【科研】如何确定临床实验设计中的样本量
临床试验样本量的估算精编版
临床试验样本量的估算精编版临床试验样本量的估算是为了确保试验结果具有统计学意义和准确性而进行的,它直接关系到试验结果的可靠性和推广的可行性。
样本量的估算一般包括研究目的、研究设计、效应值、暴露率、有效α and β 水平以及研究变量等因素的考虑。
首先,研究目的是估算样本量的基础。
不同的研究目的需要不同的样本量。
例如,如果研究目的是描述性研究,那么样本量的估算就应该考虑到对总体特征参数的精确度要求,并按照这个要求选择样本量。
而如果研究目的是比较性研究,则需要估算出有效比较的样本量。
其次,研究设计也是影响样本量估算的重要因素。
常见的研究设计包括前瞻性队列研究、回顾性队列研究、前瞻性对照研究、回顾性对照研究等。
不同的研究设计需要不同的样本量估算方法。
一般而言,前瞻性研究需要相对较少的样本量,而回顾性研究需要相对较多的样本量。
此外,效应值也是影响样本量估算的重要因素。
效应值是指待研究变量之间的差异或相关关系的大小。
一般来说,如果关注的效应值较大,需要的样本量较小,反之则需要较大的样本量。
暴露率和有效α and β 水平也是样本量估算的重要考虑因素。
暴露率是指研究中具有待研究变量的人群的占比,它直接关系到样本量的多少。
一般而言,暴露率越高,需要的样本量越少。
有效α and β 水平是指接受两种处理的个体之间差异的显著性水平和检测到这种差异的能力,通常被设置为0.05和0.20,它们也会影响样本量的估算。
最后,研究变量的数量和类型也需要考虑。
当研究的变量较多时,往往需要更大的样本量来保证统计分析的有效性和可靠性。
总结起来,样本量的估算需要考虑研究目的、研究设计、效应值、暴露率、有效α和β水平以及研究变量等因素。
根据这些因素,可以选择合适的样本量估算方法,并计算出适当的样本量,以保证试验结果的准确性和可靠性。
医疗器械临床试验中的样本量如何确定?
医疗器械临床试验中的样本量如何确定?
答:
试验样本量以试验的主要评价指标来确定。
需在临床试验方案中说明确定样本量的相关要素和样本量的具体计算方法。
确定样本量的相关要素包括临床试验的设计类型和比较类型、主要评价指标的类型和定义、主要评价指标有临床实际意义的界值δ(如适用)、主要评价指标的相关参数(如预期有效率、均值、标准差等)、Ⅰ类错误率α和Ⅱ类错误率β以及预期的受试者脱落比例等。
主要评价指标的相关参数依据已公开发表的资料或探索性试验的结果来估算,需要在临床试验方案中明确这些估计值的来源依据。
如主动脉覆膜支架的非劣效试验设计,一般建议α取双侧0.05,β不大于0.20。
具体可参考《医疗器械临床试验设计指导原则》。
对于相关指导原则中对于样本量有明确规定的医疗器械,还需考虑按照指导原则中的相应要求。
审评三部供稿。
临床试验样本量估算
临床试验样本量估算在估算样本量时,有几个关键要素需要考虑:1. 效应大小(Effect Size):效应大小是指在两个比较组之间预期的差异大小。
一般来说,效应大小越大,所需的样本量越小。
2. 置信度(Confidence Level):置信度是指研究者对样本调查结果的信任程度。
常用的置信度为95%或99%。
一般来说,置信度越高,所需的样本量越大。
3. 统计显著性(Statistical Significance):统计显著性是指试验结果的显著性水平。
常用的显著性水平为α=0.05或α=0.01、一般来说,显著性水平越低,所需的样本量越大。
4. 效应方向性(Directionality of Effect):效应方向性是指试验是否需要检测两组间的差异。
若只需检测差异是否存在,则样本量较小;若需检测差异的方向,则样本量较大。
5. 控制变量的数量(Number of Control Variables):增加控制变量的数量会增加结果解释的复杂度,从而需要更大的样本量。
6. 数据的可变性(Variability of Data):数据的可变性与样本量呈反比关系。
如果数据变异性大,所需的样本量就会相对较大。
7. 可行性和资源限制(Feasibility and Resource Constraints):实际操作中,样本量可能受到可行性和资源限制的影响。
研究者需要评估可行性因素,并根据实际情况确定样本量。
基于以上要素,常用的样本量估算方法有以下几种:1.参数估计法:通过统计分析来估计试验样本量。
研究者需要提供试验所需的显著性水平、效应大小以及控制变量的数量等参数。
常用的参数估计方法有t检验、方差分析、卡方检验等。
2. 非参数估计法:当样本不满足正态分布或总体参数未知时,可以采用非参数的方法进行样本量估算。
常用的非参数方法有Wilcoxon秩和检验、Mann-Whitney U检验、logistic回归等。
临床试验中的样本量计算
临床试验中的样本量计算在临床试验的设计中,样本量计算是一个关键的环节,它对试验结果的可靠性和推广性起着至关重要的作用。
本文将介绍一些常用的样本量计算方法和相关的原理,以帮助研究人员正确、准确地进行样本量估计。
一、概述样本量计算是在进行临床试验之前进行的一项基础性工作,它通过科学合理的统计方法来确定所需的参与试验的患者数量。
样本量的大小直接影响到试验结果的可靠性,过小的样本量可能导致结果不具有统计学意义,而过大的样本量则会造成资源的浪费。
二、常用的样本量计算方法1. 总体比例样本量计算总体比例样本量计算常用于有两个互补结果的试验,比如药物治疗与安慰剂治疗的对比试验。
通过确定所需的显著性水平、统计功效和预期的疗效差异,可以利用二项分布来计算样本量。
2. 总体均数样本量计算总体均数样本量计算常用于比较两个治疗组的平均值,比如药物治疗组和对照组的平均生存时间。
在这种情况下,需要确定所需的显著性水平、统计功效、疗效差异和总体的标准差,利用正态分布来计算样本量。
3. 非劣效性与超劣效性试验样本量计算非劣效性与超劣效性试验样本量计算常用于评估新药物或治疗方法的非劣效性或超劣效性。
在这种情况下,需要确定所需的非劣效或超劣效边界、显著性水平和统计功效,利用二项分布或正态分布来计算样本量。
4. 多组样本量计算多组样本量计算常用于比较两个以上治疗组的平均值或比例。
在这种情况下,需要确定所需的显著性水平、统计功效、疗效差异和总体标准差,利用方差分析或多项式分布来计算样本量。
三、样本量计算原理样本量计算的原理基于统计学中的假设检验理论和置信区间理论。
在假设检验中,通过设定显著性水平和统计功效,可以估计出所需的样本量。
而在置信区间中,通过设定置信水平和效应量,可以估计出所需的样本量。
样本量的计算是基于对试验对象总体的假设和对试验结果的预期,并且要求样本具有代表性和随机性。
四、注意事项在进行样本量计算时,需要注意以下几点:1. 合理选择显著性水平和统计功效,一般显著性水平取0.05,统计功效取0.8,但也需根据具体研究的目的和研究领域的惯例进行选择。
如何确定临床试验设计中的样本含量
如何确定临床试验设计中的样本含量在临床试验设计中,样本含量的确定是至关重要的,因为合适的样本大小可以保证试验结果的准确性和可靠性。
样本含量的确定需要考虑多个因素,包括研究目的、研究假设、统计分析方法、效应大小、可接受的错误率及误差范围等。
本文将介绍一些常用的方法和原则来确定临床试验设计中的样本含量。
一、研究目的和研究假设研究目的和研究假设是确定样本含量的基础,因为研究目的和研究假设直接影响到所需的统计推断的置信水平和功效。
1.研究目的:明确研究的目标是什么,是为了比较两种治疗方法的疗效,还是为了评估其中一种新的诊断方法的准确性等。
2.研究假设:明确研究的假设是什么,如双边假设还是单边假设,两组之间是否存在统计显著差异等。
二、效应大小效应大小是指两组之间的实际差异,或者是需要检测到的差异。
效应大小的确定可以基于以往研究的数据、专家意见或者权威指导。
一般来说,效应大小越大,样本大小越小;效应大小越小,样本大小越大。
三、统计分析方法不同的统计分析方法需要不同的样本大小。
常见的统计分析方法包括双样本均值比较、Logistic回归分析、生存分析等。
对于每种统计分析方法,可以通过模拟试验或根据已有的研究数据来确定所需的样本大小。
四、错误率和误差范围错误率和误差范围是样本含量确定中需要考虑的重要因素之一1.类型I错误率(α):类型I错误率是指在原假设为真的情况下,拒绝原假设的概率。
一般来说,类型I错误率的默认值为0.05或0.012.类型II错误率(β)和功效(1-β):类型II错误率是指在备择假设为真的情况下,接受原假设的概率;功效是指在备择假设为真的情况下,拒绝原假设的概率。
一般来说,研究者希望功效越大越好,一般要求功效大于80%。
3.误差范围:误差范围指的是在样本容量允许的误差范围内对总体参数的估计。
误差范围的大小与样本容量成正比,样本容量越大,误差范围越小。
根据错误率和误差范围,可以利用统计方法计算出所需的样本大小。
临床科研项目样本量的要求
临床科研项目样本量的要求一、本文概述在临床科研项目中,样本量的确定是一个至关重要且极具挑战性的环节。
样本量的大小不仅直接关系到研究结果的可靠性、有效性和普适性,更是决定研究能否顺利进行、能否成功达到预期目标的关键因素。
因此,对临床科研项目样本量的要求进行深入理解和合理应用,对于确保研究质量、提高科研效率、推动医学进步具有不可估量的重要意义。
本文旨在全面解析临床科研项目样本量的确定原则、影响因素、计算方法及其实践应用,以期为科研工作者在实际操作中提供科学、实用的指导和参考。
我们将从样本量的基本概念出发,深入探讨影响样本量大小的各种因素,包括研究设计、研究目的、研究对象、效应大小、误差控制等。
我们还将介绍几种常用的样本量计算方法,如基于效应量、基于功效和基于预试验数据等方法的原理和应用场景。
本文还将关注样本量确定过程中的一些常见问题和误区,如样本量过小导致的结论不稳定、样本量过大造成的资源浪费等,并提供相应的解决方案和建议。
我们希望通过这些内容的阐述和分析,帮助科研工作者更好地理解和掌握样本量确定的方法和技巧,为他们的研究工作提供有力的支持和保障。
二、样本量的定义和重要性在临床科研项目中,样本量是指参与研究的患者或研究对象的数量。
它是决定研究结果可靠性和有效性的关键因素之一。
样本量的定义不仅仅是一个简单的数字,它背后包含了对研究设计、统计学原理以及预期效应大小的深入理解。
样本量的重要性体现在多个方面。
合适的样本量能够确保研究结果的稳定性和可靠性。
样本量越大,研究结果受到随机误差的影响就越小,得出的结论就越接近真实情况。
样本量的大小直接关系到研究结果的统计效力。
足够的样本量能够增加研究检测到真实效应的机会,避免因为样本量不足而导致的假阴性或假阳性结果。
样本量还与研究成本和时间效率密切相关。
在确定样本量时,需要权衡研究所需的精度和资源投入之间的平衡,确保研究既具有科学性又具有可行性。
因此,在临床科研项目中,合理选择样本量至关重要。
-临床试验样本量的估算
临床试验样本量的估算样本量的估计涉及诸多参数的确定,最难得到的就是预期的或者已知的效应大小(计数资料的率差、计量资料的均数差值),方差(计量资料)或合并的率(计数资料各组的合并率),一般需通过预试验或者查阅历史资料和文献获得,不过很多时候很难得到或者可靠性较差。
因此样本量估计有些时候不是想做就能做的。
SFDA的规定主要是从安全性的角度出发,保证能发现多少的不良反应率;统计的计算主要是从power出发,保证有多少把握能做出显著来。
但是中国的国情?有多少厂家愿意多做?建议方案里这么写:从安全性角度出发,按照SFDA××规定,完成100对有效病例,再考虑到脱落原因,再扩大20%,即120对,240例。
或者:本研究为随机双盲、安慰剂平行对照试验,只有显示试验药优于安慰剂时才可认为试验药有效,根据预试验结果,试验组和对照组的有效率分别为65.0%和42.9%,则每个治疗组中能接受评价的病人样本数必须达到114例(总共228例),这样才能在单侧显著性水平为5%、检验功效为90%的情况下证明试验组疗效优于对照组。
假设因调整意向性治疗人群而丢失病例达10%,则需要纳入病人的总样本例数为250例。
非劣性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=12.365×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=12.365× (S/δ)2等效性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=17.127×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=17.127× (S/δ)2上述公式的说明:1)该公式源于郑青山教授发表的文献。
2)N是每组的估算例数N1=N2,N1和N2分别为试验药和参比药的例数;3)P是平均有效率,4)S是估计的共同标准差,5)δ是等效标准。
科学实验中的样本量如何确定
科学实验中的样本量如何确定在科学实验中,样本量的确定是一个至关重要的环节。
它不仅影响着实验结果的准确性和可靠性,还关系到实验的成本、时间和可行性。
那么,究竟如何确定科学实验所需的样本量呢?首先,我们要明确样本量的概念。
简单来说,样本量就是从总体中抽取的用于实验观察或研究的个体数量。
比如,我们要研究某种药物对治疗某种疾病的效果,选取的患者数量就是样本量。
确定样本量的第一个关键因素是研究的目的和问题。
如果我们的研究旨在发现细微的差异或关系,那么通常需要较大的样本量。
例如,研究一种新的抗癌药物与传统药物在疗效上的细微差别,就需要大量的患者样本,以确保能够检测到可能存在的较小但具有临床意义的差异。
相反,如果只是初步探索某种现象或者验证一个较为明显的假设,较小的样本量可能就足够了。
其次,总体的变异程度也是影响样本量的重要因素。
总体变异越大,为了获得具有代表性和稳定性的结果,所需的样本量就越大。
以身高为例,不同人群的身高差异相对较大,因此要研究身高与某种健康指标的关系,可能需要较多的样本;而对于血型这种分类较为明确、变异较小的指标,所需样本量相对较少。
实验设计的类型也会对样本量产生影响。
常见的实验设计包括完全随机设计、配对设计、析因设计等。
在完全随机设计中,如果想要达到一定的检验效能(即正确拒绝错误零假设的概率),就需要根据预期的效应大小和显著性水平来计算样本量。
而在配对设计中,由于消除了个体间的某些差异,相同条件下所需的样本量通常比完全随机设计要少。
预期的效应大小是另一个需要考虑的关键因素。
效应大小反映了实验处理所产生的差异或关联的程度。
如果预期的效应较大,例如一种新疗法能显著提高治愈率,那么较小的样本量可能就能检测到这种效应;但如果预期的效应较小,比如只是轻微改善症状,就需要更大的样本量来发现这种细微的变化。
同时,我们还需要考虑显著性水平。
显著性水平通常设定为 005 或001,它决定了我们愿意接受错误结论(即“假阳性”)的概率。
临床试验样本量的估算精编版
临床试验样本量的估算精编版临床试验样本量估算是进行临床试验设计过程中极为重要的一环,其目的是通过合理的样本量确定试验的统计效力,确保试验结果的可靠性和可解释性。
样本量的大小直接关系到试验的结果,样本量过小容易导致试验结果的误差增大,而样本量过大则可能造成资源的浪费。
在进行临床试验样本量估算时,需要考虑以下几个因素:1.效应大小:效应大小指的是新型治疗与传统治疗之间的差异效应,通常通过之前的研究结果或临床经验作为参考。
效应大小越大,样本量可以相应减少。
2.类型I错误的控制:类型I错误也常被称为显著性水平或α错误。
它指的是在原假设为真的情况下,拒绝原假设的概率。
通常使用显著性水平α来控制类型I错误的概率,常见的α取值为0.053.类型II错误的控制:类型II错误也被称为β错误。
它指的是在备择假设为真的情况下,接受原假设的概率。
通常使用统计功效1-β来控制类型II错误的概率,常见的统计功效取值为0.8或0.94.变异性:变异性是指被试者在一些测量指标上的差异程度。
变异性越大,样本量需求相应增加。
5.置信区间:置信区间是指参数真值落在特定区间的概率。
通常使用95%的置信水平,即在95%的概率下,参数真值落在置信区间内。
1.样本量计算公式:根据试验的目标和研究假设,选择合适的样本量计算公式进行计算。
常用的样本量计算公式包括均数比较、比例比较、生存分析、相关性等。
2. 统计软件:利用统计软件进行样本量模拟和估算。
常用的统计软件包括PASS、G*Power和R软件等。
3.文献参考:根据类似的研究或文献中的样本量估算结果作为参考,结合本次研究的具体情况进行调整。
需要注意的是,样本量的估算是基于试验目标和预设的假设进行计算的,实际研究过程中可能会受到很多实际因素的影响,如实验设计的可行性、时间和资源限制等。
因此,在进行样本量估算时需要充分考虑这些实际因素,尽可能保证样本量的合理性和可行性。
总之,临床试验样本量估算是临床试验设计过程中重要的一环,合理的样本量估算可以确保试验结果的可靠性和可解释性。
临床试验常用样本量的计算方法
临床试验常用样本量的计算方法
临床试验的样本量计算主要涉及到以下几个方法:
1. 根据研究目标和假设:根据试验的目标、研究假设、预计的效应大小和统计显著水平,使用统计方法计算所需的样本量。
常用的统计方法有t检验、卡方检验、方差分析等。
2. 根据统计效应和统计效力:根据已有的研究结果或假设,估计所需的统计效应大小和统计效力(通常选择80%或90%),然后使用相应的统计方法计算样本量。
3. 根据追踪率或失访率:考虑随访率和失访率对样本量的影响。
通常会根据研究经验或类似研究的结果,估计追踪率和失访率,并据此调整样本量。
4. 根据样本量估计的误差:根据研究目标和统计学原理,估计所能接受的误差范围,然后使用统计方法计算所需的样本量。
需要注意的是,样本量计算是一项复杂的工作,需要考虑多个因素,并可能涉及到统计学知识和软件工具的应用。
在实际应用中,可能还需要考虑研究可行性、资源限制和伦理要求等因素。
因此,建议在进行样本量计算时寻求专业统计学家或研究方法学专家的帮助。
临床试验样本量的估算
临床试验样本量的估算样本量的估计涉及诸多参数的确定,最难得到的就是预期的或者已知的效应大小(计数资料的率差、计量资料的均数差值),方差(计量资料)或合并的率(计数资料各组的合并率),一般需通过预试验或者查阅历史资料和文献获得,不过很多时候很难得到或者可靠性较差。
因此样本量估计有些时候不是想做就能做的。
SFDA的规定主要是从安全性的角度出发,保证能发现多少的不良反应率;统计的计算主要是从power出发,保证有多少把握能做出显著来。
但是中国的国情?有多少厂家愿意多做?建议方案里这么写:从安全性角度出发,按照SFDA××规定,完成100对有效病例,再考虑到脱落原因,再扩大20%,即120对,240例。
或者:本研究为随机双盲、安慰剂平行对照试验,只有显示试验药优于安慰剂时才可认为试验药有效,根据预试验结果,试验组和对照组的有效率分别为65.0%和42.9%,则每个治疗组中能接受评价的病人样本数必须达到114例(总共228例),这样才能在单侧显著性水平为5%、检验功效为90%的情况下证明试验组疗效优于对照组。
假设因调整意向性治疗人群而丢失病例达10%,则需要纳入病人的总样本例数为250例。
非劣性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=12.365×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=12.365× (S/δ)2等效性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=17.127×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=17.127× (S/δ)2上述公式的说明:1) 该公式源于郑青山教授发表的文献。
2) N 是每组的估算例数N1=N2,N1 和N2 分别为试验药和参比药的例数;3) P 是平均有效率,4) S 是估计的共同标准差,5) δ是等效标准。
如何确定临床实验设计中的样本量
如何确定临床实验设计中的样本量在临床实验设计中,确定适当的样本量是非常重要的。
样本量的大小直接影响到实验结果的可靠性和推广性。
一个过小的样本量可能导致结果无法进行统计分析或者统计结论不够可靠,而一个过大的样本量则可能浪费资源和时间。
因此,正确地确定样本量是保障实验可靠性和高效性的关键一步。
确定样本量的方法一般包括以下几种:1.效应大小分析:效应大小是指所研究的变量在不同处理组之间的差异大小。
通过文献调研或经验分析,我们可以大致估计研究变量的效应大小,并以此为基础来计算所需样本量。
一般来说,效应越小,样本量需要越大。
2.参数估计方法:参数估计方法是通过计算所需要研究变量的均值和方差来确定样本量的大小。
根据假设检验的公式,可以使用统计软件来进行参数估计的计算。
在计算过程中需要考虑显著水平、检验效应大小和统计功效等因素。
3.经验法则:经验法则是根据过去类似实验的经验来确定样本量的大小。
例如,根据类似的研究,从样本数与效应大小的关系中得到一个经验公式。
这种方法简单易用,但需要保证选择的经验公式与实际研究相匹配。
4.模拟方法:模拟方法是使用计算机模拟来确定样本量大小。
通过假设不同的样本量,然后模拟数据并进行统计分析,观察分析结果的稳定性和统计效应。
通过多次模拟可以得到合适的样本量范围。
在确定样本量之前,还需要考虑以下几个因素:1.研究目标和研究问题:样本量的大小应该与研究目标和研究问题相匹配。
如果研究目标是检验一个较小的效应大小,或者对于一些特定子群体的效应大小进行检验,可能需要较大的样本量。
2.实验设计和数据分析方法:不同的实验设计和数据分析方法对样本量的要求是不同的。
有些实验设计需要更多的样本量来控制混杂变量,而其他的实验设计可能只需要较少的样本量。
3.资源限制:考虑到时间、人力和经费等资源的限制,需要在这些限制下确定样本量的大小。
有时候需要进行权衡,将资源分配到需要样本量更大的实验设计上。
在确定样本量之后,还需要进行样本量的统计设计和数据分析。
临床试验样本量的估算
临床试验样本量的估算首先,研究目的是样本量估算的基础,研究目的不同所需样本量也会不同。
例如,对于描述性研究,样本量的估算主要考虑数据的可行性,一般在50-100人左右即可;而对于验证性研究,需要进行统计检验或建立预测模型,则需要更多的样本量。
其次,研究设计也是样本量估算的重要因素。
常见的研究设计包括前瞻性队列研究、病例对照研究、随机对照试验等。
不同的研究设计对样本量的要求也不同。
例如,队列研究需要在较长的时间内追踪大量的受试者,样本量通常较大;而对照试验往往需要比较两组之间差异的显著性,样本量要求相对较少。
其次,统计学假设是影响样本量估算的主要因素之一、其中包括显著性水平(通常为0.05)、统计效应大小和统计检验的类型等。
较高的显著性水平(如0.01)和较小的统计效应大小都会增加样本量的要求。
此外,不同的统计检验方法也会影响样本量估算。
例如,判断两组均值是否有差异的双样本t检验需要较大的样本量,而判断两组比例是否有差异的卡方检验则需要较小的样本量。
最后,样本量的估算还需要考虑目标参数的合理估计。
目标参数包括所研究变量的均值、比例、相关系数等。
一般来说,样本量估计需要选取适当的目标参数,并根据目标参数的合理范围进行估计。
根据经验和实际情况,可以采用样本量估算公式来计算样本量。
n=(Zα/2*σ/δ)^2其中,n为所需样本量,Zα/2为给定显著性水平下的Z值,σ为总体标准差的估计值,δ为目标参数的边际误差。
综上所述,临床试验样本量的估算需要考虑研究目的、研究设计、统计学假设和目标参数等因素,并采用适当的样本量估算公式进行计算。
合理估算样本量可以确保研究结果的可靠性和统计分析的效力。
临床试验的样本量计算与优化
临床试验的样本量计算与优化临床试验作为一种规范化的科研手段,已被广泛应用于医疗领域。
试验的成功与否往往决定了一种治疗方法是否有效,因此临床试验的设计需要考虑多种因素,其中样本量计算是至关重要的一环。
本文将从样本量的定义、计算方法、常见错误以及如何优化样本量等方面进行探讨。
一、什么是样本量?样本量指的是在一次临床试验中所需要的参与人数,也就是实验的受试者数。
样本量大小的决定关系到试验的可信度和可重复性。
如果样本量太小,那么得出的结论可能不够准确,无法反映出总体的情况;而如果样本量太大,则会造成资源的浪费和时间的延长,降低试验的效率。
二、样本量计算的方法在进行样本量计算之前,需要了解以下几个基本概念:1、显著性水平(α)指的是拒绝原假设的概率。
在临床试验中通常将显著性水平设为0.05或0.01,表示要能够接受拒绝原假设的概率不高于5%或1%。
2、检验功效(1-β)指的是接受备择假设的概率,也就是判断实验结果和总体真实效应差异不小于设定的最小差异的能力。
在临床试验中通常将检验功效设为0.80-0.90。
3、标准差(σ)指的是样本的变异程度。
在实验设计过程中,需要尽量降低标准差的影响,以提高试验的效率和可靠性。
4、效应量(δ)指的是介入治疗与对照组的效应差异。
通常将效应量设为临床上具有意义的最小效应量(即最小临床显著差异),比如在肿瘤治疗中,将效应量定义为治疗后病情进展的延缓程度、生存期延长等。
了解了以上概念后,我们就可以通过以下公式计算样本量:n = (Z1-α/2 + Z1-β)^2 × σ^2 / δ^2其中,n表示样本量,Z1-α/2和Z1-β分别是正态分布分位数,可以通过查表获得。
σ和δ分别是标准差和效应量,这两个参数需要根据实验设计的具体情况确定。
三、常见错误及优化策略在实践中,样本量计算常常存在一些误区或者不足之处,下面就是一些常见的问题及对应的优化策略:1、忽视标准差的影响标准差是样本量计算中极其重要的一个因素,它越小,样本量就需要越大;反之亦然。
临床试验中样本量确定的统计学考虑
临床试验中样本量确定的统计学考虑样本量确定(sample size determination),又称样本量估计(sample size estimation),是指为满足统计的准确性和可靠性(I类错误的控制和检验效能的保证)计算出所需的样本量,它是临床试验设计中一个极为重要的环节,直接关系到研究结论的可靠性、可重复性,以及研究效率的高低。
样本量估计也是一个成本-效果和检验效能的权衡过程。
ICHE9(1998)指出,临床试验的样本量必须足够大,以可靠地回答研究假设所提出的相关问题;同时又不至于太大而造成浪费。
样本量的估计方法应该在研究方案中详细阐述,包括计算样本量所依据的参数,如方差、均数、反应率、阳性事件发生率、差值等。
本文适用于确证性试验。
样本量估计需考虑的主要因素在确定临床研究的目的之后,首先考虑试验设计,包括对照的选择(如标准对照、阳性对照、安慰剂对照、剂量对照等)、比较类型(如优效性试验、非劣效性试验、等效性试验)、设计类型(如平行设计、交叉设计、析因设计、成组序贯设计等)、主要指标(定量、定性、生存时间)等;其次考虑统计分析方法,并提出效应量(effect size)的假定;然后根据试验特点定义统计特征,如统计分布、检验水准(significant level)、检验效能(power)、单双侧和分配比例等;再应用正确的样本量估计方法计算出样本量;最后根据协变量、试验中的脱落率、剔除率和依从性等具体情况进行适当调整。
1.研究目的与试验设计(1)研究目的就临床试验而言,在确证性研究中研究目的主要体现在有效性评价和安全性评价两个方面。
样本量估计常用于有效性评价。
(2)比较类型及其检验假设临床试验常用的比较类型有优效性试验(superiority trial)、等效性试验(包括生物等效性试验)(equivalence trial)、非劣效性试验(non-inferiority trial)等。
临床科研项目样本量的要求
临床科研项目样本量的要求在临床科研项目中,样本量的选择与确定是一项至关重要的环节。
本文将详细阐述临床科研项目样本量的概念、重要性,以及如何科学地计算样本量的要求。
临床科研项目样本量是指研究对象中符合研究要求的个体数量。
样本量的确定对于科研结果的稳定性和可靠性具有重要影响。
样本量过小可能会导致研究结果的不稳定和误差,而样本量过大则会增加研究成本和时间。
因此,合理确定样本量是临床科研项目的重要基础。
在分析临床科研项目样本量的要求时,需要考虑以下因素:研究设计:不同的研究设计对样本量的要求也不同。
例如,随机对照试验需要更大的样本量来减小随机误差,而观察性研究则可以根据研究因素和预期效应大小来估算样本量。
预期效应大小:预期效应大小是决定样本量大小的关键因素。
如果研究的效应较小,则需要较大的样本量来提高检测的可靠性。
统计学原则:根据特定的统计学原则,如Power分析或样本量估算公式,来计算满足一定精度和把握度的样本量。
针对临床科研项目样本量的要求,可以采取以下方法:明确研究设计和预期效应大小:在研究方案设计阶段,需要明确研究设计和预期效应大小,以便为样本量的计算提供依据。
运用统计学方法计算样本量:根据研究设计和预期效应大小,选择合适的统计学方法进行样本量的计算。
常用的样本量计算方法包括Power分析、t检验样本量估算、卡方检验样本量估算等。
选择合适的样本量估算软件:在计算样本量时,可以选择一些常用的统计软件,如SPSS、SAS、STATA等,来辅助进行样本量的估算。
这些软件通常都提供了相应的统计模块或函数,可以根据需要选择使用。
重视样本量的规划和管理:在研究实施阶段,需要对样本量进行规划和管理,确保样本量的收集和处理满足研究要求。
这包括对受试者的招募、筛选、随访和数据收集等方面的管理与监督。
让我们以一个具体的临床科研项目为例来说明如何运用本文所述的方法来计算样本量。
假设该研究旨在评估一种新药对高血压患者的疗效,预期降低血压的幅度为10mmHg。
临床试验样本量的估算
临床试验样本量的估算样本量的估计涉及诸多参数的确定,最难得到的就是预期的或者已知的效应大小(计数资料的率差、计量资料的均数差值),方差(计量资料)或合并的率(计数资料各组的合并率),一般需通过预试验或者查阅历史资料和文献获得,不过很多时候很难得到或者可靠性较差。
因此样本量估计有些时候不是想做就能做的。
SFDA的规定主要是从安全性的角度出发,保证能发现多少的不良反应率;统计的计算主要是从power出发,保证有多少把握能做出显著来。
但是中国的国情?有多少厂家愿意多做?建议方案里这么写:从安全性角度出发,按照SFDA××规定,完成100对有效病例,再考虑到脱落原因,再扩大20%,即120对,240例。
或者:本研究为随机双盲、安慰剂平行对照试验,只有显示试验药优于安慰剂时才可认为试验药有效,根据预试验结果,试验组和对照组的有效率分别为65.0%和42.9%,则每个治疗组中能接受评价的病人样本数必须达到114例(总共228例),这样才能在单侧显著性水平为5%、检验功效为90%的情况下证明试验组疗效优于对照组。
假设因调整意向性治疗人群而丢失病例达10%,则需要纳入病人的总样本例数为250例。
非劣性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=12.365×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=12.365× (S/δ)2等效性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=17.127×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=17.127× (S/δ)2上述公式的说明:1) 该公式源于郑青山教授发表的文献。
2) N 是每组的估算例数N1=N2,N1 和N2 分别为试验药和参比药的例数;3) P 是平均有效率,4) S 是估计的共同标准差,5) δ 是等效标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【科研】如何确定临床实验设计中的样本量?
在临床实验研究中,无论是实验组还是对照组都需要有一定数量的受试对象。
这是因为同一种实验处理在不同的受试对象身上表现出的实验效应是存在着变异的。
仅凭一次实验观测结果或单个受试者所表现出来的实验效应说明
不了什么问题。
必须通过一定数量的重复观测才能把研究总体真实的客观规律性显示出来,并且可以对抽样误差做出客观地估计。
但重复观测次数越多(即样本含量越大)试验所要消耗的人力、物力、财力和时间越多,可能会使试验研究成为不可能。
而且,样本含量过大还会增加控制试验观测条件的难度,有可能引入非随机误差,给观测结果带来偏性(bias)。
所以在实验设计中落实重复原则的一个重要问题就是如何
科学合理确定样本量。
由于在各对比组例数相等时进行统计推断效能最高,因此多数情况下都是按各组样本含量相等来估计。
但在个别情况下,也可能要求各组样本含量按一定比例来估计。
1 与样本含量估计有关的几个统计学参数
在估计样本含量之前,首先要对以下几个统计学参数加以确定或作出估计。
1.1 规定有专业意义的差值δ,即所比较的两总体参数值相差多大以上才有专业意义。
δ是根据实验目的人为规定的,
但必须有一定专业依据。
习惯上把δ称为分辨力或区分度。
δ值越小表示对二个总体参数差别的区分度越强,因而所需样本含量也越大。
1.2 确定作统计推断时允许犯Ⅰ类错误(“弃真”的错误)的概
率α,即当对比的双方总体参数值没有差到δ。
但根据抽样观测结果错误地得出二者有差别的推断结论的可能性,α确定的越小,所需样本含量越大。
在确定α时还要注意明确是单侧检验的α,还是双侧检验的α。
在同样大小的α条件下;双侧检验要比单侧检验需要更大的样本含量。
1.3 提出所期望的检验效能power,用1-β表示。
β为允许犯Ⅱ类错误(“取伪”的错误)的概率。
检验效能就是推断结论不犯Ⅱ类错误的概率1-β称把握度。
即当对比双方总体参数值间差值确实达到δ以上时,根据抽样观测结果在规定的α水准上能正确地作出有差别的推断结论的可能性。
在科研设计中常把1-β定为0.90或0.80。
一般来说1-β不宜低于0.75,否则可能出现非真实的阴性推断结论。
1.4 给出总体标准差σ或总体率π的估计值。
它们分别反映计量数据和计数数据的变异程度。
一般是根据前人经验或文献报道作出估计。
如果没有前人经验或文献报道作为依据,可通过预实验取得样本的标准差s或样本率P分别作为σ和π的估计值。
σ的估计值越大,π的估计值越接近0.5,所需样本含量越大。
在对以上统计学参数作出规定或估计的前提下,就可以根据不同的推断内容选用相应的公式计算出所需样本含量。
由于在同样的要求和条件下完全随机设计(成组设计)所需样本含量最大,故一般都要按完全随机设计作出样本含量的估计。
2 常用的估计样本含量的方法
2.1 两样本均数比较时样本含量估计方法
(1)两样本例数要求相等时可按下列公式估算每组需观察的例数n。
n=2*[(α+β)σ/δ]^2 (公式1)
式中δ为要求的区分度,σ为总体标准差或其估计值s,α、β分别是对应于α和β的u值,可由t界值表,自由度υ=∞-行查出来,α有单侧、双侧之分,β只取单侧值。
例1:某医师研究一种降低高血脂患者胆固醇药物的临床疗效,以安慰剂作对照。
事前规定试验组与对照组相比,平均多降低0.5 mmol/L以上,才有推广应用价值。
而且由有关文献中查到高血脂患者胆固醇值的标准差为0.8 mmol/L,若要求犯Ⅰ类错误的的概率不超过5%,犯Ⅱ类错误的概率不超过10%,且要两组例数相等则每组各需观察多少例?
本例δ=0.5 mmol/L,σ=0.8mmol/L,α=0.05,β=0.10,1-β=0.90,查t界值表自由度为∞一行得单侧t0.05=1.645,t0.1=1.282,代入公式(1)
n=2*[(1.645+1.282)×0.8/0.5]^2=44
故要达到上述要求,两组至少各需观察44例。
(2)两样本例数要求呈一定比例(n2/n1=c)时,可按下列公式求出n1,再按比例求出n2=c*n1。
n1=[(α+β)σ/δ]^2*(1+C)/C (公式2)
例2:对例1资料如一切要求都维持不变,但要求试验组与对照组的例数呈2∶1比例(即C=2),问两组各需观察多少例?
n1=[(1.645+1.282)×0.8/0.5]^2×(1+2)/2 =33(例)(对照组所需例数)
n2=2×33=66(例)(试验组所需例数。
)
两组共需观察99例多于两组例数相等时达到同样要求时两组所需观察的总例数2×44=88。
2.2 配对设计计量资料样本含量(对子数)估计方法
配对设计包括异体配对、自身配对、自身前后配对及交叉设计的自身对照,均可按下列公式进行样本含量估计。
n=[(α+β)σd/δ]^2 (公式3)
式中δ、α、β的含义同前,σd为每对差值的总体标准差或其估计值sd。
例3:某医院采用自身前后配对设计方案研究某治疗矽肺药物能否有效地增加矽肺患者的尿矽排出量。
事前规定服药后尿矽排出量平均增加35.6 mmol/L以上方能认为有效,根据预试验得到矽肺患者服药后尿矽排出量增加值的标准差sd
=89.0 mmol/L,现在要求推断时犯Ⅰ类错误的概率控制在0.05以下(单侧),犯Ⅱ类错误的概率控制在0.1以下,问需观察多少例矽肺病人?
本例δ=35.6 mmol/L,sd=89.0 mmol/L,α=0.05,β=0.10。
1-β=0.90,单侧t0.05=1.645,t0.1=1.282,代入公式(3)得到。
n=[(1.645+1.282)×89/35.6]^2=54(例)
故可认为如该药确实能达到平均增加尿矽排出量在35.6 mmol/L以上,则只需观察54例病人就能有90%的把握,按照α=0.05的检验水准得出该药有增加矽肺病人尿矽作用的正确结论。
2.3 样本均数与总体均数比较时样本含量估计方法
可按下式估算所需样本含量n。
n=[(α+β)σ/δ]^2 (公式4)
例4:已知血吸虫病人血红蛋白平均含量为90g/L,标准差为25g/L,现欲观察呋喃丙胺治疗后能否使血红蛋白增加,事先规定血红蛋白增加10g/L以上才能认为有效,推断结论犯Ⅰ类错误的概率α(双侧)不得超过0.05,犯Ⅱ类错误的概率β不得超过0.10,问需观察多少例病人?
本例δ=10g/L,σ=25g/L,0.05=1.96(双侧),0.10=1.282代入公式(4)得:
n=[(1.960+1.282)×25/10]^2=66(例)
故如果呋喃丙胺确实能使血吸虫病人血红蛋白平均含量增加10g/L以上,则只需观察66例就可以有90%的把握在α=0.05检验水准上得出有增加血吸虫病人血红蛋白平均含量的结论。
(摘自疑难病杂志网站)。