第五章 数定理与中心极限定理
概率论与数理统计第五章 大数定律及中心极限定理
在100次炮击中炮弹命中的总颗数
100
X = ∑ Xk k =1
相互独立地服从同一分布,
E(Xk)=2, D(Xk)=1.52 (k=1,2,…,100)
随机变量
∑ 1
100 × 1.5
100 k =1
(
X
k
−
2)
=
1 15
(
X
−
200)
2. 伯努利定理 事件发生的频率依概率收敛于事件的概率
3. 辛钦定理 (随机变量序列独立同分布且数学期望存在)
n个随机变量的算术平均值以概率收敛于算术 平均值的数学期望。
给出了“频率稳定性”的严格数学解释. 提供了通过试验来确定事件概率的方法. 是数理统计中参数估计的重要理论依据之一.
§5.2 中心极限定理
望 E( Xk ) = µ (k = 1,2,"),则对于任意ε > 0,有
∑ lim
n→∞
P {|
1 n
n k =1
Xk
−
µ
|<
ε
}
=
1
说明
伯努利大数定理是辛钦定理的特殊情
况。n个随机变量的算术平均值以概率收敛于算
术平均值的数学期望。
三 小结
1、切比雪夫(Chebyshev)定理的特殊情况 算术平均值依概率收敛于数学期望
= 1 − P { V − 100 ≤ 0.387 } (10 12 ) 20
∫ 0.387
≈ 1−
1
e − t 2 dt
−∞ 2π
= 1 −Φ (0.387) = 0.348
所以 P{V > 105} ≈ 0.348
第五章 大数定律和中心极限定理
第三节 中心极限定理
所谓中心极限定理,就是关于大量微小的随机变量之和的极限分布在什么条件下是正态分布的定理. 定义 1 设 { X n } 为一随机变量序列, DX n , n 1,2, ,若
2
83
n a n lim P(a X i b) P n i 1 n
X
i 1
n
i
n
n
b n b n a n ) ( ). ( n n n
例 1 一加法器同时收到 50 个噪声电压 Vi (i 1,2, ,50 ) , 设 V i (单位: 微伏)相互独立且均在 [0,10] 上 服从均匀分布,求该加法器上总电压 V
i 1
n
1 n2
c n 0(n ) ,
i 1
n
c
推论 2 (贝努里大数定律) 设 S n 为 n 重贝努里试验中事件 A 出现的次数, p 为 A 在每次 n
证 明 :令 Xi
1 在第i 次试验中A出现 , 则 X i ~ B(1, p ) , i 1,2,, n 且 相 互 独 立 , 0 在第 i 次试验中 A 不出现
c 0 ,使得 DX n c , n 1,2, ,则
P 1 n ( X i EX i ) 0 . n i 1
证明:只须验证马尔可夫条件成立即可.由于 { X n } 两两互不相关,故
0
因此马尔可夫条件成立.
n 1 1 D ( Xi) 2 2 n n i 1
DX i
第5章_大数定律和中心极限定理
3) 用平均值近似积分值
1 即 I N
g(r ) I
n1 n
N
问:若求 I b g ( x )dx 的值
a
应如何近似计算?请思考.
大数定律以严格的数学形式表达了随 机现象最根本的性质之一: 平均结果的稳定性 它是随机现象统计规律的具体表现. 大数定律在理论和实际中都有广泛的应用.
0
1
我们介绍均值法,步骤是
1) 产生在(0,1)上均匀分布的随机数rn, n=1,2,…,N 2) 计算g(rn), n=1,2,…,N
3) 用平均值近似积分值
1 即 I N
g(r ) I
n1 n
N
求 I g ( x )dx 的值
0
1
我们介绍均值法,步骤是
1) 产生在(0,1)上均匀分布的随机数rn, n=1,2,…,N 2) 计算g(rn), n=1,2,…,N
n
P a 则称{Xn}依概率收敛于a。可记为 X n
意思是: 当
n 时, Xn落在 (a , a )
Xn
内的概率越来越大。即 n0 , 使得n n0 ,
a
a
a
二、几个常用的大数定律
切比雪夫大数定律 设{Xk,k=1,2,...}为独立的随机变 量序列,且有相同的数学期望,及方差2>0,则
1 n P Yn X k n k 1
例 在掷骰子过程中,以Xn记第n次掷出的点数, 1 n 在依概率收敛意义下,求 X X k 的极限。
n
k 1
下面我们再举一例说明大数定律的 应用. 定积分的概率计算法 求 I g ( x )dx 的值
0 1
概率第五章_大数定律与中心极限定理090505
P ( − Eξ ε ) = ξ ≥
P(ξ ≥ Eξ + ε ) + P (ξ ≤ Eξ − ε )
k
=
≤
k : xk ≥ E +
∑ξ ε p
k
+
k : xk ≤ E −
∑ξ ε p
pk +
k :xk ≥ E +
∑ξ ε
( x − Eξ ) 2
ε
2
k :xk ≤ E −
∑ξ ε
( x − Eξ ) 2
, 方差 Dξ n ( n = 1, 2,L),且 Dξi < l (i = 1, 2,L) 其中 l 与 i 无关的
1 Eξ = (1 + 2 + 3 + L + 6) 6
35 7 故 Eξ = Dξ = 12 2
4 2 = P (ξ = 5) + P(ξ = 6) + P (ξ = 1) + P (ξ = 2) = = 6 3 7 1 P( − 2 ) = P(ξ ≥ 5.5) + P(ξ ≤ 1.5) = P (ξ = 6) + P (ξ = 1) = ξ ≥
即
lim P ( − p < ε ) = 1 n →∞ n
ξ
此定理表明:当试验在不变的条件下重复进行很多次时, 随机事件的频率 频率在它的概率 概率附近摆动。 频率 概率 由贝努里大数定律可知,若事件A的概率很小很小时,则 它的频率也很小很小,即事件A很少发生或几乎不发生, 这种事件叫小概率事件。反之,若随机事件的概率很接近1, 则可认为在个别试验中这事件几乎一定发生。 同分布的两个或多个随机变量: 同分布的两个或多个随机变量 离散型: 它们的概率分布律相同. 离散型 它们的概率分布律相同 连续型: 它们的概率密度函数相同. 连续型 它们的概率密度函数相同 所以它们的期望与方差一定相同. 所以它们的期望与方差一定相同
概率论与数理统计 第五章
Xn ⎯ ⎯→ X 2. 依概率收敛与依分布收敛的关系
依概率收敛 ⇒ 依分布收敛
L
3. 定义:中心极限定理 设随机变量 X ~ N(0,1),{Xi },i = 1, 2, … 相互独 立,且数学期望和方差都存在, 若标准化随机变量序列
∑
n
i =1
Xi −
∑ E(X
i =1
n
i
)
∑
n
i =1
D(X i)
所以结论成立。 由此有,若X ~ B( n, p ),对于足够大的n,有 ⎧ m1 − np X − np m2 − np ⎫ ⎪ ⎪ < ≤ P{m1 < X ≤ m2 }= P ⎨ ⎬ np(1 − p) np(1 − p) ⎪ ⎪ np(1 − p) ⎩ ⎭
⎧ Yn − np ⎫ ⎪ ⎪ ≤ x ⎬ = Φ( x ) lim P ⎨ n →∞ ⎪ np(1 − p ) ⎪ ⎩ ⎭
证明:对于任意正整数n,随机变量Yn 可表示为 证明:对于任意正整数n Yn = X1+ X2+…+ Xn X1, X2,…, Xn 相互独立,Xi ~ B( 1, p ),且有 E( Xi ) = p , D( Xi ) = p(1-p) 所以随机变量序列{ Xi }, i =1,2,…满足独立同分布 中心极限定理条件。即有
切比雪夫不等式的应用 1)估计随机变量落在某个区间内的概率 (P125例5.5.2) 2)估计ε的值, 使 P(│X - E(X)│<ε) ≥ a (0<a<1) 3)证明大数定律。
二. 大数定律 定义: 依概率收敛 设{Xn}是一个随机变量序列,X 是一个随机变量 或常数,若对于任意的ε> 0,有 lim P{| X n − X |≥ ε } = 0
概率论与数理统计第五章大数定律及中心极限定理
概率论与数理统计第五章大数定律及中心极限定理课前导读概率论是研究大量试验后呈现出的统计规律性的一门理论。
数学中研究大量的工具是极限。
因此这一章学习概率论中的极限定理。
第一节大数定律随着试验次数的增大,事件的频率逐步稳定到事件的概率。
意味着随着试验次数的增多,在其中一种收敛意义下,频率的极限是概率。
大数定律解释了这一结论。
首先介绍切比雪夫不等式。
一、切比雪夫(Chebyshev)不等式随机变量X的取值总是围绕着其期望变动,若X的分布已知时,可以计算事件\{,X-E(X),\geq \epsilon \}的概率。
切比雪夫不等式:对切比雪夫不等式的直观理解:方差越小,X在其期望附近取值的密集程度越高,原理期望的区域的概率上加越小。
进一步说明了方差的概率意义,方差时随机变量取值与其中心位置的偏离程度的一种度量指标。
当随机变量X的分布未知时,可由X的观测数据估计得到X的期望和方差,然后使用切比雪夫不等式估计X关于E(X)的偏离程度。
二、依概率收敛随机变量序列即由随机变量构成的一个序列。
不能用类似定义数列极限的方式定义随机变量序列的极限,因为序列中的每一个元素X_n是随机变量,取值不确定,不可能和一个常数c的距离任意小。
只能说一些事件A发生的频率f_n(A)收敛到A的概率P(A)。
依概率收敛的定义:定理2:三、大数定律三个大数定律:切比雪夫大数定律、辛钦大数定律和伯努利大数定律。
注意这三个大数定律的条件有何异同。
定理3 切比雪夫大数定律:若随机变量序列相互不相关,方差存在且一致有上界,当n充分大时,随机序列的前n项的算术平均值和自身的期望充分接近几乎总是发生的。
定理4 相互独立同分布的大数定律(辛钦大数定律):辛钦大数定律为算术平均值法则提供了理论依据。
伯努利大数定律:伯努利大数定律是相互独立同分布大数定律的特例,限定分布为两点分布。
伯努利大数定律体现了:随着试验次数的增大,事件的频率逐步稳定到时间的概率,这里的稳定即为依概率收敛。
(完整版)大数定律和中心极限定理
第五章 大数定律和中心极限定理一、内容提要(一)切贝谢夫不等式 1. 切贝谢夫不等式的内容设随机变量X 具有有限的数学期望E (X )和方差D (X ),则对任何正数ε,下列不等式成立。
(){}()(){}().1,22εεεεX D X E X P X D X E X P -≤-≤≥-2. 切贝谢夫不等式的意义(1)只要知道随机变量X 的数学期望和方差(不须知道分布律),利用切贝谢夫不等式,就能够对事件(){}ε≥-X E X 的概率做出估计,这是它的最大优点,今后在理论推导及实际应用中都常用到切贝谢夫不等式。
(2)不足之处为要计算(){}ε≥-X E X P 的值时,切贝谢夫不等式就无能为力,只有知道分布密度或分布函数才能解决。
另外,利用本不等式估值时精确性也不够。
(3)当X 的方差D (X )越小时,(){}ε≥-X E X P 的值也越小,表明X 与E (X )有较大“偏差”的可能性也较小,显示出D (X )确是刻画X 与E (X )偏差程度的一个量。
(二)依概率收敛如果对于任何ε>0,事件{}ε a X n -的概率当n →∞时,趋于1,即{}1lim =-∞→ε a X P n n ,则称随机变量序列X 1,X 2,…,X n ,…当n →∞时依概率收敛于α。
(三)大数定律 1. 大数定律的内容(1)大数定律的一般提法若X 1,X 2,…,X n ,…是随机变量序列,如果存在一个常数序列α1,…,αn ,…,对任意ε>0,恒有11lim 1=⎭⎬⎫⎩⎨⎧-∑=∞→ε n i n i n a X n P , 则称序列{X n }服从大数定律(或大数法则)。
(2)切贝谢夫大数定律设随机变量X 1,X 2,…,X n ,…相互独立,分别有数学期望E(X i )和方差D(X i ),且它们的方差有公共上界C ,即()().,,,2,1, n i C X D i =≤则对于任意的ε>0,恒有()111lim 11=⎭⎬⎫⎩⎨⎧-∑∑==∞→ε n i ni i i n X E n X n P 。
概率论与数理统计----第五章大数定律及中心极限定理
= 1 − Φ(3.54)
=0.0002
一箱味精净重大于20500的概率为 的概率为0.0002. 一箱味精净重大于 的概率为
推论:
特别,若X~B(n,p),则当n充分大时, 特别, ~B(n 则当n充分大时,
X~N(np,npq) X~N(np,npq) np
若随机变量X~B( X~B(n, ),则对任意实数x有 ),则对任意实数 即 若随机变量X~B( ,p),则对任意实数 有
不等式证明 P{-1<X<2n+1}≥(2n+1)/(n+1)(n+1)
3. 设P{|X-E(X)|<ε}不小于 不小于0.9,D(X)=0.009.则用 不小于 则用
切比绍夫不等式估计ε的 最小值是( 切比绍夫不等式估计 的 最小值是
0.3 ).
4.(894) 设随机变量 的数学期望为 设随机变量X的数学期望为 的数学期望为µ, 标准差为σ,则由切比绍夫不等式 标准差为 则由切比绍夫不等式 P{|X-µ|≥3σ}≤( ). 1/9 5. 设随机变量X的分布律为 设随机变量 的分布律为 P{X=0.3}=0.2, P{X=0.6}=0.8, 用切比绍夫不等式估计 |X-E(X)|<0.2的概率 的概率. 的概率
1 n lim P ∑ Xi − µ < ε = 1 n→∞ n i =1
定理(贝努里利大数定律) 设每次实验中事件A发生的概率 定理(贝努里利大数定律) 设每次实验中事件A 为p,n次重复独立实验中事件A发生的次数为nA,则对任 次重复独立实验中事件A发生的次数为n 意的ε>0 意的ε>0 ,事件的频率 nA ,有 ε>
∫
+∞
−∞
第五章大数定律与中心极限定理
Note:1.X1+X2+…Xn~N(nu, na2)
2.和的期望等于期望之和;和的方方差等于方方差的和(独立立,同分布)
2.拉普拉斯中心心极限定理理
1.条件:服从二二项分布,结论
2.实际上是林林德伯格的中心心极限定理理的特殊情况
定义:Xn依概率收敛于a(概率上收敛,但概率推不不出事件)(类似于极限的定义)
2.切比比雪夫大大数定律律
1.条件:相ห้องสมุดไป่ตู้独立立,期望,方方差均存在,方方差有上界
2.结论:1/n(Xi)依概率收敛于1/n(EXi)(依概率收敛于期望)
3.特别的,若独立立,同分布,有EX,DX(存在)
Note:和的期望等于期望之和;和的方方差等于方方差的和(独立立)
第五章 大大数定律律与中心心极限定理理
一一 切比比雪夫不不等式 二二 大大数定律律 三 中心心极限定理理
一一 切比比雪夫不不等式(作估计)
1.公式形式(大大小小)
2.意义:EX很有用用,偏离的越多,概率越小小
3.有上限的,最多
4.“由切比比雪夫不不等式”才能用用
二二 大大数定律律
1.依概率收敛
3.辛辛钦大大数定律律
1.条件:独立立,同分布,期望存在等于u(3个)
2.结论:1/n(Xk)依概率收敛于u
4.伯努利利大大数定律律
1.条件:X为n重伯努利利发生生的次数,发生生概率为p
2.X/n依概率收敛于p
三 中心心极限大大数定律律
1.列列维——林林德伯格中心心极限定理理
1.条件:独立立,同分布,期望,方方差存在
第五章 大数定理与中心极限定理
说明
1 n 1、定理中{| X i | }是指一个随机事件, n i 1 当n 时,这个事件的概率趋于1.
2、 定理以数学形式证明了随机变量X 1 , X n 1 n 的算术平均X X i 接近数学期望E(X k) n i 1 (k 1,2, n),这种接近说明其具有的稳定性 .
第五章 大数定律与中心极限定理
第五章 大数定律与中心极限定理
§1 大数定律
1.1 切比雪夫不等式 1.2 依概率收敛 1.3 大数定律
§2 中心极限定理
HaiNan University
1
第五章 大数定律与中心极限定理
大数定律的客观背景
事件发生的频率稳定于某一常数 大量随机试验中 测量值的算术平均值具有稳定性
证明 取连续型随机变量的情况来证明.
设 X 的概率密度为 f ( x ), 则有
HaiNan University3第五章 大数定律 Nhomakorabea中心极限定理
P{ X μ ε }
2 x μ ε
x μ ε
f ( x)d x
x μ f ( x)d x 2 ε
1 1 2 2 2 ( x μ) f ( x ) d x 2 σ . ε ε
定理2 (契比雪夫大数定律)
1 nM M 1 D( X i ) 2 D( X i ) 2 . n i 1 n n n i 1 由契比雪夫不等式得: M 1 n 1 n P{ X i E ( X i ) } 1 n n i 1 n i 1 2
HaiNan University
10
第五章 大数定律与中心极限定理
1.3 大数定律
问题 : 设nA是n重贝努利试验中事件A发生 的次数,p是事件A发生的概率,
第五章大数定律与中心极限定理
Xi
1 n
n i 1
E(Xi)
1,
则称{Xn}服从大数定律.
(2)伯努利大数定律是切比雪夫大数定律的特例
(3) 伯努利大数定律和切比雪夫大数定律的证明 都用到切比雪夫不等式,而且需要方差存在。
定理 5.1.4. 辛钦大数定律
设X1, X 2 ,..., X n,...是独立同分布的随机变量序列,
意义:只要试验次数够大,发生事件的频率无限接近于 概率,频率稳定性,频率代替概率。
定理 5.1.3. 切比雪夫大数定律
设X1 , X 2 ,, X n ,是一相互独立的随机变 量序列,
它们的数学期望和方差 均存在,且方差有共同 的上界,
即存在常数 K 0,使得 D ( X i ) K , i 1,2, ,
不等式给出了X 与它的期望的偏差不小于的概率
的估计式.
例 1 E( ) 4, D( ) 0.2, 则由切比雪夫不等式知
P{| 4 | 2} P{| 4 | 1}
,
P{ X
}
2 2
,
P{1 7}
定义 5.1.1设{X n}是一个随机变量序列,a是常数,
若对于任意的 0,有
已知整个系统中至少有84个部件正常工作,系统
工作才正常.试求系统正常工作的概率.
解: 记Y为100个部件中正常工作的部件数,则
Y 近似服从 N(100 0.9,100 0.9 (1 0.9))
即Y 近似服从N (90, 9)
因此,所求概率为
P{Y 84}=1-P{Y<84}=1-P{ Y-90 < 84-90 }
解: 设Xi为第i个螺丝钉的重量,i 1, 2,...,100.
且设X 为一盒螺丝钉的重量.
第五章大数定律与中心极限定理
• 例:一加法器同时收到 个噪声电压 k(k=1,2,…,20), 一加法器同时收到20个噪声电压 一加法器同时收到 个噪声电压V 它们相互独立且都在区间[0,10]上服从均匀分布 噪声 上服从均匀分布,噪声 它们相互独立且都在区间 上服从均匀分布 的近似值. 电压总和V=V1+V2+…+V20,求P{V>105}的近似值 电压总和 求 的近似值 • 解:易知 易知E(Vk)=5,D(Vk)=100/12,由独立同分布的中心 易知 由独立同分布的中心 20 极限定理知
∑ D( X
k =1
n
k
)=
σ2
n
1 n 所以 P{| ∑ X k − µ |< ε } = P {| X n − E ( X n ) |< ε } n k =1 D( X n ) σ2 ≥ 1− = 1− 2 2 nε ε
设随机变量序列{Y 如果存在一个常数a 定义 设随机变量序列{Yn},如果存在一个常数a,使得 ε>0 对任意的 ε>0,有
1 故 n
X k 1 . ∑ 2 P→ 3 k =1
§2
中心极限定理
定理(林德贝尔格 勒维 定理):设 定理 林德贝尔格-勒维 林德贝尔格 勒维(Lindeberg-Levy)定理 设 定理 {Xk}为相互独立的随机变量序列 服从同一分布 且 为相互独立的随机变量序列,服从同一分布 为相互独立的随机变量序列 服从同一分布,且 具有数学期望E(Xk)=µ和方差 和方差D(Xk)=σ2 ,则随机变 具有数学期望 和方差 则随机变 量
X 1 ~ U ( −1, 1). 则 1 (1) n X k,(2)1 ∑ n k =1
n 2 X k 分别 依概 率收 敛吗 ? ∑ k =1 n
《概率论与数理统计》课件第五章大数定律及中心极限定理
4.大样本统计推断的理论基础
是什么?
大数定律中心极限定理
随机现象中平均结果的稳定性
大数定律的客观背景
大量抛掷硬币正面出现频率
字母使用频率
生产过程中的废品率
§5.1 大数定律
背景:1. 频率稳定性2. 大量测量结果算术平均值的稳定性
回顾
随机现象的主要研究方法
概率分布
01
证:_x001A__x001B__x001B_,_x001A__x001B__x001B_,⋯, _x001A__x001B__x001B_, ⋯相互独立同分布,则_x001A__x001B__x001B__x001B_,_x001A__x001B__x001B__x001B_, ⋯,_x001A__x001B__x001B__x001B_, ⋯也相互独立同分布,由辛钦大数定律得证.
第五章 大数定律及中心极限定理
§5.1 大数定律§5.2 中心极限定理
要点:用切比雪夫不等式估算概率独立同分布,用中心极限定理计算对于二项分布,当n很大时,计算
本章要解决的问题
1.为何能以某事件发生的频率
作为该事件的概率的估计?
2.为何能以样本均值作为总体
期望的估计?
3.为何正态分布在概率论中占
解:(1)设X表示一年内死亡的人数,则~(, ),其中=,=.%. 设Y表示保险公司一年的利润,=×−.需要求的是_x001A_<_x001B_.
由中心极限定理
_x001A_<_x001B_=_x001A_×−<_x001B_ =_x001A_>_x001B_=−_x001A_≤_x001B_
且,
由中心极限定理
解:设为第i个螺丝钉的重量, 相互独立同分布. 于是,一盒螺丝钉的重量为
概率论-第5章 大数定律及中心极限定理
§1 大数定律
一、问题的引入
生产过程中的 字母使用频率 废品率 启示:从实践中人们发现大量测量值的算术平均值 有稳定性.
大量抛掷硬币 正面出现频率
§1 大数定律
一、问题的引入
大数定律的概念 概率论中用来阐明大量随机现象平均结果的 稳定性的一系列定理,称为大数定律(law of large number)
§2 中心极限定理
即考虑随机变量X k (k 1, n)的和 X k的标准化变量
k 1 n
Yn
X
k 1
n
k
E ( X k )
k 1 n
n
D ( X k )
2
说明每一个随机变量都有相同的数学期望。
§1 大数定律
检验是否具有相同的有限方差?
Xn P
2
( na ) 1 2 2n
2 n
2
0 1 1 2 n
2
( na ) 1 2 2n
2
1 2 a , E ( X ) 2( na ) 2 2n 2 ) [ E ( X n )]2 a 2 . D( X n ) E ( X n
使得当 x a y b 时,
g( x , y ) g(a , b)பைடு நூலகம் ,
§1 大数定律
于是 { g( X n , Yn ) g(a, b) }
{ X n a Yn b }
X n a Yn b , 2 2
§2 中心极限定理
自从高斯指出测量误差服从正态分布之后,人 们发现,正态分布在自然界中极为常见.
如果一个随机变量是由大量相互独立的随机因 素的综合影响所造成,而每一个别因素对这种综合 影响中所起的作用不大. 则这种随机变量一般都服 从或近似服从正态分布. 现在我们就来研究独立随机变量之和所特有 的规律性问题.
概率论第五章 大数定律及中心极限定理
的标准化变量为
n
X i n
Yn i1 n
则Yn的分布函数Fn(x)对任意的x∈(-∞,+∞)都有
n X i n
lim
n
Fn
(
x)
lim
n
P(Yn
x)
lim
n
P
i 1
n
x
x
1
t2
e 2 dt
2
该定理说明,当n充分大时, Yn近似地服从标准正 态分布,Yn~N(0,1), (n )
P|
X
|
2 2
P X
1
2 2
证明 (1)设X的概率密度为p(x),则有
P{| X | } p(x)dx
| x |2
p(x)dx
|x|
|x|
2
1
2
(x
)2
p(
x)dx
2 2
Xi 2
0
pi
1 4
1 2
2
(i 1,2, , n, )
1 4
解
因为 X1, X 2 , , X n ,
相互独立, EX i 0 , E
X
2 i
1
又
DX i
E
X
2 i
EX i
2
1 0
1, i
1,2,
, n,
所以,满足切比雪夫大数定理的条件,可使用大数定理.
第五章---大数定律与中心极限定理
(a , a ) 内的概率越来越大. 0, n0
当 n n0
Xn
a a a
而 X n a 意思是: 0, n0 ,当 n n0
| X n a |
6
5.2 大数定律
我们曾经说, 频率是概率的反映,随 着观察次数的增大, 频率将会逐渐稳定 到概率. 这里是指试验的次数无限增大 时, 在某种收敛意义下逼近某一定数,这 就是所谓大数定律
D(
1 n
n k 1
Xk)
1 n2
n
D( X k )
k 1
8
由契比雪夫不等式,得:
P{|
1 n
n k 1
Xk
1 n
n k 1
E(Xk
)
|
}
1
1 n2
n
D( X k )
k 1
2
n 1
表明: 算术平均值依概率收敛于数学期望
9
5.3 中心极限定理
在一定条件下,大量独立随机变量 的和的分布以正态分布为极限分布的 这一类定理称为中心极限定理
7
契比雪夫大数定律
设随机变量X1, X2, ... , Xn, ...相互独 立,且分别具有期望E(Xk)和方差D(Xk) (k
=1,2,...),若方差有界,则 >0,有:
lim
n
P{|
1 n
n k 1
Xk
1 n
n k 1
E(Xk
)
|
}
1
E
(
1 n
n k 1
Xk )
1 n
n k 1
E(Xk )
∴ 只要供给这个车间141千瓦电, 就可保证因供电
不足而影响生产的可能性小于0.01.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 大数定理与中心极限定理■考试内容切比雪夫(Chebyshev )不等式 切比雪夫大数定律 伯努利(Bernoulli )大数定律 辛钦(Khinchine )大数定律 棣莫弗—拉普拉斯(De Moivre —Laplace )定理 列维—林德伯格(Levy —Lindberg )定理■考试要求1.了解切比雪夫不等式。
2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)3. 了解棣莫弗—拉普拉斯定理(二项分布以正态分布为极限分布)和列维—林德伯格定理(独立同分布随机变量序列的中心极限定理)3大均2中和1不等(3个大数定理、2个中心极限定理和一个不等式)。
一、切贝雪夫不等式1.1 切贝雪夫不等式及其应用范围如果不知道X 属于何种分布,只要()E X 和()D X 存在,就可以估算出以()E X 为中心的对称区间上取值的概率。
即:则任给0,ε>有或 ●证 明:由积分比较定理可知:()[]()[]()()(){}{}(){}(){}()222()()22()222()()()()1()()1x E X x E X x E X D X x E X f x dx x E X f x dx f x dxf x dx P X E X D X P X E X D X D X P X E X P X E X εεεεεεεεεεεεε∞-∞-≥-≥-≥=-≥-≥==-≥⇒-≥≤⇒--<≤⇒-<≥-⎰⎰⎰⎰1.2 依概率收敛的定义设a 是一个常数,n X 为一随机变量序列, 0, {}1n P X a εε∀>∃-<=或{}0n P X a ε-≥=,则称{}n X 依概率收敛于a ,记为或。
二、大数定理●大数定理的应用范围:●大数定理的特征:2.1 切比雪夫大数定理设随机变量12,,,n X X X …相互独立,服从同一分布(任意分布),且具有相同的数学期望和方差()211(), ; nk k k k E X D X X X n μσ====∑则0,ε∀>有在大量的测量值中,算术平均值11nk k x n =∑具有稳定性,即n 个随机变量的算术平均值,当n无限增加时,将几乎变成一个常数,即接近数学期望()k E X μ=,这种接近是概率意义上的接近,也就是X 依概率收敛μ,记为PX μ−−→,这也是为什么在实际应用中,常用算术平均来描述事件发生的加权平均(即数学期望)的原因。
2.2 辛钦大数定理设随机变量12,,,n X X X …相互独立,服从同一分布(任意分布),且具有相同的数学期望()11() 1,2,,; nk k k E X k n X X n μ====∑L ,则0,ε∀>有(不要求方差存在)在大量的测量值中,算术平均值具有稳定性,即n 个随机变量的算术平均值,当n 无限增加时将几乎变成一个常数。
显然,伯努利大数定理是辛钦大数定理的特例。
2.3 伯努利大数定理设A Y 是n 次独立重复试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则0ε∀>,有或1.12...A n Y X X X =+++,12,,...,n X X X 服从同一()01-分布;2.当n 很大(一般要求大于45)时,事件发生的频率AY n具有稳定性,且逼近于其概率,这也是为什么在实际应用中,常用频率来代替事件发生概率的原因。
3.它本质上是离散情形下的辛钦大数定理。
3个大数定理的应用选择方法大数定理提供了算术平均代替加权平均的理论根据,适应于事件发生的平均值依概率收敛情形。
如果能已知EX ,DX 都存在,则使用切比雪夫大数定理;如果仅知道EX 存在,而未知DX 是否存在,则使用辛钦大数定理;如果是伯努利试验,则使用伯努利大数定理。
三、中心极限定理●中心极限的应用范围:●3.1列维一林德伯格中心极限定理(又称独立同分布的中心极限定理)设12,,,n X XX ……相互独立,服从同一分布(任意分布),且具有数学期望和方差2(), ()0(1,,)k k E X D X k n μσ==≠=…,则随机变量1nk i X =∑的标准化量n Ynn nk k kn X E X Xn Y μ⎛⎫-- ⎪==∑∑∑()n F x 满足①21~(, )nk k X N n n μσ=∑, n →∞;②此处n Y 表达式中,分子与分母可同乘以1n Y n →= 正好对应标准化()0, 1N 。
3.2 棣莫佛—拉普拉斯中心极限定理设随机变量()1,2,...n n η=服从参数为n p ,的二项分布(二次分布也是要求1,n X X …相互独立,1n n k k X η==∑,,同时隐含2()(1)0k D X np p σ==-≠),则,x ∀ 随机变量1nn k k X η==∑的标准化量①正态分布是二项分布的极限分布;②()1~, 1nn kk XN np np p η==-⎡⎤⎣⎦∑,n →∞。
③2个中心极限定理的应用选择方法中心极限定理提供了任何备选事件发生的标准化量依概率收敛于()0, 1N 的理论根据。
当EX ,DX 都存在,且0DX ≠时,如果是伯努利试验(离散型),则使用莫佛—拉普拉斯中心极限定理;一般型使用列维一林德伯格中心极限定理。
四、先进题型与求解秘诀【例1】已知随机变量, X Y 的数学期望分别为2-和2,方差分别为1和4,相关系数为0.5-,试估计{}6P X Y +≥。
解:由于未知, X Y 的具体分布,故使用切贝雪夫不等式 2(){()}D X P X E X εε-≥≤()222201420.53()31{()}{()6}6121{6}12XY Z X Y EZ EX EY DZ DX DY D X P X E X P Z E Z P X Y ρεε=+⇒=+=-+==++=++-=-≥≤⇒-≥≤=⇒+≥≤【例2】随机掷6颗骰子,利用切比雪夫不等式估计6颗骰子点数之和大于14小于28的概率至少为多少?解:设{} i X i =第颗骰子出现的点数()()(){}61222222222266116611123456~11111166666617123456621911234566691735621276212353561221428i i i i i i i i i i i i i i i i X X X EX EX DX EX EX EX E X EX DX D X DX P X =====⎛⎫ ⎪⇒= ⎪ ⎪⎝⎭=+++++==+++++=⎛⎫=-=-= ⎪⎝⎭⎛⎫===⨯= ⎪⎝⎭⎛⎫===⨯=⎪⎝⎭<<∑∑∑∑∑{}{}2359272172171714P X P X =-<-<=-<≥-=【例3】假设某一年龄段女孩平均身高130cm ,标准差是8厘米,现在从该年龄段女孩中随机抽取5名女孩,测其身高,估计她们的平均身高X 在120cm-140cm 之间的概率。
解:不知分布估计概率使用切贝雪夫不等式设i X 为第i 名被测女孩的身高,显然15,X X …相互独立同分布5221511()130; ()864; 511()()51301305511164()()()56412.82525255i i ii i i i i E X D X X X E X E X D X D X D X σ=========⨯⨯==∑=∑=⨯⨯==∑∑应用切贝雪夫不等式,有212.8{120140}{13010}10.87210P X P X <<=-<≥-=。
【例4】设X 为连续型随机变量,则是对任意常数C ,必有 (A )()E X CP X C εε--≥=(B )()E X CP X C εε--≥≥(C )()E X CP X C εε--≥≤(D )2()()D X P X C εε-≥≤解: ()()()X C X CP X C f X dX f x dx εεε+∞-≥-∞--≥=≤⎰⎰1()E X CX C f x dx εε+∞-∞-=-=⎰应选(C )。
【例5】()~2i X E ,{}i X 独立同,求211lim n i n i X n →+∞=∑。
解:注意随机变量的极限是指依概率收敛情形。
本题知道了具体分布,求随机变量平均值的极限,故使用大数定理,又能够确定, EX DX ,故使用切比雪夫大数定理。
()()221122222221111lim {}1lim {}1112121111lim {}1lim .22n n i i i n n i i i i i n n i i n n i i P X P X EX n n EX DX EX P X X P n n μεελλλε→∞→∞==→∞→+∞==-<=⇒-<==+=+==⇒-<=⇒=∑∑∑∑【例6】设{}n X 独立同分布,1()(0)xF X a arctg b bπ=+≠,问辛钦大数定理可否适应。
解: 22()'()()bf x F x b x π==+ 22222()()bb x EX xf x dx dx m b X b x ππ+∞+∞+∞-∞===+=+∞+⎰⎰数学期望不存在,故不可适用辛钦大数定理。
()1设{}n X 独立同分布,且0n EX =,1,2,n =L ,求1lim n i n i X n →∞=⎛⎫< ⎪⎝⎭∑。
解:根据辛钦大数定理{}1111111lim 1lim 1lim 1 1lim lim 1lim 1而n n let i i n n n i i n n ni i i n n n i i i P X P X P X n n P X n P X n P X n εμεε=→∞→∞→∞==→∞→∞→∞===⎧⎫⎧⎫-<=⇒<=−−−→<=⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫⎧⎫≥<≥<=⇒<=⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭∑∑∑∑∑()2设{}n X 相互独立,()~n X E n 1,2,n =L。
则下列哪个不符合切比雪夫大数定理。
()()()()2212121212, , , 2, 11, , , 2, 2n nn nA X X XB X X n XC X X XD X X nX n LL L L 解:选()B 。
()()()()()()()2222422223211; ,11; ,11111111; 11111; 符合。
无界,即不存在不符合。
符合。
符合。
n n n n n n n n A EX DX n nB E n X n n D n X n n n nC E XD X n n n n n n nn D E nX n D X n n n n n ===⋅==⋅=⎛⎫⎛⎫=⋅==⋅= ⎪ ⎪⎝⎭⎝⎭⎛⎫=⋅==⋅= ⎪⎝⎭设{}n X 相互独立, 1,2,n =L 。