[高考数学]高考数学函数典型例题
高考数学三角函数典型例题
三角函数典型例题1 .设锐角ABC ∆的内角A B C ,,的对边分别为a b c ,,,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 【解析】:(Ⅰ)由2sin ab A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC ∆为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A CA A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 22A A A =++3A π⎛⎫=+ ⎪⎝⎭.2 .在ABC ∆中,角A . B .C 的对边分别为a 、b 、c,且满足(2a-c)cosB=bcos C .(Ⅰ)求角B 的大小; (Ⅱ)设()()()2411m sin A,cos A ,n k,k ,==>且m n ⋅的最大值是5,求k 的值.【解析】:(I)∵(2a -c )cos B =b cos C , ∴(2sin A -sin C )cos B =sin B cos C . 即2sin A cos B =sin B cos C +sin C cos B =sin(B +C )∵A +B +C =π,∴2sin A cos B =sinA . ∵0<A <π,∴sin A ≠0. ∴cos B =21.∵0<B <π,∴B =3π. (II)m n ⋅=4k sin A +cos2A . =-2sin 2A +4k sin A +1,A ∈(0,32π)设sin A =t ,则t ∈]1,0(.则m n ⋅=-2t 2+4kt +1=-2(t -k )2+1+2k 2,t ∈]1,0(. ∵k >1,∴t =1时,m n ⋅取最大值. 依题意得,-2+4k +1=5,∴k =23.3 .在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,22sin 2sin=++CB A .I.试判断△ABC 的形状;II.若△ABC 的周长为16,求面积的最大值.【解析】:I.)42sin(22sin 2cos 2sin 2sin ππ+=+=+-C C C C C 2242πππ==+∴C C 即,所以此三角形为直角三角形.II.ab ab b a b a 221622+≥+++=,2)22(64-≤∴ab 当且仅当b a =时取等号,此时面积的最大值为()24632-.4 .在ABC ∆中,a 、b 、c 分别是角A . B .C 的对边,C =2A ,43cos=A , (1)求BC cos ,cos 的值; (2)若227=⋅BCBA ,求边AC 的长。【解析】:(1)81116921cos 22cos cos 2=-⨯=-==A A C47sin ,43cos ;873sin ,81cos ====A A C C 得由得由()169814387347cos cos sin sin cos cos =⨯-⨯=-=+-=∴C A C A C A B (2)24,227cos ,227=∴=∴=⋅ac B ac BCBA ① 又a A a c A C C c A a 23cos 2,2,sin sin ==∴== ② 由①②解得a=4,c=625169483616cos 2222=⨯-+=-+=∴B ac c a b 5=∴b ,即AC 边的长为5.5 .已知在ABC ∆中,A B >,且A tan 与B tan 是方程0652=+-x x 的两个根.(Ⅰ)求)tan(B A +的值;(Ⅱ)若AB 5=,求BC 的长.【解析】:(Ⅰ)由所给条件,方程0652=+-x x 的两根tan 3,tan 2A B ==.∴tan tan tan()1tan tan A B A B A B ++=-231123+==--⨯(Ⅱ)∵180=++C B A ,∴)(180B A C +-= .由(Ⅰ)知,1)tan(tan =+-=B A C,∵C 为三角形的内角,∴sin C =∵tan3A =,A 为三角形的内角,∴sin A =, 由正弦定理得:sin sin AB BCC A=∴BC ==6 .在ABC∆中,已知内角A .B .C所对的边分别为a 、b 、c ,向量(2sin ,m B =,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。(I)求锐角B 的大小; (II)如果2b=,求ABC ∆的面积ABC S ∆的最大值。【解析】:(1)//m n ⇒ 2sinB(2cos 2B2-1)=-3cos2B⇒2sinBcosB=-3cos2B ⇒ tan2B=- 3 ∵0<2B<π,∴2B=2π3,∴锐角B=π3(2)由tan2B =- 3 ⇒ B=π3或5π6①当B=π3时,已知b=2,由余弦定理,得:4=a 2+c 2-ac≥2a c-ac=ac(当且仅当a=c=2时等号成立) ∵△ABC 的面积S △ABC =12 acsinB=34ac ≤ 3∴△ABC 的面积最大值为 3②当B=5π6时,已知b=2,由余弦定理,得:4=a 2+c 2+3ac≥2ac +3ac=(2+3)ac (当且仅当a=c =6-2时等号成立) ∴ac≤4(2-3)∵△ABC 的面积S △ABC =12 acsinB=14ac≤ 2- 3∴△ABC 的面积最大值为2- 37 .在ABC ∆中,角A . B .C 所对的边分别是a ,b ,c ,且.21222ac b c a=-+ (1)求B CA 2cos 2sin2++的值; (2)若b =2,求△ABC 面积的最大值. 【解析】:(1) 由余弦定理:cosB=142sin 2A C++cos2B= 41-(2)由.415sin ,41cos ==B B 得 ∵b =2, a2+c 2=12ac +4≥2ac ,得ac ≤38, S △ABC =12ac si nB ≤315(a =c 时取等号) 故S △ABC 的最大值为3158 .已知)1(,tan >=a a α,求θθπθπ2tan )2sin()4sin(⋅-+的值。 【解析】aa -12;9 .已知()()()()3sin 5cos cos 23sin cos tan 322f ππααπααππαααπ⎛⎫-⋅+⋅+ ⎪⎝⎭=⎛⎫⎛⎫-⋅+⋅- ⎪ ⎪⎝⎭⎝⎭(I)化简()f α(II)若α是第三象限角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值。 【解析】10.已知函数f(x)=sin 2x+3sinxcosx+2cos 2x,x ∈R.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x ∈R)的图象经过怎样的变换得到?【解析】:(1)1cos 23()2(1cos 2)2x f x x x -=++3132cos 2223sin(2).62x x x π=++=++()f x ∴的最小正周期2.2T ππ== 由题意得222,,262k x k k Z πππππ-≤+≤+∈即,.36k x k k Z ππππ-≤≤+∈()f x ∴的单调增区间为,,.36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)先把sin 2y x =图象上所有点向左平移12π个单位长度, 得到sin(2)6y x π=+的图象,再把所得图象上所有的点向上平移32个单位长度,就得到3sin(2)62y x π=++的图象。 11.已知⎪⎪⎭⎫ ⎝⎛-=23,23a ,)4cos ,4(sin xx b ππ=,b a x f ⋅=)(。 (1)求)(x f 的单调递减区间。(2)若函数)(x g y =与)(x f y =关于直线1=x 对称,求当]34,0[∈x 时,)(x g y =的最大值。【解析】:(1))34sin(34cos 234sin 23)(ππππ-=-=x x x x f ∴当]223,22[34ππππππk k x++∈-时,)(x f 单调递减 解得:]8322,8310[k k x ++∈时,)(x f 单调递减。 (2)∵函数)(x g y =与)(x f y =关于直线1=x 对称∴⎥⎦⎤⎢⎣⎡--=-=34)2(sin 3)2()(ππx x f x g⎪⎭⎫⎝⎛+=⎥⎦⎤⎢⎣⎡--=34cos 3342sin 3πππππx x∵]34,0[∈x ∴⎥⎦⎤⎢⎣⎡∈+32,334ππππx ∴]21,21[34cos -∈⎪⎭⎫⎝⎛+ππx ∴0=x时,23)(max =x g 12.已知cos 2sin αα=-,求下列各式的值;(1)2sin cos sin 3cos αααα-+; (2)2sin2sin cos ααα+【解析】:1cos 2sin ,tan 2ααα=-∴=-(1)1212sin cos 2tan 1421sin 3cos tan 3532αααααα⎛⎫⨯-- ⎪--⎝⎭===-++-+ (2)2222sin 2sin cos sin 2sin cos sin cos αααααααα++=+ 2222112tan 2tan 322tan 15112ααα⎛⎫⎛⎫-+⨯- ⎪ ⎪+⎝⎭⎝⎭===-+⎛⎫-+ ⎪⎝⎭13.设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈,函数()()f x a a b =⋅+(I)求函数()f x 的最大值与最小正周期;(II)求使不等式3()2f x ≥成立的x 的取值集合。 【解析】14.已知向量)1,32(cos --=αm,)1,(sin α=n ,m 与n 为共线向量,且]0,2[πα-∈(Ⅰ)求ααcos sin +的值;(Ⅱ)求αααcos sin 2sin -的值.。【解析】:(Ⅰ) m 与n 为共线向量, 0sin )1(1)32(cos =⨯--⨯-∴αα, 即32cos sin =+αα(Ⅱ) 92)cos (sin 2sin 12=+=+ααα ,972sin -=∴α2)cos (sin )cos (sin 22=-++αααα ,916)32(2)cos (sin 22=-=-∴αα 又]0,2[πα-∈ ,0cos sin <-∴αα,34cos sin -=-αα 因此,127cos sin 2sin =-ααα15.如图,A,B,C,D 都在同一个与水平面垂直的平面内,B,D 为两岛上的两座灯塔的塔顶。测量船于水面A 处测得B 点和D 点的仰角分别为075,030,于水面C 处测得B 点和D 点的仰角均为060,AC=0.1km 。试探究图中B,D 间距离与另外哪两点距离相等,然后求B,D 的距离(计算结果精确到0.01km,2≈1.414,6≈2.449)【解析】:在ACD ∆中,DAC ∠=30°,ADC ∠=60°-DAC ∠=30°, 所以CD=AC=0.1又BCD ∠=180°-60°-60°=60°,故CB 是CAD ∆底边AD 的中垂线,所以BD=BA 在ABC ∆中,ABCACBCA AB ∠=∠sin sin ,即AB=2062351sin 60sin +=︒︒AC因此,km 33.020623≈+=BD故 B .D 的距离约为0.33km 。 16.已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式;(Ⅱ)当[,]122x ππ∈,求()f x 的值域. 【解析】: (1)由最低点为2(,2)3M π-得A=2. 由x 轴上相邻的两个交点之间的距离为2π得2T =2π,即T π=,222T ππωπ=== 由点2(,2)3M π-在图像上的242sin(2)2,)133ππϕϕ⨯+=-+=-即sin( 故42,32k k Z ππϕπ+=-∈ 1126k πϕπ∴=- 又(0,),,()2sin(2)266f x x πππϕϕ∈∴==+故(2)7[,],2[,]122636x x πππππ∈∴+∈ 当26x π+=2π,即6x π=时,()f x 取得最大值2;当7266x ππ+=即2x π=时,()f x 取得最小值-1,故()f x 的值域为[-1,2]17.如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C 三点进行测量,已知50AB m =,120BC m =,于A 处测得水深80AD m =,于B 处测得水深200BE m =,于C 处测得水深110CF m=,求∠DEF 的余弦值。【解析】:作//DMAC 交BE 于N ,交CF 于M .22223017010198DF MF DM =+=+=, 222250120130DE DN EN =+=+=,2222()90120150EF BE FC BC =-+=+=在DEF ∆中,由余弦定理,2222221301501029816cos 2213015065DE EF DF DEF DE EF +-+-⨯∠===⨯⨯⨯ 18.已知51cos sin =+θθ,),2(ππθ∈, 求(1)sin cos θθ-(2)33sin cos θθ-(3)44sin cos θθ+【解析】:(1)3344791337sin cos (2)sin cos (3)sin cos 5125625θθθθθθ-=-=+= 19.已知函数)sin(ϕω+=x A y (0>A , 0ω>,πϕ<||)的一段图象如图所示,(1)求函数的解析式;(2)求这个函数的单调递增区间。
高考数学函数专题习题及详细答案
函数专题练习【1】1.函数1()x y ex R +=∈的反函数是( )A .1ln (0)y x x =+>B .1ln (0)y x x =->C .1ln (0)y x x =-->D .1ln (0)y x x =-+>2.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是(A )(0,1)(B )1(0,)3(C )11[,)73(D )1[,1)73.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠,1221|()()|||f x f x x x -<-恒成立”的只有(A )1()f x x=(B )()||f x x = (C )()2xf x =(D )2()f x x =4.已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2c f =则(A )a b c << (B )b a c << (C )c b a << (D )c a b <<5.函数2()lg(31)f x x =++的定义域是 A .1(,)3-+∞B . 1(,1)3-C . 11(,)33-D . 1(,)3-∞-6、下列函数中,在其定义域内既是奇函数又是减函数的是A .3 ,y x x R =-∈B . sin ,y x x R =∈C . ,y x x R =∈D . x 1() ,2y x=∈7、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点(0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x =A .4B .3C . 2D .18、设()f x 是R 上的任意函数,则下列叙述正确的是(A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数9、已知函数xy e =的图象与函数()y f x =的图象关于直线y x =对称,则A .()22()xf x e x R =∈B .()2ln 2ln (0)f x x x =>)C .()22()xf x e x R =∈D .()2ln ln 2(0)f x x x =+>10、设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, (A )0(B )1 (C )2 (D )3 11、对a ,b ∈R ,记max {a ,b }=⎩⎨⎧≥ba b ba a <,,,函数f (x )=max {|x +1|,|x -2|}(x ∈R )的最小值是(A )0 (B )12 (C ) 32(D )3 12、关于x 的方程222(1)10x x k ---+=,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.命题的个数是 A .0B .1C .2D .3 (一) 填空题(4个)1.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =_______________。
高考数学复习----《利用周期性和对称性解决函数问题》典型例题讲解
高考数学复习----《利用周期性和对称性解决函数问题》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知函数()f x 的定义域为R ,()22f x +为偶函数,()1f x +为奇函数,且当[]0,1x ∈时,()f x ax b =+.若()41f =,则3112i f i =⎛⎫+= ⎪⎝⎭∑( )A .12B .0C .12−D .1−【答案】C【解析】因为()22f x +为偶函数,所以()()2222f x f x −+=+, 用1122x +代替x 得:()()13f x f x −+=+, 因为()1f x +为奇函数,所以()()11f x f x −+=−+, 故()()31f x f x +=−+①,用2x +代替x 得:()()53f x f x +=−+②, 由①② 得:()()51f x f x +=+, 所以函数()f x 的周期4T =, 所以()()401f f ==,即1b =,因为()()11f x f x −+=−+,令0x =得:()()11f f =−,故()10f =,()10f a b =+=,解得:1a =−,所以[]0,1x ∈时,()1f x x =−+, 因为()()11f x f x −+=−+, 令12x =,得2123f f ⎛⎫⎛⎫=− ⎪ ⎪⎝⎭⎝⎭, 其中1111222f ⎛⎫=−+= ⎪⎝⎭,所以3122f ⎛⎫=− ⎪⎝⎭,因为()()2222f x f x −+=+,令14x =得:12214422f f ⎛⎫⎛⎫−⨯+=⨯+ ⎪ ⎪⎝⎭⎝⎭,即235212f f ⎛⎫⎛⎫==− ⎪ ⎪⎝⎭⎝⎭,因为4T =,所以7714222f f f ⎛⎫⎛⎫⎛⎫=−=− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为()()11f x f x −+=−+, 令32x =得:151222f f ⎛⎫⎛⎫−=−= ⎪ ⎪⎝⎭⎝⎭, 故2721f ⎛⎫= ⎪⎝⎭,311111122235722222i f i f f f =⎛⎫⎛⎫⎛⎫⎛⎫+=++=−−+=− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑.故选:C例2、(2023·四川资阳·统考模拟预测)已知函数()f x 的定义域为R ,()2f x −为偶函数,()()20f x f x −+−=,当[]2,1x ∈−−时,()14xf x ax a =−−(0a >且1a ≠),且()24f −=.则()131k f k ==∑( )A .16B .20C .24D .28【答案】C【解析】因为()2f x −是偶函数,所以()2(2)f x f x −−=−,所以()(4)f x f x =−−, 所以函数()f x 关于直线2x =−对称,又因为()()20f x f x −+−=,所以()()2f x f x −−=−, 所以()(2)f x f x =−−−,所以()f x 关于点(1,0)−中心对称, 由()(4)f x f x =−−及()(2)f x f x =−−−得(4)(2)f x f x −−=−−− 所以(4)(2)()f x f x f x −−=−−−=− 所以函数()f x 的周期为4, 因为当[]2,1x ∈−−时,()14xf x ax a =−−(0a >且1a ≠),且()24f −=,所以21424a a −=+−,解得:2a =或4a =−,因为0a >且1a ≠,所以2a =. 所以当[]2,1x ∈−−时,()1()242xf x x =−−,所以(2)4,(1)0f f −=−=,(3)(1)0f f −=−=,(0)(2)4f f =−−=−, (1)(14)(3)0f f f =−=−=,(2)(2)4f f =−=,(3)(1)0f f =−=, (4)(0)4f f ==−,所以(1)(2)(3)(4)8f f f f +++=,所以()131(1)+3824k f k f ==⨯=∑,故选:C .例3、(2023·山东济宁·高三嘉祥县第一中学校考阶段练习)已知定义在R 上的偶函数()f x 满足()()11f x f x −=+,且当01x ≤≤时,()21f x x =−.若直线y x a =+与曲线()y f x =恰有三个公共点,那么实数a 的取值的集合为( )A .51,4k k ⎛⎫++ ⎪⎝⎭(Z k ∈)B .521,24k k ⎛⎫++ ⎪⎝⎭(Z k ∈)C .52,214k k ⎛⎫−− ⎪⎝⎭(Z k ∈)D .5,14k k ⎛⎫−− ⎪⎝⎭(Z k ∈)【答案】B【解析】定义在R 上的偶函数()f x 满足()()11f x f x −=+, 所以()f x 的图像关于1x =对称,且()f x 为周期是2的偶函数,当11x −≤≤时,()21f x x =−,所以画出函数图像如下图所示:①当1a =±时,结合图像可知y x a =+与()21f x x =−([)1,1x ∈−)有两个公共点; ②当y x a =+与()21f x x =−([)1,1x ∈−)相切时,满足21x a x +=−,即210x x a ++−=,令()1410a ∆=−−=,解得54a =. 当54a =时,结合图像可知y x a =+与()y f x =(x R ∈)有两个公共点; 由图像可知, 51,4a ⎛⎫∈ ⎪⎝⎭时,直线y x a =+与()y f x =(x R ∈)有三个公共点;又因为()f x 周期2T =,可知521,24a k k ⎛⎫∈++ ⎪⎝⎭(Z k ∈). 故选:B .例4、(2023·全国·高三专题练习)已知定义在R 上的函数()f x 满足()()2f x f x +=,且当[)1,1x ∈−时,()2f x x =,若函数()log 1a g x x =+图像与()f x 的图像恰有10个不同的公共点,则实数a 的取值范围为( )A .()4,+∞B .()6,+∞C .()1,4D .()4,6【答案】D【解析】因为函数()f x 满足()()2f x f x +=,所以函数()f x 是周期为2的周期函数, 又函数()log 1a g x x =+的图像可由函数log a y x =的图像向左平移一个单位可得,所以函数()log 1a g x x =+的图像的对称轴为=1x −,当[)1,1x ∈−时,()2f x x =,所以函数()f x 的图像也关于=1x −对称,在平面直角坐标系中作出函数()y f x =与()y g x =在=1x −右侧的图像,数形结合可得,若函数()log 1a g x x =+图像与()f x 的图像恰有10个不同的公共点, 则由函数图像的对称性可得两图像在=1x −右侧有5个交点, 则()()13log 415log 61a a a g g ⎧>⎪=<⎨⎪=>⎩,解得()4,6a ∈. 故选:D .例5、(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知()f x 是定义在R 上的奇函数,x ∀∈R ,恒有(4)()f x f x +=−,且当[2,0)x ∈−时,()f x x =−−1,则(0)(1)(2)(2020)(2021)f f f f f +++++=( )A .1B .-1C .0D .2【答案】B【解析】因为(4)(),(8)(4)()f x f x f x f x f x +=−+=−+=,所以()f x 的最小正周期是8, 因为(0)0,(2)(2)1,(3)(1)0f f f f f ==−−=−=−−=,(4)(0)0,(1)(3)f f f f =−==−−=(3)0f =,(5)(1)0f f =−=,(6)(2)1f f =−=, (7)(3)0,(8)(4)0f f f f =−==−=,又()f x 是周期为8的周期函数,所以(0)(1)(2)(3)(4)(5)(6)(7)f f f f f f f f +++++++==(2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015)0f f f f f f f f +++++++=,(2016)(2017)(2018)(2019)(2020)(2021)(0)(1)(2)(3)(4)(5)f f f f f f f f f f f f +++++=+++++00(1)0001=++−+++=−,所以(0)(1)(2)(2020)(2021)1f f f f f +++++=−.故选:B例6、(2023·山东济宁·高三嘉祥县第一中学校考阶段练习)已知定义在R 上的偶函数()f x 满足()()11f x f x −=+,且当01x ≤≤时,()21f x x =−.若直线y x a =+与曲线()y f x =恰有三个公共点,那么实数a 的取值的集合为( )A .51,4k k ⎛⎫++ ⎪⎝⎭(Z k ∈)B .521,24k k ⎛⎫++ ⎪⎝⎭(Z k ∈)C .52,214k k ⎛⎫−− ⎪⎝⎭(Z k ∈)D .5,14k k ⎛⎫−− ⎪⎝⎭(Z k ∈)【答案】B【解析】定义在R 上的偶函数()f x 满足()()11f x f x −=+, 所以()f x 的图像关于1x =对称,且()f x 为周期是2的偶函数,当11x −≤≤时,()21f x x =−,所以画出函数图像如下图所示:①当1a =±时,结合图像可知y x a =+与()21f x x =−([)1,1x ∈−)有两个公共点;②当y x a =+与()21f x x =−([)1,1x ∈−)相切时,满足21x a x +=−,即210x x a ++−=,令()1410a ∆=−−=,解得54a =. 当54a =时,结合图像可知y x a =+与()y f x =(x R ∈)有两个公共点; 由图像可知, 51,4a ⎛⎫∈ ⎪⎝⎭时,直线y x a =+与()y f x =(x R ∈)有三个公共点;又因为()f x 周期2T =,可知521,24a k k ⎛⎫∈++ ⎪⎝⎭(Z k ∈). 故选:B .例7、(2023·全国·高三专题练习)已知定义在R 上的函数()f x 满足()()2f x f x +=,且当[)1,1x ∈−时,()2f x x =,若函数()log 1a g x x =+图像与()f x 的图像恰有10个不同的公共点,则实数a 的取值范围为( )A .()4,+∞B .()6,+∞C .()1,4D .()4,6【答案】D【解析】因为函数()f x 满足()()2f x f x +=,所以函数()f x 是周期为2的周期函数, 又函数()log 1a g x x =+的图像可由函数log a y x =的图像向左平移一个单位可得, 所以函数()log 1a g x x =+的图像的对称轴为=1x −,当[)1,1x ∈−时,()2f x x =,所以函数()f x 的图像也关于=1x −对称,在平面直角坐标系中作出函数()y f x =与()y g x =在=1x −右侧的图像,数形结合可得,若函数()log 1a g x x =+图像与()f x 的图像恰有10个不同的公共点, 则由函数图像的对称性可得两图像在=1x −右侧有5个交点, 则()()13log 415log 61a a a g g ⎧>⎪=<⎨⎪=>⎩,解得()4,6a ∈. 故选:D .例8、(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知()f x 是定义在R 上的奇函数,x ∀∈R ,恒有(4)()f x f x +=−,且当[2,0)x ∈−时,()f x x =−−1,则(0)(1)(2)(2020)(2021)f f f f f +++++=( )A .1B .-1C .0D .2【答案】B【解析】因为(4)(),(8)(4)()f x f x f x f x f x +=−+=−+=,所以()f x 的最小正周期是8, 因为(0)0,(2)(2)1,(3)(1)0f f f f f ==−−=−=−−=,(4)(0)0,(1)(3)f f f f =−==−−=(3)0f =,(5)(1)0f f =−=,(6)(2)1f f =−=, (7)(3)0,(8)(4)0f f f f =−==−=,又()f x 是周期为8的周期函数,所以(0)(1)(2)(3)(4)(5)(6)(7)f f f f f f f f +++++++==(2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015)0f f f f f f f f +++++++=,(2016)(2017)(2018)(2019)(2020)(2021)(0)(1)(2)(3)(4)(5)f f f f f f f f f f f f +++++=+++++00(1)0001=++−+++=−,所以(0)(1)(2)(2020)(2021)1f f f f f +++++=−.故选:B。
2025届高考数学二轮复习函数典型例题第3讲函数的单调性含解析
第3讲函数的单调性典型例题【例1】求函数()f x x=的值域.【答案】99⎡-⎢⎣⎦. 【解析】()()f x xf x ==--,()f x 是奇函数.t =,则01t ,即10t -.()222f x x =()()()()()22112111t t t t t =-+=+-+()()()1122t t t =++-()()()3112264327t t t ⎡⎤++++-=⎢⎥⎣⎦, 当且仅当31t =,即3x =±时,上式取等号. 因为()00f =,所以()()01y f x x=的值大于或等于0,其值域为0,9⎡⎢⎣⎦.由奇函数的性质可得原函数的值域为99⎡-⎢⎣⎦. 【例2】求函数()4321x y x =+的值域.【答案】40,27⎡⎤⎢⎥⎣⎦.【解析】令tan ,,22x ππθθ⎛⎫=∈-⎪⎝⎭, 则()44232tan sin cos 1tan y θθθθ==+2221sin sin 2cos 2θθθ=⋅32221sin sin 2cos 42327θθθ⎛⎫++= ⎪⎝⎭, 当且仅当2tan2θ=时等号成立,所以函数()4321x y x =+的值域为40,27⎡⎤⎢⎥⎣⎦. 【例3】已知函数()22,11,1ax x x f x ax x ⎧+=⎨-+>⎩≤在R 上为增函数,则实数a 的取值范围为。
【答案】11,2⎡⎤--⎢⎥⎣⎦【解析】函数()22,1,1,1ax x x f x ax x ⎧+=⎨-+>⎩在R 上为增函数,则有11,0,21,a a a a ⎧-⎪⎪<⎨⎪+-+⎪⎩解得112a --.故答案为11,2⎡⎤--⎢⎥⎣⎦.【例4】已知函数()2f x x x m m =-+.(1)若函数()f x 在[]1,2上单调递增,求实数m 的取值范围;(2)若函数()f x 在[]1,2上的最小值为7,求实数m 的值.【答案】(1)][()(),14,;22m ∞∞-⋃+=-或1【解析】(1)()2222,,,.x mx m x m f x x mx m x m ⎧-+=⎨-++<⎩ (i)当0m =且0x 时,()2f x x =,此时()f x 在[]1,2上单调递增,可取0m =.(ii)当0m <时,][)1,2,m ∞⎡⊆+⎣,且当x m 时,()22f x x mx m =-+.二次函数22y x mx m =-+的图象开口向上,对称轴为直线02mx =<,如图()1,f x 在[]1,2上单调递增,可取0m <.(iii)当0m >时,如图2,若()f x 在[]1,2上单调递增,则22m或1m ,得01m <或4m .综上所述,实数m 的取值范围是(],1∞-[)4,∞⋃+.图1 图2(2)(i)当1m 时,()f x 在[]1,2上单调递增,()2min ()117f x f m m ==-+=,即260m m --=,解得3m =(舍去)或2m =-.(ii)同(2)(i),当4m 时,()f x 在[]1,2上单调递增,可解得m =均舍去); 当34m <时,可解得12m -±=(均舍去); 当23m <<时,可解得1m =;当12m <时,可解得m =均舍去).综上,2m =-或1.【例5】已知函数()([]11,2,42f x x x x=-∈,求函数()f x 的值域.【答案】11,44⎡⎤⎢⎥⎣⎦.【解析】解法1:()(112f x x x =-+1112x ⎛=-+ ⎝1112x ⎡⎢=-+⎢⎣. 令1m x =,则11,42m ⎡⎤∈⎢⎥⎣⎦, 构造函数()1g m m =-+()1m =-=,则()g m 是11,42⎡⎤⎢⎥⎣⎦上的增函数,从而()11,22g m ⎡⎤∈⎢⎥⎣⎦,因此()11,44f x ⎡⎤∈⎢⎥⎣⎦. 解法()112:12f x x ⎡⎢=-⎢⎣.令1311tan ,,42x θθ⎡⎤-=∈--⎢⎥⎣⎦为第四象限角,则sin 12cos y θθ+=,可看作图中单位圆上一点P 与点()0,1A -连线斜率的一半的改变范围,如图,将1x =2和4x =代人可得所求函数的值域为11,44⎡⎤⎢⎥⎣⎦.【例6】设函数()f x m =,若存在实数,()a b a b <,使()f x 在[],a b 上的值域为1⎤++⎥⎣⎦,则正实数m 的取值范围是_______.21m << 【解析】因为()f x m m ==+933m +>,所以3a b <<.由函数的性质知()f x 在[)3,∞+上是增函数,所以()()1,21,f a a f b ⎧=+⎪⎪⎨⎪=+⎪⎩即1,21,m a m ⎧+=+⎪⎪⎨⎪+=+⎪⎩所以1m -=-=即方程12m x -=[)3,∞+上有两个不等的实数根,a b . 设()2g x x =则()2g x '=3x -=6x x -=当()3,6x ∈时,()()0,g x g x '>单调递增;当()6,x ∞∈+时,()()0,g x g x '<单调递减.又()()33,60g g ==, 由于()2g x x =()231322x x x ⎛⎫--=-+ ⎪⎪⎝⎭,所以()lim x g x ∞∞→+=-,从而3102m -<-<, 故212m -<<. 【例7】(多选题)已知函数()231,11,1x x f x x x +⎧=⎨->⎩若n m >,且()()f n f m =,设t n m =-,则()A.t 没有最小值B.t 1C.t 没有最大值D.t 的最大值为1712【答案】BD【解析】如图,作出函数()f x 的图象.因为()()f n f m =且n m >,则1,1m n >,所以2311m n +=-,即223n m -=.由21,014,n n >⎧⎨<-⎩解得15n <,又()22213233n n m n n n --=-=---213173212n ⎛⎫=--+ ⎪⎝⎭,故当n =,min ()1n m -,当32n =时,max 17()12n m -=. 故选BD.【例8】对于函数()f x ,若在定义域内存在实数0x 满意()()00f x f x -=-,则称函数()f x 为“倒戈函数”.设()()31,0x f x m m R m =+-∈≠是定义在[]1,1-上的“倒戈函数”,则实数m 的取值范围是()A.2,03⎡⎫-⎪⎢⎣⎭B.21,33⎡⎤--⎢⎥⎣⎦C.2,03⎡⎤-⎢⎥⎣⎦D.(),0-∞【答案】A【解析】若()31xf x m =+-是定义在[]1,1-上的“倒戈函数”,则存在[]01,1x ∈-满意()()00f x f x -=-,即003131x x m m -+-=--+,得002332x x m -=--+.构造函数[]000332,1,1x x y x -=--+∈-,令013,,33x t t ⎡⎤=∈⎢⎥⎣⎦, 则1122y t t tt ⎛⎫=--+=-+ ⎪⎝⎭在1,13⎡⎤⎢⎥⎣⎦上单调递增,在(]1,3上单调递减,当1t =时取得最大值0,当13t =或3t =时取得最小值44,,033y ⎡⎤-∈-⎢⎥⎣⎦.又0m ≠,所以实数m 的取值范围是2,03⎡⎫-⎪⎢⎣⎭. 故选A.【例10】已知221x y +=,则22x y x y +--+的最大值_______.2.【解析】解法()221:1222x y y x y x y +--=+⋅-+--()1121112y xy =+⋅---,2y x-的几何意义为单位圆上的点(),x y 与定点()0,2连线的斜率,如图.设过点()0,2的切线为2y kx =+,1=,解得k =结合图象,得23y x--或23y x-,则211121212112x y xx y y +-=+⋅+⋅-+--2=, 所以22x y x y +--+2.解法2:令,x y m x y n -=+=,则22222,22x y n m n x y m +--+==-++,同上,转化为圆上的点(),m n 与点()2,2-连线的斜率,易得223232n m ---++,则22x y x y +--+2.解法3:圆221x y +=上的点(),P x y 到直线x 20y +-=的距离为1d =,又点(),P x y 在直线20x y +-=的下方,=同理,圆221x y +=上的点(),P x y 到直线x -20y +=的距离为2d =,则22x y x y +--+12d d =-如图,设12,,PQ d PS d PAQ ∠α===,则tan α12d d =.结合图形可知,当直线AP 与圆221x y +=相切时,α取最小值,30OAP ∠=,则min?4530α=-=15,从而tan tan152α=所以22x y x y +--+2.解法4:设22x y t x y +-=-+,整理得()1t x --()()1210t y t +++=,由题意,圆221x y +=与直线()()()11210t x t y t --+++=有交点,则圆心到直线的距离小于等于半径,即1,解得2323t --+所以22x y x y+--+2.:【例11】已知实数0a >,函数()23f x x x a =+--在区间[]1,1-上的最大值是2,则a =_______.【答案】54或3【解析】解法1;因为函数()23f x x x a =+--在区间[]1,1-上的最大值是2, 取0x =,可得()02f ,又0a >,得32a -,解得15a ,即有()23,11f x x x a x =-+--,故()f x 的最大值在顶点或端点处取得.由()12f -=,即12a -=,解得3a =或a =1-(舍去);由()12f =,即32a -=,解得5a =或1a =; 由122f ⎛⎫= ⎪⎝⎭,即1324a -=,解得54a =或a =214(舍去).当1a =时,()22f x x x =--,因为12f ⎛⎫= ⎪⎝⎭924>,故不符合题意,舍去;当5a =时,()22f x x x =-+,因为()1f -=42>,故不符合题意,舍去;当3a =时,()2f x x x =-,明显当1x =-时,()f x 取得最大值2,符合题意; 当54a =时,()()277,144f x x x f =--=,()111,242f f ⎛⎫-== ⎪⎝⎭,符合题意. 所以54a =或3a =.解法()2:f x 在[]1,1-上的最大值为2,等价于()232f x x x a =+--在[]1,1-上恒成立,且等号可取到, 即2232x x a -+--在[]1,1-上恒成立,且至少一处等号可取到,即2215x x a x ---在[]1,1-上恒成立,且至少一处等号可取到.在同一个坐标系里画出函数21,y x y =-=2,5x a y x -=-的图象,如图.肯定值函数的图象过25y x =-图象上的点()1,4-,或者与21y x =-的图象相切,得14a +=或210x x a -+-=.对于后者,由Δ0=得54a =,所以3a =或54a =.【例12】对于定义域为D 的函数()y f x =,假如存在区间[,]m n D ⊆, 同时满意:①()f x 在[],m n 上是单调函数,②[],m n 上()f x 的值域也是[],m n ,则称[],m n 是该函数的“美丽区间”.已知函数()()()221,0a a x y h x a R a a x +-==∈≠有“美丽区间”[],m n ,当a 改变时,求n m -的最大值_______.【解析】设[],m n 是已知函数定义域的子集. 由于0x ≠,则[](),,0m n ∞⊆-或[],m n ⊆()0,∞+. 而函数()222111a a x a y a x a a x+-+==-在[],m n 上单调递增,若[],m n 是已知函数的“美丽区间”,则()(),,h m m h n n ⎧=⎪⎨=⎪⎩ 所以,m n 是方程211a x a a x+-=即22a x -()210a a x ++=的两个同号且不等的实数根. 因为210mn a =>,所以,m n 同号, 只要()()()2222Δ4310a a a a a a =+-=+->,解得3a <-或1a >.n m -===当3a =时,n m -【例13】已知在ABC ∆中,内角,,A B C 所对的边长分别为,,a b c ,若AB 边上的高为14AB ,则当sin sin sin sin A B B A+取得最大值时,sin C =_______.【答案】5 【解析】设AB 边上的高为c h ,即14c h c =, 由面积公式得11sin 22c ch ab C =,即24sin c ab C =. 22sin sin sin sin A B a b a b B A b a ab++=+=, 由余弦定理得2222cos c a b ab C =+-,则22cos 4sin 2cos c ab C ab C ab C ab ab++=()4sin 2cos C C C ϕ=+=+, 其中1tan 2ϕ=. 当2C πϕ+=时,上式取到最大值此时2C πϕ=-,故sin sin cos 2C πϕϕ⎛⎫=-===⎪⎝⎭【例14】在平面直角坐标系xOy 中,设定点(),,A a a P 是函数1(0)y x x=>图象上的一个动点,若,P A之间的最短距离为,则满意条件的实数a 的值为______.【答案】1-【解析】1设1,(0)P x x x ⎛⎫> ⎪⎝⎭, 则2222211||()AP x a a x x x ⎛⎫=-+-=+- ⎪⎝⎭2222a ax a x -+. 令[)12,t x x∞=+∈+,则222||222AP t at a =-+-. 记()()222222g t t at a t =-+-,其图象的对称轴为t a =,最小值为28=,所以()2min?2,()22428,a g t g a a <⎧⎨==-+=⎩或()2min?2,()28,a g t g a a ⎧⎨==-=⎩解得1a =-或a =.【解析】2由题意可知,若0a <,则1a =-满意题意.若0a >,则圆22()()8x a y a -+-=与曲线1(0)y x x=>相切,联立方程组, 消去y 得22221228a x ax a a x x-++-+=, 即()221122100?*x a x a x x ⎛⎫⎛⎫+-++-= ⎪ ⎪⎝⎭⎝⎭. 由()22Δ(2)42100a a =--=,得a =, 此时方程()*的解为2x =,满意题意. 综上,1a =-或a =.【例15】已知函数()21,1,{ln ,1,x x f x x x x-<=>若关于x 的方程()()212202f x tf x t ++-=有5个不同的实数根,则实数t 的取值范围是 A.111,22e ⎛⎫- ⎪⎝⎭ B.111,22e ⎛⎫- ⎪⎝⎭ C.113,22e ⎛⎫- ⎪⎝⎭ D.113,22e ⎛⎫- ⎪⎝⎭【答案】A 【解析】设ln x y x =,则21ln x y x-='. 当()0,e x ∈时,0y '>,函数单调递增;当()e,x ∞∈+时,0y '<,函数单调递减.所以当e x =时,函数取得极大值, 1ey =极大值.方程()()212202f x tf x t ++-=可化为()()12102f x t f x ⎡⎤⎡⎤+-+=⎣⎦⎢⎥⎣⎦,解得()12f x t =-+或()12f x =-.画出函数()f x 的大致图象,如图.要使得关于x 的方程()()21222f x tf x t ++-0=有5个不同的实数根, 应满意1102e t <-+<,解得1112e 2t -<<,即实数t 的取值范围是111,2e 2⎛⎫- ⎪⎝⎭.故选A.。
高考数学专题《函数的概念及其表示》习题含答案解析
专题3.1 函数的概念及其表示1.(2021·四川达州市·高三二模(文))已知定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,则(1)f =( )A .1-B .1C .13-D .13【答案】B 【解析】当0x =时,f (1)2(0)1f +=①;当1x =时,(0)2f f +(1)2=②,由此进行计算能求出f (1)的值.【详解】定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,∴当0x =时,f (1)2(0)1f +=,①当1x =时,(0)2f f +(1)2=,②②2⨯-①,得3f (1)3=,解得f (1)1=.故选:B2.(2021·浙江高一期末)已知231,1,()3,1,x x f x x x +⎧=⎨+>⎩…则(3)f =( )A .7B .2C .10D .12【答案】D 【解析】根据分段函数的定义计算.【详解】由题意2(3)3312f =+=.故选:D .3.(2021·全国高一课时练习)设3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,则(5)f 的值为( )A .16B .18C .21D .24练基础【解析】根据分段函数解析式直接求解.【详解】因为3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,所以(5)(10)(15)15318f f f ===+=.故选:B.4.(2021·浙江湖州市·湖州中学高一开学考试)若函数213()22f x x x =-+的定义域和值域都是[1,]b ,则b =( )A .1B .3C .3-D .1或3【答案】B 【解析】根据函数213()22f x x x =-+在[1,]b 上为增函数,求出其值域,结合已知值域可求出结果.【详解】因为函数213()22f x x x =-+21(1)12x =-+在[1,]b 上为增函数,且定义域和值域都是[1,]b ,所以min ()(1)f x f =1=,2max 13()()22f x f b b b b ==-+=,解得3b =或1b =(舍),故选:B5.(上海高考真题)若是的最小值,则的取值范围为( ).A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]【答案】D 【详解】由于当0x >时,1()f x x a x=++在1x =时取得最小值2a +,由题意当0x ≤时,2()()f x x a =-应该是递减的,则0a ≥,此时最小值为2(0)f a =,因此22a a ≤+,解得02a ≤≤,选D .6.(广东高考真题)函数()f x =的定义域是______.【答案】[)()1,00,∞-⋃+由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案.【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()f x =的定义域为:[)()1,00,-⋃+∞;故答案为[)()1,00,-⋃+∞.7.(2021·青海西宁市·高三一模(理))函数()f x 的定义域为[]1,1-,图象如图1所示,函数()g x 的定义域为[]1,2-,图象如图2所示.若集合()(){}0A x f g x ==,()(){}0B x g f x ==,则A B 中有___________个元素.【答案】3【解析】利用数形结合分别求出集合A 与集合B ,再利用交集运算法则即可求出结果.【详解】若()()0f g x =,则()0g x =或1-或1,∴{}1,0,1,2A =-,若()()0g f x =,则()0f x =或2,∴{}1,0,1B =-,∴{}1,0,1=- A B .故答案为:3.8.(2021·湖北襄阳市·襄阳五中高三二模)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.【答案】(]1,2【解析】令()()222111x x g x x x x +-=≥+-,根据函数值域的求解方法可求得()g x 的值域即为所求的()f x 的定义域.【详解】令()()222111x x g x x x x +-=≥+-,则()()222111111111x x x x g x x x x x x x x+-+==+=+≥+-+--+,1y x x =- 在[)1,+∞上单调递增,10x x∴-≥,10111x x∴<≤-+,()12g x ∴<≤,()f x ∴的定义域为(]1,2.故答案为:(]1,2.9.(2021·黑龙江哈尔滨市第六中学校高三二模(文))已知函数()221,01,0x x f x x x⎧+≥⎪=⎨<⎪⎩,若()2f a =,则实数a =___________.【答案】1或【解析】分别令212a +=,212a=,解方程,求出方程的根即a 的值即可.【详解】当0a ≥,令212a +=,解得:1a =,当0a <,令212a =,解得:a =故1a =或,故答案为:1或.10.(2021·云南高三二模(理))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则t 的取值范围为________.【答案】171,12⎤-⎥⎦【解析】用n 表示出m ,结合二次函数的性质求得t n m =-的取值范围.【详解】画出()f x 图象如下图所示,3114⨯+=,令()2140x x -=>,解得x =由()(),n m f n f m >=得2311m n +=-,223n m -=,且1n <≤所以(222121333n t n m n n n n -=-=-=-++<≤,结合二次函数的性质可知,当131223n =-=⎛⎫⨯- ⎪⎝⎭时,t 取得最大值为2133217322312⎛⎫-⨯++= ⎪⎝⎭,当n =时,t取得最小值为212133-⨯=-.所以t的取值范围是171,12⎤⎥⎦.故答案为:171,12⎤⎥⎦1.(2021·云南高三二模(文))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则( )A .t 没有最小值B .t1-C .t 的最小值为43D .t 的最小值为1712【答案】B 【解析】先作出分段函数图象,再结合图象由()()f n f m =,得到m 与n 的关系,消元得关于n 的函数,最后求最值.【详解】如图,作出函数()f x 的图象,()()f n f m = 且n m >,则1m £,且1n >,练提升2311m n ∴+=-,即223n m -=.由21014n n >⎧⎨<-≤⎩,解得1n <≤.222211317(32)(333212n n m n n n n -⎡⎤∴-=-=---=--+⎢⎥⎣⎦,又1n <≤ ∴当n =时,()min 1n m -=-.故选:B.2.(2020·全国高一单元测试)已知函数21,0,()2,0,x x f x x x ⎧+≤=⎨->⎩,若()05f x =,则0x 的取值集合是( )A .{2}-B .5,22⎧⎫-⎨⎬⎩⎭C .{2,2}-D .52,2,2⎧⎫--⎨⎬⎩⎭【答案】A 【解析】根据分段函数值的求解方法,对00x ≤与00x >两种情况求解,可得答案.【详解】若00x ≤,可得2015x +=,解得02x =-,(02x =舍去);若00x >,可得02x -=5,可得052x =-,与00x >相矛盾,故舍去,综上可得:02x =-.故选:A.3.【多选题】(2021·全国高一课时练习)(多选题)下列函数中,定义域是其值域子集的有( )A .865y x =+B .225y x x =--+C .y =D .11y x=-【答案】AC 【解析】分别求得函数的定义域和值域,利用子集的定义判断.【详解】A 函数的定义域和值域都是R ,符合题意;B.定义域为R ,因为2225(1)66y x x x =--+=-++≤,所以函数值域为(,6]-∞,值域是定义域的真子集不符合题意;C.易得定义域为[1,)+∞,值域为[0,)+∞,定义域是值域的真子集;D.定义域为{|0}x x ≠,值域为{|1}x x ≠-,两个集合只有交集;故选:AC4.【多选题】(2021·全国高一课时练习)已知f (x )=2211x x+-,则f (x )满足的关系有( )A .()()f x f x -=-B .1f x ⎛⎫⎪⎝⎭= ()f x -C .1f x ⎛⎫⎪⎝⎭=f (x )D .1(()f f x x-=-【答案】BD 【解析】根据函数()f x 的解析式,对四个选项逐个分析可得答案.【详解】因为f (x )= 2211x x+-,所以()f x -=221()1()x x +---=2211x x+-()f x =,即不满足A 选项;1f x ⎛⎫ ⎪⎝⎭=221111x x ⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭=2211x x +-,1f x ⎛⎫⎪⎝⎭=()f x -,即满足B 选项,不满足C 选项,1(f x -=221111x x ⎛⎫+- ⎪⎝⎭⎛⎫-- ⎪⎝⎭=2211x x +-,1()()f f x x -=-,即满足D 选项.故选:BD5.【多选题】(2021·全国高三其他模拟)已知函数21,0,()2,0,x x f x x x x +<⎧=⎨-+≥⎩令()()()g x f f x =,则下列说法正确的是( )A .()10g -=B .方程()2g x =有3个根C .方程()2g x =-的所有根之和为-1D .当0x <时,()()f xg x ≤【答案】ACD 【解析】由题意知()10f -=可得()10g -=;令()f x u =,因为方程()2f u =没有实根,即()2g x =没有实根;令()u f x =,则方程()2g x =-,即()2f u =-,通过化简与计算即可判断C ;当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,即可判断D .【详解】对于A 选项,由题意知()10f -=,则()()()()1100g f f f -=-==,所以A 选项正确;对于B 选项,令()f x u =,则求()()()2g x f f x ==的根,即求()2f u =的根,因为方程()2f u =没有实根,所以()2g x =没有实根,所以选项B 错误;对于C 选项,令()u f x =,则方程()2g x =-,即()2f u =-,得112,03u u u +=-<⇒=-,2222,01u u u u -+=-≥⇒=+,由方程1()f x u =得13(0)x x +=-<或223(0)x x x -+=-≥,解得4x =-或3x =,易知方程2()f x u =,没有实数根,所以方程()2g x =-的所有根之和为-1,选项C 正确;对于D 选项,当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,当0x <时,函数()g x 的图象不在()f x 的图象的下方,所以D 选项正确,故选:ACD .6.【多选题】(2021·全国高三专题练习)已知函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,则( )A .()f x 的图象过点()1,0和()1,0-B .()f x 在定义域上为奇函数C .若当1x >时,有()0f x >,则当10x -<<时,()0f x <D .若当01x <<时,有()0f x <,则()0f x >的解集为()1,+∞【答案】AC 【解析】根据抽象函数的性质,利用特殊值法一一判断即可;【详解】解:因为函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,令1x y ==,则()()()111f f f =+,则()10f =,令1x y ==-,则()()()111f f f =-+-,则()10f -=,所以()f x 过点()1,0和()1,0-,故A 正确;令1y =-,则()()()1f x f x f -=+-,即()()f x f x -=,所以()f x 为偶函数,故B 错误;令1y x =-,则()()110f f x f x ⎛⎫-=+-= ⎪⎝⎭,则()1f f x x ⎛⎫-=- ⎪⎝⎭当1x >时,所以()11,0x -∈-,又()0f x >,则10f x ⎛⎫-< ⎪⎝⎭,即当10x -<<时,()0f x <,故C 正确;令1y x =,则()()110f f x f x ⎛⎫=+= ⎪⎝⎭,则()1f f x x ⎛⎫=- ⎪⎝⎭,当01x <<时,所以()11,x ∈+∞,又()0f x <,则10f x ⎛⎫>⎪⎝⎭,即当1x >时,()0f x >,因为()f x 是偶函数,所以1x <-时,()0f x >,所以()0f x >的解集为()(),11,-∞-+∞U ,故D 错误;故选:AC7.【多选题】(2021·全国高三专题练习)已知函数()22,023,0x x x f x x x ⎧-<=⎨-+≥⎩,则( )A .()13f f -⎡⎤⎣=-⎦B .若()1f a =-,则2a =C .()f x 在R 上是减函数D .若关于x 的方程()f x a =有两解,则(]0,3a ∈【答案】ABD 【解析】根据函数解析式,代入数据可判断A 、B 的正误,做出()f x 的图象,可判断C 、D 的正误,即可得答案.【详解】对于A :由题意得:2(1)(1)2(1)3f -=--⨯-=,所以()(3)23331f f f -==-⨯+=-⎡⎤⎣⎦,故A 正确;对于B :当0a <时,2()21f a a a =-=-,解得a =1,不符合题意,舍去当0a ≥时,()231f a a =-+=-,解得2a =,符合题意,故B 正确;对于C :做出()f x 的图象,如下图所示:所以()f x 在R 上不是减函数,故C 错误;对于D :方程()f x a =有两解,则()y f x =图象与y a =图象有两个公共点,如下图所示所以(]0,3a ∈,故D 正确.故选:ABD8.(2021·浙江高三月考)已知0a >,设函数2(22),(02)(),(2)x a x x a f x ax x a ⎧-++<<+=⎨≥+⎩,存在0x 满足()()00f f x x =,且()00f x x ≠,则a 的取值范围是______.1a ≤<【解析】求得()2x ax a y =≥+关于y x =对称所得函数的解析式,通过构造函数,结合零点存在性列不等式,由此求得a 的取值范围.【详解】由于()f x 存在0x 满足()()0f f x x=,且()00f x x ≠,所以()f x 图象上存在关于y x =对称的两个不同的点.对于()()2,2y ax x a y a a =≥+≥+,交换,x y 得x ay =,即()()12,2y x x a a y a a=≥+≥+,构造函数()()22111222222g x x a x x x a x x x a a a a ⎛⎫⎛⎫=-++-=-++-=-++- ⎪ ⎪⎝⎭⎝⎭(()22a a x a +≤<+),所以()g x 的零点122a a +-满足()12222a a a a a+≤+-<+,由1222a a a +-<+得()()21111001a a a a a a a a+---==<⇒<<,由()1222a a a a+≤+-得3210a a -+≤,即()()()()31111a a a a a a a --+=+---()()()21110a a a a a a ⎛=+--=--≤ ⎝,由于01a <<1a ≤<.1a ≤<9. (2021·浙江高一期末)已知函数()1f x x =-+,()()21g x x =-,x ∈R .(1)在图1中画出函数()f x ,()g x 的图象;(2)定义:x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为()()(){}min ,m x f x g x =,请分别用图象法和解析式法表示函数()m x .(注:图象法请在图2中表示,本题中的单位长度请自己定义且标明)【答案】(1)图象见解析;(2)()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩;图象见解析.【解析】(1)由一次函数和二次函数图象特征可得结果;(2)根据()m x 定义可分段讨论得到解析式;由解析式可得图象.【详解】(1)()f x ,()g x 的图象如下图所示:(2)当0x ≤时,()211x x -≥-+,则()()1m x f x x ==-+;当01x <<时,()211x x -<-+,则()()()21m x g x x ==-;当1≥x 时,()211x x -≥-+,则()()1m x f x x ==-+;综上所述:()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩.()m x图象如下图所示:10. (2021·全国高一课时练习)已知函数()12f x x x =++-,()3g x x =-.(1)在平面直角坐标系里作出()f x 、()g x 的图象.(2)x R ∀∈,用()min x 表示()f x 、()g x 中的较小者,记作()()(){}min ,x f x g x =,请用图象法和解析法表示()min x ;(3)求满足()()f x g x >的x 的取值范围.【答案】(1)答案见解析;(2)答案见解析;(3)()(),20,-∞-+∞ .【解析】(1)化简函数()f x 、()g x 的解析式,由此可作出这两个函数的图象;(2)根据函数()min x 的意义可作出该函数的图象,并结合图象可求出函数()min x 的解析式;(3)根据图象可得出不等式()()f x g x >的解集.【详解】(1)()21,2123,1212,1x x f x x x x x x -≥⎧⎪=++-=-<<⎨⎪-≤-⎩,()3,333,3x x g x x x x -≥⎧=-=⎨-<⎩.则对应的图象如图:(2)函数()min x的图象如图:解析式为()3,20312,21min 3,103,3x x x x x x x x x -<-≤<⎧⎪--≤≤-⎪=⎨-<<⎪⎪-≥⎩或;(3)若()()f x g x >,则由图象知在A 点左侧,B 点右侧满足条件,此时对应的x 满足0x >或2x <-,即不等式()()f x g x >的解集为()(),20,-∞-+∞ .1.(山东高考真题)设f (x )=<x <1―1),x ≥1,若f (a )=f (a +1),则=( )A .2B .4C .6D .8【答案】C【解析】由x ≥1时f (x )=2(x ―1)是增函数可知,若a ≥1,则f (a )≠f (a +1),所以0<a <1,由f (a )=f (a+1)得a =2(a +1―1),解得a =14,则=f (4)=2(4―1)=6,故选C.2.(2018上海卷)设D 是含数1的有限实数集,f (x )是定义在D 上的函数,若f (x )的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( )A .3B .32 C .33 D .0【答案】B 【解析】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转π6个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f (1)=3,33,0时,此时得到的圆心角为π3,π6,0,然而此时x=0或者x=1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y ,因此只有当练真题x=32,此时旋转π6,此时满足一个x 只会对应一个y ,故选:B .3. (2018年新课标I 卷文)设函数f (x )=2―x , x ≤01 , x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A. (―∞ , ―1]B. (0 , +∞)C. (―1 , 0)D. (―∞ , 0)【答案】D【解析】将函数f (x )的图象画出来,观察图象可知会有2x <02x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值范围是(―∞ , 0),故选D.4.(浙江高考真题(文))已知函数()2,1{66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦,()f x 的最小值是.【答案】162-【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.5. (2018·天津高考真题(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.【答案】1,28⎡⎤⎢⎥⎣⎦【解析】由题意分类讨论0x >和0x ≤两种情况,结合恒成立的条件整理计算即可求得最终结果.【详解】分类讨论:①当0x >时,()f x x ≤即:222x x a x -+-≤,整理可得:21122a x x ≥-+,由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭,结合二次函数的性质可知:当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥;②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+,由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知:当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.6.(2018·浙江高考真题)已知λ∈R,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】(1,4) (1,3](4,)⋃+∞ 【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.详解:由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)⋃+∞.。
高考数学函数题库(含答案)
2009——20XX 高考题1.〔2012高考XX 文3〕〔2log 9〕·〔3log 4〕= 〔A 〕14 〔B 〕12〔C 〕2 〔D 〕4 [答案]D2.〔2012高考新课标文11〕当0<x ≤12时,4x <log a x ,则a 的取值X 围是〔A 〕(0,22) 〔B 〕(22,1) 〔C 〕(1,2) 〔D 〕(2,2) [答案]B3.〔2012高考XX 文3〕函数21()4ln(1)f x x x =+-+的定义域为(A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-[答案]B4.〔2012高考XX 文10〕函数cos622x xxy -=-的图象大致为[答案]D5.〔2012高考XX 文12〕设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 (A)12120,0x x y y +>+> (B)12120,0x x y y +>+< (C)12120,0x x y y +<+> (D)12120,0x x y y +<+<[答案]B[解析]方法一:在同一坐标系中分别画出两个函数的图象,要想满足条件,则有如图,做出点A 关于原点的对称点C,则C 点坐标为),(11y x --,由图象知,,2121y y x x >-<-即0,02121<+>+y y x x ,故答案选B.方法二:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b =.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得3322b =.不妨设12x x <,则32223x b ==.所以231()()(2)F x x x x =--,比较系数得3141x -=,故31122x =-.3121202x x +=>,由此知12121212110x x y y x x x x ++=+=<,故答案为B. 6.〔2012高考XX 文7〕已知22log 3log 3a =+,22log 9log 3b =-,3log 2c =则a,b,c 的大小关系是〔A 〕 a b c =< 〔B 〕a b c => 〔C 〕a b c << 〔D 〕a b c >>[答案]B7.〔2012高考全国文11〕已知ln x π=,5log 2y =,12z e -=,则〔A 〕x y z << 〔B 〕z x y << 〔C 〕z y x << 〔D 〕y z x <<[答案]D8.〔2012高考全国文2〕函数1(1)y x x =+≥-的反函数为〔A 〕)0(12≥-=x x y 〔B 〕)1(12≥-=x x y 〔C 〕)0(12≥+=x x y 〔D 〕)1(12≥+=x x y [答案]B9.〔2012高考XX 文4〕函数(0,1)xy a a a a =->≠的图象可能是〔 〕[答案]C10.〔2012高考XX 文2〕下列函数中,既是奇函数又是增函数的为〔 〕 A. 1y x =+ B. 2y x =- C. 1y x= D. ||y x x = [答案]D.11.〔2012高考XX 文9〕设定义在R 上的函数f(x)是最小正周期为2π的偶函数,()f x '是f(x)的导函数,当[]0,x π∈时,0<f(x)<1;当x ∈〔0,π〕 且x ≠2π时 ,()()02x f x π'->,则函数y=f(x)-sinx 在[-2π,2π] 上的零点个数为 A .2 B .4 C.5 D. 8 [答案]B12.〔2012高考XX 文3〕函数f(x)=xcos2x 在区间[0,2π]上的零点个数为 A 2 B 3 C 4 D 5 [答案]D13.〔2012高考XX 文3〕设函数211()21x x f x x x ⎧+≤⎪=⎨>⎪⎩,则=))3((f f[答案]D14.〔2012高考XX 文10〕如右图,OA=2〔单位:m 〕,OB=1(单位:m),OA 与OB 的夹角为6π,以A 为圆心,AB 为半径作圆弧BDC 与线段OA 延长线交与点C.甲。
高考数学构造函数试题(含答案)
构造函数一、考点一f(x)与f′(x)共存的不等式问题例题1.(1)定义在R上的函数f(x),满足f(1)=1,且对任意x∈R都有f′(x)<12,则不等式f xlg>lg x+12的解集为(0,10).(2)设f(x),g(x)分别是定义在R上的奇函数和偶函数,若当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3) =0,则不等式f(x)g(x)<0的解集为(-∞,-3)∪(0,3).【解析】(1)由题意构造函数g(x)=f(x)-12x,则g′(x)=f′(x)-12<0,所以g(x)在定义域内是减函数.因为f(1)=1,所以g(1)=f(1)-12=12,由f(lg x)>lg x+12,得f(lg x)-12lg x>12.即g(lg x)=f(lg x)-12lg x>12=g(1),所以lg x<1,解得0<x<10.所以原不等式的解集为(0,10).(2)借助导数的运算法则,f′(x)g(x)+f(x)g′(x)>0⇔[f(x)g(x)]′>0,所以函数y=f(x)g(x)在(-∞,0)上单调递增.又由题意知函数y=f(x)g(x)为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).数形结合可求得不等式f(x)g(x)<0的解集为(-∞,-3)∪(0,3).【答案】(1)(0,10);(2)(-∞,-3)∪(0,3)[解题技法](1)对于不等式f′(x)+g′(x)>0(或<0),构造函数F(x)=f(x)+g(x).(2)对于不等式f′(x)-g′(x)>0(或<0),构造函数F(x)=f(x)-g(x).特别地,对于不等式f′(x)>k(或<k)(k≠0),构造函数F(x)=f(x)-kx.(3)对于不等式f′(x)g(x)+f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x).(4)对于不等式f′(x)g(x)-f(x)g′(x)>0(或<0),构造函数F(x)=f xg x(g(x)≠0).例题2.(1)设f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x) >0成立的x的取值范围是(A)A.-∞,-1∪(0,1) B.(-1,0)∪1,+∞C.-∞,-1∪(-1,0) D.(0,1)∪1,+∞(2)设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,则下列不等式在R上恒成立的是(A)A.f(x)>0B.f(x)<0C.f(x)>xD.f(x)<x【解析】(1)令g(x)=f xx,则g′(x)=xf′x -f xx2.由题意知,当x>0时,g′(x)<0,∴g(x)在(0,+∞)上是减函数.∵f(x)是奇函数,f(-1)=0,∴f(1)=-f(-1)=0,∴g(1)=f(1)=0,∴当x∈(0,1)时,g(x)>0,从而f(x)>0;当x ∈(1,+∞)时,g (x )<0,从而f (x )<0.又∵f (x )是奇函数,∴当x ∈(-∞,-1)时,f (x )>0;当x ∈(-1,0)时,f (x )<0.综上,所求x 的取值范围是(-∞,-1)∪(0,1).(2)令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2].g 0 =0.当x >0时,g ′(x )>0,∴g (x )>g (0),即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0),即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0.综上可知,f (x )>0.【答案】(1)A ;(2)A[解题技法](1)对于xf ′(x )+nf (x )>0型,构造F (x )=x n f (x ),则F ′(x )=x n -1[xf ′(x )+nf (x )](注意对x n -1的符号进行讨论),特别地,当n =1时,xf ′(x )+f (x )>0,构造F (x )=xf (x ),则F ′(x )=xf ′(x )+f (x )>0.(2)对于xf ′(x )-nf (x )>0(x ≠0)型,构造F (x )=f x x n ,则F ′(x )=xf ′x -nf xx n +1(注意对x n +1的符号进行讨论),特别地,当n =1时,xf ′(x )-f (x )>0,构造F (x )=f x x ,则F ′(x )=xf ′x -f xx 2>0例题3.(1)已知f (x )为R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则有(D )A.e 2019f (-2019)<f (0),f (2019)>e 2019f (0)B.e 2019f (-2019)<f (0),f (2019)<e 2019f (0)C.e 2019f (-2019)>f (0),f (2019)>e 2019f (0)D.e 2019f (-2019)>f (0),f (2019)<e 2019f (0)(2)已知定义在R 上的函数f (x )满足f (x )+2f ′(x )>0恒成立,且f (2)=1e(e 为自然对数的底数),则不等式e x f (x )-e x2>0的解集为(2,+∞).【解析】(1)构造函数h (x )=f x e x ,则h ′(x )=f ′x -f xe x<0,即h (x )在R 上单调递减,故h (-2019)>h (0),即f -2019 e -2019>f 0e⇒e 2019f (-2019)>f (0);同理,h (2019)<h (0),即f (2019)<e 2019f (0),故选D .(2)由f (x )+2f ′(x )>0得212f x +f ′x>0,可构造函数h (x )=e x2f (x ),则h ′(x )=12e x2[f (x )+2f ′(x )]>0,所以函数h (x )=e x2f (x )在R 上单调递增,且h (2)=ef (2)=1.不等式e x f (x )-e x2>0等价于e x2f (x )>1,即h (x )>h (2)⇒x >2,所以不等式e xf (x )-e x2>0的解集为(2,+∞).【答案】(1)D ;(2)(2,+∞)[解题技法](1)对于不等式f 'x +f x >0(或<0),构造函数F (x )=e x f (x )(2)对于不等式f 'x -f x >0(或<0),构造函数F (x )=f (x )e x(3)对于不等式nf 'x +f x >0(或<0),构造函数F (x )=e xn f (x )(4)对于不等式nf'x -f x >0(或<0),构造函数F(x)=f x e x n(5)对于不等式f'x +nf x >0(或<0),构造函数F(x)=e nx f(x)(6)对于不等式f'x -nf x >0(或<0),构造函数F(x)=f x e nx1.已知函数f(x)是定义在R上的偶函数,设函数f(x)的导函数为f′(x),若对任意的x>0都有2f(x)+xf′(x)>0成立,则(A) A.4f(-2)<9f(3) B.4f(-2)>9f(3) C.2f(3)>3f(-2) D.3f(-3)<2f(-2)【答案】A【解析】根据题意,令g(x)=x2f(x),其导函数g′(x)=2xf(x)+x2f′(x),又对任意的x>0都有2f(x)+ xf′(x)>0成立,则当x>0时,有g′(x)=x[2f(x)+xf′(x)]>0恒成立,即函数g(x)在(0,+∞)上为增函数,又由函数f(x)是定义在R上的偶函数,则f(-x)=f(x),则有g(-x)=(-x)2f(-x)=x2f(x)=g (x),即函数g(x)也为偶函数,则有g(-2)=g(2),且g(2)<g(3),则有g(-2)<g(3),即有4f(-2)<9f(3).2.f(x)在0,+∞上的导函数为f′(x),xf′(x)>2f(x),则下列不等式成立的是(A) A.20182f(2019)>20192f(2018) B.20182f(2019)<20192f(2018)C.2018f(2019)>2019f(2018)D.2018f(2019)<2019f(2018)【答案】A【解析】令g(x)=f xx2,x∈(0,+∞),则g′(x)=x2f′x -2xf xx4=xf′x -2f xx3>0,则g(x)在(0,+∞)上为增函数,即f201920192>f201820182,∴20182f(2019)>20192f(2018)。
高考数学复习---《利用轴对称解决函数问题》典型例题讲解
高考数学复习---《利用轴对称解决函数问题》典型例题讲解【典型例题】例1、(2022·全国·高三专题练习)若1x 满足25x x =−,2x 满足2log 5x x +=,则12x x +等于( ) A .2B .3C .4D .5【答案】D【解析】由题意1152x x −=,故有2225log x x −= 故1x 和2x 是直线5y x =−和曲线2xy =、曲线2log y x =交点的横坐标. 根据函数2xy =和函数2log y x =互为反函数,它们的图象关于直线y x =对称, 故曲线2xy =和曲线2log y x =的图象交点关于直线y x =对称. 即点(x 1,5﹣x 1)和点(x 2,5﹣x 2)构成的线段的中点在直线y =x 上, 即12125522x x x x +−+−=,求得x 1+x 2=5, 故选:D .例2、(2021春·高一单元测试)设函数()21228log (1)31f x x x =+++,则不等式212(log )(log )2f x f x +≥的解集为( )A .(0,2]B .1,22⎡⎤⎢⎥⎣⎦C .[2,+∞)D .10,2⎛⎤ ⎥⎝⎦∪[2,+∞) 【答案】B【解析】由题意,函数()21228log (1)31f x x x =+++的定义域为R , 且()()2211222288log [()1]log (1)3()131f x x x f x x x −=−++=++=−++, 所以函数()f x 为R 的偶函数,且在[0,)+∞上为单调递减函数, 令2log t x =,可得12log x t=−,则不等式212(log )(log )2f x f x +≥可化为()()2f t f t +−≥,即()22f t ≥,即()1f t ≥,又因为()1281log 2131f =+=+,且()f x 在[0,)+∞上单调递减,在R 为偶函数, 所以11t −≤≤,即21log 1x −≤≤,解得122x ≤≤, 所以不等式的解集为1[,2]2. 故选:B .例3、(2021春·西藏拉萨·高三校考阶段练习)已知函数()()11332cos 1x x x f x −−+=+−−,则()()0.52310.5log 9log 2f f f −⎛⎫ ⎪⎝⎭、、的大小关系( ) A .()()0.5231log 9log 0.52f f f −⎛⎫>> ⎪⎝⎭ B .0.5321(log )(0.5)(log 9)2f f f −>> C .0.5321(0.5)(log )(log 9)2f f f −>> D .0.5231(log 9)(0.5)(log )2f f f −>> 【答案】A【解析】令()(1)332cos x x g x f x x −=+=+−,()()g x g x −=,所以()g x 是偶函数; ()ln3(33)2sin x x g x x −'=−+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增. ∵23log 94<<,0.50.5−()3312log 2log 22,32−=+∈, ∴0.52314log 92log 0.512−>>−>>,∴()()0.5231log 92log 0.52f f f −⎛⎫>−> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=− ⎪ ⎪⎝⎭⎝⎭, ∴()()0.5231log 9log 0.52f f f −⎛⎫>> ⎪⎝⎭. 故选:A。
历年高考数学函数题库(含答案)
【答案】D,做出点知即,,2121y y x x >-<-方法二:设3()F x x bx =-【答案】C图像大致是=,则函数题库(1)g -=【答案】330.(2012高考广东文11)函数的定义域为 .1x y x+=【答案】[)()1,00,-+∞U 31.(2102高考北京文12)已知函数,若,则x x f lg )(=1)(=ab f =+)()(22b f a f _____________。
【答案】232.(2102高考北京文14)已知,,若)3)(2()(++-=m x m x m x f 22)(-=xx g ,或,则m 的取值范围是_________。
R x ∈∀0)(<x f 0)(<x g 【答案】)0,4(-33.(2012高考天津文科14)已知函数的图像与函数的图像恰有两个交211x y x -=-y kx =点,则实数的取值范围是 .k 【答案】或。
10<<k 21<<k 34.(2012高考江苏5)函数的定义域为 .x x f 6log 21)(-=【答案】。
(0 6⎤⎦(【考点】函数的定义域,二次根式和对数函数有意义的条件,解对数不等式。
35.(2012高考江苏10)设是定义在上且周期为2的函数,在区间上,()f x R [11]-,其中.若,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,a b ∈R ,1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭则的值为 .3a b +【答案】。
10-【答案】C【解析】因为,所以令,得,此时原函数是增函'12cos 2y x =-'12cos 02y x =->1cos 4x <数;令,得,此时原函数是减函数,结合余弦函数图象,可得选C'12cos 0y x =-<1cos x >8.(2011年高考浙江卷理科1)设函数,则实数=2,0,()()4,0.x x f x f x x α-≤⎧==⎨>⎩若α(A )-4或-2 (B )-4或2 (C )-2或4 (D )-2或2【答案】 B【解析】:当,故选B2042,a a a >=⇒=时,044a a a ≤=⇒=-当时,-9. (2011年高考全国新课标卷理科2)下列函数中,既是偶函数又是区间上的增函数),0(+∞的是( )A B C D 3x y =1+=x y 12+-=x y xy -=2【答案】B解析:由偶函数可排除A ,再由增函数排除C,D,故选B ;点评:此题考查复合函数的奇偶性和单调性,因为函数都是偶函数,所以,x y x y -==和内层有它们的就是偶函数,但是,它们在的单调性相反,再加上外层函数的单调性),0(+∞就可以确定。
高考数学复习----《函数的奇偶性的综合应用》典型例题讲解
高考数学复习----《函数的奇偶性的综合应用》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知定义在R 上的函数()f x 在(],3−∞上单调递增,且()3f x +为偶函数,则不等式()()12f x f x +>的解集为( )A .51,3⎛⎫ ⎪⎝⎭B .()5,1,3⎛⎫−∞⋃+∞ ⎪⎝⎭C .(),1−∞D .()1,+∞【答案】B【解析】∵()3f x +为偶函数, ∴()()33f x f x −+=+,即函数()f x 关于3x =对称,又函数()f x 在(],3−∞上单调递增,∴函数()f x 在[)3,+∞上单调递减,由()()12f x f x +>,可得1323x x +−<−,整理得,23850x x −+>,解得1x <或53x >. 故选:B .例2、(2023·全国·高三专题练习)设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,不等式()()24f x f x ≥的解集为( )A .(][),04,−∞+∞UB .[]0,4C .(][),02,−∞⋃+∞D .[]0,2【答案】C 【解析】根据题意,当0x ≥时,()2f x x =,所以()f x 在[0,)+∞上为增函数,因为()f x 是定义在R 上的奇函数,所以()f x 在R 上为增函数,因为20x ≥,所以24()f x x =,24124x f x ⎛⎫= ⎪⎝⎭, 所以221()42x f x f ⎛⎫= ⎪⎝⎭, 所以不等式()()24f x f x ≥可化为2()2x f f x ⎛⎫≥ ⎪⎝⎭, 所以22x x ≥,解得0x ≤或2x ≥, 所以不等式()()24f x f x ≥的解集为(][),02,−∞⋃+∞,故选:C例3、(2023·全国·高三专题练习)已知偶函数()f x 的定义域为R ,且当0x ≥时,()11x f x x −=+,则使不等式()2122f a a −<成立的实数a 的取值范围是( ) A .()1,3−B .()3,3−C .()1,1−D .(),3−∞【答案】A 【解析】当0x ≥时,()()12121111x x f x x x x +−−===−+++,所以()f x 在[)0,∞+上单调递增, 且()132f =,不等式()2122f a a −<即为()()223f a a f −<. 又因为()f x 是偶函数,所以不等式()()223f a a f −<等价于()()223f a a f −<, 则223a a −<,所以,222323a a a a ⎧−<⎨−>−⎩,解得13a −<<. 综上可知,实数a 的取值范围为()1,3−,故选:A .例4、(2023·全国·高三专题练习)定义在R 上的奇函数()f x 在(,0]−∞上单调递增,且(2)2f −=−,则不等式1(lg )lg 4f x f x ⎛⎫−> ⎪⎝⎭的解集为( ) A .10,100⎛⎫ ⎪⎝⎭B .1,100⎛⎫+∞ ⎪⎝⎭C .(0,100)D .(100,)+∞【答案】D【解析】因为函数()f x 为奇函数,所以()()f x f x −=−,又(2)2f −=−,(2)2f =, 所以不等式1(lg )lg 4f x f x ⎛⎫−> ⎪⎝⎭,可化为()2(lg )422f x f >=, 即()(lg )2f x f >,又因为()f x 在(,0]−∞上单调递增,所以()f x 在R 上单调递增,所以lg 2x >,解得100x >.故选:D .例5、(2023春·广西·高三期末)()f x 是定义在R 上的函数,1122f x ⎛⎫++ ⎪⎝⎭为奇函数,则()()20232022f f +−=( )A .-1B .12−C .12D .1【答案】A 【解析】()f x 是定义在R 上的函数,1122f x ⎛⎫++ ⎪⎝⎭为奇函数,则 1111111222222f x f x f x f x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫−++=−++⇒−+++=− ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. ∴()()40451404512023202212222f f f f ⎛⎫⎛⎫+−=++−+=− ⎪ ⎪⎝⎭⎝⎭. 故选:A 例6、(2023春·甘肃兰州·高三兰化一中校考阶段练习)若函数f (x )=e e sin x x x x −−+−,则满足()()22ln 102x f a x f ⎛⎫−++≥ ⎪⎝⎭恒成立的实数a 的取值范围为( )A .12ln 2,2⎡⎫−+∞⎪⎢⎣⎭B .1(ln 2,)4−+∞C .[7,)4+∞D .[3,)2+∞ 【答案】A 【解析】因为()e e sin ()x x f x x x f x −−−=−+=−,所以()f x 是R 上的奇函数,由()e +e cos 1x x f x x −'=+−cos 11cos 0x x ≥−=+≥ ,所以()f x 是R 上的增函数, 所以2(2ln(1))02x f a x f ⎛⎫−++≥ ⎪⎝⎭等价于: 22(2ln(1))22x x f a x f f ⎛⎫⎛⎫−+≥−=− ⎪ ⎪⎝⎭⎝⎭即22ln(1)2x a x −+≥−, 所以22ln(1)2x a x ≥−++, 令2()2ln(1)2x g x x =−++, 则问题转化为:max ()a g x ≥,因为()()g x g x −=且定义域为R ,所以()g x =22ln(1)2x x −++是R 上的偶函数, 所以只需求()g x 在()0,∞+上的最大值即可.当[)0,x ∈+∞时,2()2ln(1)2x g x x =−++, ()()22122()111x x x x g x x x x x +−−−+'=−+==−+++, 则当()0,1x ∈时,()0g x '>;当()1,x ∈+∞时,()0g x '<; 所以()g x 在()0,1上单调递增,在()1,+∞上单调递减,可得:max 1()(1)2ln 22g x g ==−, 即12ln 22a ≥−, 故选:A . 本课结束。
高考数学函数专项训练
高考数学函数专项训练1. 已知函数f(x) = x^2 - 2x + 1,求f(x)的定义域。
答案:全体实数2. 函数f(x) = x^3 - 3x^2 + 3x - 1的图像是怎样的?答案:开口向上的抛物线3. 求函数f(x) = x^2 - 4x + 3的顶点坐标。
答案:顶点坐标为(2, -1)4. 已知函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a≠0,若f(x)的图像是开口向上的抛物线,求b的取值范围。
答案:b<05. 已知函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a≠0,若f(x)的图像是开口向下的抛物线,求a的取值范围。
答案:a<06. 求函数f(x) = x^2 - 2x + 1的导数。
答案:f'(x) = 2x - 27. 求函数f(x) = x^3 - 3x^2 + 3x - 1的导数。
答案:f'(x) = 3x^2 - 6x + 38. 已知函数f(x) = x^2 - 4x + 3,求f(x)的导数,并判断其单调性。
答案:f'(x) = 2x - 4,单调递增区间为(2, +∞)9. 已知函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a≠0,求f(x)的导数,并判断其单调性。
答案:f'(x) = 2ax + b,单调递增区间为a>0时,x>-b/2a;单调递减区间为a<0时,x>-b/2a10. 求函数f(x) = x^2 - 2x + 1的反函数。
答案:f^(-1)(x) = x + 2 或 x = 2 - x11. 求函数f(x) = x^3 - 3x^2 + 3x - 1的反函数。
答案:f^(-1)(x) = (x - 1)/3 或 x = 3(x - 1) + 112. 已知函数f(x) = x^2 - 4x + 3,求f(x)的反函数。
函数-高考数学常见题型大全
函数常见题型总结一.函数的概念及表达式题型一:函数的概念函数是一种特殊的映射,必须是数集和数集之间的对应。
例1:下列各组函数中,函数)(x f 与)(x g 表示同一函数的是(1))(x f =x ,)(x g =xx 2;(2))(x f =3x -1,)(t g =3t -1;(3))(x f =0x ,)(x g =1;(4))(x f =2x ,)(x g =2(x ;题型二:函数的表达式1.解析式法例2:已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩,且()3f a =-,则(6)f a -=()(A )74-(B )54-(C )34-(D )14-2.图象法例3:如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则的图像大致为()A .B .C .D .题型三:求函数的解析式.1.换元法例4:已知1)1(+=+x x f ,则函数)(x f =例5:已知f(x 6)=log 2x,那么f(8)等于2.待定系数法例6:已知二次函数f (x)满足条件f (0)=1及f (x+1)-f (x)=2x。
则f (x)的解析式____________3.构造方程法例7:已知f(x)是奇函数,g(x)是偶函数,且f(x)+g(x)=11-x ,则f(x)=例8:若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()xf xg x e -=,则有()A .(2)(3)(0)f f g <<B .(0)(3)(2)g f f <<C .(2)(0)(3)f g f <<D .(0)(2)(3)g f f <<二.函数的定义域题型一:求函数定义域问题1.求有函数解析式的定义域问题例9:函数y =的定义域是()A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]32.求抽象函数的定义域问题例10:已知函数()f x 的定义域为(1,1)-,函数()(21)g x f x =-,则函数()g x 的定义域为()A .(1,1)-B .(0,1)C .(3,1)-D .((3)f -,f (1))例11:若函数y =)13(-x f 的定义域是[1,2],则y =)12(-x f 的定义域是.题型二:已知函数定义域的求解问题例12:如果函数34)(2++=kx kx x f 的定义域为R,则实数k 的取值范围是.例13:已知函数()f x =的值域是[0,)+∞,则实数m 的取值范围是_____________例14:已知函数()2()lg 2f x x x a =++,(1)若它的定义域为R ,求实数a 的取值范围;(2)若它的值域为R ,求实数a 的取值范围.三.函数的值域1.二次函数类型(图象法):例19:函数()2f x x =-的最小值为.2.单调性法例20:求函数51)(--=x x x f []4,1∈x 的最大值和最小值。
高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解
高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解【典型例题】例1、(2023·广东·高三统考学业考试)已知函数()f x 对任意,R x y ∈,都有()()()f x y f x f y +=+成立.有以下结论:①()00f =;②()f x 是R 上的偶函数;③若()22f =,则()11f =;④当0x >时,恒有()0f x <,则函数()f x 在R 上单调递增.则上述所有正确结论的编号是________【答案】①③【解析】对于①令0x y ==,则()()()0000f f f +=+,解得()00f =,①正确;对于②令y x =−,则()()()00f f x f x =+−=,∴()()f x f x −=−,∴()f x 是R 上的奇函数,②错误;对于③令1x y ==,则()()()()211212f f f f =+==,∴()11f =,③正确;对于④设12x x >,则120x x −>,∴()()()12120f x x f x f x −=+−<,则()()()122f x f x f x <−−=,∴()f x 在R 上单调递减,④错误.故答案为:①③.例2、(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤−−<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为( ) A .()3,1−B .()()3,11,1−−−C .()(),11,1−∞−− D .()(),31,−∞−⋃+∞ 【答案】B【解析】由()()121221()[]0f x f x x x x x −−<,得()()11221212()[]0x f x x f x x x x x −−<, 因为121200x x x x −>>,,所以()()11220x f x x f x −<,即()()1122x f x x f x <,设()()g x xf x =,则()g x 在()0,∞+上单调递减,而()()()()()1114222g x x f x f g +=++>==,则012x <+<,解得:11x −<<;因为()f x 为R 上的奇函数,所以()()()()g x xf x xf x g x −=−−==,则()g x 为R 上的偶函数,故()g x 在(,0)−∞上单调递增,()()()()11142g x x f x g +=++>=−,则210x −<+<,解得:31x −<<−;综上,原不等式的解集为(),111)3(,−−−.故选:B .例4、(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图像关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =−,12b f ⎛⎫=− ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .c a b <<【答案】C【解析】 由函数()f x 的图像关于直线1x =对称可得()()31f f =−,结合奇函数的性质可知 ()3a f =−()()()311f f f =−=−−=,()()200c f f ===.由奇函数的性质结合()y f x =在[]0,1上单调递增可得()y f x =在[]1,1−上单调递增, 所以()()1012f f f ⎛⎫−<< ⎪⎝⎭, 所以b c a <<.故选:C例5、(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x −=,当01x ≤≤时,()1e 1x f x −=−,则方程()11f x x =−在区间[]3,5−上所有解的和为( ) A .8B .7C .6D .5【答案】A【解析】 解:因为函数()f x 满足()()2f x f x −=,所以函数()f x 的图像关于直线1x =对称, 又函数()f x 为偶函数,所以()()()2−==−f x f x f x ,所以函数()f x 是周期为2的函数, 又1()1g x x =−的图像也关于直线1x =对称, 作出函数()f x 与()g x 在区间[]3,5−上的图像,如图所示:由图可知,函数()f x 与()g x 的图像在区间[]3,5−上有8个交点,且关于直线1x =对称, 所以方程。
(完整版)高考数学历年函数试题及答案
设(x )是定义在R 上的偶函数, 其图象关于直线x=1对称, 对任意x1,x2∈[0, ]都有 (Ⅰ)设);41(),21(,2)1(f f f 求 (Ⅱ)证明)(x f 是周期函数。
2.设函数(Ⅰ)判断函数)(x f 的奇偶性; (Ⅱ)求函数)(x f 的最小值.3. 已知函数(Ⅰ)求函数()f x 的最小正周期和最大值;(Ⅱ)在给出的直角坐标系中, 画出函数 在区间 上的图象4. (本小题满分12分)求函数 的最小正周期、最大值和最小值.5. (本小题满分12分)已知在R上是减函数, 求的取值范围.6.△ABC的三个内角为A.B.C, 求当A为何值时, 取得最大值, 并求出这个最大值7.设a为实数, 函数在和都是增函数, 求a的取值范围.8.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对于任意的x 都有f(x)<c2成立, 求c的取值范围.9.已知函数 , .(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数 在区间 内是减函数, 求 的取值范围.10.在 中, 内角A.b 、c 的对边长分别为a 、b 、c.已知 , 且 , 求b.11. 已知函数42()36f x x x =-+. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设点P 在曲线 上, 若该曲线在点P 处的切线 通过坐标原点, 求 的方程12.设函数 图像的一条对称轴是直线 (Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像13.已知二次函数 的二次项系数为 , 且不等式 的解集为 (Ⅰ)若方程 有两个相等的根, 求 的解析式; (Ⅱ)若 的最大值为正数, 求 的取值范围解答: 2.解: (Ⅰ) 由于),2()2(),2()2(f f f f -≠-≠- 故 既不是奇函数, 也不是偶函数.(Ⅱ)⎪⎩⎪⎨⎧<+-≥-+=.2,1,2,3)(22x x x x x x x f由于),2[)(+∞在x f 上的最小值为)2,(,3)2(-∞=在f 内的最小值为.43)21(=f故函数),()(+∞-∞在x f 内的最小值为.433.解)42sin(21)4sin 2cos 4cos 2(sin 21πππ-+=-⋅+=x x x所以函数 的最小正周期为π, 最大值为 .(Ⅱ)由(Ⅰ)知x83π-8π-8π 83π 85π y121-121+1故函数)(x f y =在区 间]2,2[ππ-上的图象是4.解:.212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数 的最小正周期是 , 最大值是 最小值是 5.解: 函数f(x)的导数: .(Ⅰ)当 ( )时, 是减函数.)(01632R x x ax ∈<-+ .3012360-<⇔<+=∆<⇔a a a 且所以, 当 是减函数;(II )当 时, =由函数 在R 上的单调性, 可知当 时, )是减函数;(Ⅲ)当 时, 在R 上存在一个区间, 其上有 所以, 当 时, 函数 不是减函数. 综上, 所求 的取值范围是 6.解: 由,222,A C B C B A -=+=++ππ得所以有 .2sin 2cosAC B =+ 2sin 2cos 2cos 2cos AA CB A +=++2sin 22sin 212A A +-=.23)212(sin 22+--=A 当.232cos 2cos ,3,212sin取得最大值时即C B A A A ++==π 7.解:),1(23)('22-+-=a ax x x f其判别试.81212124222a a a -=+-=∆ (ⅰ)若,26,08122±==-=∆a a 即 当.),()(,0)(',),3()32,(为增函数在时或+∞-∞>+∞∈-∞∈x f x f a x x所以.26±=a (ⅱ) 若,08122<-=∆a .),()(,0)('为增函数在恒有+∞-∞>x f x f 所以 ,232>a即 ).,26()26,(+∞--∞∈ a (ⅲ)若,08122>-=∆a 即,0)(',2626=<<-x f a 令 解得 .323,3232221a a x a a x -+=--=当;)(,0)(',)(),(21为增函数时或x f x f x x x x >∞+∈-∞∈ 当.)(,0)(',),(21为减函数时x f x f x x x <∈ 依题意1x ≥0得2x ≤1. 由1x ≥0得a ≥,232a - 解得 1≤.26<a 由2x ≤1得,232a -≤3,a - 解得 .2626<<-a 从而 .)26,1[∈a 综上, a 的取值范围为 即 ∈a ).,1[]26,(+∞--∞ 9.解: (1) 求导: 当 时, , , 在 上递增; 当 , 由 求得两根为 即 在 递增, 递减,⎫+∞⎪⎪⎝⎭递增; (2)(法一)∵函数 在区间 内是减函数, 递减, ∴ , 且 , 解得: 。
高考数学试卷必考例题
1. 已知函数$f(x)=x^3-3x+1$,则$f(x)$的对称中心为()A. $(0,1)$B. $(0,-1)$C. $(1,0)$D. $(1,1)$2. 已知等差数列$\{a_n\}$的公差为$d$,若$a_1=2$,$a_5=12$,则$a_{10}$的值为()A. 28B. 30C. 32D. 343. 若复数$z$满足$|z+1|=|z-1|$,则复数$z$在复平面上的轨迹为()A. $x=0$B. $y=0$C. $x^2+y^2=1$D. $x^2+y^2=4$4. 已知函数$f(x)=\ln x$在区间$(0,+\infty)$上的导函数为$f'(x)=\frac{1}{x}$,则$f(x)$的单调递增区间为()A. $(0,+\infty)$B. $(0,1)$C. $(1,+\infty)$D. $(1,+\infty)$5. 已知三角形的三边长分别为$a$、$b$、$c$,若$2a^2+3b^2=5c^2$,则该三角形为()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形二、填空题6. 若等比数列$\{a_n\}$的公比为$q$,且$a_1=2$,$a_3=8$,则$q=$______。
7. 若函数$f(x)=x^3-3x+2$在$x=1$处的切线斜率为$-2$,则$f'(1)=$______。
8. 已知复数$z=1+i$,则$|z|$的值为______。
9. 已知函数$f(x)=\sqrt{x^2+1}$,则$f(-1)=______$。
10. 若等差数列$\{a_n\}$的前$n$项和为$S_n$,若$a_1=1$,$S_5=15$,则$S_9=$______。
三、解答题11. (本小题满分12分)已知函数$f(x)=\frac{1}{x^2+1}$。
(1)求$f(x)$的导数$f'(x)$;(2)求$f(x)$的单调递增区间;(3)求$f(x)$的极值。
高考数学 典型例题16 三角函数式的化简与求值 试题
卜人入州八九几市潮王学校高考数学典型例题详解三角函数化简与求值三角函数式的化简和求值是高考考察的重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍. ●难点磁场(★★★★★)2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________. ●案例探究 [例1]不查表求sin 220°+cos 280°+3cos20°cos80°的值.★★★★级题目. 知识依托:熟知三角公式并能灵敏应用.错解分析:公式不熟,计算易出错.技巧与方法:解法一利用三角公式进展等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会.解法一:sin 220°+cos 280°+3sin 220°cos80° =21(1-cos40°)+21(1+cos160°)+3sin20°cos80° =1-21cos40°+21cos160°+3sin20°cos(60°+20°) =1-21cos40°+21(cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20°-sin60°sin20°)=1-21cos40°-41cos40°-43sin40°+43sin40°-23sin 220° =1-43cos40°-43(1-cos40°)=41 解法二:设x =sin 220°+cos 280°+3sin20°cos80°y =cos 220°+sin 280°-3cos20°sin80°,那么x +y =1+1-3sin60°=21,x -y =-cos40°+cos160°+3sin100° =-2sin100°sin60°+3sin100°=0 ∴x =y =41,即x =sin 220°+cos 280°+3sin20°cos80°=41. [例2]设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值.★★★★★级题目知识依托:二次函数在给定区间上的最值问题.错解分析:考生不易考察三角函数的有界性,对区间的分类易出错. 技巧与方法:利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座等.解:由y =2(cos x -2a )2-2242+-a a 及cos x ∈[-1,1]得: f (a )⎪⎪⎩⎪⎪⎨⎧≥-<<-----≤)2( 41)22( 122)2( 12a a a a a a ∵f (a )=21,∴1-4a =21⇒a =81∉[2,+∞) 故-22a -2a -1=21,解得:a =-1,此时, y =2(cos x +21)2+21,当cos x =1时,即x =2k π,k ∈Z ,y max =5. [例3]函数f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x(1)求函数f (x )的最小正周期;(2)求f (x )的最小值及获得最小值时相应的x 的值;(3)假设当x ∈[12π,127π]时,f (x )的反函数为f -1(x ),求f --1(1)的值.★★★★★级题目.知识依托:熟知三角函数公式以及三角函数的性质、反函数等知识.错解分析:在求f --1(1)的值时易走弯路.技巧与方法:等价转化,逆向思维.解:(1)f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x =2cos x (sin x cos3π+cos x sin 3π)-3sin 2x +sin x cos x =2sin x cos x +3cos2x =2sin(2x +3π) ∴f (x )的最小正周期T =π(2)当2x +3π=2k π-2π,即x =k π-125π(k ∈Z )时,f (x )获得最小值-2. (3)令2sin(2x +3π)=1,又x ∈[27,2ππ], ∴2x +3π∈[3π,23π],∴2x +3π=65π,那么 x =4π,故f --1(1)=4π. ●锦囊妙计本难点所涉及的问题以及解决的方法主要有:1.求值问题的根本类型:1°给角求值,2°给值求值,3°给式求值,4°求函数式的最值或者值域,5°化简求值.2.技巧与方法:1°要寻求角与角关系的特殊性,化非特角为特殊角,纯熟准确地应用公式.2°注意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用.3°对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的打破口,很难入手的问题,可利用分析法.4°求最值问题,常用配方法、换元法来解决.●歼灭难点训练一、选择题1.(★★★★★)方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈ (-2,2ππ),那么tan 2βα+的值是() A.21 B.-2 C.34 D.21或者-2 二、填空题2.(★★★★)sin α=53,α∈(2π,π),tan(π-β)=21,那么tan(α-2β)=_________. 3.(★★★★★)设α∈(43,4ππ),β∈(0,4π),cos(α-4π)=53,sin(43π+β)=135,那么sin(α+β)=_________.三、解答题4.不查表求值:.10cos 1)370tan 31(100sin 130sin 2︒+︒+︒+︒5.cos(4π+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值. 6.(★★★★★)α-β=38π,且α≠k π(k ∈Z ).求)44(sin 42sin 2csc )cos(12βπαααπ-----的最大值及最大值时的条件.7.(★★★★★)如右图,扇形OAB 的半径为1,中心角60°,四边形PQRS是扇形的内接矩形,当其面积最大时,求点P 的位置,并求此最大面积.8.(★★★★★)cos α+sin β=3,sin α+cos β的取值范围是D ,x ∈D ,求函数y =10432log 21++x x 的最小值,并求获得最小值时x 的值.参考答案难点磁场解法一:∵2π<β<α<43π,∴0<α-β<4π.π<α+β<43π,∴sin(α-β)=.54)(sin 1)cos(,135)(cos 122-=+--=+=--βαβαβα ∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β)解法二:∵sin(α-β)=135,cos(α+β)=-54, ∴sin2α+sin2β=2sin(α+β)cos(α-β)=-6572 sin2α-sin2β=2cos(α+β)sin(α-β)=-6540 ∴sin2α=6556)65406572(21-=-- 歼灭难点训练一、1.解析:∵a >1,tan α+tan β=-4a <0.tan α+tan β=3a +1>0,又α、β∈(-2π,2π)∴α、β∈(-2π,θ),那么2βα+∈(-2π,0),又tan(α+β)=342tan 12tan 2)tan(,34)13(14tan tan 1tan tan 2=β+α-β+α=β+α=+--=βα-β+α又a a , 整理得2tan 222tan 32-β+α+β+α=0.解得tan 2β+α=-2. 答案:B2.解析:∵sin α=53,α∈(2π,π),∴cos α=-54 那么tan α=-43,又tan(π-β)=21可得tan β=-21, 答案:247 3.解析:α∈(43,4ππ),α-4π∈(0,2π),又cos(α-4π)=53. 答案:6556 三、4.答案:2π≠αk 〔k ∈Z 〕,322322π-π≠π-α∴k 〔k ∈Z 〕 ∴当,22322π-π=π-αk 即34π+π=αk 〔k ∈Z 〕时,)322sin(π-α的最小值为-1.7.解:以OA 为x 轴.O 为原点,建立平面直角坐标系,并设P 的坐标为(cos θ,sin θ),那么 |PS |=sin θ.直线OB 的方程为y =3x ,直线PQ 的方程为y =sin θ.联立解之得Q (33sin θ;sin θ),所以|PQ |=cos θ-33sin θ. 于是S PQRS =sin θ(cos θ-33sin θ)=33(3sin θcos θ-sin 2θ)=33(23sin2θ-22cos 1θ-)=33(23sin2θ+21cos2θ-21)=33sin(2θ+6π)-63. ∵0<θ<3π,∴6π<2θ+6π<65π.∴21<sin(2θ+6π)≤1. ∴sin(2θ+6π)=1时,PQRS 面积最大,且最大面积是63,此时,θ=6π,点P 为的中点,P (21,23). 8.解:设u =sin α+cos β.那么u 2+(3)2=(sin α+cos β)2+(cos α+sin β)2=2+2sin(α+β)≤4.∴u 2≤1,-1≤u ≤D =[-1,1],设t =32+x ,∵-1≤x ≤1,∴1≤t ≤5.x =232-t .。
高考数学历年(2018-2022)真题按知识点分类(函数及其性质)练习(附答案)
高考数学历年(2018-2022)真题按知识点分类(函数及其性质)练习一、单选题1.(2022ꞏ天津ꞏ统考高考真题)函数()21x f x x-=的图像为( )A .B .C .D .2.(2022ꞏ全国ꞏ统考高考真题)函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A .B .C .D .3.(2022ꞏ全国ꞏ统考高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .14.(2022ꞏ全国ꞏ统考高考真题)如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A .3231x xy x -+=+ B .321x xy x -=+C .22cos 1x xy x =+ D .22sin 1xy x =+ 5.(2022ꞏ全国ꞏ统考高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-6.(2021ꞏ天津ꞏ统考高考真题)函数2ln ||2x y x =+的图像大致为( ) A . B .C .D .7.(2021ꞏ全国ꞏ统考高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( )A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =8.(2021ꞏ北京ꞏ统考高考真题)已知()f x 是定义在上[0,1]的函数,那么“函数()f x 在[0,1]上单调递增”是“函数()f x 在[0,1]上的最大值为(1)f ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.(2021ꞏ浙江ꞏ统考高考真题)已知函数21(),()sin 4f x x g x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =10.(2021ꞏ全国ꞏ高考真题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()f x =11.(2021ꞏ全国ꞏ高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( ) A .53-B .13-C .13D .5312.(2021ꞏ全国ꞏ统考高考真题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32- C .74 D .52 13.(2021ꞏ全国ꞏ统考高考真题)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x --B .()11f x -+C .()11f x +-D .()11f x ++14.(2020ꞏ山东ꞏ统考高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( )A .奇函数B .偶函数C .增函数D .减函数15.(2020ꞏ山东ꞏ统考高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞16.(2020ꞏ山东ꞏ统考高考真题)已知函数()y f x =是偶函数,当(0,)x ∈+∞时,()01x y a a =<<,则该函数在(,0)-∞上的图像大致是( )A .B .C .D .17.(2020ꞏ天津ꞏ统考高考真题)函数241xy x =+的图象大致为( ) A . B .C .D .18.(2020ꞏ北京ꞏ统考高考真题)已知函数()21x f x x =--,则不等式()0f x >的解集是( ).A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞19.(2020ꞏ海南ꞏ高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃20.(2020ꞏ浙江ꞏ统考高考真题)函数y =x cos x +sin x 在区间[–π,π]的图象大致为( )A .B .C .D .21.(2020ꞏ全国ꞏ统考高考真题)已知函数f (x )=sin x +1sin x,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称22.(2020ꞏ全国ꞏ统考高考真题)设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减23.(2020ꞏ全国ꞏ统考高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减24.(2019ꞏ北京ꞏ高考真题)下列函数中,在区间(0,+∞)上单调递增的是 A .12y x =B .y =2x -C .12log y x =D .1y x=25.(2019ꞏ北京ꞏ高考真题)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件26.(2019ꞏ全国ꞏ统考高考真题)设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭27.(2019ꞏ全国ꞏ统考高考真题)函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .28.(2019ꞏ浙江ꞏ高考真题)在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是A .B .C .D .29.(2019ꞏ全国ꞏ高考真题)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x -- B .e 1x -+ C .e 1x ---D .e 1x --+30.(2019ꞏ全国ꞏ高考真题)设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦31.(2019ꞏ天津ꞏ高考真题)已知函数01,()1,1.x f x x x ⎧⎪=⎨>⎪⎩剟若关于x 的方程1()()4f x x a a R =-+∈恰有两个互异的实数解,则a 的取值范围为A .59,44⎡⎤⎢⎥⎣⎦B .59,44⎛⎤ ⎥⎝⎦C .59,{1}44⎛⎤⎥⎝⎦D .59,{1}44⎡⎤⎢⎥⎣⎦32.(2018ꞏ全国ꞏ高考真题)下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是 A .ln(1)y x =-B .ln(2)y x =-C .ln(1)y x =+D .ln(2)y x =+33.(2018ꞏ全国ꞏ高考真题)函数422y x x =-++的图像大致为A .B .C .D .34.(2018ꞏ浙江ꞏ高考真题)函数y =||2x sin2x 的图象可能是A .B .C .D .35.(2018ꞏ全国ꞏ高考真题)设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,36.(2018ꞏ全国ꞏ高考真题)已知()f x 是定义域为(,)∞∞-+的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=A .50-B .0C .2D .50二、多选题37.(2022ꞏ全国ꞏ统考高考真题)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=三、填空题38.(2022ꞏ北京ꞏ统考高考真题)函数1()f x x=+的定义域是_________. 39.(2021ꞏ全国ꞏ统考高考真题)写出一个同时具有下列性质①②③的函数():f x _______.①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.40.(2021ꞏ浙江ꞏ统考高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a ___________.41.(2021ꞏ全国ꞏ统考高考真题)已知函数()()322x xx a f x -=⋅-是偶函数,则=a ______.42.(2020ꞏ北京ꞏ统考高考真题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强; ②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强.其中所有正确结论的序号是____________________.43.(2020ꞏ全国ꞏ统考高考真题)关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.44.(2019ꞏ江苏ꞏ高考真题)函数y =_____.45.(2019ꞏ江苏ꞏ高考真题)设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中0k >.若在区间(0]9,上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是_____.46.(2019ꞏ浙江ꞏ高考真题)已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 47.(2019ꞏ全国ꞏ高考真题)已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则=a __________.48.(2018ꞏ全国ꞏ高考真题)已知函数()()22log f x x a =+,若()31f =,则=a ________.49.(2018ꞏ江苏ꞏ高考真题)函数()f x 满足(4)()()f x f x x R +=∈,且在区间(2,2]-上,cos ,02,2()1,20,2xx f x x x π⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则((15))f f 的值为____.50.(2018ꞏ江苏ꞏ高考真题)函数()f x =________. 51.(2018ꞏ全国ꞏ高考真题)已知函数())ln 1f x x =-+,()4f a =,则()f a -=________.52.(2018ꞏ天津ꞏ高考真题)已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.四、解答题53.(2021ꞏ全国ꞏ高考真题)已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像; (2)若()()f x a g x +≥,求a 的取值范围.54.(2020ꞏ山东ꞏ统考高考真题)已知函数()225,02,0x x f x x x x -≥⎧=⎨+<⎩. (1)求()1f f ⎡⎤⎣⎦的值;(2)求()13f a -<,求实数a 的取值范围.55.(2018ꞏ全国ꞏ高考真题) 设函数()211f x x x =++-. (1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b ≤+,求a b +的最小值.五、双空题56.(2022ꞏ浙江ꞏ统考高考真题)已知函数()22,1,11,1,x x f x x x x ⎧-+≤⎪=⎨+->⎪⎩则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭________;若当[,]x a b ∈时,1()3f x ≤≤,则b a -的最大值是_________. 57.(2022ꞏ全国ꞏ统考高考真题)若()1ln 1f x a b x++-=是奇函数,则=a _____,b =______.58.(2022ꞏ北京ꞏ统考高考真题)设函数()()21,,2,.ax x a f x x x a -+<⎧⎪=⎨-≥⎪⎩若()f x 存在最小值,则a 的一个取值为________;a 的最大值为___________.59.(2019ꞏ北京ꞏ高考真题)设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.参考答案1.D【要点分析】要点分析函数()f x 的定义域、奇偶性、单调性及其在(),0∞-上的函数值符号,结合排除法可得出合适的选项. 【答案详解】函数()21x f x x-=的定义域为{}0x x ≠,且()()()2211x x f x f x xx----==-=--,函数()f x 为奇函数,A 选项错误;又当0x <时,()210x f x x-=≤,C 选项错误;当1x >时,()22111x x f x x xx x--===-函数单调递增,故B 选项错误;故选:D. 2.A【要点分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【答案详解】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A. 3.A【要点分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出. 【答案详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++= .由于22除以6余4, 所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++-=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++-=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知2,cos 1a a ω==,解得1cos 2ω=,取3πω=, 所以()2cos3f x x π=,则()()()()2cos 2cos 4cos cos 333333f x y f x y x y x y x y f x f y ππππππ⎛⎫⎛⎫++-=++-== ⎪ ⎪⎝⎭⎝⎭,所以()2cos3f x x π=符合条件,因此()f x 的周期263T ππ==,()()02,11f f ==,且()()()()()21,32,41,51,62f f f f f =-=-=-==,所以(1)(2)(3)(4)(5)(6)0f f f f f f +++++=,由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法; 法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.4.A【要点分析】由函数图像的特征结合函数的性质逐项排除即可得解.【答案详解】设()321x x f xx -=+,则()10f =,故排除B;设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,所以()222cos 2111x x xh x x x =<≤++,故排除C; 设()22sin 1xg x x =+,则()2sin 33010g =>,故排除D. 故选:A.5.D【要点分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解. 【答案详解】因为()y g x =的图像关于直线2x =对称, 所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-, 因为()(2)5f x g x +-=,所以()(2)5f x g x ++=, 代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-, 所以()()()()35212510f f f +++=-⨯=- , ()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-. 因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=, 联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R , 所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-. 所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ . 故选:D【名师点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.6.B【要点分析】由函数为偶函数可排除AC ,再由当()0,1∈x 时,()0f x <,排除D ,即可得解.【答案详解】设()2ln ||2x y f x x ==+,则函数()f x 的定义域为{}0x x ≠,关于原点对称, 又()()()2ln ||2x f x f x x --==-+,所以函数()f x 为偶函数,排除AC ;当()0,1∈x 时,2ln 0,20x x + ,所以()0f x <,排除D.故选:B.7.B【要点分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【答案详解】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B.8.A【要点分析】利用两者之间的推出关系可判断两者之间的条件关系.【答案详解】若函数()f x 在[]0,1上单调递增,则()f x 在[]0,1上的最大值为()1f , 若()f x 在[]0,1上的最大值为()1f ,比如()213f x x ⎛⎫=- ⎪⎝⎭,但()213f x x ⎛⎫=- ⎪⎝⎭在10,3⎡⎤⎢⎥⎣⎦为减函数,在1,13⎡⎤⎢⎥⎣⎦为增函数,故()f x 在[]0,1上的最大值为()1f 推不出()f x 在[]0,1上单调递增,故“函数()f x 在[]0,1上单调递增”是“()f x 在[]0,1上的最大值为()1f ”的充分不必要条件, 故选:A.9.D【要点分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解.【答案详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ;对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,210221642y ππ⎛⎫'=⨯++⨯> ⎪⎝⎭,与图象不符,排除C. 故选:D.10.D【要点分析】根据基本初等函数的性质逐项判断后可得正确的选项. 【答案详解】对于A ,()f x x =-为R 上的减函数,不合题意,舍. 对于B ,()23xf x ⎛⎫= ⎪⎝⎭为R 上的减函数,不合题意,舍.对于C ,()2f x x =在(),0∞-为减函数,不合题意,舍.对于D ,()f x =R 上的增函数,符合题意,故选:D.11.C【要点分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【答案详解】由题意可得:522213333f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故5133f ⎛⎫= ⎪⎝⎭.故选:C.【名师点睛】关键点名师点睛:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.12.D【要点分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案.【答案详解】[方法一]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 所以935222f f⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. [方法二]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =.所以91352222f f f⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D .【名师点睛】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.13.B【要点分析】分别求出选项的函数解析式,再利用奇函数的定义即可. 【答案详解】由题意可得12()111x f x x x-==-+++, 对于A ,()2112f x x --=-不是奇函数; 对于B ,()211f x x-=+是奇函数;对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数; 对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数. 故选:B【名师点睛】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.14.C【要点分析】利用函数单调性定义即可得到答案. 【答案详解】对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,等价于对于任意两个不相等的实数12x x <,总有()()12f x f x <.所以函数()f x 一定是增函数. 故选:C15.B【要点分析】根据题意得到0lg 0x x >⎧⎨≠⎩,再解不等式组即可.【答案详解】由题知:0lg 0x x >⎧⎨≠⎩,解得0x >且1x ≠.所以函数定义域为()()0,11,+∞ . 故选:B16.B【要点分析】根据偶函数,指数函数的知识确定正确选项.【答案详解】当(0,)x ∈+∞时,()01xy a a =<<,所以()f x 在()0,∞+上递减,()f x 是偶函数,所以()f x 在(),0∞-上递增. 注意到01a =, 所以B 选项符合. 故选:B17.A【要点分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【答案详解】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误; 当1x =时,42011y ==>+,选项B 错误. 故选:A.【名师点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.18.D【要点分析】作出函数2x y =和1y x =+的图象,观察图象可得结果.【答案详解】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2), 不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D.【名师点睛】本题考查了图象法解不等式,属于基础题. 19.D【要点分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果. 【答案详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <, 所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃, 故选:D.【名师点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题. 20.A【要点分析】首先确定函数的奇偶性,然后结合函数在x π=处的函数值排除错误选项即可确定函数的图象.【答案详解】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-, 即题中所给的函数为奇函数,函数图象关于坐标原点对称, 据此可知选项CD 错误;且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误. 故选:A.【名师点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项. 21.D【要点分析】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C,D. 【答案详解】sin x 可以为负,所以A 错; 1sin 0()()sin ()sin x x k k Z f x x f x xπ≠∴≠∈-=--=-∴Q Q ()f x 关于原点对称; 11(2)sin (),()sin (),sin sin f x x f x f x x f x x xππ-=--≠-=+=Q 故B 错; ()f x ∴关于直线2x π=对称,故C 错,D 对故选:D【名师点睛】本题考查函数定义域与最值、奇偶性、对称性,考查基本要点分析判断能力,属中档题. 22.A【要点分析】根据函数的解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数,再根据函数的单调性法则,即可解出.【答案详解】因为函数()331f x x x=-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数. 又因为函数3y x =在()0,+?上单调递增,在(),0-?上单调递增,而331y x x-==在()0,+?上单调递减,在(),0-?上单调递减, 所以函数()331f x x x=-在()0,+?上单调递增,在(),0-?上单调递增.故选:A .【名师点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题. 23.D【要点分析】根据奇偶性的定义可判断出()f x 为奇函数,排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,利用函数单调性的性质可判断出()f x 单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,利用复合函数单调性可判断出()f x 单调递减,从而得到结果.【答案详解】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-, ()f x \为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x \在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.【名师点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据()f x -与()f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.【要点分析】由题意结合函数的解析式考查函数的单调性即可.【答案详解】函数122,log xy y x -==,1y x=在区间(0,)+∞ 上单调递减, 函数12y x = 在区间(0,)+∞上单调递增,故选A .【名师点睛】本题考查简单的指数函数、对数函数、幂函数的单调性,注重对重要知识、基础知识的考查,蕴含数形结合思想,属于容易题. 25.C【要点分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断. 【答案详解】0b = 时,()cos sin cos f x x b x x =+=, ()f x 为偶函数;()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【名师点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查. 26.C【解析】由已知函数为偶函数,把233231log ,2,24f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小.【答案详解】()f x 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422---->==>>∴>> ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【名师点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.【要点分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果.【答案详解】设32()22x x x y f x -==+,则332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B . 【名师点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查. 28.D【解析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查. 【答案详解】当01a <<时,函数x y a =过定点(0,1)且单调递减,则函数1xy a =过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D. 【名师点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性. 29.D【要点分析】先把x <0,转化为-x>0,代入可得()f x -,结合奇偶性可得()f x . 【答案详解】()f x 是奇函数, 0x ≥时,()1x f x e =-.当0x <时,0x ->,()()1x f x f x e -=--=-+,得()e 1x f x -=-+.故选D .【名师点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题. 30.B【要点分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,要点分析出临界点位置,精准运算得到解决.【答案详解】(0,1]x ∈ 时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【名师点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力. 31.D【要点分析】画出()f x 图象及直线14y x a =-+,借助图象要点分析.【答案详解】如图,当直线14y x a =-+位于B 点及其上方且位于A 点及其下方, 或者直线14y x a =-+与曲线1y x =相切在第一象限时符合要求. 即1124a ≤-+≤,即5944a ≤≤,或者2114x -=-,得2x =,12y =,即11224a =-⨯+,得1a =, 所以a 的取值范围是{}59,144⎡⎤⎢⎥⎣⎦.故选D .【名师点睛】根据方程实根个数确定参数范围,常把其转化为曲线交点个数,特别是其中一条为直线时常用此法. 32.B【答案详解】要点分析:确定函数y lnx =过定点(1,0)关于x=1对称点,代入选项验证即可.答案详解:函数y lnx =过定点(1,0),(1,0)关于x=1对称的点还是(1,0),只有()y ln 2x =-过此点. 故选项B 正确名师点睛:本题主要考查函数的对称性和函数的图像,属于中档题. 33.D【答案详解】要点分析:根据函数图象的特殊点,利用函数的导数研究函数的单调性,由排除法可得结果.答案详解:函数过定点()0,2,排除,A B ,求得函数的导数()()32'42221f x x x x x =-+=--,由()'0f x >得()22210x x -<,得2x <-或02x <<,此时函数单调递增,排除C ,故选D. 名师点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.34.D【答案详解】要点分析:先研究函数的奇偶性,再研究函数在π(,π)2上的符号,即可判断选择.答案详解:令||()2sin 2x f x x =,因为,()2sin 2()2sin 2()x x x R f x x x f x -∈-=-=-=-,所以||()2sin 2x f x x =为奇函数,排除选项A,B;因为π(,π)2x ∈时,()0f x <,所以排除选项C ,选D.名师点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 35.D【要点分析】要点分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.答案详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .名师点睛:该题考查的是有关通过函数值的大小来推断自变量的大小关系,从而求得相关的参数的值的问题,在求解的过程中,需要利用函数解析式画出函数图像,从而得到要出现函数值的大小,绝对不是常函数,从而确定出自变量的所处的位置,结合函数值的大小,确定出自变量的大小,从而得到其等价的不等式组,从而求得结果. 【答案详解】 36.C【答案详解】要点分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.答案详解:因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=,因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++ , 因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=,(2)(2)(2)(2)0f f f f =-=-∴= ,从而(1)(2)(3)(50)(1)2f f f f f ++++== ,选C.名师点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解. 37.BC【要点分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【答案详解】[方法一]:对称性和周期性的关系研究对于()f x ,因为322f x ⎛⎫- ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x fx ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭①,所以()()3f x f x -=,所以()f x 关于32x =对称,则(1)(4)f f -=,故C 正确;对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=-,(4)()g x g x -=,所以()g x 关于2x =对称,由①求导,和()()g x f x '=,得333333222222f x f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-=+⇔--=+⇔--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x -+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯-= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误. 故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC.故选:BC. [方法三]:因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-,所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误. 故选:BC.【整体点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.38.()(],00,1-∞⋃【要点分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可;【答案详解】解:因为()1f x x =100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠,故函数的定义域为()(],00,1-∞⋃; 故答案为:()(],00,1-∞⋃39.()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)【要点分析】根据幂函数的性质可得所求的()f x .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数31.(本小题满分14分)已知二次函数()y g x =的导函数的图像与直线2y x =平行,且()y g x =在1x =-处取得极小值1(0)m m -≠.设()()g x f x x=.(1)若曲线()y f x =上的点P 到点(0,2)Q m 的值; (2)()k k R ∈如何取值时,函数()y f x kx =-存在零点,并求出零点.32.(2010年高考福建卷理科10)对于具有相同定义域D 的函数f(x)和g(x),若存在函数h(x)=kx+b(k,b 为常数),对任给的正数m,存在相应的0x D ∈,使得当x D ∈且0x x >时,总有0()()0()()<mf x h x mh x g x <-<⎧⎨<-⎩,则称直线l:y=kx+b 为曲线y=f(x)和y=g(x)的“分渐近线”.给出定义域均为D={}x|x>1的四组函数如下:①2f(x)=x , ; ②-xf(x)=10+2,2x-3g(x)=x;③2x +1f(x)=x ,xlnx+1g(x)=lnx ; ④22x f(x)=x+1,-x g(x)=2x-1-e )(.其中, 曲线y=f(x)和y=g(x)存在“分渐近线”的是( ) A. ①④ B. ②③ C.②④ D.③④33.(2010年高考天津卷理科16)设函数2()1f x x =-,对任意3[,)2x ∈+∞,2()4()(1)4()xf m f x f x f m m-≤-+恒成立,则实数m 的取值范围是 。
34.(2010年高考江苏卷试题11)已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的范围是__▲___。
35.(2010年高考江苏卷试题14)将边长为1m 正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记2(S =梯形的周长)梯形的面积,则S 的最小值是____▲____。
36已知函数()(1)ln 1f x x x x =+-+.(Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥ .37(2010年高考江苏卷试题20)(本小题满分16分)设)(x f 是定义在区间),1(+∞上的函数,其导函数为)('x f 。
如果存在实数a 和函数)(x h ,其中)(x h 对任意的),1(+∞∈x 都有)(x h >0,使得)1)(()('2+-=ax x x h x f ,则称函数)(x f 具有性质)(a P 。
(1)设函数)(x f 2ln (1)1b x x x +=+>+,其中b 为实数。
(i)求证:函数)(x f 具有性质)(b P ; (ii)求函数)(x f 的单调区间。
(2)已知函数)(x g 具有性质)2(P 。
给定1212,(1,),,x x x x ∈+∞<设m 为实数,21)1(x m mx -+=α,21)1(mx x m +-=β,且1,1>>βα,若|)()(βαg g -|<|)()(21x g x g -|,求m 的取值范围。
38. (2010年全国高考宁夏卷21)(本小题满分12分)设函数2()1xf x e x ax =---。
(1) 若0a =,求()f x 的单调区间; (2) 若当0x ≥时()0f x ≥,求a 的取值范围39.(江苏卷20)若()113x pf x -=,()2223x p f x -=,12,,x R p p ∈为常数,且()()()()()()()112212,,f x f x f x f x f x f x f x ≤⎧⎪=⎨>⎪⎩(Ⅰ)求()()1f x f x =对所有实数成立的充要条件(用12,p p 表示); (Ⅱ)设,a b 为两实数,a b <且12,p p (),a b ,若()()f a f b =求证:()f x 在区间[],a b 上的单调增区间的长度和为2b a-(闭区间[],m n 的长度定义为n m -).40.(江西卷22).(本小题满分14分)已知函数()f x =()0x ,∈+∞. ()1.当8a =时,求()f x 的单调区间; ()2.对任意正数a ,证明:()12f x <<.41.(天津)设函数)( sin )(R x x x x f ∈=.(Ⅰ)证明x k x f k x f sin 2)()2(ππ=-+,其中为k 为整数;(Ⅱ)设0x 为)(x f 的一个极值点,证明240201)]([x x x f +=;(Ⅲ)设)(x f 在(0,+∞)内的全部极值点按从小到大的顺序排列 ,,,,21n a a a , 证明),2,1( 21 =<-<+n a a n n ππ。
(1)已知:)0(∞+∈x ,求证xx x x 11ln 11<+<+; (2)已知:2≥∈n N n 且,求证:11211ln 13121-+++<<+++n n n 。
(1)令t x =+11,由x>0,∴t>1,11-=t x原不等式等价于1ln 11-<<-t t t令f(t)=t-1-lnt ,∵tt f 11)(-='当),1(+∞∈t 时,有0)(>'t f ,∴函数f(t)在),1(+∞∈t 递增 ∴f(t)>f(1)即t-1<lnt另令t t t g 11ln )(+-=,则有01)(2>-='t t t g ∴g(t)在),1(+∞上递增,∴g(t)>g(1)=0 ∴tt 11ln -> 综上得xx x x 11ln 11<+<+ (2)由(1)令x=1,2,……(n-1)并相加得112111ln 23ln 12ln 13121-+++<-+++<+++n n n n 即得11211ln 13121-+++<<+++n n利用导数求和42利用导数求和: (1); (2)。
单调区间讨论43设0>a ,求函数),0()(ln()(+∞∈+-=x a x x x f 的单调区间.分析:本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力.44 已知函数2()(2ln ),(0)f x x a x a x=-+->,讨论()f x 的单调性.分离常数45已知函数()ln f x x x =.(Ⅰ)求()f x 的最小值;(Ⅱ)若对所有1x ≥都有()1f x ax ≥-,求实数a 的取值范围.46已知()()2,ln 23+-+==x ax x x g x x x f(Ⅰ)求函数()x f 的单调区间;(Ⅱ)求函数()x f 在[]()02,>+t t t 上的最小值;(Ⅲ)对一切的()+∞∈,0x ,()()22'+≤x g x f 恒成立,求实数a 的取值范围.47已知函数()ln f x x =,()(0)ag x a x=>,设()()()F x f x g x =+.(Ⅰ)求函数()F x 的单调区间;(Ⅱ)若以函数()((0,3])y F x x =∈图像上任意一点00(,)P x y 为切点的切线的斜率12k ≤恒成立,求实数a 的最小值;48设函数)1ln()(2++=x b x x f ,其中0≠b ;(Ⅰ)若12b =-,求)(x f 在[1,3]的最小值;(Ⅱ)如果()f x 在定义域内既有极大值又有极小值,求实数b 的取值范围; (Ⅲ)是否存在最小的正整数N ,使得当N n ≥时,不等式311ln n n n n+->恒成立.49设函数2()()f x x x a =--(x ∈R ),其中a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的极大值和极小值;(Ⅲ)当3a >时,证明存在[]10k ∈-,,使得不等式22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立.50设函数329()62f x x x x a =-+-.(1)对于任意实数x ,()f x m '≥恒成立,求m 的最大值;(2)若方程()0f x =有且仅有一个实根,求a 的取值范围.51已知函数2()1f x x x =+-,,αβ是方程f (x)=0的两个根()αβ>,'()f x 是f (x)的导数;设11a =,1()'()n n n n f a a a f a +=-(n=1,2,……) (1)求,αβ的值;(2)证明:对任意的正整数n ,都有n a >a ; (3)记lnn n n a b a aβ-=-(n=1,2,……),求数列{b n }的前n 项和S n 。
52设二次函数2()f x x ax a =++,方程()0f x x-=的两根1x 和2x 满足1201x x <<<.(I )求实数a 的取值范围; (II )试比较(0)(1)(0)f f f -与116的大小.并说明理由. .53设()f x 的定义域为(0,)+∞,()f x 的导函数为()f x ',且对任意正数x 均有()()f x f x x'>, (Ⅰ) 判断函数()()f x F x x=在(0,)+∞上的单调性; (Ⅱ) 设1x ,2x (0,)∈+∞,比较12()()f x f x +与12()f x x +的大小,并证明你的结论; (Ⅲ)设1x ,2x ,n x (0,)∈+∞,若2n ≥,比较12()()()n f x f x f x +++与12()n f x x x +++的大小,并证明你的结论.54 已知函数f (x ) =21x 2+ ln x . (I )求函数f (x )在[1,e ]上的最大、最小值;(II )求证:在区间[1,+∞)上,函数f (x )的图象在函数g (x ) =32x 3的图象的下方; (III )求证:[f '(x )]n -f '(x n )≥2n -2(n ∈N*).。