±3: (2) x<2. 20. (1) 7 n : (2) : (3) ——:(4) 一 J 21.原9x 2y 2 4b 1-/7? x+ y 式=兀+1,取值时注意xH±l,—2・ 22.不可能,原式等于丄时,x = -\,现在分式无意4义. 23. (1) x = —3;⑵ 无解. 24. (1) 60天;⑵24天. 25.甲每分钟输入22 名,乙每分钟输入11名・ 26. (1)移项,方程两边分不通分,方程两边同除以-2x+10,分式 值相等,分子相等,那么分母相等:(2)有错误.从第③步显现错误,缘故:-2x + 10可能为零;(3)当-2x+10 = 0时,一2工=一10,尤=5,经检验知x = 5也是原方程的解,故原方程的解为1-5 13. 19.选择题BACCD 填空题 4.3x10-解答题 (1) 4:⑵ 6-10 DABDA lOOx-6 14. ------------ -500x-25 x+\ 11-12 AD 15・ 2ab 16. 24 17. 24 18. 5 20.化简结果为a+b, (取值要求:同工问)・21. (1) x = 2:23.有错,当a<2 时,分母有可能为零:改正:因为XH2,因 n 2 — a此——H2, oH-4,因此结果为a<2且3 24. 9 元. 25・12个月. 26. 2 (2)。

第16章《分式》单元测试题(含答案)

第16章《分式》单元测试题(含答案)

第16章 分式单元测试题姓名 班次一、选择题(30分)1.下列运算正确的是( )A.x 10÷x 5=x 2B.x -4·x =x -3C.x 3·x 2=x 6D.(2x -2)-3=-8x 62. 一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时. A.11a b + B.1ab C.1a b + D.aba b +3.化简a ba b a b --+等于( ) A.2222a b a b +- B.222()a b a b +- C.2222a b a b -+ D.222()a b a b +-4.若分式2242x x x ---的值为零,则x 的值是( )A.2或-2B.2C.-2D.45.不改变分式52223x yx y-+的值,把分子、分母中各项系数化为整数,结果是( ) A.2154x y x y -+ B.4523x y x y -+ C.61542x yx y -+ D.121546x yx y -+6.分式:①223a a ++,②22a ba b --,③412()aa b -,④12x -中,最简分式有( )A.1个B.2个C.3个D.4个7.计算4222xx xx x x ⎛⎫-÷ ⎪-+-⎝⎭的结果是( )A. -12x + B. 12x + C.-1 D.18.若关于x 的方程ax =3x -5有负数解,则a 的取值范围是( )A.a <3B.a >3C.a ≥3D.a ≤39.解分式方程2236111x x x +=+--,分以下四步,其中,错误的一步是( )A.方程两边分式的最简公分母是(x -1)(x +1)B.方程两边都乘以(x -1)(x +1),得整式方程2(x -1)+3(x +1)=6C.解这个整式方程,得x =1D.原方程的解为x =110.关于x 的方程x a c b x d-=- 有解,则必须满足条件( ) A. a ≠b ,c ≠d B. a ≠b .若,c ≠-d C.a ≠-b , c ≠d C.a ≠-b , c ≠-d二、填空题(30分)11.当a 时,分式321+-a a 有意义. 12. 化简:x 2-9x -3=____. 13.某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷. 14.计算1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭的结果是_________. 15.已知u =121s s t -- (u ≠0),则t =___________. 16.当m =______时,方程233x m x x =---会产生增根. 17.当x 时,分式xx --23的值为负数 18.用科学记数法表示:12.5毫克=________吨. 19算(x +y )·2222x y x y y x+-- =____________. 20.察下面一列有规律的数:,486,355,244,153,82,31…… ⑴根据排列规律,第七个数是____,第十个数是_______;⑵根据规律猜想第n 个数应是______ (n 为正整数)⑶如果第m 个数化简后是801 ,则它是第 _____ 个数. 三、计算题20.计算(16分) (1)()212242-⨯-÷+-a a a a (2)xx x x x x 2421212-+÷⎪⎭⎫ ⎝⎛-+-+(3)x y x y x xy x y x x -÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++-3232 (4)4214121111x x x x ++++++-21.计算题(10分)(1))121()144(4a 222a a a -÷-+⨯-,其中21=a(2)已知02322=-+y xy x (x ≠0,y ≠0),求xy y x x y y x 22+--的值。

第十六章 《分式》整章参考答案.doc

第十六章  《分式》整章参考答案.doc

参考答案第十六章 分式16.1.1 从分数到分式1.2s m n + 2.11x +、22a b a b --,1()5x y +、23x -、0 3.12,434.3-,1- 5.3-,为任意实数 6.C 7.C 8.C 9.D 10.(1)34<x <2;(2)x <34或x >2;(3)x =2;(4)x =3416.1.2 分式的基本性质1.2b a a b --,22a b a b -- 2.420510x x +- 3.2212(1)(2)a a -- 4.A 5.D 6.(1)2m n;(2)24x z -;(3)48()x y --;(4)27x x ++ 7.(1)232352,1010ac b a b c a b c ;(2)2232,66ax by x y x y ;(3)32222212,88c a b ab c ab c -;(4)2211,11y y y y +--- 8.12- 9.1816.2.1 分式的乘除(一)1.2x y - 2. 292x y - 3. 213b - 4.9x 5.C 6.C 7.B 8.A 9.1a 10.(1)121n n x x x --++++,(2)200821-16.2.1 分式的乘除(二)1.A 2.B 3.D 4.212y 5.2249x y 6.46x + 7.42m - 8.不正确,原式21122(2)x x x x x =∙∙=--- 9.12 10.22()1x x -+ 16.2.2 分式的加减(一)1.(1)2m a ;(2)x y - 2.(1)2x ;(2)a b + 3.1x x - 4.正 5.58s a6.23s t t - 7.A 8.C 9.(1)2x x +;(2)11a + 10.12 11.3 12.1316.2.2 分式的加减(二)1.(1)0,(2)m n + 2.126x -+ 3.a b + 4.2 5.D 6.A 7.12x -+ 8.23- 9.21(2)x -- 10.2a b +,-1 11.61112.(1)□,○分别表示6和30,(2)1111(1)n n n n =+++ 16.2.3 整数指数幂(一)1.(1)116,(2)-1 2.(1)338y x -,(2)434a b 3.D 4.C 5.12a b6.10x 16.2.3 整数指数幂(二)1.(1)5910-⨯,(2)45.610-⨯ 2.0.0002 3.0.000 000 0302 4.D 5.(1)31.210-⨯,(2)9 6.232.66710⨯(个),271.67510-⨯(千克)16.3 分式方程(一)1.0x = 2.1 3.-1 4.5 5.1 6.A 7.C 8.D 9.A 10.(1)2x =;(2)无解 11.(1)13x =;(2)无解 12.13313.m <-2 16.3 分式方程(二)1.1112()142x +⨯= 2.9012035x x =- 3.1%p d p =+ 4.C 5.B 6.B (1)60天,(2)24天 8.科普书7.5元/本、文学书5元/本;(2)科普书2本、文学书3本 9.此商品进价是500元,第二个月共销售128件. 10.(1)12间,(2)8000元、8500元16.3 分式方程(三)1.151511.22x x -= 2.C 3.5千米/时 4.甲速度24千米/时,乙速度60千米/时 5.2元/米3 6.(1)优惠率为32.5%;(2)标价750元 7.乙先到达第16章 《分式》 章节复习一、选择题1-5 BACCD 6-10 DABDA 11-12 AD二、填空题13. 54.310-⨯ 14.100650025x x --- 15.2ab 16.24 17.24 18.5 三、解答题 19.(1)32x y ;(2)21x x +-+. 20.化简结果为a b +,(取值要求:a b ≠). 21.(1)2x =;(2)3x =. 22.(1)1n ·11111n n n =-++;(2)111n n -=+1(1)(1)n n n n n n +-++1(1)n n =+ 1n =·11n +;(3)244x x +. 23.有错,当a <2时,分母有可能为零;改正:因为2x ≠,所以223a -≠,4a ≠-,所以结果为a <2且4a ≠-. 24.9元. 25.12个月. 26.2元/吨.第十六章 《分式》 章节测试一、选择题1-5 DDCBC 6-10 CDCBA 11-12 DD二、填空题13. 3.5,2 14.2U R 15.3(1)y + 16.2xy 17.()m m a b a -- 18.12n - 三、解答题19.(1)x ≠3±;(2)x <2. 20.(1)2249x y ;(2)44a b ;(3)11m m+-;(4)y x y -+. 21. 原式1x =+,取值时注意x ≠1,2±-. 22. 不可能,原式等于14时,1x =-,此时分式无意义. 23.(1)3x =-;(2)无解. 24.(1)60天;(2)24天. 25. 甲每分钟输入22名,乙每分钟输入11名. 26.(1)移项,方程两边分别通分,方程两边同除以210x -+,分式值相等,分子相等,则分母相等;(2)有错误.从第③步出现错误,原因:210x -+可能为零;(3)当2100x -+=时,210,5x x -=-=,经检验知5x =也是原方程的解,故原方程的解为55,2x x ==.。

(完整版)新人教版八年级下数学第十六章分式单元检测题及答案

(完整版)新人教版八年级下数学第十六章分式单元检测题及答案

八年级(下)数学单元检测题(第十六章 分式)一、选择题(每小题3分,共30分)1.下列式子是分式的是( B )A .2xB .x 2C .πx D .2y x + 2.下列各式计算正确的是(C )A .11--=b a b aB .ab b a b 2=C .()0,≠=a ma na m nD .am a n m n ++= 3.下列各分式中,最简分式是( A )A .()()y x y x +-73B .n m n m +-22C .2222ab b a b a +-D .22222yxy x y x +-- 4.化简2293m m m --的结果是( B ) A.3+m m B.3+-m m C 。

3-m m D 。

m m -3 5.若把分式xy y x +中的x 和y 都扩大2倍,那么分式的值( C ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍6.若分式方程xa x a x +-=+-321有增根,则a 的值是( D ) A .1 B .0 C .—1 D .—27.已知432c b a ==,则cb a +的值是( D ) A .54 B. 47 C.1 D 。

45 8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( A )A .x x -=+306030100B .306030100-=+x x C .x x +=-306030100 D .306030100+=-x x 9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。

设原计划行军的速度为xkm/h ,,则可列方程( D )A .1%206060++=x x B. 1%206060-+=x x C 。

八年级数学下册《第十六章 分式》单元测试卷及答案(华东师大版)

八年级数学下册《第十六章 分式》单元测试卷及答案(华东师大版)

八年级数学下册《第十六章 分式》单元测试卷及答案(华东师大版)一、选择题1.若分式y 1y 3-+的值是0,则y 的值是( ) A .3-B .0C .1D .1或3-2.下列分式中,是最简分式的是( )A .2xy xB .3333x x +- C .x yx y+- D .211x x +- 3.计算1a a÷的结果为( ) A .a B .21aC .1D .2a4.下列等式成立的是( )A .4453m n m n m n⋅=B .213m n m n +=+ C .2121m m n n=++D .m mm n m n=--++5.下列方程①4x x y y -=+,②15x =,③13πx x -=-,④11x a b =-中,是关于x 的分式方程的有( )个. A .1B .2C .3D .46.将分式2x yx y-中的x y ,的值同时扩大为原来的10倍,则分式的值( )A .扩大1000倍B .扩大100倍C .扩大10倍D .不变7.设11a b p a b =-++,1111q a b =-++则p ,q 的关系是( ) A .p q = B .p q > C .p q =-D .p q <8.根据规划设计,某工程队准备修建一条长1120米的盲道.由于情况改变,实际每天修建盲道的长度比原计划增加10米,结果提前2天完成了这一任务,假设原计划每天修建盲道x 米,根据题意可列方程为( )A .11201120210x x -=+ B .11201120210x x -=- C .11201120210x x-=+ D .11201120210x x-=-9.下列运算正确的是( )A .236a a a ⋅=B .()325a a =C .226235a a a +=D .()2139--= 10.成人体内成熟的红细胞的平均直径一般为0.000007245m ,保留三个有效数字的近似数,可以用科学记数法表示为( ) A .7.25×10﹣5m B .7.25×106m C .7.25×10﹣6mD .7.24×10﹣6m二、填空题11.分式256x y 和214xy 的最简公分母为 . 12.若12a b =,则分式3a b b+= . 13.已知,ab=-1,a+b=2,则式子b aa b+= .14.某化肥厂原计划五月份生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨.设原计划每天生产化肥x 吨.根据题意,列方程为 .三、解答题15.计算:.16.先化简,再求值:(21a a - ﹣a ﹣1)÷ 21a a - ,其中a =﹣2. 17.先化简,再求值:22121121x x x x x --⎛⎫-÷⎪+++⎝⎭,其中x 是1-,1,2中的一个合适的数.18.我国5G 手机产业迅速发展,5G 网络建成后,下载完一部1000MB 大小的电影,使用5G 手机比4G 手机少花190秒.已知使用5G 手机比4G 手机每秒多下载95MB ,求使用5G 手机每秒下载多少MB ?四、综合题19.我市某文具店准备购进A 、B 两种文具,A 种文具每件的进价比B 种文具每件的进价多20元,用4000元购进A 种文具的数量和用2400元购进B 种文具的数量相同.文具店将A 种文具每件的售价定为80元,B 种文具每件的售价定为45元.(1)A 种文具每件的进价和B 种文具每件的进价各是多少元?(2)文具店计划用不超过1600元的资金购进A 、B 两种文具共40件,其中A 种文具的数量不低于17件,该文具店有几种进货方案?(3)在(2)的条件下,文具店利用销售这40件文具获得的最大利润再次购进A 、B 两种文具(两种文具都买),直接写出再次购进A 、B 两种文具获利最大的进货方案.20.阅读下列材料:我们知道,分子比分母小的数叫做“真分数”:分子比分母大,或者分子、分母同样大的分数,叫做“假分数”.类似地,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”:当分子的次数小于分母的次数时,我们称之为“真分式”.如:11x x -+,21x x -这样的分式就是假分式;再如:31x +,221x x +这样的分式就是真分式,假分数74可以化成314+(即314)带分数的形式,类似的,假分式也可以化为带分式.如:()12121111x x x x x +--==-+++. 解决下列问题: (1)分式 5x 是 (填“真分式”或“假分式”);假分式52x x ++可化为带分式 形式;(2)如果分式41x x --的值为整数,求满足条件的整数x 的值; (3)若分式22382x x ++的值为m ,则m 的取值范围是 (直接写出结果)21.佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,且很快售完,由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次购进的数量多20千克.(1)求第一次购进该水果的进价?(2)已知第一次购进的水果以每千克8元很快售完,第二次购进的水果,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?答案解析部分1.【答案】C【解析】【解答】解:由题意得:y-1=0且y+3≠0解得:y=1; 故答案为:C.【分析】分式值为0的条件:分子为0且分母不为0,据此解答即可.2.【答案】C【解析】【解答】解:A 、2xy yx x= 故此选项不合题意; B 、 ()()3133133311x x x x x x +++==--- 故此选项不合题意; C 、x yx y+- 是最简分式,故此选项符合题意; D 、 ()()21111111x x x x x x ++==-+-- 故此选项不合题意; 【分析】把一个分式中相同的因式约去的过程叫做约分,如果分式中没有可约的因式,则为最简分式,据此判断.3.【答案】B【解析】【解答】解:21111a aa a a ÷=⋅= 故答案为:B .【分析】利用分式的乘除法则计算求解即可。

华东师大版八年级下册第16章《分式》单元测试卷(原卷版+解析版)

华东师大版八年级下册第16章《分式》单元测试卷(原卷版+解析版)

华东师大版八年级下册第16章《分式》单元测试卷(原卷版)本试卷三个大题共22个小题,全卷满分120分,考试时间120分钟。

题号一二三全卷总分总分人1718 19 20 21 22 得分1、答题前,请考生务必将自己姓名、考号、班级等写在试卷相应的位置上;2、选择题选出答案后,用钢笔或黑色水笔把答案标号填写在选择题答题卡的相应号上。

一、选择题(本大题共12个小题,每小题4分,共48分.以下每小题都给出了A 、B 、C 、D 四个选项,其中只有一个是符合题目要求的。

)1、在代数式m 1,3b ,π1-x ,y x +2,aa 1+中,分式的个数是( )A 、2B 、3C 、4D 、52、下列各分式中,是最简分式的是( )A 、x x 22B 、1122+++x x xC 、x x 1+ D 、112--x x 3、将分式yx x42-中的x ,y 的值同时扩大为原来的2022倍,则变化后分式的值( )A 、扩大为原来的2022倍B 、缩小为原来的20221C 、保持不变D 、以上都不正确4、已知0132=+-x x ,则xx 1-的值是( ) A 、5B 、7±C 、5±D 、35、若b a ≠,则下列分式化简正确的是( )A 、b a b a =--22B 、b a mb a m =+C 、b ab a =22D 、b abab =26、下列运算正确的是( )A 、692432b b a a b =•B 、2323132b a b ab =+ C 、a a a 32121=+ D 、1211112-=+--a a a 7、分式方程13132=----xx x 的解为( ) A 、2=xB 、无解C 、3=xD 、3-=x8、若关于x 的分式方程2113+-=--x mx x 产生增根,则m 的值为( ) A 、1-B 、2-C 、1D 、29、随着电影《你好,李焕英》热映,其同名小说的销量也急剧上升、某书店分别用400元和600元两次购进该小说,第二次数量比第一次多1倍,且第二次比第一次进价便宜4元,设书店第一次购进x 套,根据题意,下列方程正确的是( )A 、42600400=-x x B 、42400600=-x x C 、46002400=-xx D 、44002600=-xx 10、若关于x 的分式方程21121=----x k x kx 无解,则k 的值为( ) A 、31-=kB 、1=kC 、31=k 或2 D 、0=k 11、已知关于x 的分式方程xkx x -=--343的解为负数,则k 的取值范围是( ) A 、12-≤k 且3-≠k B 、12->k C 、12-<k 且3-≠k D 、12-<k 12、若关于x 的不等式组()⎪⎩⎪⎨⎧-≤+-≥-+12224131x a x x x 有解,且使关于y 的分式方程32221-=--+--yya y y 的解为非负数、则满足条件的所有整数a 的和为( ) A 、9- B 、8- C 、5- D 、﹣4二、填空题(本大题共4个小题,每小题4分,共16分) 13、已知611=+y x ,则yxy x y xy x +-++525的值为 ; 14、对于实数a 、b ,定义一种新运算“*”为:ba ab a -=*,这里等式右边是实数运算。

华东师大版数学八年级下册-第16章-分式--章节检测题-含答案

华东师大版数学八年级下册-第16章-分式--章节检测题-含答案

华东师大版数学八年级下册 第16章 分式 章节检测题一、选择题1.下列分式是最简分式的是( )A 。

错误!B 。

错误!C.a +b a 2+b 2D.错误! 2.使分式错误!有意义,x 应满足的条件是( )A .x ≠1B .x ≠2C .x ≠1或x ≠2D .x ≠1且x ≠23.若分式x -2x +3的值为0,则x 的值是( ) A .-3 B .-2 C .0 D .24.下列各式中,与分式错误!相等的是( )A.错误! B 。

错误!C.错误!(x ≠y ) D 。

错误!5.下列等式成立的是( )A .(-3)-2=-9B .(-3)-2=错误!C .a -2×b -2=a 2×b 2 D.a 2-b 2b -a=a +b 6.分式方程3x =4x +1+1的解是( ) A .x =-3 B .x =1C .x 1=3,x 2=-1D .x 1=1,x 2=-37.若关于x 的分式方程错误!=2-错误!的解为正数,则满足条件的正整数m 的值为( )A .1,2,3B .1,2C .1,3D .2,38.已知a 2+a -2=7,则a +a -1的值( )A .49B .47C .±3D .39.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C 地,求两人的平均速度.为解决此问题,设乙骑自行车的平均速度为x 千米/时,由题意列出方程,下列正确的是( )A.错误!=错误!B.错误!=错误!C 。

错误!=错误!D 。

错误!=错误!二、填空题10.若分式错误!(m -n≠0)的分母经过通分后变为m 2-n 2,则分子变为_____5m 2+5mn _______.11.已知错误!与错误!互为倒数,则x 的值为________.12.在学习负整数指数幂的知识后,明明给同桌晶晶出了如下题目:将(p 3q -2)2(-3p 4q ( ))-3的结果化为只含有正整数指数幂的形式,其结果为-错误!,其中“( )"处的数字是多少?聪明的你替晶晶同学填上“( )”的数字______.13.若关于x 的分式方程错误!-2=错误!有增根,则m 的值为______.14.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM 2.5检测指标,“PM 2.5”是指大气中危害健康的直径小于或等于2。

(word完整版)第16章《分式》单元测试题(含答案及评分标准),推荐文档

(word完整版)第16章《分式》单元测试题(含答案及评分标准),推荐文档

第16章《分式》单元测试题班级: 学号: 姓名: 成绩:说明:本试题分为A 卷和B 卷两部分,其中A 卷六个大题100分,B 卷两个大题20分,总分120分。

A 卷(100分)一、选择题(每小题2分,共20分)1、下列各式中,分式的个数为:( )3y x -,12-x a ,1+πx ,b a 3-,y x +21,y x +21,3122+=-x x ; A 、5个 B 、4个 C 、3个 D 、2个2、下列各式正确的是( )A 、b ac b a c -=-- B 、b a c b a c +-=-- C 、b a c b a c +-=+- D 、ba cb ac --=-- 3、人体中成熟的红细胞的平均直径为0000077.0米,用科学记数法表示为( ) A 、5107.7-⨯米 B 、6107.7-⨯米 C 、51077-⨯米; D 、61077-⨯米4、下列分式是最简分式的是( )A 、m m --11 B 、xy y xy 3- C 、22y x y x +- D 、m m 3261- 5、将分式yx x +2中的x 、y 的值同时扩大2倍,则扩大后分式的值( ) A 、扩大2倍 B 、缩小2倍 C 、保持不变 D 、无法确定6、不改变分式y x y x +-32252的值,把分子、分母中各项系数化为整数,结果是( ) A 、yx y x +-4152 B 、y x y x 3254+- C 、y x y x 24156+- D 、y x y x 641512+- 7、若分式23xx -的值为负数,则x 的取值范围是( ) A 、3φx B 、3πx ; C 、3πx 且0≠x D 、3-φx 且0≠x 8、若2:3:=y x ,则分式y x y x +-的值为( ) A 、51- B 、51 C 、1 D 、无法确定 9、若68682-=-x x x x 成立,则x 应满足( ) A 、0φx B 、0≠x 且6≠x C 、0πx D 、6≠x10、甲从A 地到B 地要走m 小时,乙从B 地到A 要走n 小时,若甲、乙二人同时从A 、B 两地出发,经过多长时间两人相遇( )A 、()n m +小时B 、2n m +小时C 、mn n m +小时D 、nm mn +小时 二、填空题(每小题3分,共30分)11、若分式33||--x x 的值为零,则___________=x . 12、分式xy y x 2+,23x y ,26xy y x -的最简公分母为 . 13、计算:()___________14.33102=-+⎪⎭⎫ ⎝⎛--π. 14、若()120=+a ,则a 必须满足的条件是 .15、请你写出一个含有字母x 的分式 .(要求所写的分式应满足:不论x 取任何实数,该分式均有意义)16、约分:(1)_________6222=y ax axy ;(2)___________44422=-+-a a a . 17、在括号内填上适当的整式,使下列等式成立:(1)b a abb a 2)(=+; (2))(222222a b a ab a =-+; 18、已知31=+x x ,则__________122=+xx . 19、观察下列关系式:212111+=,613121+=,1214131+=,……,请你归纳出一般结论为 .20、从甲地到乙地全长S 千米,某人步行从甲地到乙地t 小时可以到达,现为了提前半小时到达,则每小时应多走 千米(结果化为最简形式).三.解答题(每小题5分,共15分)21、计算:()22923ac b ac -÷⎪⎭⎫ ⎝⎛-; 22、计算:b a b a a b b b a a -+÷⎪⎪⎭⎫ ⎝⎛-+-22;23、先化简,再求值:11112-÷⎪⎭⎫ ⎝⎛-+x x x ,其中2-=x .四、解答题(每小题5分,共15分)24、解方程:125552=-+-x x x 25、解方程:131182-+=+-x x x26、先化简代数式14422222-++-÷+-b ab a b a b a b a ,然后选择一个使原式有意义的a 、b 值代入求值.五、解答题(第27、28小题每题6分,共12分)27、有这样一道题:“计算:x xx x x x x -+-÷-+-2221112的值,其中2007=x ”,某同学把2007=x 错抄成2008=x ,但它的结果与正确答案相同,你说这是怎么回事?28、某工人现在平均每天比原计划多做20个零件,现在做4000个零件和原来做3000个零件的时间相同,问现在平均每天做多少个零件?六、探究题(共8分)29、观察下列各式:211211-=⨯;3121321-=⨯;4131431-=⨯;L ,L , (1)猜想它的规律,把()11+n n 表示出来;(2)用你得到的规律,计算:()111216121+++++n n Λ,并求出当24=n 时代数式的值.B 卷(20分)一、填空题(每小题3分,共9分)1、已知2-=x 时,分式a xb x +-无意义;当4=x 时,此分式值为0,则_____=+b a . 2、已知111=-ab ,则_______2232=---+b ab a b ab a . 3、观察下面一列有规律的数:31,82,153,244,355,486,…… (1)根据排列规律,第七个数是 ,第十个数是 ;(2)根据规律猜想第n 个数应是 (n 为正整数);(3)如果第m 个数化简后是801,则它是第 个数. 二、解答题(4题5分,5题6分,共11分)4、a 克糖水中有b 克糖(0φφb a ),则糖的质量与糖水质量之比为 ;若再添加c 克糖(0φc ),则糖的质量与糖水质量之比为 .生活常识告诉我们:添加的糖完全溶解后,糖水会更甜,请根据所列式子及这个常识提炼出一个不等式.这个不等式是: ;你会运用已学过的知识来说明这个不等式的正确性吗?5、观察下列各式,并按要求完成下列问题: 因为⎪⎭⎫ ⎝⎛-=⨯31121311,⎪⎭⎫ ⎝⎛-=⨯513121531,…………,⎪⎭⎫ ⎝⎛-=⨯1911712119171 所以19919112119117151313112119171531311=⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫ ⎝⎛-++-+-=⨯++⨯+⨯ΛΛΛ. (1)在式子ΛΛ+⨯+⨯531311中,第7项为 ,第n 项为 (n 为正整数). (2)计算:()()()()()20082007121111++++++++x x x x x x ΛΛ.第17章《分式》章节测试题参考答案及评分意见A 卷(100分)一、选择题(每小题2分,共20分)1、C ;2、B ;3、C ;4、C ;5、A ;6、D ;7、C ;8、B ;9、B ;10、D .二、填空题(每小题3分,共30分)11、3-;12、226y x ;13、10;14、2-≠a ;15、本题答案不唯一,例如112+x 、212+x 等;16、x y 3;22+-a a ;17、ab a +2;b a -;18、7;19、()11111+++=n n n n (n 为正整数);20、()12-t t s . 三、解答题(每小题5分,共15分)21、解原式22229149ac b c a -⨯= 24ba -= 22、解原式b a b a b a b b a a +-⨯⎪⎪⎭⎫ ⎝⎛---=22;()()ba b a b a b a b a +-⨯--+= b a -=23、解原式()()x x x x x x 111111-+⨯⎪⎭⎫ ⎝⎛-+--= ()()xx x x x 111-+⨯-= 1+=x当2-=x 时,原式112-=+-=四、解答题(每小题5分,共15分)24、解:152552=---x x x 525-=-x x0=-x0=x检验:把0=x 代入52-x 得:0552≠-=-x故0=x 是原方程的解.25、解:()()131118-+=++-x x x x ; 341822++=-+x x x44-=-x1=x检验:把1=x 代入()()11-+x x 得:()()011=-+x x 故1=x 不是原方程的解.26、解原式()()()1222--++⨯+-=b a b a b a b a b a ba b a b a b a ++-++=2 ba b += 选择一个使原式有意义的a 、b 值代入求值答案不唯一,只要符合分式有意义即可.五、解答题(第27、28小题每题6分,共12分)27、解:x xx x x x x -+-÷-+-2221112 ()()()()x x x x x x x --+⋅-+-=111112 x x -=0=∵该式子化简的结果为0,与x 无关.∴某同学把2007=x 错抄成2008=x ,但它的结果与正确答案相同就是这个原因.28、解:设现在平均每天做x 个零件,由题意得: 2030004000-=x x 解得:80=x经检验:80=x 是原方程的解且符合题意答:现在平均每天做80个零件.六、探究题(共8分)29、(1)()11111+-=+n n n n (2)解:()111216121+++++n n Λ 11141313121211+-++-+-+-=n n Λ 111+-=n 当24=n 时,原式12411+-=2524= B 卷(20分)一、填空题(每个小题3分,共9分)1、6;2、5-;3、(1)637,12010;(2)()112-+n n 或21+n (n 为正整数)(3)78. 二、解答题(4题5分,5题6分,共11分)4、a b ;ca cb ++;a bc a c b φ++ 理由:()()()()()c a a b a c c a a bc ac c a a bc ab c a a ac ab a b c a c b +-=+-=++-++=-++ ∵b a φ∴0φb a -,()()0φc a a b a c +- 故0φa b c a c b -++,即ab c a c b φ++ 5、(1)15131⨯;()()12121+-n n (n 为正整数). (2)解:()()()()()20082007121111++++++++x x x x x x ΛΛ 20081200712111111+-++++-+++-=x x x x x x ΛΛ 200811+-=x x ()20082008+=x x。

数学:第16章《分式》整章水平测试(一)(人教版八年级下)

数学:第16章《分式》整章水平测试(一)(人教版八年级下)

第十六章《分式》整章水平测试(一)一、选择题:(每小题3分,共24分)1、当x=2时,其值为零的分式是 ( ) 22A.32x x x --+ 1B.2x - 24C.1x x -- 2D.1x x ++ 2、使分式22256x x x x +-++的值等于零,则x 的值为 ( ) A.1 B.-2 C.1或-2 D.-1或23、分式()()113x x x -+-有意义,则x 应满足条件 ( ) A 、1-≠x B 、3≠x C 、1-≠x 或3≠x D 、1-≠x 且3≠x4、分式ax y 434+,1142--x x ,y x y xy x ++-22,2222b ab ab a -+中,最简分式有( ) A.1个 B.2个 C.3个 D.4个.5、若x 等于它的倒数,则分式1332622+-+÷--+x x x x x x 的值为 ( ) A.-1 B.5 C.-1或5 D.-41或4. 6.已知为整数,且918232322-++-++x x x x 为整数,则符合条件的有( ) A .2个 B .3个 C .4个 D .5个7、使方程(m+1)x=m-1有解的m 值是 ( )A.0m ≠B.1m ≠-C.1m =±D. 1m ≠8、现有20%的盐水10千克,问加食盐多少千克,才能恰好配得40%的盐水?解设加食盐x 千克,则正确的方程是 ( )A 、004010=+x xB 、0040101002010=++⨯x xC 、004010020=+x xD 、0040100201002010=++⨯x x 二、填空题(每小题3分,共24分)9、对于分式521-+x x ,当x 时,该分式有意义。

10、当x= 时,分式242--x x 的值为零. 11、化简:1342+⋅⎪⎭⎫ ⎝⎛+-x x x 得__________。

12、计算:3)3(32-+-x x x x =_________。

分式全章测试题含答案

分式全章测试题含答案

第十六章 分 式测试1 分 式课堂学习检测一、选择题1.在代数式32,252,43,32,1,32222-++x x x x xy x x 中,分式共有( ). (A)2个 (B)3个(C)4个(D)5个2.下列变形从左到右一定正确的是( ).(A)22--=b a b a(B)bc ac b a =(C)ba bx ax =(D)22ba b a =3.把分式yx x+2中的x 、y 都扩大3倍,则分式的值( ). (A)扩大3倍(B)扩大6倍 (C)缩小为原来的31(D)不变4.下列各式中,正确的是( ). (A)y x yx y x y x +-=--+-(B)y x yx y x y x ---=--+-(C)yx yx y x y x -+=--+-(D)yx yx y x y x ++-=--+-5.若分式222---x x x 的值为零,则x 的值为( ).(A)-1 (B)1(C)2(D)2或-1二、填空题6.当x ______时,分式121-+x x 有意义. 7.当x ______时,分式122+-x 的值为正.8.若分式1||2--x xx 的值为0,则x 的值为______.9.分式22112mm m -+-约分的结果是______. 10.若x 2-12y 2=xy ,且xy >0,则分式yx yx -+23的值为______.11.填上适当的代数式,使等式成立:(1)ba b a b ab a +=--+)(22222;(2)xxx x 2122)(2--=-;(3)a b b a b a-=-+)(11; (4))(22xy xy =.综合、运用、诊断三、解答题12.把下列各组分式通分:(1);65,31,22abca b a - (2)222,b a aab a b --.13.把分子、分母的各项系数化为整数:(1);04.03.05.02.0+-x x(2)b a ba -+32232.14.不改变分式的值,使分式的分子与分式本身不含负号:(1)yx yx ---22;(2)ba b a +-+-2)(.15.有这样一道题,计算))(1()12)((2222x x x x x x x --+-+,其中x =2080.某同学把x =2080错抄成x =2008,但他的计算结果是正确的.你能解释其中的原因吗?拓展、探究、思考16.已知311=-y x ,求分式yxy x y xy x ---+2232的值.17.当x 为何整数时,分式2)1(4-x 的值为正整数.18.已知3x -4y -z =0,2x +y -8z =0,求yz xy z y x +-+222的值.测试2 分式的运算课堂学习检测一、选择题1.下列各式计算结果是分式的是( ).(A)b a m n ÷(B)n m m n 23.(C)xx 53÷(D)3223473y x y x ÷2.下列计算中正确的是( ).(A)(-1)0=-1 (B)(-1)-1=1 (C)33212aa=-(D)4731)()(aa a =-÷- 3.下列各式计算正确的是( ). (A)m ÷n ·m =m(B)m nn m =⋅÷1(C)11=⋅÷m m m(D)n ÷m ·m =n4.计算54)()(ab a a b a -⋅-的结果是( ). (A)-1(B)1(C)a1(D)ba a--5.下列分式中,最简分式是( ).(A)21521y xy(B)y x y x +-22(C)yx y xy x -+-.222(D)y x y x -+226.下列运算中,计算正确的是( ). (A))(212121b a b a +=+ (B)acbc b a b 2=+ (C)aa c a c 11=+-(D)011=-+-ab b α 7.ab a b a -++2的结果是( ).(A)a2-(B)a4(C)ba b --2(D)ab- 8.化简22)11(yx xy y x-⋅-的结果是( ). (A)y x +1(B)yx +-1(C)x -y (D)y -x二、填空题9.2232)()(yx y x -÷=______.10.232])[(x y -=______.11.a 、b 为实数,且ab =1,设1111,11+++=+++=b a Q b b a a P ,则P ______Q (填“>”、“<”或“=”). 12.aa a -+-21422=______. 13.若x <0,则|3|1||31---x x =______.14.若ab =2,a +b =3,则ba 11+=______. 综合、运用、诊断三、解答题15.计算:)()()(432b a ba ba -÷-⋅-.16.计算:⋅-+-++222244242x y yx y x y y x17.计算:⋅-÷+--+11)1211(22x x x x18.已知2222222y x y x N yx xy M -+=-=、,用“+”或“-”连结M 、N ,有三种不同的形式:M +N 、M -N 、N -M ,请你任选其中一种进行计算,并化简求值,其中x ∶y =5∶2.19.先化简,再求值:1112+---x xx x ,其中x =2. 20.已知x 2-2=0,求代数式11)1(222++--x x x x 的值.拓展、探究、思考21.等式⋅-++=-++236982x Bx A x x x 对于任何使分母不为0的x 均成立,求A 、B 的值.22.A 玉米试验田是边长为a m 的正方形减去边长为1m 的蓄水池后余下部分,B 玉米试验田是边长为(a -1)m 的正方形,两块试验田的玉米都收获了500kg . (1)哪种玉米田的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?测试3 分式方程课堂学习检测一、选择题 1.方程132+=x x 的解为( ).(A)2 (B)1 (C)-2 (D)-12.解分式方程12112-=-x x ,可得结果( ). (A)x =1 (B)x =-1(C)x =3(D)无解3.要使54--x x 的值和xx--424的值互为倒数,则x 的值为( ). (A)0 (B)-1 (C)21(D)14.已知4321--=+-y y x x ,若用含x 的代数式表示y ,则以下结果正确的是( ). (A)310+=x y (B)y =x +2(C)310xy -=(D)y =-7x -25.若关于x 的方程xkx --=-1113有增根,则k 的值为( ). (A)3(B)1(C)0(D)-16.若关于x 的方程323-=--x mx x 有正数解,则( ). (A)m >0且m ≠3 (B)m <6且m ≠3(C)m <0 (D)m >67.完成某项工作,甲独做需a 小时,乙独做需b 小时,则两人合作完成这项工作的80%,所需要的时间是( ). (A))(54b a +小时 (B))11(54ba +小时 (C))(54b a ab+小时(D)ba ab+小时 8.a 个人b 天可做c 个零件(设每人速度一样),则b 个人用同样速度做a 个零件所需天数是( ).(A)c a 2(B)2ac(C)a c 2(D)2c a 二、填空题9.x =______时,两分式44-x 与13-x 的值相等. 10.关于x 的方程324+=-b xa 的解为______. 11.当a =______时,关于x 的方程4532=-+x a ax 的根是1. 12.若方程114112=---+x x x 有增根,则增根是______. 13.关于x 的方程11=+x a的解是负数,则a 的取值范围为____________. 14.一艘轮船在静水中的最大航速为20千米/时,它在江水中航行时,江水的流速为v 千米/时,则它以最大航速顺流航行s 千米所需的时间是______.综合、运用、诊断三、解方程15..32121=-+--xx x16.⋅+=+--1211422x xx x x 17.⋅-+=+-xx x x x 25316四、列方程解应用题18.甲工人工作效率是乙工人工作效率的212倍,他们同时加工1500个零件,甲比乙提前18个小时完工,问他们每人每小时各加工多少个零件?19.甲、乙两地相距50km ,A 骑自行车,B 乘汽车,同时从甲城出发去乙城.已知汽车的速度是自行车速度的2.5倍,B 中途休息了0.5小时还比A 早到2小时,求自行车和汽车的速度.拓展、探究、思考20.面对全球金融危机的挑战,我国政府毅然启动内需,改善民生.国务院决定从2009年2月1日起,在全国范围内实施“家电下乡”,农民购买入选产品,政府按原价购买总..额的..13..%.给予补贴返还.某村委会组织部分农民到商场购买入选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?(2)列出方程(组)并解答.参考答案第十六章 分式测试1 分 式1.B . 2.C . 3.D . 4.A . 5.A . 6.21≠. 7.21-<. 8.0. 9.⋅+--11m m 10.1.11.(1)a +2b ; (2)2x 2; (3)b +a ; (4)x 2y 2.12.(1);65,62,632223bca abc a bc bc a c a - (2)⋅-+-++))((,))(()(2b a b a a a b a b a a b a b 13.(1);2152510+-x x (2)⋅-+ba ba 6491214.(1);22x y y x -- (2)⋅-+ba ba 215.化简原式后为1,结果与x 的取值无关. 16.⋅53 17.x =0或2或3或-1. 18.⋅23 测试2 分式的运算1.A . 2.D . 3.D . 4.D . 5.D . 6.D . 7.C . 8.B .9.x 4y . 10.⋅612x y11.=. 12.⋅+21a 13.⋅-922x x 14.⋅2315.⋅6ba 16.⋅+y x x 22提示:分步通分.17.2x .18.选择一:y x y x N M -+=+,当x ∶y =5∶2时,原式37= 选择二:y x x y N M +-=-,当x ∶y =5∶2时,原式⋅-=73选择三:y x yx M N +-=-,当x ∶y =5∶2时,原式73=. 注:只写一种即可. 19.化简得1)1(+--x x ,把x =2代入得31-.20.原式112+-+=x x x∵x 2-2=0,∴x 2=2,∴原式112+-+=x x ,∴原式=121.A =3,B =5.22.(1)A 面积(a 2-1)米2,单位产量15002-a 千克/米;B 玉米田面积(a -1)2米2,单位产量是2)1(500-a 千克/米2,22)1(5001500-<-a a ,B 玉米的单位面积产量高; (2)11-+a a 倍. 测试3 分式方程1.A . 2.D . 3.B . 4.C . 5.A. 6.B . 7.C . 8.A .9.x =-8. 10.⋅--=462b a x 11.⋅-=317a12.x =1. 13.a <1且a ≠0. 14.20+v s小时.15.无解. 16.⋅-=21x 17.无解.18.设乙的工作效率为x 个/时,甲的工作效率为x 25个/时.182515001500+=x x .50=x .经检验,x =50是原方程的根. 答:甲每小时加工125个,乙每小时加工50个.19.设自行车速度为x 千米/时,汽车速度为2.5x 千米/时.xx 502215.250=++.x =12.经检验x =12是原方程的根. 答:自行车的速度为12km/时,汽车的速度为30km/时. 20.(1)2x ,40000×13%,x2%1340000⨯,15000×13%,x %1315000⨯;(2)冰箱、电视机分别购买20台、10台.第十六章 分式全章测试一、填空题1.在代数式222232,3221,12,1,2,3,1,43abx x x b a a y x x b a --+++-中,分式有_________. 2.当x ______时,分式2+x x 没有意义;当x ______时,分式112+x 有意义;当x ______时,分式113-+x x 的值是零.3.不改变分式的值,把分式的分子和分母各项系数都化成整数:b a ba 3.051214.0+-=______.4.计算:--32m m m -3=______.5.若x =-4是方程311+=-x x a 的解,则a =______. 6.若332-+x x 与35+x 的值互为相反数,则满足条件的x 的值是______. 7.当x ______时,等式512)5(2222+-=+-x x x x x x 成立.8.加工一批产品m 件,原计划a 天完成,今需要提前b 天完成,则每天应生产______件产品.9.已知空气的单位体积质量为0.001239g/cm 3,那么100单位体积的空气质量为______g/cm 3.(用科学记数法表示) 10.设a >b >0,a 2+b 2-6ab =0,则ab ba -+的值等于______. 二、选择题11.下列分式为最简分式的是( ).(A)ab 1533(B)a b b a --22(C)xx 32(D)y x y x ++2212.下列分式的约分运算中,正确的是( ).(A)339x xx =(B)bac b c a =++ (C)0=++ba ba (D)1=++ba ba 13.分式11,121,1122-+-+x x x x 的最简公分母是( ). (A)(x 2+1)(x -1) (B)(x 2-1)(x 2+1) (C)(x -1)2(x 2+1)(D)(x -1)214.下列各式中,正确的个数有( ).①2-2=-4; ②(32)3=35; ③2241)2(xx -=--; ④(-1)-1=1. (A)0个 (B)1个(C)2个(D)3个15.使分式x326--的值为负数的条件是( ).(A)32<x (B)x >0 (C)32>x(D)x <016.使分式1||-x x有意义的条件是( ).(A)x ≠1(B)x ≠-1 (C)x ≠1且x ≠-1(D)x ≠017.学完分式运算后,老师出了一道题“化简42232--+++x xx x ”.小明的做法是:原式=424)2)(3(22-----+x x x x x ; 小亮的做法是:原式=(x +3)(x -2)+(2-x )=x 2+x -6+2-x =x 2-4; 小芳的做法是:原式=.12132123)2)(2(223=+-+=+-++=-+---+x x x x x x x x x x 其中正确的是( ). (A)小明 (B)小亮(C)小芳(D)没有正确的 18.如果分式)(3)(b a b a a ++的值是零,那么a ,b 满足的条件是( ). (A)a =-b(B)a ≠-b (C)a =0(D)a =0且a ≠-b 19.若关于x 的分式方程11+=+x m x x 无解,则m 的值为( ). (A)1 (B)0 (C)-1 (D)-220.有一项工程需在规定日期内完成,如果甲队去做,恰能如期完成;如果乙队去做,要超过规定日期3天.现由甲、乙两队合作2天后,余下的工程由乙队单独去做,恰好在规定日期内完成.如果设规定日期为x 天,下列关于x 的方程中错误的是( ). (A)132=++x x x (B)332+=x x (C)1)2(312)311(=-++⨯++x x x x (D)1311=++x x 三、化简下列各题 21.⋅+----112223x x xx x x 22.⋅-÷+--24)22(x x x x x x23.⋅--÷-++--+)64121()622322(222x x x x x x x x四、解方程24.⋅++=+-312132x x x 25.⋅--+=--2163524245m m m m .五、列方程解应用题26.A ,B 两地相距80千米,一辆大汽车从A 地开出2小时后,又从A 地开出另一辆小汽车,已知小汽车的速度是大汽车速度的3倍,结果小汽车比大汽车早40分钟到达B 地,求两辆汽车每小时各走多少千米.参考答案第十六章 分式全章测试1.⋅-++2232,12,1,1ab x x b a x 2.=-2,取任意实数,⋅-=31. 3.⋅+-b a b a 3254 4.⋅-39m 5.5. 6.-4. 7.≠0. 8.⋅-ba m 9.1.239×10-1. 10..2- 11.D . 12.D . 13.C .14.A . 15.A . 16.C . 17.C . 18.D . 19.C . 20.D . 21.2x -1. 22.⋅+21x 23.⋅+-x x 1 24.⋅-=31x 25.m =2是增根,无解.26.小汽车每小时60千米,大汽车每小时20千米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
、填空题 1. 在代数式
2.
3.
4. 5. 6. 7. 第十六章分式全章测试
3^1xyaa1x212 a b, —,
, , , 2 , x 4 x 3 2 b x 2 1 2 x 时,分式 没有意义;当x x 2 时, 2 2b ,
2中,分式有 3 3a 1 ~2~ x 分式
-有意义;当x
1 时,
3x 1 分式3x 1
的值是零. x 1 不改变分式的值,把分式的分子和分母各项系数都化成整数: 计算:爲m -3 =
0.4a i b
-a 0.3b 5
x =-4是方程」
—的解,贝V a= ______
x 1 x 3
5
—的值互为相反数,则满足条件的 3
2x x 3
3与一 x x 的值是
c 2
,, 2x x
时,等式
2——
x(x 5)
2x 1
务」成立. x 5
加工一批产品 m 件,原计划a 天完成,今需要提前 品.
已知空气的单位体积质量为
_____ g/cm 3.(用科学记数法表示 b 天完成,则每天应生产 件产
10.设 a >b >0, a 2+ b 2-6ab = 0, 0.001239g/cm
) a b
b 的值等于
那么 100
单位体积的空气质量为
二、选择题 11.下列分式为最简分式的是 ( 33b (A)33b
2 a
(B)- b a b 2 2
x
(C)

12.下列分式的约分运算中,正确的是 x 9 (A)克 a c (B — a b (C) —
a
13.分式
1 x
2 1
x
2
2x r x
(A)( x 2+ 1)(x - 1) (C)(x — 1)2(x 2+ 1) 14.下列各式中,正确的个数有
1 —的最简公分母是( ).
(B)( x 2 (D)(x - 1) 1)(x 2+ 1) 2
( ).
①2-
2=- 4;
②(32)3 = 35;
④(-1)-
1= 1.
15 .(A)0 个
—的值为负数的条件是
2 3x
2
3
(B)1 个(C)2 个(D)3 个使分式
(A)X (B)x> 0
)•
2
(C)
x
3
(D)x v 0
16 .使分式x有意义的条件是(
|x| 1
(C)x^ 1 且X M— 1(D)X M 0
学完分式运算后,老师出了一道题“化简
x 3 2x ”
x 2 x24
小明的做法
是:
原式=
(x 3)(x2)x 2 ;
x242
x 4
小亮的做法
是:
原式= (x+ 3)(x- 2) + (2 —x)= x2+ x-6 + 2—x= x2-4;
小芳的做法
是:
原式=
x 3x 2 x 31x 3
x 2 (x2)( x 2) x 2x 2 x 2其中正确的是
(A)小明
().
(B)小亮
(C)小芳(D)没有正确的
a(a
如果分式丄-
b)的值是零,那么a, b满足的条件是().
(A)x^ 1 (B) x— 1
17 .
1 18
.3(a b) 1 .
19 . 20 .
(A)a =- b
(C)a = 0
(B) a— b
(D)a = 0 且a— b
若关于x的分式方程
X
x 1
(B)0
—无解,则m的值为().
x 1
(C) - 1 (D) - 2
(A)1
有一项工程需在规定日期内完成,如果甲队去做,恰能如期完成;如果乙队去做,
过规定日期3天.现由甲、乙两队合作2天后,余下的工程由乙队单独去做, 定日
期内完成.如果设规定日期为x天,下列关于x的方程中错误的是(
要超
恰好在规
).
2
(A)—
x
2
(B)-
x
1
(C)(-
x
1
(x 2) 1
x 3
1
(D)-
x
丄1
x 3
化简下列各题
21 .
3 2
x x
2
x2x
1 x2
VT 22.
x
(—
x 2
4x
23 .(詁2
3x
2
x22x )1 1 )
2x2x 6)(2 4x 6)
四、24 .解方程
2 x
25.
5m 4
2m 4
2m
3m 6 2
五、列方程解应用题
26. A, B两地相距80千米,一辆大汽车从
车,已知小汽车的速度是大汽车速度的
求两辆汽车每小时各走多少千米.
A地开出2小时后,又从A地开出另一辆小汽3倍,结果小汽车比大汽车早40分钟到达B
地,。

相关文档
最新文档