2017年春宜昌市西陵区八年级数学下期末
湖北省宜昌市八年级下学期数学期末考试试卷
湖北省宜昌市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列各式成立是()A .B .C .D .2. (2分)(2017·潮安模拟) 如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线距离之和PE+PF是()A . 4.8B . 5C . 6D . 7.23. (2分)下列由线段a,b,c组成的三角形不是直角三角形的是()A . a=3,b=4,c=5B . a=2, b=3,c=C . a=12,b=10,c=20D . a=5,b=13,c=124. (2分)下列说法中,正确的是()A . 对载人航天器“神舟十号”的零部件的检查适合采用抽样调查的方式B . 某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C . 掷一枚硬币,正面朝上的概率为D . 若甲组数据的方差S甲2=0.1,乙组数据的方差S乙2=0.01,则甲组数据比乙组数据稳定5. (2分)(2018·丹江口模拟) 如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①点G是BC中点;②FG=FC;③与∠AGB相等的角有5个;④S△FGC= .其中正确的是()A . ①③B . ②③C . ①④D . ②④6. (2分)下列函数中,自变量x的取值范围是x≥2的是()A .B .C .D .7. (2分)已知(2,a)和(-3,b)在一次函数y=-x+8的图象上,则()A . a>bB . a<bC . a =bD . 无法判断8. (2分)在平面中,下列命题为真命题的是()A . 四边相等的四边形是正方形B . 对角线相等的四边形是菱形C . 四个角相等的四边形是矩形D . 对角线互相垂直的四边形是平行四边形9. (2分)如图矩形ABCD中,若AB=4,BC=9,E、F分别为BC,DA上的点,则S四边形AECF等于()A . 12B . 24C . 36D . 4810. (2分)某校的校园内有一个由两个相同的正六边形(边长为2.5m)围成的花坛,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为()A . 20mB . 25mC . 30mD . 35m11. (2分) (2017·海口模拟) 如图,在△ABC中,AB=AC,AD平分∠BAC,E为AC的中点,DE=3,则AB等于()A . 4B . 5C . 5.5D . 612. (2分)(2017·大石桥模拟) 如图,已知等边三角形ABC的边长为2,E、F、G分别是边AB、BC、CA的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y与x的函数图象大致是()A .B .C .D .二、填空题 (共6题;共6分)13. (1分)(2016·河池) 代数式在实数范围内有意义,则x的取值范围是________.14. (1分)一组数据﹣1、x、3、1、﹣3的平均数为0,则这组数据的标准差为________.15. (1分) (2017八下·盐都期中) 如图,▱ABCD的对角线AC、BD相交于点O,点E、F分别是线段AO、BO 的中点,若AC+BD=22cm,△OAB的周长是16cm,则EF的长为________cm.16. (1分)将一次函数y=﹣2x+1的图象平移,使它经过点(﹣2,1),则平移后图象函数的解析式为________.17. (1分)(2019·苏州模拟) 如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD 边上一动点,将四边形APQD沿直线PQ折叠,A的对应点为A′,则CA′的长度最小值为________.18. (1分) (2017八下·抚宁期末) 已知一次函数y=kx+5的图象经过点(﹣1,2),则k=________.三、解答题 (共6题;共57分)19. (5分)已知α是锐角,且sin(α+15°)=.计算-4cosα-(π-3.14)0+tanα+()-1的值.20. (5分) (2019八下·淮安月考) 在平行四边形中,已知,周长为26,求其余三边的长及三个内角的度数.21. (11分)(2017·河南模拟) 为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C (湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请解答下列问题:(1)本次调查的样本容量是________;(2)补全条形统计图;(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.22. (10分) (2019八下·如皋月考) 菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图①,若点E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图②,若∠EAF=60°,求证:△AEF是等边三角形.23. (15分)弹簧挂上物体后会伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:所挂物体的质量(kg)01234567弹簧的长度(cm)1212.51313.51414.51515.5(1)如果物体的质量为x kg,弹簧长度为y cm,根据上表写出y与x的关系式;(2)当物体的质量为2.5kg时,根据(1)的关系式,求弹簧的长度;(3)当弹簧的长度为17cm时,根据(1)的关系式,求弹簧所挂物体的质量.24. (11分)(2017·玄武模拟) 如图①,在一条笔直的公路上有M、P、N三个地点,M、P两地相距20km,甲开汽车,乙骑自行车分别从M、P两地同时出发,匀速前往N地,到达N地后停止运动.已知乙骑自行车的速度为20km/h,甲,乙两人之间的距离y(km)与乙行驶的时间t(h)之间的关系如图②所示.(1) M、N两地之间的距离为________km;(2)求线段BC所表示的y与t之间的函数表达式;(3)若乙到达N地后,甲,乙立即以各自原速度返回M地,请在图②所给的直角坐标系中补全函数图象.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共57分)19-1、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、第11 页共11 页。
湖北省宜昌市八年级下学期数学期末考试试卷
湖北省宜昌市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列二次根式中属于最简二次根式的是()A .B .C .D .2. (2分)在函数y=中,自变量x的取值范围是()A . x<B . x≤C . x>D . x≥3. (2分)(2017·烟台) 如图,▱ABCD中,∠B=70°,BC=6,以AD为直径的⊙O交CD于点E,则的长为()A . πB . πC . πD . π4. (2分)已知直角三角形的两条边的长为3和4,则第三条边的长为()A . 5B . 4C .D . 5或5. (2分)(2017·陆良模拟) 下列说法正确的是()A . 数据4、5、5、6、0的平均数是5B . 数据2、3、4、2、3的众数是2C . 了解某班同学的身高情况适合全面调查D . 甲、乙两组数据的平均数相同,方差分别是S甲2=3.2,S乙2=2.9,则甲组数据更稳定6. (2分)下列各图象中,不能表示y是x的函数的是()A .B .C .D .7. (2分)在下列各式的化简中,化简正确的有()①=a,②5x﹣=4x,③6a=,④+=10A . 1个B . 2个C . 3个D . 4个8. (2分)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为()A . 3B . 4C . 5D . 69. (2分)(2019·义乌模拟) 如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A . x>2B . 0<x<4C . ﹣1<x<4D . x<﹣1或x>410. (2分) (2019八下·长春月考) 如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF 相交于点O,下列结论:⑴AE=BF;(2)AE⊥BF;(3)AO=OE;(4)中正确的有()A . 4个B . 3个C . 2个D . 1个二、填空题 (共6题;共9分)11. (4分) -7的倒数是________,它的相反数是________,它的绝对值是________;倒数等于它本身的有理数是________12. (1分)小华和小苗练习射击,两人的成绩如图所示,小华和小苗两人成绩的方差分别为S12、S22 ,根据图中的信息判断两人方差的大小关系为________.13. (1分) (2019九上·萧山开学考) 若关于x的一次函数y=(m+1)x+2m﹣3的图象经过第一、三、四象限,则m的取值范围为________.14. (1分)某校九年级420名学生参加植树活动,随机调查了50名学生植树的数量,并根据数据绘制了如下条形统计图,请估计该校九年级学生此次植树活动约植树________棵.15. (1分)(2020·新泰模拟) 如图,正方形ABCD和正方形CE FG中,点D在CG上,BC=2,CE=3,H是AF 的中点,EH与CF交于点O,则HE的长为________。
2016-2017西陵区秋季学期期末调研考试八年级数学
数学模拟试卷四一、选择题1、下列图形中,是轴对称图形的是()2、计算(2007−π)0的结果是()A、0B、1C、2007-πD、π-20073、如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交于AB于点D,交AC于点E,则△BEC的周长为()A、16B、14C、13D、124、下列运算正确的是()A. B.(3ɑ2)−2=19ɑ4C.ɑ2+ɑ3=ɑ5D.(ɑ2)3=ɑ55、点A(2,-3)关于y轴的对称点坐标是()A、(2,3)B、(-2,3)C、(-2,-3)D、(-3,2)6、50分的硬币都是正十二边形,把两枚硬币并排放在一起,求夹角()。
A.12°B.30°C.36°D.60°7、把多项式4x2y−6xy+2x分解因式所得结果是()A、x(4xy−6y+2)B、2x(2xy−3x)C、2x(2xy−3y+1)D、2xy(2x-3)+2 x8、如图,△ABC≌△CDA,AB和CD,BC和DA是对应边,则下列结论中不正确的是()A、AB∥CDB、BC=ADC、BC∥ADD、△ABC与△CDA关于直线AC对称9、若分式x+1x−2的值为0,则x的值为()A、-1B、0C、2D、-1或210、等腰三角形两边的长度分别是2,4,则三角形的周长为()A、 8B、 10C、8或10D、10或1111、下列各式从左到右的变形中,正确的是()A、ba =b2a2B、b+ca+c=baC、−a−ba−b=−1 D、aba2=ba12、一个圆的半径增加2CM,它的面积增加16πcm2,则此圆的半径为()A、1cmB、2cmC、 3cmD、4cm13、某红外线遥控器发出的红外线波长为9.4×10−7m,则这个数是()A、0.0000094B、0.00000094C、0.000000094D、0.000000009414、张萌和小平两人打算各用一张正方形的纸片ABCD折出一个等边三角形,两人作法如下:张萌:如图1,将纸片对折得到折痕EF,沿点B翻折纸片,使点A落在EF上的点M处,连接CM,△BCM即为所求;小平:如图2,将纸片对折得到折痕EF,沿点B翻折纸片,使点C落在EF上的点M处,连接BM,△BCM即为所求,对于两人的作法,下列判断正确的是( )A、小平的作法正确,张萌的作法不正确B、两人的作法都不正确C、张萌的作法正确,小平的作法不正确D、两人的作法都正确15、如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,DF=DC,△ADE和△ADF的面积分别为a和b,则△DEC的面积为()A、a+b2B、a−b2C、a+bD、a-b二、主观题16、[(3x−y)(x−y)÷(x+y)(x−y)]÷4x17、先化简,再求值、(x+2x2−2x−x−1x2−4x+4)÷x−4x,其中x=3.18、如图,在△ABC中,∠ABC=20°,∠ACB=60°,延长BC至D,使CD=CA.(1)求∠ADB的度数(2)在(1)的条件下,继续延长CD至E,使DE=AD,连接AE,求∠BAE的度数6题8题CDAB3题DBCEA15题CDBFEA19题EDCBA24题EMNDPBOACxy19、已知关于x 的方程2x−a +xa−x =2的解为正数,求a 的取值范围.20、如图,平面直角坐标系中两点A (1,0),B (a ,a+b ),点B 关于x 轴的对称点坐标(b+1,-3b ).(1)求点BD 的坐标(2)请在y 轴上画出点P,使△APB 的周长最小,直接写出点P(保留作图痕迹,不证明)21、小天同学用两根长度为6米的铁丝分别制作了两种窗户框架,铁丝无剩余且不考虑接头,第一种形状如图甲所示,上部是两个边长为a 的正方形,下部为一个长方形;第二种形状如图乙所示,上部是一个半径为r 的半圆,下部是一个长方形。
湖北省宜昌市八年级下学期期末考试数学试题
湖北省宜昌市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七下·孝义期中) 根据下列表述,能确定位置的是()A . 孝义市府前街B . 南偏东C . 美莱登国际影城3排D . 东经,北纬2. (2分) (2020八下·江苏月考) 下列标志既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分) (2016八上·平凉期中) 正六边形的每个内角度数是()A . 60°B . 90°C . 108°D . 120°4. (2分) (2019八下·郑州期末) 设min{ a,b }表示a,b这两个数中的较小的一个,如min{-1,1}= -1,min{3,2}=2则关于x的一次函数y=min{x,3x-4}可以表示为()A . y=xB . y=3x-4C .D .5. (2分) (2018八上·云安期中) 如右图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A . 5B . 6C . 3D . 46. (2分)(2018·东莞模拟) 一元二次方程x2﹣7x﹣2=0的实数根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 不能确定7. (2分) (2018九上·宜兴月考) 已知代数式x2+y2+4x-6y+17的值是()A . 负数B . 非正数C . 非负数D . 正数8. (2分)(2018·桂林) 已知关于x的一元二次方程有两个相等的实根,则k的值为()A .B .C . 2或3D . 或9. (2分)(2018·驻马店模拟) 如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF∶S△AOB的值为()A . 1∶3B . 1∶5C . 1∶6D . 1∶1110. (2分) (2020八下·潜江期末) 下列不能反映一组数据集中趋势的是()A . 众数B . 中位数C . 方差D . 平均数二、填空题. (共5题;共5分)11. (1分)(2019·天台模拟) 如图,AB是⊙O的弦,半径OA=5,sinA=,则弦AB的长为________.12. (1分) (2019七下·咸安期末) 如图,在围棋盘上有三枚棋子,如果黑棋①的位置用坐标表示为,黑棋②的位置用坐标表示为,则白棋③的位置用坐标表示为________.13. (1分) (2020八下·鹤山期中) 射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为,,,,则四人中成绩最稳定的是________.14. (1分)(2019·吉林模拟) 如图,在平面直角坐标系中,点A、B的坐标分别为(﹣1,2)、(1,4),欲在x轴上找一点P,使PA+PB最短,则点P的坐标为________.15. (1分)(2017·百色) 如图,点C是⊙O优弧ACB上的中点,弦AB=6cm,E为OC上任意一点,动点F从点A出发,以每秒1cm的速度沿AB方向向点B匀速运动,若y=AE2﹣EF2 ,则y与动点F的运动时间x(0≤x≤6)秒的函数关系式为________.三、解答题。
湖北省宜昌市八年级下学期数学期末试卷
湖北省宜昌市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图,△ABC内接于⊙O,∠A=60°,BC=6 ,则的长为()A . 2πB . 4πC . 8πD . 12π2. (2分)一个函数的图象如图,给出以下结论:①当x=0时,函数值最大;②当0<x<2时,函数y随x的增大而减小;③存在0<x0<1,当x=x0时,函数值为0.其中正确的结论是()A . ①②B . ①③C . ②③D . ①②③3. (2分) (2018九上·东湖期中) 方程x(x+5)=0化成一般形式后,它的常数项是()A . ﹣5B . 5C . 0D . 14. (2分)如图,一次函数y1=k1x+b与一次函数y2=k2x+4的图象交于点P(1,3),则关于x的不等式k1x+b >k2x+4的解集是()A . x>1B . x>0C . x>﹣2D . x<15. (2分)(2018·开封模拟) 如图,点O是矩形ABCD的对角线AC的中点,OM//AB交AD于点M,若OM=3,BC=10,则OB的长为()A . 5B . 4C .D .6. (2分) (2016八上·河源期末) 一次函数y=kx﹣k(k<0)的图象大致是()A .B .C .D .7. (2分) (2019八下·衡水期中) 如图,将一根长为8cm(AB=8cm)的橡皮筋水平放置在桌面上,固定两端A和B,然后把中点C竖直地向上拉升3cm至D点,则拉长后橡皮筋的长度为()A . 8cmB . 10cmC . 12.cmD . 15cm8. (2分) (2018九上·汨罗期中) 某钢铁厂今年1月份钢产量为5000吨,3月份上升到7200吨,设平均每月增长的百分率为,根据题意得方程()A . 5000(1+x)+5000(1+x)2=7200B . 5000(1+x2)=7200C . 5000(1+x)2=7200D . 5000+5000(1+x)2=72009. (2分) (2017八下·东营期末) 如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE 沿AE所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为()A . 1B .C . 2-D . 2 ﹣210. (2分)如下图中的图象(折线ABCDE)描述了一汽车在某一直路上的行驶过程中,汽车离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车在途中停留了0.5小时;②汽车行驶3小时后离出发地最远;③汽车共行驶了120千米;④汽车返回时的速度是80千米/小时.其中正确的说法共有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共9题;共10分)11. (1分) (2018八上·岑溪期中) 函数中的自变量x的取值范围________。
湖北省宜昌市八年级下学期数学期末考试试卷
湖北省宜昌市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)(2019·保定模拟) 下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个2. (2分) (2019九上·寻乌月考) 下列事件是必然事件的是()A . 抛掷一枚硬币四次,有两次正面朝上B . 打开电视频道,正在播放《在线体育》C . 射击运动员射击一次,命中十环D . 方程x2﹣2x﹣1=0必有实数根3. (2分)下列各式从左到右的变形正确的是()A . =B .C .D .4. (2分)下列命题正确的是()A . 同一边上两个角相等的梯形是等腰梯形;B . 一组对边平行,一组对边相等的四边形是平行四边形;C . 如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。
D . 对角线互相垂直的四边形面积等于对角线乘积的一半。
5. (2分)如图,∠EOF内有一定点P,过点P的一条直线分别交射线OE于A,射线OF于B.当满足下列哪个条件时,△AOB的面积一定最小()A . OA=OBB . OP为△AOB的角平分线C . OP为△AOB的高D . OP为△AOB的中线6. (2分) (2019八下·长兴期末) 在△ABC中,AB=3,AC=4,BC=5,点P为边BC上一动点,PE⊥AB于点E,PF⊥AC于点F,则EF的最小值为()A . 2.5B . 2.4C . 2.2D . 2二、填空题 (共10题;共11分)7. (2分)要使式子在实数范围有意义,则x的取值范围为________ .8. (1分) (2019八上·和平月考) 当分式的值为0时,的值为________.9. (1分)(2019·南关模拟) 计算: ________.10. (1分)(2016·镇江) 一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是20%,则袋中有________个红球.11. (1分)用配方法解方程x2﹣6x=1时,方程两边应同时加上________就能使方程左边配成一个完全平方式.12. (1分) (2017九上·青龙期末) 已知点(m﹣1,y1),(m﹣3,y2)是反比例函数y= (m<0)图象上的两点,则y1________y2(填“>”或“=”或“<”)13. (1分) (2019八下·庐阳期末) 如图,正方形ABCD的顶点C,A分别在x轴,y轴上,BC是菱形BDCE 的对角线.若BC=6,BD=5,则点D的坐标是________.14. (1分)已知哎平面直角坐标系xOy中,过P(1,1)的直线l与x轴、y轴正半轴交于点A,点B,若三角形AOB的面积等于3,直线l的解析式为________15. (1分)(2018·成都) 如图,在菱形中,,分别在边上,将四边形沿翻折,使的对应线段经过顶点,当时,的值为________.16. (1分)(2020·南岗模拟) 如图,△ABC中,∠BAC=45°,AD⊥BC于D,点E在AD上,∠BEC=135°,若BC=5,S△ECA=2,则BD=________.三、解答题 (共11题;共95分)17. (10分) (2018八下·越秀期中) 计算:18. (10分) (2019八上·昭通期末)(1)化简(2x+y)2﹣4(x+ y)(x﹣ y);(2)解方程:=0;(3)分解因式:ax2﹣2a2x+a3 .19. (10分) (2019九上·沭阳开学考) 解方程(1)(2) (用配方法解)(3)(4)20. (5分)(2017·大石桥模拟) 先化简,再求值:(﹣2)÷ ,其中x=2•sin60°+(3﹣π)0﹣.21. (7分) (2019九上·高邮期末) “绿色飞检”中对一所初中的九年级学生在试卷讲评课上参与学习的深度与广度进行调查,调查项目分为主动质疑、独立思考、专注听讲、讲解题目四项.调查组随机抽取了若干名九年级学生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了________名学生;(2)请将条形图补充完整;(3)如果全市有5200名九年级学生,那么在试卷评讲课中,“独立思考”的九年级学生有多少人22. (15分)(2018·青岛模拟) 某校为美化校园,安排甲、乙两个工程队进行绿化.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在各自独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若绿化区域面积为1800m2 ,学校每天需付给甲队的绿化费用为0.4万元,每天需付给乙队的绿化费用为0.25万元,设安排甲队工作y天,绿化总费用为W万元.①求W与y的函数关系式;②要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?23. (6分)(2016·来宾) 如图,在矩形ABCD中,AB=10,AD=6,点M为AB上的一动点,将矩形ABCD沿某一直线对折,使点C与点M重合,该直线与AB(或BC)、CD(或DA)分别交于点P、Q(1)用直尺和圆规在图甲中画出折痕所在直线(不要求写画法,但要求保留作图痕迹)(2)如果PQ与AB、CD都相交,试判断△MPQ的形状并证明你的结论;(3)设AM=x,d为点M到直线PQ的距离,y=d2 ,①求y关于x的函数解析式,并指出x的取值范围;②当直线PQ恰好通过点D时,求点M到直线PQ的距离.24. (10分) (2017八下·明光期中) 关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最小整数时,求方程的解.25. (5分) (2018九上·天台月考) 如图,已知△ABC,∠C=90°,AD是∠BAC的角平分线(1)尺规作图,作圆O,使圆心O在AB上且AD为圆的一条弦,(不写作法,保留作图痕迹)(2)判断直线BC与圆O的位置关系,并说明理由.26. (6分) (2019八上·新乐期中) 已知,在△ABC中,∠ACB=90°,AC=BC,D为直线AB上一点,作直线CD,AE⊥CD于E,BF⊥CD于F.(1)若D在线段AB上,如图,试猜想线段EF、AE和BF之间的数量关系,并证明你的猜想;(2)若D在线段AB的延长线上,请你根据题意画出图形,试猜想线段EF、AE和BF之间的数量关系,并证明你的猜想.27. (11分)(2020·徐州模拟) 如图1和图2,在△ABC中,AB=13,BC=14, .(1)探究:如图1,AH⊥B C于点H,则AH=________,AC=________,△ABC的面积=________.(2)拓展:如图2,点D在AC上(可与点A、C重合),分别过点A、C作直线BD的垂线,垂足为E、F,设BD=x,AE=m,CF=n,(当点D与A重合时,我们认为=0).①用含x、m或n的代数式表示及;②求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;(3)对给定的一个x值,有时只能确定唯一的点D,指出这样的x的取值范围.发现:请你确定一条直线,使得A、B、C三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共11分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共95分)17-1、18-1、18-2、18-3、19-1、19-2、19-3、19-4、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、27-3、。
湖北省宜昌市八年级下学期数学期末考试试卷
湖北省宜昌市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018八上·江干期末) 下列长度的三条线段能组成三角形的是()A . 1cm,2cm,3cmB . 2cm,3cm,5.5cmC . 5cm,8cm,12cmD . 4cm,5cm,9cm2. (2分) P点横坐标是-3,且到x轴的距离为5,则P点的坐标是()A . (-3,5)或(-3,-5)B . (5,-3)或(-5,-3)C . (-3,5)D . (-3,-5)3. (2分) (2016九上·临河期中) 已知点A(2,﹣2),如果点A关于x轴的对称点是B,点B关于原点的对称点是C,那么C点的坐标是()A . (2,2)B . (﹣2,2)C . (﹣1,﹣1)D . (﹣2,﹣2)4. (2分)下列图形中,不是轴对称图形的是()A . 线段B . 平行四边形C . 等边三角形D . 角5. (2分)下列判断是正确的是()A . 真命题的逆命题是假命题B . 假命题的逆命题是真命题C . 定理逆命题的逆命题是真命题D . 真命题都是定理6. (2分)(2017·永定模拟) 如图,将矩形ABCD沿EF折叠,点C落在A处,点D落在D′处.若AB=3,BC=9,则折痕EF的长为()A .B . 4C . 5D . 27. (2分)如果要从函数y=﹣3x的图象得到函数y=﹣3(x+1)的图象,应把y=﹣3x的图象()A . 向上移1个单位B . 向下移1个单位C . 向上移3个单位D . 向下移3个单位8. (2分)对于一次函数y=-2x-1来说,下列结论中错误的是().A . 函数值y随自变量x的减小而增大B . 函数的图象不经过第一象限C . 函数图象向上平移2个单位后得到函数y=-2x+1D . 函数图象上到x轴距离为3的点的坐标为(2,-3)9. (2分)(2017·长沙模拟) 若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A . 0B . 1C . ±1D . ﹣110. (2分) (2018八下·江门月考) 一辆汽车由江门匀速驶往广州,下列图象中大致能反映汽车距离广州的路程S(千米)和行驶时间t(小时)的关系的是()A .B .C .D .二、填空题 (共8题;共8分)11. (1分)(2011·常州) 若∠α的补角为120°,则∠α=________,sinα=________.12. (1分) (2017八下·泉山期末) 如图,已知AD∥BC,要使四边形ABCD为平行四边形,需要增加的一个条是:________.(只填一个你认为正确的条件即可,不添加任何线段与字母)13. (1分) (2019八下·北京期中) 函数中,自变量x的取值范围是________.14. (1分)某班在大课间活动中抽查了10名学生每分钟跳绳次数,得到如下数据(单位:次):88,9l,93,102,108,117,121,130,146,188.则跳绳次数在90~110这一组的频率是________ .15. (1分)新定义:[a,b,c]为函数y= (a,b,c为实数)的“关联数”.若“关联数”为 [m -2,m,1]的函数为一次函数,则m的值为________.16. (1分)(2017·宁德模拟) 如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,AC与OB交于点D (8,4),反比例函数y= 的图象经过点D.若将菱形OABC向左平移n个单位,使点C落在该反比例函数图象上,则n的值为________.17. (1分) (2019八上·常州期末) 如图,在等边中,D、E分别是边AB、AC上的点,且,则 ________18. (1分) (2020八上·潜江期末) 如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1 ,B1 , C1 ,使A1B=AB,B1C=BC,C1A=CA,顺次连结A1 , B1 , C1 ,得到△A1B1C1.第二次操作:分别延长A1B1 , B1C1 , C1A1至点A2 , B2 , C2 ,使A2B1=A1B1 , B2C1=B1C1 , C2A1=C1A1 ,顺次连结A2 ,B2 , C2 ,得到△A2B2C2.…按此规律,要使得到的三角形的面积超过2013,最少经过________次操作.三、解答题 (共8题;共83分)19. (10分)如图,BC>AB,AD=DC,BD平分∠ABC.求证:∠BAD+∠C=180°.20. (5分) (2018八上·南山期中) 在平面直角坐标系中,△AOB为等边三角形,B(2,0),直线:·经过点B,点C是x轴正半轴上的一动点,以线段AC为边在第一象限作等边△ACD.(1)直接写出点A的坐标,当直线经过点A时,求直线BA的表达式.(2)当直线经过点D时,直线与y轴相交于点F,随着点C的变化,点F的位置是否发生变化?若没有变化,求出此时点F的坐标.;若有变化,请说明理由.(3)当直线与线段OA相交与点E时,如果直线把△AOB的面积分为1:2两部分,求出此时点E的坐标.(4)若点C的坐标为(4,0)时,直线与线段AD有交点,请直接写出此时k的取值范围.21. (15分)(2014·淮安) 某公司为了解员工对“六五”普法知识的知晓情况,从本公司随机选取40名员工进行普法知识考查,对考查成绩进行统计(成绩均为整数,满分100分),并依据统计数据绘制了如下尚不完整的统计表.解答下列问题:组别分数段/分频数/人数频率150.5~60.52a260.5~70.560.15370.5~80.5b c480.5~90.5120.30590.5~100.560.15合计40 1.00(1)表中a=________,b=________,c=________;(2)请补全频数分布直方图;(3)该公司共有员工3000人,若考查成绩80分以上(不含80分)为优秀,试估计该公司员工“六五”普法知识知晓程度达到优秀的人数.22. (10分)如图,某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯,已知这种地毯每平方米售价30元,主楼梯宽2米,则购地毯至少需要多少元?23. (8分) (2017七下·简阳期中) “珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时间,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)图中自变量是________,因变量是________;(2)小明家到学校的路程是________ 米;(3)小明在书店停留了________分钟;(4)本次上学途中,小明一共行驶了________米,一共用了________分钟;(5)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?24. (10分) (2017八下·扬州期中) 如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.25. (10分)如图,已知点A从点(1,0)出发,以1个单位长度/秒的速度沿x轴向正方向运动,以O、A 为顶点作菱形OABC,使点B、C在第一象限内,且∠AOC=60°,点P的坐标为(0,3),设点A运动了t秒,求:(1)点C的坐标(用含t的代数式表示);(2)点A在运动过程中,当t为何值时,使得△OCP为等腰三角形?26. (15分) (2020八下·海安月考) 如图1,四边形ABCD是菱形,AD=5,过点D作AB的垂线DH,垂足为H,交对角线AC于M,连接BM,且AH=3.(1)求证:DM=BM;(2)求MH的长;(3)如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式;(4)在(3)的条件下,当点P在边AB上运动时是否存在这样的t值,使∠MPB与∠BCD互为余角,若存在,则求出t值,若不存,在请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共83分)19-1、20-1、20-2、20-3、20-4、21-1、21-2、21-3、22-1、23-1、23-2、23-3、23-4、23-5、24-1、24-2、25-1、25-2、26-1、26-2、26-3、26-4、。
2017八年级下册数学期末试卷及答案
2017八年级下册数学期末试卷一、选择题(每小题3分,共48分)1.下列调查中,适宜采用普查方式的是( )A.了解某校初三一班的体育学考成绩B.了解某种节能灯的使用寿命C.了解我国青年人喜欢的电视节目D.了解全国九年级学生身高的现状2.函数y= 中,自变量x的取值范围是( )A.x>3B.x<3C.x=3D.x≠33.点A的坐标为(2,3),点B的坐标为(﹣2,3),则点A与点B( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.不是对称点4.已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m 的取值范围是( )A.m>B.m<C.m>1D.m<15.点B(m2+1,﹣1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限6.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟 0频数(通话次数) 20 16 9 5则通话时间不超过15分钟的频率是( )A.0.1B.0.4C.0.5D.0.97.在下列图象中,能作为一次函数y=﹣x+1的图象的是( )A. B. C. D.8.已知四边形ABCD是平行四边形,下列结论不正确的是( )A.当AC=BD时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是菱形9.某校的校内有一个两个相同的正六边形(即六条边都相等,六个角都相等)围成的花坛,边长为2.5m,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为( )A.20mB.25mC.30mD.35m10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为( )A.x≤3B.x≥3C.x≤D.x≥11.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC 边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y= x+12B.y=﹣2x+24C.y=2x﹣24D.y= x﹣1212.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是( )A.1B.2C.3D.413.如图,△AOB是等边三角形,B(2,0),将△AOB绕O点逆时针方向旋转90°到△A′OB′位置,则A′坐标是( )A.(﹣1, )B.(﹣,1)C.( ,﹣1)D.(1,﹣ )14.如图,在边长为1的正方形ABCD中,对角线AC和BD相交于点O,P 是BC边上任意一点,PE⊥BD于点E,PF⊥AC于点F,则PE+PF=( )A. B. C. D.15.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是( )A.②③B.②⑤C.①③④D.④⑤16.如图,在平面直角坐标系中,直线y=﹣ x+3与矩形OABC的边AB、BC分别交于点E、F,若点B的坐标为(m,2),则m的值可能为( )A. B. C. D.二、填空题(每小题3分,共12分)17.P(m﹣4,1﹣m)在x轴上,则m= .18.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m= .19.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=1,则AC的长为.20.如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是.三、解答题(本题8分)21.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.22.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周)(1)写出点B的坐标.(2)当P点移动了4秒时,直接写出点P的坐标(3)在移动过程中,当点P到x轴距离为5个单位长度时,则点P移动的时间为.23.如图,将▱ABCD沿CE折叠,使点D落在BC边上的F处,点E在AD上.(1)求证:四边形ABFE为平行四边形;(2)若AB=4,BC=6,则四边形ABFE的周长为.24.为了了解某校七年级男生的体能情况,从该校七年级抽取50名男生进行1分钟跳绳测试,把所得数据整理后,画出频数分布直方图.已知图中从左到右第一、第二、第三、第四小组的频数的比为1:3:4:2.(1)总体是,个体是,样本容量是;(2)求第四小组的频数和频率;(3)求所抽取的50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比.25.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.26.如图,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD、CD;(1)求证:∠BAE=∠DAE;(2)当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论;(3)当AC=8cm,BD=6cm,现将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长是多少?2017八年级下册数学期末试卷参考答案一、选择题(每小题3分,共48分)1.下列调查中,适宜采用普查方式的是( )A.了解某校初三一班的体育学考成绩B.了解某种节能灯的使用寿命C.了解我国青年人喜欢的电视节目D.了解全国九年级学生身高的现状【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解某校初三一班的体育学考成绩,适合普查,故A正确;B、了解某种节能灯的使用寿命,调查具有破坏性,适合抽样调查,故B 错误;C、了解我国青年人喜欢的电视节目,调查范围广,适合抽样调查,故C 错误;D、了解全国九年级学生身高的现状,调查范围广,适合抽样调查,故D 错误;故选:A.2.函数y= 中,自变量x的取值范围是( )A.x>3B.x<3C.x=3D.x≠3【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣3≠0,解得x≠3.故选D.3.点A的坐标为(2,3),点B的坐标为(﹣2,3),则点A与点B( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.不是对称点【考点】关于x轴、y轴对称的点的坐标;关于原点对称的点的坐标.【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【解答】解:由A的坐标为(2,3),点B的坐标为(﹣2,3),得点A与点B关于y轴对称,故选:B.4.已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m 的取值范围是( )A.m>B.m<C.m>1D.m<1【考点】正比例函数的定义.【分析】先根据正比例函数的性质列出关于m的不等式,求出m的取值范围即可.【解答】解:∵正比例函数y=(1﹣3m)x中,y随x的增大而增大,∴1﹣3m>0,解得m< .故选:B.5.点B(m2+1,﹣1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标;非负数的性质:偶次方.【分析】根据非负数的性质确定出点B的横坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵m2≥0,∴m2+1≥1,∴点B(m2+1,﹣1)一定在第四象限.故选D.6.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟 0频数(通话次数) 20 16 9 5则通话时间不超过15分钟的频率是( )A.0.1B.0.4C.0.5D.0.9【考点】频数(率)分布表.【分析】根据表格可以得到总的频数和通话时间不超过15分钟的频数,从而可以求得通话时间不超过15分钟的频率.【解答】解:由表格可得,通话时间不超过15分钟的频率是:,故选D.7.在下列图象中,能作为一次函数y=﹣x+1的图象的是( )A. B. C. D.【考点】一次函数的图象.【分析】先根据一次函数y=﹣x+1中k=﹣1,b=1判断出函数图象即可.【解答】解:∵一次函数y=﹣x+1中k=﹣1<0,b=1>0,∴此函数的图象经过一、二、四象限,故选A.8.已知四边形ABCD是平行四边形,下列结论不正确的是( )A.当AC=BD时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是菱形【考点】菱形的判定;平行四边形的性质;矩形的判定.【分析】根据对角线相等的平行四边形是矩形可得A错误;根据对角线互相垂直的平行四边形是菱形可得B正确;根据有一个角是直角的平行四边形是矩形可得C正确;根据一组邻边相等的平行四边形是菱形可得D正确.【解答】解:A、当AC=BD时,它是菱形,说法错误;B、当AC⊥BD时,它是菱形,说法正确;C、当∠ABC=90°时,它是矩形,说法正确;D、当AB=BC时,它是菱形,说法正确,故选:A.9.某校的校内有一个两个相同的正六边形(即六条边都相等,六个角都相等)围成的花坛,边长为2.5m,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为( )A.20mB.25mC.30mD.35m【考点】正多边形和圆;菱形的性质.【分析】根据题意和正六边形的性质得出△BMG是等边三角形,再根据正六边形的边长得出BG=GM=2.5m,同理可证出AF=EF=2.5m,再根据AB=BG+GF+AF,求出AB,从而得出扩建后菱形区域的周长.【解答】解:如图,∵花坛是由两个相同的正六边形围成,∴∠FGM=∠GMN=120°,GM=GF=EF,∴∠BMG=∠BGM=60°,∴△BMG是等边三角形,∴BG=GM=2.5(m),同理可证:AF=EF=2.5(m)∴AB=BG+GF+AF=2.5×3=7.5(m),∴扩建后菱形区域的周长为7.5×4=30(m).故选:C.10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为( )A.x≤3B.x≥3C.x≤D.x≥【考点】一次函数与二元一次方程(组).【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式2x≥ax+4的解集即可.【解答】解:∵函数y=2x的图象过点A(m,3),∴将点A(m,3)代入y=2x得,2m=3,解得,m= ,∴点A的坐标为( ,3),∴由图可知,不等式2x≥ax+4的解集为x≥ .故选:D.11.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC 边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y= x+12B.y=﹣2x+24C.y=2x﹣24D.y= x﹣12【考点】函数关系式.【分析】根据题意可得2y+x=24,继而可得出y与x之间的函数关系式.【解答】解:由题意得:2y+x=24,故可得:y=﹣ x+12(0故选:A.12.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是( )A.1B.2C.3D.4【考点】一次函数的应用.【分析】观察函数图象,从图象中获取信息,根据速度,路程,时间三者之间的关系求得结果.【解答】解:由函数图象可知,乙比甲晚出发1小时,故①正确;乙出发3﹣1=2小时后追上甲,故②错误;甲的速度为:12÷3=4(千米/小时),故③正确;乙的速度为:12÷(3﹣1)=6(千米/小时),则甲到达B地用的时间为:20÷4=5(小时),乙到达B地用的时间为:20÷6= (小时),1+3 ,∴乙先到达B地,故④正确;正确的有3个.故选:C.13.如图,△AOB是等边三角形,B(2,0),将△AOB绕O点逆时针方向旋转90°到△A′OB′位置,则A′坐标是( )A.(﹣1, )B.(﹣,1)C.( ,﹣1)D.(1,﹣ )【考点】坐标与图形变化-旋转.【分析】过点A′作A′C⊥x轴于C,根据点B的坐标求出等边三角形的边长,再求出∠A′OC=30°,然后求出OC、A′C,再根据点A′在第二象限写出点A′的坐标即可.【解答】解:如图,过点A′作A′C⊥x轴于C,∵B(2,0),∴等边△AOB的边长为2,又∵∠A′OC=90°﹣60°=30°,∴OC=2× = ,A′C=2× =1,∵点A′在第二象限,∴点A′(﹣,1).故选B.14.如图,在边长为1的正方形ABCD中,对角线AC和BD相交于点O,P是BC边上任意一点,PE⊥BD于点E,PF⊥AC于点F,则PE+PF=( )A. B. C. D.【考点】正方形的性质.【分析】先根据勾股定理求出对角线BD,证明△BEP是等腰直角三角形,得出PE=BE,再证明四边形OEPF是矩形,得出PF=OE,得出PE+PF=BE+OE=OB即可.【解答】解:∵四边形ABCD是正方形,∴AB=AD=1,AC⊥BD,∠ABC=∠BCD=90°,∠CBO=∠BCO=45°,OB= BD,∴BD= = ,∠BOC=90°,∴OB= ,∵PE⊥BD于点E,PF⊥AC于点F,∴∠OEP=∠OFP=90°=∠EOF,△BEP是等腰直角三角形,∴四边形OEPF是矩形,PE=BE,∴PF=OE,∴PE+PF=BE+OE=OB= ;故选:B.15.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是( )A.②③B.②⑤C.①③④D.④⑤【考点】三角形中位线定理;平行线之间的距离.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN= AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴M N= AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.16.如图,在平面直角坐标系中,直线y=﹣ x+3与矩形OABC的边AB、BC 分别交于点E、F,若点B的坐标为(m,2),则m的值可能为( )A. B. C. D.【考点】一次函数图象上点的坐标特征;矩形的性质.【分析】求出点F和直线y=﹣ x+3与x轴交点的坐标,即可判断m的范围,由此可以解决问题.【解答】解:∵B、F两点的纵坐标相同,B点的纵坐标为2,∴点F的纵坐标为2,∵点F在y=﹣ x+3上,∴点F的坐标( ,2),∵直线y=﹣ x+3与x轴的交点为(2,0),∴由图象可知点B的横坐标∴选项中只有B符合.故选B.二、填空题(每小题3分,共12分)17.P(m﹣4,1﹣m)在x轴上,则m= 1 .【考点】点的坐标.【分析】根据x轴上的点的纵坐标为0列式计算即可得解.【解答】解:∵P(m﹣4,1﹣m)在x轴上,∴1﹣m=0,解得m=1.故答案为:1.18.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m= 2 .【考点】一次函数的性质.【分析】根据一次函数的增减性列出关于m的不等式组,求出m的值即可.【解答】解:∵一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,∴ ,解得m=2.故答案为:2.19.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=1,则AC的长为 2 .【考点】矩形的性质.【分析】由矩形的性质得出OA=OB,再证明△AOB是等边三角形,即可得出AB=OA,问题得解.【解答】解:∵四边形ABCD是矩形,∴OA= AC,OB= BD,BD=AC,∴OA=OB=1,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=1,∴AC=2OA=2,故答案为:2.20.如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是(7,3) .【考点】平行四边形的性质;坐标与图形性质.【分析】首先过点D作DE⊥OB于点E,过点C作CF⊥OB于点F,易证得△ODE≌△CBF,则可得CF=DE=3,BF=OE=2,继而求得OF的长,则可求得顶点C的坐标.【解答】解:过点D作DE⊥OB于点E,过点C作CF⊥OB于点F,∴∠OED=∠BFC=90°,∵平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),∴OB∥CD,OD∥BC,∴DE=CF=3,∠DOE=∠CBF,在△ODE和△CBF中,,∴△ODE≌△CBF(AAS),∴BF=OE=2,∴OF=OB+BF=7,∴点C的坐标为:(7,3).故答案为:(7,3).三、解答题(本题8分)21.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.【考点】多边形内角与外角.【分析】一个多边形的内角和是它的外角和的4倍,而外角和是360°,则内角和是4×360°.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:设这个多边形有n条边.由题意得:(n﹣2)×180°=360°×4,解得n=10.故这个多边形的边数是10.22.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周)(1)写出点B的坐标(4,6) .(2)当P点移动了4秒时,直接写出点P的坐标(4,4)(3)在移动过程中,当点P到x轴距离为5个单位长度时,则点P移动的时间为 4.5秒或7.5秒.【考点】四边形综合题.【分析】(1)由题意,根据A与C坐标确定出OC与OA的长,即可确定出B的坐标;(2)由P移动的速度与时间确定出移动的路程,求出AP的长,根据此时P 在AB边上,确定出P的坐标即可;(3)分两种情况考虑:当P在AB边上;当P在OC边上,分别求出P移动的时间即可.【解答】解:(1)∵长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),B在第一象限,∴OA=BC=4,OC=AB=6,则B坐标为(4,6);(2)∵P移动的速度为每秒2个单位,且运动时间是4秒,∴P移动的路程为8个单位,∴此时P在AB边上,且AP=4,则P坐标为(4,4);(3)分两种情况考虑:当P在AB边上时,由PA=5,得到P移动的路程为5+4=9,此时P移动的时间为9÷2=4.5(秒);当P在CO边上时,由OP=5,得到P移动的路程为4+6+6﹣5=11,此时P移动的时间是11÷2=5.5(秒),综上,P移动的时间为4.5秒或7.5秒.故答案为:(1)(4,6);(2)(4,4);(3)4.5秒或7.5秒23.如图,将▱ABCD沿CE折叠,使点D落在BC边上的F处,点E在AD上.(1)求证:四边形ABFE为平行四边形;(2)若AB=4,BC=6,则四边形ABFE的周长为12 .【考点】翻折变换(折叠问题);平行四边形的判定与性质.【分析】(1)根据折叠的性质得到EF=ED,∠CFE=∠CDE,根据平行四边形的性质得到AD∥BC,∠B=∠D,由平行线的判定得到AE∥BF,即可得到结论;(2)根据平行四边形的性质得到EF=AB=4.求得ED=4,得到AE=BF=6﹣4=2,于是得到结论.【解答】(1)证明:∵将 ABCD沿CE折叠,使点D落在BC边上的F处,∴EF=ED,∠CFE=∠CDE,∵四边形ABCD是平行四边形,∴AD∥BC,∠B=∠D,∴AE∥BF,∠B=∠CFE,∴AB∥EF,∴四边形ABFE为平行四边形;(2):∵四边形ABFE为平行四边形,∴EF=AB=4,∵EF=ED,∴ED=4,∴AE=BF=6﹣4=2,∴四边形ABFE的周长=AB+BF+EF+EA=12,故答案为:1224.为了了解某校七年级男生的体能情况,从该校七年级抽取50名男生进行1分钟跳绳测试,把所得数据整理后,画出频数分布直方图.已知图中从左到右第一、第二、第三、第四小组的频数的比为1:3:4:2.(1)总体是某校七年级男生的体能情况,个体是每个男生的体能情况,样本容量是50 ;(2)求第四小组的频数和频率;(3)求所抽取的50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比.【考点】频数(率)分布直方图.【分析】(1)根据总体、个体和样本容量的定义分别进行解答即可;(2)根据第一、第二、第三、第四小组的频数的比为1:3:4:2,可得第四小组的频率是,再用抽查的总人数乘以第四小组的频率即可求出频数;(3)根据1分钟跳绳次数在100次以上(含100次)的人数是第三、第四小组,再求出第三、第四小组的频率之和即可.【解答】解:(1)总体是某校七年级男生的体能情况;个体是每个男生的体能情况,样本容量是50;故答案为:某校七年级男生的体能情况;每个男生的体能情况;50.(2)第四小组的频率是: =0.2;第四小组的频数是:50× =10;(3)根据题意得:1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比是:×100%=60%.25.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.【考点】一次函数图象与几何变换.【分析】(1)根据平移的性质得到点C的坐标;把点B、C的坐标代入直线方程y=kx+b(k≠0)来求该直线方程;(2)根据平移的性质得到点D的坐标,然后将其代入(1)中的函数解析式进行验证即可;(3)根据点B的坐标求得直线l2的解析式,据此求得相关线段的长度,并利用三角形的面积公式进行解答.【解答】解:(1)∵B(﹣3,3),将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,∴﹣3+1=﹣2,3﹣2=1,∴C的坐标为(﹣2,1),设直线l1的解析式为y=kx+c,∵点B、C在直线l1上,∴代入得:解得:k=﹣2,c=﹣3,∴直线l1的解析式为y=﹣2x﹣3;(2)∵将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,C(﹣2,1),∴﹣2﹣3=﹣5,1+6=7,∴D的坐标为(﹣5,7),代入y=﹣2x﹣3时,左边=右边,即点D在直线l1上;(3)把B的坐标代入y=x+b得:3=﹣3+b,解得:b=6,∴y=x+6,∴E的坐标为(0,6),∵直线y=﹣2x﹣3与y轴交于A点,∴A的坐标为(0,﹣3),∴AE=6+3=9,∵B(﹣3,3),∴△ABE的面积为×9×|﹣3|=13.5.26.如图,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD、CD;(1)求证:∠BAE=∠DAE;(2)当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论;(3)当AC=8cm,BD=6cm,现将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长是多少?【考点】正方形的性质;线段垂直平分线的性质;作图—基本作图.【分析】(1)由SSS证明△ABC≌△ADC,得出对应角相等即可;(2)证出AB=BC=DC=AD,即可得出结论;(3)由等腰三角形的性质得出AC⊥BD,求出四边形ABCD的面积,即可得出拼成的正方形的边长.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BAE=∠DAE;(2)解:四边形ABCD是菱形,理由如下:∵AB=AD,BC=DC,AB=BC,∴AB=BC=DC=AD,∴四边形ABCD是菱形;(3)解:∵AB=AD,∠BAE=∠DAE,∴AC⊥BD,∴四边形ABCD的面积= AC•BD=8×6=24(cm2),∴拼成的正方形的边长= =2 (cm).。
2017年春季宜昌市青少年宫八年级(下)数学期末测试及答案
2017年春季宜昌市青少年宫八年级数学期末测试考试时间:100分钟满分:120分姓名:得分:一、选择题(每小题3分,共45分)1.使二次根式2a-有意义的a的取值范围是()A.a≥﹣2 B.a≥2 C.a≤2 D.a≤﹣22.菱形具有而平行四边形不一定具有的性质是()A.两组对边分别平行 B.两组对角分别相等C.对角线互相平分 D.对角线互相垂直3.与3是同类二次根式的是()A.2 B.9 C.18 D.1 34.下面每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )A.3、4、5B.6、8、10C.325、、D.5、12、135.一个正比例函数的图象经过点(-2,4),它的表达式为()A.2y x=-B.2y x=C.12y x=- D.12y x=6.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形7.小红同学四次数学测试成绩分别是:96,104,104,116,关于这组数据下列说法错误的是()A.平均数是105 B.众数是104 C.中位数是104 D.方差是508.如图,DE是△ABC的中位线,若BC的长为3cm,则DE的长是()A.2cmB.1.5cmC.1.2cmD.1cm9.折叠一张正方形纸片,按如下折法不一定能折出45°角的是()A. B. C. D.第8题图10.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B 处,她在灯光照射下的影长l 与行走的路程S 之间的变化关系用图象刻画出来,大致图象是( ).A .B .C .D .11.如图,在矩形ABCD 中,AB =2,BC =3,M 为BC 中点,连接AM ,过D 作DE ⊥AM 于E ,则DE 的长度为( ) A .2 B . C.13 D .12.若一次函数y=kx+b 的图象如图所示,则y <0时自变量x 的取值范围是( ) A .x >2 B .x <2 C .x >﹣1 D .x <﹣113 A .服装型号的平均数 B .服装型号的众数 C .服装型号的中位数 D .最小的服装型号14.在判断“一个四边形门框是否为矩形”的数学活动课上,一个合作学习小组的4位同学分别拟定了如下的方案,其中正确的是( )A.测量对角线是否相等B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中三个角是否都为直角 15.在同一坐标系中,正比例函数y=kx 与一次函数y=x -k 的图象为( )第11题图第12题图二、解答题(6+6+7+7+8+8+10+11+12=75)16.计算(1)()3+(2)2⨯317.已知a,b,c(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.18.某电信公司给顾客提供了两种手机上网计费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外,再以每分钟0.06元的价格按上网时间计费,假设顾客甲一个月手机上网的时间共有x分钟,上网费用为y元。
中学八级(下)期末数学试卷两套合集二附答案解析
中学八级(下)期末数学试卷两套合集二附答案解析2017年中学八年级(下)期末数学试卷两套合集二附答案解析2017年八年级(下)期末数学试卷一.选择题(本大题共10小题,每小题2分,满分20分.)1.计算的结果是()A.B.4 C.8 D.±42.当x=3时,函数y=﹣2x+1的值是()A.﹣5 B.3 C.7 D.53.若正比例函数y=kx的图象经过点(2,1),则k的值为()A.﹣B.C.﹣2 D.24.正方形的一条对角线长为4,则这个正方形的面积是()A.8 B.4 C.8 D.165.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.6.不能判定一个四边形是平行四边形的条件是()A.两组对边分别平行B.一组对边平行且相等C.一组对边平行,另一组对边相等D.两组对边分别相等7.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n 的解集为()A.x≥m B.x≥2 C.x≥1 D.y≥28.某校有甲、乙两个合唱队,两队队员的平均身高都为160cm,标准差分别是S甲、S乙,且S甲>S乙,则两个队的队员的身高较整齐的是()A.甲队B.两队一样整齐C.乙队D.不能确定9.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s(千米)与所用时间t(分)之间的关系()A.B.C.D.10.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B. +1 C.﹣1 D. +1二.填空题(共6题,每题2分,共12分,直接把最简答案填写在题中的横线上)11.在函数y=中,自变量x的取值范围是______.12.比较大小:4______(填“>”或“<”)13.如图所示,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为______.14.把直线y=x+1沿x轴向右平移2个单位,所得直线的函数解析式为______.15.有一组数据:3,a,4,6,7.它们的平均数是5,那么这组数据的方差是______.16.如图是“赵爽弦图”,△ABH、△CDF和△DAE是四个全等的直角三角形,四边形ABCD 和EFGH都是正方形,如果AH=6,EF=2,那么AB等于______.三.解答题(本大题共9小题,满分68分.解答应写出文字说明、证明过程或演算步骤.)17.(1)计算:;(2)化简:(x>0).18.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.19.已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4.(1)求此一次函数的解析式;(2)求一次函数的图象与两坐标轴的交点坐标.20.如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)连接DE、BF,若BD⊥EF,试探究四边形EBDF的形状,并对结论给予证明.21.老师想知道某校学生每天上学路上要花多少时间,于是随机选取30名同学每天来校的大致时间(单位:分钟)进行统计,统计表如下:时间 5 10 15 20 25 30 35 45人数 3 3 6 12 2 2 1 1 (1)写出这组数据的中位数和众数;(2)求这30名同学每天上学的平均时间.22.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,(1)求证:∠DHO=∠DCO.(2)若OC=4,BD=6,求菱形ABCD的周长和面积.23.如图,一次函数的图象分别与x轴、y轴交于A、B,已线段AB为边在第一象限内作等腰Rt△ABC,使∠BAC=90°.(1)分别求点A、C的坐标;(2)在x轴上求一点P,使它到B、C两点的距离之和最小.24.甲、乙两家商场平时以同样的价格出售某种商品,“五一节”期间,两家商场都开展让利酬宾活动,其中甲商场打8折出售,乙商场对一次性购买商品总价超过300元后的部分打7折.(1)设商品原价为x元,某顾客计划购此商品的金额为y元,分别就两家商场让利方式求出y 关于x的函数解析式,并写出x的取值范围,作出函数图象(不用列表);(2)顾客选择哪家商场购物更省钱?25.已知,矩形ABCD中,AB=4cm,AD=2AB,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE 为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒.当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值;②若点P、Q的速度分别为v1、v2(cm/s),点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,试探究a与b满足的数量关系.参考答案与试题解析一.选择题(本大题共10小题,每小题2分,满分20分.)1.计算的结果是()A.B.4 C.8 D.±4【考点】二次根式的乘除法.【分析】根据=(a≥0,b≥0)进行计算即可.【解答】解:原式===4,故选:B.2.当x=3时,函数y=﹣2x+1的值是()A.﹣5 B.3 C.7 D.5【考点】一次函数的性质.【分析】把x=3代入函数解析式求得相应的y 值即可.【解答】解:当x=3时,y=﹣2x+1=﹣2×3+1=﹣6+1=﹣5.故选:A.3.若正比例函数y=kx的图象经过点(2,1),则k的值为()A.﹣B.C.﹣2 D.2【考点】一次函数图象上点的坐标特征.【分析】根据一次函数图象上点的坐标特征,把(2,1)代入y=kx中即可计算出k的值.【解答】解:把(2,1)代入y=kx得2k=1,解得k=.故选B.4.正方形的一条对角线长为4,则这个正方形的面积是()A.8 B.4 C.8 D.16【考点】正方形的性质.【分析】根据正方形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:∵正方形的一条对角线长为4,∴这个正方形的面积=×4×4=8.故选:A.5.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.【考点】勾股定理;点到直线的距离;三角形的面积.【分析】根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.【解答】解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选A6.不能判定一个四边形是平行四边形的条件是()A.两组对边分别平行B.一组对边平行且相等C.一组对边平行,另一组对边相等D.两组对边分别相等【考点】平行四边形的判定.【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,即可选出答案.【解答】解:A、两组对边分别平行,可判定该四边形是平行四边形,故A不符合题意;B、一组对边平行且相等,可判定该四边形是平行四边形,故B不符合题意;C、一组对边平行另一组对边相等,不能判定该四边形是平行四边形,也可能是等腰梯形,故C 符合题意;D、两组对边分别相等,可判定该四边形是平行四边形,故D不符合题意故选:C.7.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n 的解集为()A.x≥m B.x≥2 C.x≥1 D.y≥2【考点】一次函数与一元一次不等式.【分析】首先将已知点的坐标代入直线y=x+1求得a的值,然后观察函数图象得到在点P的右边,直线y=x+1都在直线y=mx+n的上方,据此求解.【解答】解:∵直线l1:y=x+1与直线l2:y=mx+n 相交于点P(a,2),∴a+1=2,解得:a=1,观察图象知:关于x的不等式x+1≥mx+n的解集为x≥1,故选C.8.某校有甲、乙两个合唱队,两队队员的平均身高都为160cm,标准差分别是S甲、S乙,且S甲>S乙,则两个队的队员的身高较整齐的是()A.甲队B.两队一样整齐C.乙队D.不能确定【考点】标准差.【分析】根据标准差是方差的算术平方根以及方差的意义,方差越小数据越稳定,故比较方差后可以作出判断.【解答】解:因为S甲>S乙,所以S甲2>S乙2,故有甲的方差大于乙的方差,故乙队队员的身高较为整齐.故选C.9.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s(千米)与所用时间t(分)之间的关系()A.B.C.D.【考点】函数的图象.【分析】根据题意分析可得:他回家过程中离家的距离S(千米)与所用时间t(分)之间的关系有3个阶段;(1)、行使了5分钟,位移减小;(2)、因故停留10分钟,位移不变;(3)、继续骑了5分钟到家,位移继续减小,直到为0;【解答】解:因为小强家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离.故选D.10.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B. +1 C.﹣1 D. +1【考点】勾股定理.【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=5,在Rt△ADC中,DC===1,∴BC=+1.故选D.二.填空题(共6题,每题2分,共12分,直接把最简答案填写在题中的横线上)11.在函数y=中,自变量x的取值范围是x ≥1.【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x 的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.12.比较大小:4>(填“>”或“<”)【考点】实数大小比较;二次根式的性质与化简.【分析】根据二次根式的性质求出=4,比较和的值即可.【解答】解:4=,>,∴4>,故答案为:>.13.如图所示,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为45°.【考点】等腰直角三角形;勾股定理;勾股定理的逆定理.【分析】分别在格点三角形中,根据勾股定理即可得到AB,BC,AC的长度,继而可得出∠ABC 的度数.【解答】解:如图,连接AC.根据勾股定理可以得到:AC=BC=,AB=,∵()2+()2=()2,即AC2+BC2=AB2,∴△ABC是等腰直角三角形.∴∠ABC=45°.故答案为:45°.14.把直线y=x+1沿x轴向右平移2个单位,所得直线的函数解析式为y=x﹣1.【考点】一次函数图象与几何变换.【分析】直接根据“左加右减”的平移规律求解即可.【解答】解:把直线y=x+1沿x轴向右平移2个单位,所得直线的函数解析式为y=(x﹣2)+1,即y=x﹣1.故答案为y=x﹣1.15.有一组数据:3,a,4,6,7.它们的平均数是5,那么这组数据的方差是2.【考点】方差;算术平均数.【分析】先由平均数的公式计算出a的值,再根据方差的公式计算.一般地设n个数据,x1,x 2,…,x n的平均数为,=(x1+x2+…+x n),则方差S 2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:a=5×5﹣3﹣4﹣6﹣7=5,s2= [(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2.故答案为:2.16.如图是“赵爽弦图”,△ABH、△CDF和△DAE是四个全等的直角三角形,四边形ABCD 和EFGH都是正方形,如果AH=6,EF=2,那么AB等于10.【考点】勾股定理的证明.【分析】在直角三角形AHB中,利用勾股定理进行解答即可.【解答】解:∵AH=6,EF=2,∴BG=AH=6,HG=EF=2,∴BH=8,∴在直角三角形AHB中,由勾股定理得到:AB===10.故答案是:10.三.解答题(本大题共9小题,满分68分.解答应写出文字说明、证明过程或演算步骤.)17.(1)计算:;(2)化简:(x>0).【考点】二次根式的混合运算.【分析】(1)首先化简二次根式,再合并即可;(2)首先把分子分母化简二次根式,再分母有理化即可.【解答】(1)解:=2﹣=;(2)解:(x>0)==x.18.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【考点】平行四边形的性质;角平分线的性质;勾股定理的逆定理;矩形的判定.【分析】(1)根据平行四边形的性质,可得AB 与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.19.已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4.(1)求此一次函数的解析式;(2)求一次函数的图象与两坐标轴的交点坐标.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)设一次函数解析式为y=kx+b,将x=3、y=1,x=﹣2、y=﹣4代入求得k、b的值即可;(2)在解析式中分别令x=0和y=0求解可得.【解答】解:(1)设一次函数解析式为y=kx+b,∵当x=3时,y=1;当x=﹣2时,y=﹣4,∴,解得:,∴该一次函数解析式为y=x﹣2;(2)当x=0时,y=﹣2,∴一次函数图象与y轴交点为(0,﹣2),当y=0时,得:x﹣2=0,解得:x=2,∴一次函数图象与x轴交点为(2,0).20.如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)连接DE、BF,若BD⊥EF,试探究四边形EBDF的形状,并对结论给予证明.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)根据平行四边形的性质可得BO=DO,AO=CO,再利用等式的性质可得EO=FO,然后再利用SAS定理判定△BOE≌△DOF即可;(2)根据BO=DO,FO=EO可得四边形BEDF 是平行四边形,再根据对角线互相垂直的平行四边形是菱形可得四边形EBDF为菱形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴BO=DO,AO=CO,∵AE=CF,∴AO﹣AE=CO﹣FO,∴EO=FO,在△BOE和△DOF中,∴△BOE≌△DOF(SAS);(2)四边形EBDF为菱形,等三角形的判定,以及菱形的判定,关键是掌握理由:∵BO=DO,FO=EO,∴四边形BEDF是平行四边形,∵BD⊥EF,∴四边形EBDF为菱形.21.老师想知道某校学生每天上学路上要花多少时间,于是随机选取30名同学每天来校的大致时间(单位:分钟)进行统计,统计表如下:时间 5 10 15 20 25 30 35 45 人数 3 3 6 12 2 2 1 1 (1)写出这组数据的中位数和众数;(2)求这30名同学每天上学的平均时间.【考点】众数;加权平均数;中位数.【分析】(1)根据中位数和众数的含义和求法,写出这组数据的中位数和众数即可.(2)首先求出这30名同学每天上学一共要用多少时间;然后用它除以30,求出平均时间是多少即可.【解答】解:(1)根据统计表,可得这组数据的第15个数、第16个数都是20,∴这组数据的中位数是:(20+20)÷2=40÷2=20这组数据的众数是20.(2)(5×3+10×3+15×6+20×12+25×2+30×2+35×1+45×1)÷30=(15+30+90+240+50+60+35+45)÷30=565÷30=18(分钟)答:这30名同学每天上学的平均时间是18分钟.22.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,(1)求证:∠DHO=∠DCO.(2)若OC=4,BD=6,求菱形ABCD的周长和面积.【考点】菱形的性质.【分析】(1)先根据菱形的性质得OD=OB,AB ∥CD,BD⊥AC,则利用DH⊥AB得到DH⊥CD,∠DHB=90°,所以OH为Rt△DHB的斜边DB上的中线,得到OH=OD=OB,利用等腰三角形的性质得∠1=∠DHO,然后利用等角的余角相等证明结论;(2)先根据菱形的性质得OD=OB=BD=3,OA=OC=4,BD⊥AC,再根据勾股定理计算出CD,然后利用菱形的性质和面积公式求菱形ABCD的周长和面积.【解答】(1)证明:∵四边形ABCD是菱形,∴OD=OB,AB∥CD,BD⊥AC,∵DH⊥AB,∴DH⊥CD,∠DHB=90°,∴OH为Rt△DHB的斜边DB上的中线,∴OH=OD=OB,∴∠1=∠DHO,∵DH⊥CD,∴∠1+∠2=90°,∵BD⊥AC,∴∠2+∠DCO=90°,∴∠1=∠DCO,∴∠DHO=∠DCO;(2)解:∵四边形ABCD是菱形,∴OD=OB=BD=3,OA=OC=4,BD⊥AC,在Rt△OCD中,CD==5,∴菱形ABCD的周长=4CD=20,菱形ABCD的面积=×6×8=24.23.如图,一次函数的图象分别与x轴、y轴交于A、B,已线段AB为边在第一象限内作等腰Rt△ABC,使∠BAC=90°.(1)分别求点A、C的坐标;(2)在x轴上求一点P,使它到B、C两点的距离之和最小.【考点】一次函数图象上点的坐标特征;等腰直角三角形;轴对称-最短路线问题.【分析】(1)作CD⊥x轴,易证∠OAB=∠ACD,即可证明△ABO≌△CAD,可得AD=OB,CD=OA,即可解题;(2)作C点关于x轴对称点E,连接BE,即可求得E点坐标,根据点P在直线BE上即可求得点P坐标,即可解题.【解答】解:(1)作CD⊥x轴,∵∠OAB+∠CAD=90°,∠CAD+∠ACD=90°,∴∠OAB=∠ACD,在△ABO和△CAD中,,∴△ABO≌△CAD(AAS)∴AD=OB,CD=OA,∵y=﹣x+2与x轴、y轴交于点A、B,∴A(2,0),B(0,2),∴点C坐标为(4,2);(2)作C点关于x轴对称点E,连接BE,则E点坐标为(4,﹣2),△ACD≌△AED,∴AE=AC,∴直线BE解析式为y=﹣x+2,设点P坐标为(x,0),则(x,0)位于直线BE上,∴点P坐标为(2,0)于点A重合.24.甲、乙两家商场平时以同样的价格出售某种商品,“五一节”期间,两家商场都开展让利酬宾活动,其中甲商场打8折出售,乙商场对一次性购买商品总价超过300元后的部分打7折.(1)设商品原价为x元,某顾客计划购此商品的金额为y元,分别就两家商场让利方式求出y 关于x的函数解析式,并写出x的取值范围,作出函数图象(不用列表);(2)顾客选择哪家商场购物更省钱?【考点】一次函数的应用.【分析】(1)根据两家商场的让利方式分别列式整理即可;(2)利用两点法作出函数图象即可;(3)求出两家商场购物付款相同的x的值,然后根据函数图象作出判断即可.【解答】解:(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤300),y=0.7(x﹣300)+300=0.7x+90,即y=0.7x+90(x>300);(2)如图所示;(3)当0.8x=0.7x+90时,x=900,所以,x<900时,甲商场购物更省钱,x=900时,甲、乙两商场购物更花钱相同,x>900时,乙商场购物更省钱.25.已知,矩形ABCD中,AB=4cm,AD=2AB,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE 为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒.当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值;②若点P、Q的速度分别为v1、v2(cm/s),点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,试探究a与b满足的数量关系.【考点】四边形综合题.【分析】(1)先证明四边形ABCD为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定,根据勾股定理即可求AF的长;(2)①分情况讨论可知,P点在BF上,Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可;②由①的结论用v1、v2表示出A、C、P、Q四点为顶点的四边形是平行四边形时所需的时间,计算即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE.∵EF垂直平分AC,∴OA=OC.∵在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF.∵EF⊥AC,∴四边形AFCE为菱形.设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,在Rt△ABF中,AB=4cm,由勾股定理得:AB2+BF2=AF2,即42+(8﹣x)2=x2,解得:x=5,∴AF=5;(2)①解:根据题意得,P点AF上时,Q点CD上,此时A,C,P,Q四点不可能构成平行四边形;同理P点AB上时,Q点DE或CE上,也不能构成平行四边形.∴只有当P点在BF上,Q点在ED上时,才能构成平行四边形,∴以A,C,P,Q四点为顶点的四边形是平行四边形时,PC=QA,∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=5t,QA=12﹣4t,∴5t=12﹣4t,解得:t=,∴以A,C,P,Q四点为顶点的四边形是平行四边形时,t=秒;②由①得,PC=QA时,以A,C,P,Q四点为顶点的四边形是平行四边形,设运动时间为y秒,则yv1=12﹣yv2,解得,y=,∴a=×v1,b=×v2,∴=.八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.平行四边形ABCD中,若∠B=2∠A,则∠C 的度数为()A.120°B.60°C.30°D.15°3.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示()选手甲乙丙丁方差0.56 0.60 0.50 0.45则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁4.若A(1,y1),B(2,y2)两点都在反比例函数y=的图象上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定5.如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为()A.16 B.24 C.4D.86.下列命题中,正确的是()A.有一组邻边相等的四边形是菱形B.对角线互相平分且垂直的四边形是矩形C.两组邻角相等的四边形是平行四边形D.对角线互相垂直且相等的平行四边形是正方形7.如图,正方形ABCD的两条对角线AC,BD 相交于点O,点E在BD上,且BE=CD,则∠BEC的度数为()A.22.5°B.60°C.67.5°D.75°8.关于x的一元二次方程x2﹣2x+k=0有两个实数根,则实数k的取值范围是()A.k≤1 B.k>1 C.k=1 D.k≥19.已知正比例函数y=kx的图象与反比例函数y=的图象交于A,B两点,若点A的坐标为(﹣2,1),则关于x的方程=kx的两个实数根分别为()A.x1=﹣1,x2=1 B.x1=﹣1,x2=2 C.x1=﹣2,x2=1 D.x1=﹣2,x2=210.中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为S1,S2,S3,若S1+S2+S3=18,则正方形EFGH的面积为()A.9 B.6 C.5 D.二、填空题(本题共20分,第11-14题,每小题3分,第15-18题,每小题3分)11.关于x的一元二次方程x2﹣6x+m=0有一个根为2,则m的值为______.12.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为______.13.某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是______.14.将一元二次方程x2+4x+1=0化成(x+a)2=b 的形式,其中a,b是常数,则a+b=______.15.反比例函数y=在第一象限的图象如图,请写出一个满足条件的k值,k=______.16.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′,BC′与AD交于点E,若AB=3,BC=4,则DE 的长为______.17.如图,平安路与幸福路是两条平行的道路,且与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处,如果小强同学站在平安路与新兴大街的交叉路口,准备去书店,按图中的街道行走,最近的路程为______m.18.如图,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图2所示,则线段AB的长为______,线段BC的长为______.三、解答题(本题共16分,第19题8分,第20题8分)19.计算:(1)﹣+(+1)(﹣1)(2)×÷.20.解方程:(1)x2﹣6x+5=0(2)2x2﹣3x﹣1=0.四、解答题(本题共34分,第21-22题,每小题7分,第23题6分,第24-25题,每小题7分)21.如图,在▱ABCD中,点E,M分别在边AB,CD上,且AE=CM,点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF;(2)连接EM,FN,若EM⊥FN,求证:EFMN 是菱形.22.为了让同学们了解自己的体育水平,初二1班的体育康老师对全班45名学生进行了一次体育模拟测试(得分均为整数)成绩满分为10分,成绩达到9分以上(包含9分)为优秀,成绩达到6分以上(包含6分)为合格,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数合格率优秀率男生 2 8 7 95% 40% 女生7.92 1.99 8 96% 36% 根据以上信息,解答下列问题:(1)在这次测试中,该班女生得10分的人数为4人,则这个班共有女生______人;(2)补全初二1班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上;(3)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由;(5)体育康老师说,从整体看,1班的体育成绩在合格率方面基本达标,但在优秀率方面还不够理想,因此他希望全班同学继续加强体育锻炼,争取在期末考试中,全班的优秀率达到60%,若男生优秀人数再增加6人,则女生优秀人数再增加多少人才能完成康老师提出的目标?23.已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.24.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别为OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形;(2)求证:四边形EFMN是矩形;(3)连接DM,若DM⊥AC于点M,ON=3,求矩形ABCD的面积.25.在平面直角坐标系xOy中,四边形OABC 是矩形,点B的坐标为(4,3),反比例函数y=的图象经过点B.(1)求反比例函数的解析式;(2)一次函数y=ax﹣1的图象与y轴交于点D,与反比例函数y=的图象交于点E,且△ADE的面积等于6,求一次函数的解析式;(3)在(2)的条件下,直线OE与双曲线y=(x>0)交于第一象限的点P,将直线OE向右平移个单位后,与双曲线y=(x>0)交于点Q,与x轴交于点H,若QH=OP,求k的值.26.如图,在数轴上点A表示的实数是______.27.我们已经学习了反比例函数,在生活中,两个变量间具有反比例函数关系的实例有许多,例如:在路程s一定时,平均速度v是运行时间t 的反比例函数,其函数关系式可以写为:v=(s 为常数,s≠0).请你仿照上例,再举一个在日常生活、学习中,两个变量间具有反比例函数关系的实例:______;并写出这两个变量之间的函数解析式:______.28.已知:关于x的一元二次方程mx2﹣3(m﹣1)x+2m﹣3=0(m>3).(1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2(用含m 的代数式表示);①求方程的两个实数根x1,x2(用含m的代数式表示);②若mx1<8﹣4x2,直接写出m的取值范围.29.四边形ABCD是正方形,对角线AC,BD 相交于点O.(1)如图1,点P是正方形ABCD外一点,连接OP,以OP为一边,作正方形OPMN,且边ON与边BC相交,连接AP,BN.①依题意补全图1;②判断AP与BN的数量关系及位置关系,写出结论并加以证明;(2)点P在AB延长线上,且∠APO=30°,连接OP,以OP为一边,作正方形OPMN,且边ON与BC的延长线恰交于点N,连接CM,若AB=2,求CM的长(不必写出计算结果,简述求CM长的过程)参考答案与试题解析一、选择题(本题共30分,每小题3分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】利用最简二次根式的定义判断即可.【解答】解:A、为最简二次根式,符合题意;B、=2,不合题意;C、=,不合题意;D、=2,不合题意,故选A【点评】此题考查了最简二次根式,熟练掌握最简二次根式的定义是解本题的关键.2.平行四边形ABCD中,若∠B=2∠A,则∠C 的度数为()A.120°B.60°C.30°D.15°【考点】平行四边形的性质.。
宜昌市八年级下学期数学期末考试试卷
宜昌市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、填空题 (共6题;共6分)1. (1分)(2019·南通) 5G信号的传播速度为300000000m/s,将300000000用科学记数法表示为________.2. (1分)在一次青年歌手大赛上,七位评委为某歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0,去掉一个最高分和一个最低分后,所剩数据的平均数为________ .3. (1分)(2013·南通) 如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于________度.4. (1分)(2017·东河模拟) 化简:÷(﹣a﹣2)=________.5. (1分)在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为________.6. (1分)计算: 1 .二、选择题 (共8题;共16分)7. (2分)(2016·呼和浩特) 互为相反数的两个数的和为()A . 0B . ﹣1C . 1D . 28. (2分)等式成立的条件是().A . a、b同号B .C .D .9. (2分) (2016七下·吴中期中) 下列计算:①x(2x2﹣x+1)=2x3﹣x2+1;②(a﹣b)2=a2﹣b2;③(x﹣4)2=x2﹣4x+16;④(5a﹣1)(﹣5a﹣1)=25a2﹣1;⑤(﹣a﹣b)2=a2+2ab+b2 .其中正确的有()A . 1个B . 2个C . 3个D . 4个10. (2分)(2017·新化模拟) 不等式组的解集为()A . x≤2B . x<4C . 2≤x<4D . x≥211. (2分)下列说法正确的有()①如果∠A+∠B=∠C,那么△ABC是直角三角形;②如果∠A:∠B:∠C=1:2:3,则三角形是直角三角形;③如果三角形的三边长分别为4、4、6,那么这个三角形不是直角三角形;④有一个角是直角的三角形是直角三角形.A . 1个B . 2个C . 3个D . 4个12. (2分) (2017八下·郾城期中) ▱ABCD的对角线AC、BD相交于点O,下列条件中,不能判定▱ABCD是菱形的是()A . ∠A=∠DB . AB=ADC . AC⊥BDD . CA平分∠BCD13. (2分)(2017·武汉模拟) 某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)3 3.54 4.5人数1121A . 中位数是4,平均数是3.75B . 众数是4,平均数是3.75C . 中位数是4,平均数是3.8D . 众数是2,平均数是3.814. (2分)(2019·泰安模拟) 抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A .B .C .D .三、解答题 (共9题;共68分)15. (5分)(2020·顺义模拟) 计算:.16. (5分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.17. (5分) (2020八下·哈尔滨月考) 如图,在四边形ABCD中,∠B=∠C=90°,点E在BC上,∠AEC=135°,CE=CD , AB=1,AD=.求线段BC的长.18. (12分)某学校为了解七年级男生体质健康情况,随机抽取若干名男生进行测试,测试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图1、图2两幅不完整的统计图,请根据图中信息回答下列问题:(1)本次接收随机抽样调查的男生人数为________ 人,扇形统计图中“良好”所对应的圆心角的度数为________(2)补全条形统计图中“优秀”的空缺部分(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到“良好”的人数19. (10分) (2019·陕西模拟) 某服装厂每天生产A、B两种品牌的服装共600件,A、B两种品牌的服装每件的成本和利润如表:设每天生产A种品牌服装x件,每天两种服装获利y元.A B成本元件5035利润元件2015(1)请写出y关于x的函数关系式;(2)如果服装厂每天至少投入成本26400元,那么每天至少获利多少元?20. (5分)如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论。
2017年春季(4月)宜昌市八年级下数学试卷调考答案
2017年宜昌市八年级4月数学试题参考答案及评分标准一、选择题(3分×7=21分)二、填空题(3分×3=9分)8. 14;9. 2ab;10. 4 .三、解答题(本大题共有7小题,计70分)11.(5分)解:能。
………………1分∵x-1≥0,1-x≥0, ………………3分∴x-1=0,………………4分∴x=1,y=0.………………5分12.(6分)解:去分母得x+2+x(x+2)=x2 ………………2分x+2+x2 +2x=x2………………3分3x=﹣2∴x=2-3……………4分经检验:x=2-3是原方程的解. ………………6分13.(8分)解:(1)a=20,………………2分学生总数为500 ………………3分(2)C组人数为:500×40%=200 ………………5分第13题图(3)36%×1500=540 ………………7分答:全校跳绳数不少于150次的学生大约有540名. ………………8分14.(8分)解:∵小球滚动的速度与机器人行走的速度相等,∴BC=AC ,………………2分设BC=x ,则OC=OA ﹣AC=45﹣x ,………………4分在Rt △BOC 中,根据勾股定理可得:(45﹣x )2+152=x 2,………………6分解得x =25.即机器人行走的路程为25cm .………………8分15.(11分)解:(1)①20x =14x +18……………………3分x =3 ……………………4分②16x =14x +18……………………5分x =9 ……………………6分当购买A 书3本或9本时,两种方案的花费一样……………………7分(2)当购买A 书数量x 满足0<x <3或6≤x <9时方案一更省钱(或者购买A 书数量为1、2、6、7、8本时方案一更省钱)………………11分16.(15分)解:(1)MK =LN =212)1(+-=--x l x l 2)1(21+-=+-⋅=x l x x l x S 张家……………………2分 BD =21y l π-+ 22221)1(2121221y y yl y l y y y l y y S πππππ-+=-++=-+⋅+=李家……………4分 (2)当l =9,x =3y ,π≈3时229152)139(3y y y y S -=+-=张家 22310y y S -=李家 )35(352310-2915-222y y y y y y y y S S -=-=+-=李家张家……………………7分第24(2)图 ∵3100<<y 分三种情况: 1)当035>-y 时,即350<<y 时, 0->李家张家S S∴张家菜地面积大……………………9分2)当5-3y =0时,即35=y 时, 0-=李家张家S S∴两家菜地一样大……………………12分3)当035<-y 时,即31035<<y 时 0-<李家张家S S∴李家菜地面积大……………………15分17.(17分)解:(1)证明:由 (x +AF )•a = (b ﹣x +b ﹣AF )•a ,得AF = b ﹣x ,………………1分又EC = b ﹣x ,∴AF=EC .………………2分(2)翻折后的图形如图,①如图1,当直线E′E 经过原矩形顶点D 时,x :b =2:3,………………4分如图2,当直线E′E 经过原矩形的顶点A 时,x :b =1:3;………………6分②如图1,当直线E′E 经过原矩形顶点D 时,BE′∥EF, 理由如下:根据题意得,BE=DF ,EE′=EF ,又∵∠BEE′=∠DEC=∠EDF ,∴在△BEE′与△FDE 中,∴△BEE′≌△FED (SAS ),………………9分∴∠BE′E=∠FED ,∴BE′∥EF ;………………10分如图2,当直线E′E 经过原矩形的顶点A 时,且当a :b3 时,BE′与EF 垂直.理由如下:BE′与EG 垂直,90EGB ∴∠= ,又90FME ∠= ,EBG EFM ∴∠=∠, 又'M BE FBM ∠=∠ ,EFM CFM ∠=∠, FBM CFM ∴∠=∠. ………………12分 又90FBM BFM ∠+∠= , 90BFM CFM ∴∠+∠= , BFC=90∴∠ .由勾股定理,222BF +CF =BC , ………………15分 即2222221b +a +a +b =b 33()(),于是. .………………17分。
湖北省宜昌市八年级下学期数学期末试卷
湖北省宜昌市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)某“中学生暑期环保小组”的同学,随机调查了“幸福小区”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9,利用上述数据估计该小区2 000户家庭一周内需要环保方便袋()只.A . 2000B . 14000C . 28000D . 980002. (2分)下列二次根式中,是最简二次根式的是()A .B .C .D .3. (2分) (2017九上·琼中期中) 某中学准备建一个面积为375m2的矩形游泳池,且游泳池的宽比长短10m.设游泳池的长为xm,则可列方程()A . x(x﹣10)=375B . x(x+10)=375C . 2x(2x﹣10)=375D . 2x(2x+10)=3754. (2分) (2020八下·云梦期中) 如图,在四边形ABCD中,已知AB∥CD,添加一个条件,可使四边形ABCD 是平行四边形.下列错误的是()A . BC∥ADB . BC=ADC . AB=CDD . ∠A+∠B=180°5. (2分) (2017八下·东台期中) 小明在学习了正方形之后,给同桌小文出了错题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图所示),现有如下四种选法,你认为其中错误的是()A . ①②B . ①③C . ②③D . ②④6. (2分) (2020八上·牡丹期末) 如图,已知点A(1,1)B(2,-3),点P为x轴上一点,当PA-PB最大值时,点P的坐标为()A . (-1.0)B . (1,0)C . ( ,0)D . ( ,0)二、填空题 (共6题;共8分)7. (1分)方程=3的根是________8. (1分) (2018七上·韶关期末) 如图所示,把同样大小的黑色棋子按照规律摆放在正方形的边上:第1个图形第2个图形笫3个图形则第n个图形需要黑色棋子的个数是________9. (2分) (2017九上·海宁开学考) 如图,在△ABC中,BC=1,点P1 , M1分别是AB,AC边的中点,点P2 , M2分别是AP1 , AM1的中点,点P3 , M3分别是AP2 , AM2的中点,按这样的规律下去,PnMn的长为________(n为正整数).10. (1分)(2019·上海) 已知f(x)=x2-1,那么f(-1)=________.11. (1分) (2019七上·闵行月考) 研究15.12.10这三个数的倒数发现: .我们称15,12,10这三个数为一组调和数.现有一组调和数:x,5,3(x>5),则x的值是________12. (2分) (2017八下·丽水期末) 如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为________三、解答题 (共10题;共67分)13. (5分) (2018八上·顺义期末)14. (5分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.15. (10分)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE(2)试判断四边形BFCD的形状,并说明理由(3)若BC=8,AD=10,求CD的长.16. (11分) (2020八下·抚顺期末) “新冠肺炎”期间,教育部倡导“停课不停学,停课不停教”线上教学,某校数学李老师针对自己所教学生数基本相同的八年一班和八年二班,进行了以“钉钉”软件为平台的线上测试,以便更好的了解学生们线上学习情况,并分别从两个班级中随机抽取了名学生的成绩进行调查分析,其中八年一班已经绘制好了条形统计图,八年二班只完成了其中的一部分.八年一班:八年二班:(1)请根据八年二班的数据,补全条形统计图:(2)两组样本数据的平均数、中位数、众数如下表所示,请补全表格:平均数中位数众数八年一班70.16783八年二班70.1(3)两班的数学科代表都想依据抽样的数据说明自己班级学生的数学成绩更好一些,请为他们各写出一条可以使用的理由;八年一班科代表:▲ ;八年二班科代表:▲ .17. (2分) (2020九上·枞阳期末) 如图,的三个顶点坐标分别是,,.(1)将先向左平移4个单位长度,再向上平移2个单位长度,得到,画出;(2)与关于原点成中心对称,画出.18. (5分) (2019七上·上饶期中) 若多项式是关于x的三次三项式,求代数式的值。
湖北省宜昌市八年级下学期数学期末考试试卷
湖北省宜昌市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分) (2016八下·云梦期中) 下列各式,计算正确的是()A .B . 3 - =3C . 2D . ()÷ =2﹣2. (2分)十名射箭运动员进行训练,每人射箭一次,成绩如下表:运动员A B C D E F G H I J成绩(环)1076997106109则十名运动员射箭成绩的中位数(环)为()A . 9B . 8C . 6D . 10或93. (2分) (2016八上·江阴期末) 如图,在△ABC中,D为BC上一点,且AB=AD=DC,∠B=80º,则∠C 等于()A . 20ºB . 30ºC . 40ºD . 50º4. (2分) (2020八下·抚宁期中) 在平面直角坐标系xoy中,若A点坐标为(-3,3),B点坐标为(2,0),则△ABO的面积为()A . 15B . 7.5C . 6D . 35. (2分)若一次函数y=ax+b的图象经过第一、二、三象限,则二次函数y=ax2+bx的图象可能是下列中的()A .B .C .D .6. (2分)(2013·杭州) 在▱ABCD中,下列结论一定正确的是()A . AC⊥BDB . ∠A+∠B=180°C . AB=ADD . ∠A≠∠C7. (2分) (2016八下·洪洞期末) 下列命题是假命题的是()A . 菱形的对角线互相垂直平分B . 有一斜边与一直角边对应相等的两直角三角形全等C . 有一组邻边相等且垂直的平行四边形是正方形D . 对角线相等的四边形是矩形8. (2分)(2019·台州模拟) 下列说法正确的是()A . 平行四边形的对角线互相平分且相等B . 矩形的对角线相等且互相平分C . 菱形的对角线互相垂直且相等D . 正方形的对角线是正方形的对称轴9. (2分) (2020九上·赣榆期末) 为了解当地气温变化情况,某研究小组记录了冬天连续4天的最高气温,结果如下(单位:):-1,-3,-1,5.下列结论错误的是()A . 平均数是0B . 中位数是-1C . 众数是-1D . 方差是610. (2分)现在要选拔一人去参加全国青少年英语口语比赛,小明和小刚的三次选拔成绩分别为:小明96、85、89,小刚90、91、89,最终决定选择小刚去参加,那么,最终依据是()A . 小刚的平均分高B . 小刚的中位数高C . 小刚的方差小D . 小刚最低分高11. (2分) (2020七下·陈仓期末) 星期天晚饭后,小红从家里出发去散步,下图描述了她散步过程中离家的距离(米)与散步所用的时间(分)之间的关系,下面描述情境与图象大致符合的是()A . 从家出发,到了公共阅读报栏,看了一会儿报,就回家了B . 从家出发,到了公共阅读报栏,看了一会儿报,继续向前走了一段,然后回家了C . 从家出发,一直散步(没有停留),然后回家了D . 从家出发,散了一会儿步,就找同学去了,18分钟后才开始返回12. (2分)(2017·碑林模拟) 如果点(a,b)为正比例函数y=(2m﹣1)x的图象上任意一点,且a+b=0,那么m的值是()A . m=1B . m=﹣1C . m=D . m=013. (2分) (2020八下·江阴月考) 如图,在第一象限内,点,是双曲线上的两点,轴于点A,轴于点B,PA与OM交于点C,则的面积为A .B .C . 2D .14. (2分)一次函数y=k1x+b1的图象与y=k2x+b2的图象相交于点P(﹣2,3),则方程组的解是()A .B .C .D .15. (2分) (2019八上·西城期中) 已知:如图,,点为内一点,,分别是点关于、的对称点,连接,分别交于、于 .如果,的周长为,的度数为,请根据以上信息完成作图,并指出和的值()A . ,B . ,C . ,D . ,16. (2分)(2017·德州) 如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()A . 2B . 3C . 4D . 5二、填空题 (共4题;共4分)17. (1分)计算: =________ .18. (1分) (2020八下·兴化期末) 如图,平行四边形ABCD中,AB=15,BC=7,AC=20,则BD的长度为________.19. (1分) (2019九下·江阴期中) 在□ABCD中,若∠A=40°,则∠C=________°.20. (1分) (2017八上·南漳期末) 长为10,7,5,3的四根木条,选其中三根组成三角形,有________种选法.三、解答题 (共6题;共55分)21. (5分)计算下列各题:(1)4+-+4(2)x(3)(2+3)2007•(2﹣3)2008 .22. (5分) (2017八下·合浦期中) 如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.23. (12分) (2017八下·临沭期末) 甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟________米,乙在A地时距地面的高度b为________米.(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?24. (13分) (2017七下·莆田期末) 福建省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.(1) m=________%,这次共抽取________名学生进行调查;并补全条形图________;(2)在这次抽样调查中,采用哪种上学方式的人数最多?(3)如果该校共有6000名学生,请你估计该校骑自行车上学的学生有多少名?25. (11分)(2017·玄武模拟) 如图①,在一条笔直的公路上有M、P、N三个地点,M、P两地相距20km,甲开汽车,乙骑自行车分别从M、P两地同时出发,匀速前往N地,到达N地后停止运动.已知乙骑自行车的速度为20km/h,甲,乙两人之间的距离y(km)与乙行驶的时间t(h)之间的关系如图②所示.(1) M、N两地之间的距离为________km;(2)求线段BC所表示的y与t之间的函数表达式;(3)若乙到达N地后,甲,乙立即以各自原速度返回M地,请在图②所给的直角坐标系中补全函数图象.26. (9分)(2019·南浔模拟) 如图,在Rt△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,BD的垂直平分线分别与AB,BC交于点E,F,在线段BC上取一点G,使CG=CD.(1)若不增加其他的点,以图中的点为顶点构造四边形.能构成菱形的四个顶点是________或________;能构成等腰梯形的四个顶点是________或________.(2)请你选择(1)中的一个四边形加以证明.参考答案一、选择题 (共16题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共4题;共4分)17-1、18-1、19-1、20-1、三、解答题 (共6题;共55分)21-1、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、。
湖北省宜昌市八年级下学期期末考试数学试题
湖北省宜昌市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2017八下·楚雄期末) 在下列长度的各组线段中,能组成直角三角形的是()A . 5,6,7B . 5,12,13C . 1,4,9D . 5,11,122. (2分)(2020·宁波) 如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A . 2B . 2.5C . 3D . 43. (2分)已知a+b=﹣8,ab=8,则式子+的值为()A .B .C .D .4. (2分)式子在实数范围内有意义,则x的取值范围是()A . x<1B . x≤1C . x>1D . x ≥15. (2分)某地区A医院获得2005年10月在该院出生的20名初生婴儿的体重数据。
现在要了解这20名初生婴儿的体重分布情况,需考察哪一个特征数()。
A . 极差B . 平均数C . 方差D . 频数6. (2分) (2019九上·兰州期中) 关于x的函数和在同一坐标系中的图象大致是().A .B .C .D .7. (2分) (2018九上·渝中开学考) 如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3 ,且∠ECF=45°,则CF长为()A . 2B . 3C .D .8. (2分) (2020七下·江阴月考) 若△ABC内有一个点P1 ,当P1、A、B、C没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC内有两个点P1、P2 ,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC内有n个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()A . n·180°B . (n+2)·180°C . (2n-1)·180°D . (2n+1)·180°二、填空题 (共8题;共8分)9. (1分) (2019七下·奉贤期末) 比较大小: ________10. (1分)(2018·南宁) 要使二次根式在实数范围内有意义,则实数x的取值范围是________.11. (1分)命题“正方形的四条边都相等”的逆命题是________ 命题(选填“真”或“假”).12. (1分)(2017·安丘模拟) 如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为________.13. (1分)(2017·嘉兴模拟) 如图,0为原点,A(4,0),E(0,3),四边形OABC,四边形OCDE都为平行四边形,OC=5,函数y= (x>0)的图象经过AB的中点F和DE的中点G,则k的值为________.14. (1分)(2019·广西模拟) 已知函数y=kx+b(k#0)的图象与y轴交点的纵坐标为-2,且当x=2时,y=1.那么此函数的解析式为________.15. (1分)若一组数据3,4,x,5,8的平均数是4,则该组数据的中位数是________.16. (1分)(2019·苏州模拟) 在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B 的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为________ cm.三、解答题 (共7题;共67分)17. (5分)(2018·遵义模拟) 计算:+-()-1-(2017+ )0.18. (5分)在四边形ABCD中,∠B=∠D=90°,∠A=120°,AB=3,AD=6,延长DA,CB相交于点E.①.求Rt⊿DCE的面积;②.求四边形ABCD的面积.19. (15分)已知一次函数y=﹣2x﹣6.(1)画出函数图象;(2)说出不等式﹣2x﹣6>0解集;不等式﹣2x﹣6<0解集;(3)求出函数图象与坐标轴的两个交点之间的距离.20. (5分) (2016九上·通州期末) 如图,在平面直角坐标系xOy中,⊙A与y轴相切于点B(0,),与x轴相交于M,N两点,如果点M的坐标为(,0),求点N的坐标21. (12分)(2020·黄石模拟) 某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.使用次数012345人数11152328185(1)这天部分出行学生使用共享单车次数的中位数是________,众数是________.(2)这天33部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少名.22. (15分) (2020九上·鼓楼期末) 如图①抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.23. (10分)已知y-3与4x-2成正比例,且当x=1时,y=5.(1)求y与x函数关系式;(2)求当x=-2时的函数值.参考答案一、选择题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共8题;共8分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共7题;共67分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、答案:23-2、考点:解析:。
2017年春宜昌市西陵区八年级数学下期末
2017年春天宜昌市西陵区八年级期末调研考试(数学 )一、选择题(3× 15)1、化简的结果就是A B、()C、D、2、有一个三角形两边长为A、4B、3 与 5,要使三角形为直角三角形,则第三边长为C、4或D、不确立()3、以下计算中,正确的就是()A、B、C、D、4、以下图A、B , 数轴上点、A 所表示的数为C 、Da, 则 a 的值就是、( )5、如图 ,矩形 ABCD的两条对角线订交于点O,∠AOD=60° ,BC=2,则 AB 的长就是A、2B、C、4D、6、用两个全等三角形拼成一个菱形,则这两个三角形的形状必定就是()A、直角三角形B、锐角三角形C、等腰三角形D、等边三角形()7、函数中,自变量的取值范围为()A、 x≥ 3B、 x> 3C、 x< 3D、 x≠ 38、如图 ,每个小正方形的边长为1,D 为△ ABC 的边 AB 上的中点 ,则线段 CD 的长为 (A、 3B、C、D、 2、59、已知 E、 F、G、H 四点分别就是□ABCD的边 AB、 BC、CD、 DA 的中点 ,若四边形是菱形 ,则以下结论 :①∠ A=90° ;② AB=BC;③ AC=BD;④ AC⊥ BD、此中正确的就是( A、①②B、①③C、②④D、③④)EFGH就)10、若一次函数y=kx+k+1 的图象不经过第三象限,则 k 的取值范围就是()A、 -1≤ k< 0B、 -1< k< 0C、 k< 0D、 k≤ -111、学习了《数据的剖析》后,小王同学对其学习小组内甲、乙、丙、丁四名同学的三次数学单元考试成绩的均匀分( )、方差 (s2)统计以下表 ,则数学成绩最好、最稳固的同学就是()A、甲B、乙C、丙D、丁12、如图 ,菱形 ABCD的对角线AC、 BD 交于点 O,过点 O 的三条线段将菱形分红暗影部分与空白部分,已知AC=8,BD=6,则图中暗影部分的面积就是()A、 10B、 12C、 24D、 4813、如图 ,函数 y=mx 与 y=kx+3 的图象订交于点A(1,2),则不等式mx≥kx+3 的解集为 ( )A、 x≥ 2B、 x≤ 2C、 x≥ 1D、 x≤ 114、以下图 ,将一张正方形纸片对折两次,而后在上边剪下一个菱形小洞,则纸片睁开后就是()A、B、C、D、15、在平面直角坐标系中,O 就是坐标原点,点 A(-3,m)在直线y =-x+1 上 ,则 OA 的长度为()A、3B、C、4D、5二、解答题 (6+6+7+7+8+8+10+11+12)16、计算 :、17、学完勾股定理以后,802 班同学们想利用升旗的绳索、卷尺,测算出学校旗杆的高度爱动脑筋的小王设计了一个方案:将升旗的绳索拉到旗杆顶端,绳索尾端恰好垂直接触到地面,而后将绳索尾端拉到距离旗杆 5 m 处 ,发现此时绳索尾端距离地面 1 m. 请您帮忙算出旗杆的高度、,18、如图 ,在菱形 ABCD中 ,E 就是 BC 的中点 ,且 AE⊥ BC于 E点、(1) 求∠ ABC的度数 ;(2)若菱形的边长为 6 cm,求菱形的面积、19、某工厂生产部有技术工人13 人 ,为了合理拟订产品的每个月生产定额,生产部统计了这13名工人六月份的加工部件个数:(1)求出这 13 名工人该月加工部件数的均匀数、中位数与众数(2)若是生产部负责人把每位工人的月加工部件个数定为;250 件 ,您以为这个定额就能否合理?为何?20、依据 YC市卫生防疫部门的要求 ,游泳池一定按期换水后才能对外开放.在换水时需要经历“排水——冲洗——注水”的过程 .某游泳馆从清晨 7:00 开始对游泳池进行换水 ,已知该游泳池的排水速度就是注水速度的1、5 倍 ,此中游泳池内节余的水量V(m3)与换水时间 t(h)之间的函数图象以下图 ,依据图象解答以下问题 : (1)填空 :该游泳池冲洗需要小时 ;(2)求排水过程中的 V(m3)与 t(h) 之间的函数关系式 ,并写出自变量t 的取值范围 ;(3)若该游泳馆在换水结束后 25 分钟对外开放 ,试问游泳喜好者小杨可否在正午13:30 进入该游泳馆?21、如图 ,正方形 ABCD中 ,点 E、G 分别就是边 BC、 AB 的中点 ,∠ AEF= 90°,且 EF交正方形外角∠ DCH 的均分线 CF于点 F,连结 AF 与 CD 交于点 M, 连结 EM、 (1)求证 :AE= EF;(2)若 AB= 4, 求 DM 的长、22、养康堂企业甲、乙两种保健原料的维生素A、B 的含量及单价以下表,若用甲、乙两种原料各 a 千克 ,b 千克配制成10 千克的混淆原料丙,并使混淆原料丙中起码含有310 单位的维生素 A 与 280 单位的维生素 B.(1)a=(用含有 b 的代数式表示);混淆原料丙每千克价钱w=元(用含有b的代数式表示 );(2)要使混淆原料丙每千克价钱w 最低 ,请问甲、乙两种保健原料分派比率就是多少?23、如图① ,在矩形 ABCD中 ,AB=5,AD=3,点 E 就是 AD 上一点、(1)将△ ABE沿 BE 折叠后 ,点 A 正好落在CD 边上的点 F 处 ,求线段 AE 的长 ;9(2)如图② ,延伸图①中线段EF 至 G,使 FG=EF,以 FB、 FG 为两邻边作□BFGH,连结 AH 交 BF5于 P、求证 :点 P为 AH的中点 ;(3)如图③ ,在 (2) 的条件下 ,连结 AF 交 BE 于点 Q,连结 PQ、 BG,试判断 PQ 与 BG 之间的数目关系并证明、24、如图 ,在平面直角坐标系中415相,O 为坐标原点 ,直线 l 1:y=x 与直线 l2 :y= mx+1234交于点 A(a,2),且直线 l 交 x 轴于点 B、5(1)填空 :a=,m=;(2)在座标平面内就能否存在一点C,使以 O、A、B、C 四点为极点的四边形就是矩形、若存在 ,恳求出点 C 的坐标 ;若不存在 ,请说明原因、(3) 图中有一动点P 从原点 O 出发 ,沿 y 轴的正方向以每秒 1 个单位长度的速度向上挪动 ,设运动时间为t 秒、若直线 AP 能与 x 轴交于点 D,当△ AOD 为等腰三角形时 ,求 t 的值、。
湖北省宜昌市八年级下学期期末考试数学试题
湖北省宜昌市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)函数y=中自变量的取值范围是()A . x≥0B . x≤2C . x≥2D . x<22. (2分)计算·(-)·()的结果是()A . -B .C . -D . -3. (2分)在直角坐标平面中,M(2,0),圆M的半径为4,那么点P(﹣2,3)与圆M的位置关系是()A . 点P在圆内B . 点P在圆上C . 点P在圆外D . 不能确定4. (2分) (2017九上·抚宁期末) 若反比例函数y=(2m﹣1)的图象在第二,四象限,则m的值是()A . ﹣1或1B . 小于的任意实数C . ﹣1D . 不能确定5. (2分)某镇2012年投入教育经费2000万元,为了发展教育事业,该镇每年教育经费的年增长率均为x ,预计到2014年共投入9500万元,则下列方程正确的是()A . 2000x2=9500B . 2000(1+x)2=9500C . 2000(1+x)=9500D . 2000+2000(1+x)+2000(1+x)2=95006. (2分)下列命题中真命题是()A . 如果m是有理数,那么m是整数B . 4的平方根是2C . 等腰梯形两底角相等D . 如果四边形ABCD是正方形,那么它是菱形二、填空题 (共20题;共97分)7. (2分)计算的结果是________;分式方程=1的解是________.8. (1分) (2017八下·大丰期中) 对分式,和进行通分,它们的最简公分母为________.9. (1分) (2016八上·埇桥期中) 比较大小:3 ________5 .10. (2分) (2016九上·黔西南期中) 设x1、x2是方程2x2﹣x﹣1=0的两个根,则x1+x2=________,x1•x2=________.11. (1分)(2017·汉阳模拟) 将a 因式内移的结果为________.12. (1分)(2017·黔东南) 如图,已知点A,B分别在反比例函数y1=﹣和y2= 的图象上,若点A 是线段OB的中点,则k的值为________.13. (1分) (2016九上·松原期末) 若关于x的一元二次方程(x-2)(x-3)=m有实数根x1 , x2 ,且x1x2有下列结论:①x1=2,x2=3;②m> ;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中正确的结论是________(填正确结论的序号)14. (1分) (2019九上·淅川期末) 如图是水平放置的水管截面示意图,已知水管的半径为50cm,水面宽AB=80cm,则水深CD约为________cm.15. (1分)(2017·通州模拟) 若把代数式x2﹣4x﹣5化成(x﹣m)2+k的形式,其中m,k为常数,则m+k=________.16. (1分) (2018·深圳模拟) 分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=________.17. (5分) (2016八上·靖江期末) 计算: +|1+ |.18. (10分)(2017·玄武模拟) 解答题(1)解不等式组并把它的解集在数轴上表示出来.(2)解方程 =1﹣.19. (5分)关于x,y的二元一次方程ax+by=10(ab≠0)的一个解为.求(a﹣)÷的值.20. (5分)某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.21. (10分)(2016·三门峡模拟) 如图,在平面直角坐标系中,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA= ,反比例函数y= (k>0)的图像过CD的中点E.(1)求k的值;(2)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图像上,并说明理由.22. (10分) (2019·台江模拟) 如图,AB为⊙O直径,OE⊥BC垂足为E ,AB⊥CD垂足为F .(1)求证:AD=2OE;(2)若∠ABC=30°,⊙O的半径为2,求两阴影部分面积的和.23. (5分)已知三角形的两边长分别为3和7,第三边长是方程x(x-7)-10(x-7)=0的一个根,求这个三角形的周长.24. (10分)已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.25. (10分)(2018·宿迁) 如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D,过点A作⊙O的切线与OD 的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60°,AB=10,求线段CF的长,26. (15分)已知△ABC中,∠ACB=90°,AC=2BC.(1)如图①,若AB=BD,AB⊥BD,求证:CD= AB;(2)如图②,若AB=AD,AB⊥AD,BC=1,求CD的长;(3)如图③,若AD=BD,AD⊥BD,AB=2 ,求CD的长.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共20题;共97分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、18-2、19-1、20-1、21-1、21-2、22-1、22-2、23-1、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年春季宜昌市西陵区八年级期末调研考试(数学)
一.选择题(3×15)
1.化简的结果是()
A B. C. D.
2.有一个三角形两边长为3和5,要使三角形为直角三角形,则第三边长为()
A. 4
B.
C. 4或
D. 不确定
3.下列计算中,正确的是()
A. B. C. D.
4.如图所示,数轴上点A所表示的数为a,则a的值是()
A. B. C. D.
5.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,BC=2,则AB的长是()
A. 2
B.
C. 4
D.
6.用两个全等三角形拼成一个菱形,则这两个三角形的形状一定是()
A. 直角三角形
B. 锐角三角形
C. 等腰三角形
D. 等边三角形
7.函数中,自变量的取值范围为()
A. x≥3
B. x>3
C. x<3
D. x≠3
8.如图,每个小正方形的边长为1,D为△ABC的边AB上的中点,则线段CD的长为()
A. 3
B.
C.
D. 2.5
9.已知E、F、G、H四点分别是□ABCD的边AB、BC、CD、DA的中点,若四边形EFGH是菱形,则下列结论:①∠A=90°;②AB=BC;③AC=BD;④AC⊥BD.其中正确的是()A. ①② B. ①③ C. ②④ D. ③④
10.若一次函数y=kx+k+1的图象不经过第三象限,则k的取值范围是()
A. -1≤k<0
B. -1<k<0
C. k<0
D. k≤-1
11.学习了《数据的分析》后,小王同学对其学习小组内甲、乙、丙、丁四名同学的三次数学单元考试成绩的平均分()、方差(s2)统计如下表,则数学成绩最好、最稳定的同学是()
A. 甲
B. 乙
C. 丙
D. 丁
12.如图,菱形ABCD的对角线AC、BD交于点O,过点O的三条线段将菱形分成阴影
部分和空白部分,已知AC=8,BD=6,则图中阴影部分的面积是()
A. 10
B. 12
C. 24
D. 48
13.如图,函数y=mx和y=kx+3的图象相交于点A(1,2),则不等式mx≥kx+3的解集为()
A. x≥2
B. x≤2
C. x≥1
D. x≤1
14.如图所示,将一张正方形纸片对折两次,然后在上面剪下一个菱形小洞,则纸片展开后是()
A. B. C. D.
15.在平面直角坐标系中,O是坐标原点,点A(-3,m)在直线y =-x+1上,则OA的长度为()
A. 3
B.
C. 4
D. 5
二.解答题(6+6+7+7+8+8+10+11+12)
16.计算:.
17.学完勾股定理之后,802班同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度,爱动脑筋的小王设计了一个方案:将升旗的绳子拉到旗杆顶端,绳子末端刚好垂直接触到地面,然后将绳子末端拉到距离旗杆5 m处,发现此时绳子末端距离地面1 m.请你帮忙算出
旗杆的高度.
18.如图,在菱形ABCD中,E是BC的中点,且AE⊥BC于E点.(1)求∠ABC的度数;(2)若菱形的边长为6 cm,求菱形的面积.
19.某工厂生产部有技术工人13人,为了合理制定产品的每月生产定额,生产部统计了这13名工人六月份的加工零件个数:
(1)求出这13名工人该月加工零件数的平均数、中位数和众数;
(2)假如生产部负责人把每位工人的月加工零件个数定为250件,你认为这个定额是否合理?为什么?
20.根据YC市卫生防疫部门的要求,游泳池必须定期换水后才能对外开放.在换水时需要经历“排水——清洗——灌水”的过程.某游泳馆从早上7:00开始对游泳池进行换水,已知该游泳池的排水速度是灌水速度的1.5倍,其中游泳池内剩余的水量V(m3)与换水时间t (h)之间的函数图象如图所示,根据图象解答下列问题:(1)填空:该游泳池清洗需要小时;(2)求排水过程中的V(m3)与t(h)之间的函数关系式,并写出自变量t的取值范围;
(3)若该游泳馆在换水结束后25分钟对外开放,试问游泳爱好者小杨能否在中午13:30进入该游泳馆?
21.如图,正方形ABCD中,点E、G分别是边BC、AB的中点,∠AEF= 90°,且EF交正方形外角∠DCH的平分线CF于点F,连接AF与CD交于点M,连接EM.(1)求证:AE= EF;(2)若AB= 4,求DM的长.
22.养康堂公司甲、乙两种保健原料的维生素A、B的含量及单价如下表,若用甲、乙两种原
料各a千克,b千克配制成10千克的混合原料丙,并使混合原料丙中至少含有310单位的维生素A和280单位的维生素B.
(1)a= (用含有b的代数式表示);混合原料丙每千克价格w= 元(用含有b
的代数式表示);
(2)要使混合原料丙每千克价格w最低,请问甲、乙两种保健原料分配比例是多少?
23.如图①,在矩形ABCD 中,AB=5,AD=3,点E 是AD 上一点.
(1)将△ABE 沿BE 折叠后,点A 正好落在CD 边上的点F 处,求线段AE 的长;
(2)如图②,延长图①中线段EF 至G ,使FG=5
9 EF ,以FB 、FG 为两邻边作□BFGH ,连接AH 交BF 于P .求证:点P 为AH 的中点;
(3)如图③,在(2)的条件下,连接AF 交BE 于点Q ,连接PQ 、BG ,试判断PQ 与BG 之间的数量关系并证明.
24.如图,在平面直角坐标系中,O 为坐标原点,直线l 1:y=
34 x 与直线l 2:y= mx+ 415 相 交于点A (a , 5
12 ),且直线l 2交x 轴于点B. (1)填空:a= ,m= ;
(2)在坐标平面内是否存在一点C ,使以O 、A 、B 、C 四点为顶点的四边形是矩形.若存在,请求出点C 的坐标;若不存在,请说明理由
.(3)图中有一动点P 从原点O 出发,沿y 轴的正方向以每秒1个单位长度的速度向上移动,设运动时间为t 秒.若直线AP 能与x 轴交于点D ,当△AOD 为等腰三角形时,求t 的值.。