武汉大学《线性代数》04 第四章

合集下载

线性代数 课后习题详解 第四章

线性代数 课后习题详解 第四章

第四章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320;(3) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010(3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311 )5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022100343112423213~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102021 32~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.在秩是r 的矩阵中,有没有等于0的1-r 阶子式?有没有等于0的r 阶 子式?解 在秩是r 的矩阵中,可能存在等于0的1-r 阶子式,也可能存在等 于0的r 阶子式.例如,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000010000100001α3)(=αR 同时存在等于0的3阶子式和2阶子式.3.从矩阵A 中划去一行得到矩阵B ,问B A ,的秩的关系怎样? 解 )(A R ≥)(B R设r B R =)(,且B 的某个r 阶子式0≠D r .矩阵B 是由矩阵A 划去一行得到的,所以在A 中能找到与D r 相同的r 阶子式D r ,由于0≠=D D r r , 故而)()(B R A R ≥.4.求作一个秩是4的方阵,它的两个行向量是)0,0,1,0,1(,)0,0,0,1,1(- 解 设54321,,,,ααααα为五维向量,且)0,0,1,0,1(1=α,)0,0,0,1,1(2-=α,则所求方阵可为,54321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααααA 秩为4,不妨设⎪⎩⎪⎨⎧===)0,0,0,0,0(),0,0,0,0()0,,0,0,0(55443αααx x 取154==x x 故满足条件的一个方阵为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100000100000011001015.求下列矩阵的秩,并求一个最高阶非零子式:(1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2) ⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211 ⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫ ⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫⎝⎛-------815073131223123⎪⎪⎪⎭⎫ ⎝⎛---------152********117014431~27122113r r r r r r 200000591170144313~23秩为⎪⎪⎪⎭⎫ ⎝⎛-----r r .二阶子式71223-=-.(3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------023010********071210 131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000010*******002301秩为3 三阶子式07023855023085570≠=-=-.6.求解下列齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x (3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010*********k k x x x x(3) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001~即得⎪⎪⎩⎪⎪⎨⎧====00004321x xx x故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x7.求解下列非齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1) 对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2) 对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201~ 即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛021112k z y x(3) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----000007579751025341253414312311112~⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000007579751076717101~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x8.λ取何值时,非齐次线性方程组 ⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1) 0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2) )()(B R A R < ⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ 得2-=λ时,方程组无解.(3) 3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ, 得1=λ时,方程组有无穷多个解.9.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x10.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解时求解.解 ⎪⎪⎪⎭⎫ ⎝⎛---------154224521222λλλλ初等行变换~⎪⎪⎪⎪⎪⎭⎫⎝⎛---------2)4)(1(2)10)(1(00111012251λλλλλλλλ 当0≠A ,即02)10()1(2≠--λλ 1≠∴λ且10≠λ时,有唯一解.当02)10)(1(=--λλ且02)4)(1(≠--λλ,即10=λ时,无解.当02)10)(1(=--λλ且02)4)(1(=--λλ,即1=λ时,有无穷多解.此时,增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛-000000001221原方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (R k k ∈21,)11.试利用矩阵的初等变换,求下列方阵的逆矩阵:(1) ⎪⎪⎪⎭⎫⎝⎛323513123; (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023. 解 (1)⎪⎪⎪⎭⎫ ⎝⎛100010001323513123⎪⎪⎪⎭⎫ ⎝⎛---101011001200410123~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----10121121023200010023~⎪⎪⎪⎪⎪⎭⎫⎝⎛----2102121129227100010003~⎪⎪⎪⎪⎪⎭⎫⎝⎛----21021211233267100010001~故逆矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267(2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010000100001~ 故逆矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------1061263111010421112.(1) 设⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=132231,113122214B A ,求X 使B AX =;(2) 设⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛---=132321,433312120B A ,求X 使B XA =. 解 (1) ()⎪⎪⎪⎭⎫ ⎝⎛----=132231113122214B A 初等行变换~⎪⎪⎪⎭⎫ ⎝⎛--412315210100010001 ⎪⎪⎪⎭⎫ ⎝⎛--==∴-4123152101B A X (2) ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛132321433312120B A 初等列变换~⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---474112100010001 ⎪⎪⎭⎫ ⎝⎛---==∴-4741121BA X .。

线性代数 第四章

线性代数  第四章

可逆时, 的特征值。 (4) 当 A 可逆时,λ 是 A-1 的特征值。 Proof 且 x 仍是矩阵 kA, Al,g ( A) ,A-1 的分别属于特 l −1 的特征向量。 征值 k λ ,λ , g (λ ) , λ 的特征向量。 Note : λ,µ 为 A,B 的特征值 λ + µ,λµ 未必
−1
的特征值。 特征向量不同 特征向量不同) 是 A+B,AB 的特征值。(特征向量不同
第四章 特征值和特征向量、矩阵的相似对角化
Theorem 4.4 的证明 Proof : 由 Ax = λ x 有
(kA) x = k ( Ax) = k (λ x) = (k λ ) x
所以, 的特征值, 所以, k λ 是 kA 的特征值,且 x 也是 kA 属于
的特征向量, 用反证法 假设 x1 + x2 是A 的特征向量,则应存在数 λ
Ax1 = λ1 x1,Ax2 = λ2 x2 A( x1 + x2 ) = λ1 x1 + λ2 x2
A( x1 + x2 ) = λ ( x1 + x2 ) 使 于是 λ ( x1 + x2 ) = λ1 x1 + λ2 x2 即 (λ1 − λ ) x1 + (λ2 − λ ) x2 = 0
§1 特征值与特征向量
1.1 特征值与特征向量的概念 Definition 4.1 设 A 是 n 阶方阵,如果数 λ 和 n 维非 方阵, 零列向量 x 使关系式 对应于特征值
Ax = λ x
(1) )
成立, 的特征值, 成立,则称 λ 为 A 的特征值,非零向量 x 称为 A 的 的特征向量。 λ 的特征向量。
说明满足 det( A − λ E ) = 0 的特征值. 是 A 的特征值. 反之 也然. 也然.

线性代数四五章知识点总结

线性代数四五章知识点总结

线性代数四五章知识点总结第四章:行列式1. 行列式的定义行列式是一个数学工具,它可以用来表示一个线性变换对体积的放大倍数。

对于一个n阶(n行n列)的方阵A,它的行列式记作det(A),行列式的元素通常用aij表示,其中i代表行号,j代表列号。

2. 行列式的性质(1)行列式中的行(列)互换,则行列式变号。

(2)行列式的某一行(列)乘以一个数k,那么行列式的值也要乘以k。

(3)行列式中的某一行(列)的元素都是两个数的和,那么行列式等于两个行列式的和。

(4)若行列式中有两行(列)完全相同,则行列式的值为0。

3. 行列式的计算(1)余子式和代数余子式对于一个n阶行列式A,如果去掉第i行和第j列的元素后,剩下来的(n-1)阶行列式就是A的余子式,用Mij表示。

而对应的代数余子式就是Mij乘上(-1)^(i+j)。

(2)拉普拉斯(Laplace)展开定理通过代数余子式的计算,可以利用拉普拉斯展开定理来计算n阶行列式的值。

即对于一个n阶行列式A,其中的元素aij乘以对应的代数余子式Mij后相加,即可得到行列式的值。

第五章:特征值和特征向量1. 特征值和特征向量的概念对于一个n阶方阵A,如果存在一个非零向量x和一个数λ,使得Ax=λx,那么λ称为A 的特征值,x称为A对应于特征值λ的特征向量。

2. 特征值和特征向量的计算寻找一个矩阵的特征值和特征向量可以通过求解方程组(A-λI)x=0来得到。

其中A是待求矩阵,λ是特征值,x是特征向量,I是单位矩阵。

3. 特征值和特征向量的性质(1)特征值的性质:一个n阶方阵A的n个特征值之和等于它的主对角线元素之和,即Tr(A)=λ1+λ2+...+λn。

(2)特征向量的性质:如果A有n个不同的特征值λ1,λ2,...,λn,那么这n个特征值对应的n个特征向量是线性无关的。

4. 特征值与对角化如果一个n阶方阵A有n个线性无关的特征向量,那么可以将它对角化成对角阵D,即找到一个可逆矩阵P,使得P^-1AP=D。

线性代数第四章答案

线性代数第四章答案

第四章 向量组的线性相关性1 设v1(1 1 0)T v2(0 1 1)T v3(3 4 0)T求v1v2及3v12v2v3解v1v2(1 1 0)T(0 1 1)T(10 11 01)T(1 0 1)T3v12v2v33(1 1 0)T 2(0 1 1)T (3 4 0)T(31203 31214 30210)T(0 1 2)T2 设3(a1a)2(a2a)5(a3a) 求a其中a1(2 5 1 3)Ta2(10 1 5 10)T a3(4 1 1 1)T解由3(a1a)2(a2a)5(a3a)整理得(1 2 3 4)T3 已知向量组A a1(0 1 2 3)T a2(3 0 1 2)T a3(2 3 0 1)TB b1(2 1 1 2)T b2(0 2 1 1)T b3(4 4 1 3)T证明B组能由A组线性表示但A组不能由B组线性表示证明由知R(A)R(A B)3 所以B组能由A组线性表示由知R(B)2 因为R(B)R(B A) 所以A组不能由B组线性表示4 已知向量组A a1(0 1 1)T a2(1 1 0)TB b1(1 0 1)T b2(1 2 1)T b3(3 2 1)T证明A组与B组等价证明由知R(B)R(B A)2 显然在A中有二阶非零子式故R(A)2 又R(A)R(B A)2 所以R(A)2 从而R(A)R(B)R(A B) 因此A组与B组等价5 已知R(a1a2a3)2 R(a2a3a4)3 证明(1) a1能由a2a3线性表示(2) a4不能由a1a2a3线性表示证明 (1)由R(a2a3a4)3知a2a3a4线性无关故a2a3也线性无关又由R(a1 a2a3)2知a1a2a3线性相关故a1能由a2a3线性表示(2)假如a4能由a1a2a3线性表示则因为a1能由a2a3线性表示故a4能由a2a3线性表示从而a2a3a4线性相关矛盾因此a4不能由a1a2a3线性表示6 判定下列向量组是线性相关还是线性无关(1) (1 3 1)T (2 1 0)T (1 4 1)T(2) (2 3 0)T (1 4 0)T (0 0 2)T解 (1)以所给向量为列向量的矩阵记为A因为所以R(A)2小于向量的个数从而所给向量组线性相关(2)以所给向量为列向量的矩阵记为B因为所以R(B)3等于向量的个数从而所给向量组线性相无关7 问a取什么值时下列向量组线性相关?a1(a 1 1)T a2(1 a 1)T a3(1 1 a)T解以所给向量为列向量的矩阵记为A由如能使行列式等于0,则此时向量组线性相关(具体看书后相应答案)8 设a1a2线性无关a1b a2b线性相关求向量b用a1a2线性表示的表示式解因为a1b a2b线性相关故存在不全为零的数12使(a1b)2(a2b)01由此得设则b c a1(1c)a2c R9 设a1a2线性相关b1b2也线性相关问a1b1a2b2是否一定线性相关?试举例说明之(也可看书后答案)解不一定例如当a1(1 2)T, a2(2 4)T, b1(1 1)T, b2(0 0)T时有a1b1(1 2)T b1(0 1)T, a2b2(2 4)T(0 0)T(2 4)T而a1b1a2b2的对应分量不成比例是线性无关的10 举例说明下列各命题是错误的(1)若向量组a1a2a m是线性相关的则a1可由a2a m线性表示解设a1e1(1 0 0 0) a2a3a m0则a1a2a m线性相关但a1不能由a2a m线性表示(2)若有不全为0的数12m使a1m a m1b1m b m01成立则a1a2a m线性相关, b1b2b m亦线性相关解有不全为零的数12m使a1m a m 1b1m b m01原式可化为(a1b1) m(a m b m)01取a1e1b1a2e2b2a m e m b m其中e1e2e m为单位坐标向量则上式成立而a1 a2a m和b1b2b m均线性无关(3)若只有当12m全为0时等式a1m a m1b1m b m01才能成立则a1a2a m线性无关, b1b2b m亦线性无关解由于只有当12m全为0时等式由1a1m a m1b1m b m0成立所以只有当12m全为0时等式(a1b1)2(a2b2) m(a m b m)01成立因此a1b1a2b2a m b m线性无关取a1a2a m0取b1b m为线性无关组则它们满足以上条件但a1a2a m线性相关(4)若a1a2a m线性相关, b1b2b m亦线性相关则有不全为0的数12m使a1m a m0 1b1m b m01同时成立解a1(1 0)T a2(2 0)T b1(0 3)T b2(0 4)Ta12a2 01221b12b2 01(3/4)210 与题设矛盾1211 设b1a1a2b2a2a3 b3a3a4 b4a4a1证明向量组b1b2b3b4线性相关证明由已知条件得a1b1a2a2b2a3 a3b3a4 a4b4a1于是a1 b1b2a3b1b2b3a4b1b2b3b4a1从而b1b2b3b40这说明向量组b1b2b3b4线性相关12 设b1a1b2a1a2b r a1a2 a r且向量组a1a2a r线性无关证明向量组b1b2b r线性无关证明已知的r个等式可以写成上式记为BAK因为|K|10 K可逆所以R(B)R(A)r从而向量组b1b2b r线性无关13 求下列向量组的秩, 并求一个最大无关组(1)a1(1 2 1 4)T a2(9 100 10 4)T a3(2 4 2 8)T解 由知R(a1a2a3)2 因为向量a1与a2的分量不成比例故a1a2线性无关所以a1 a2是一个最大无关组(2)a1T(1 2 1 3) a2T(4 1 5 6) a3T(1 3 4 7)解由知R(a1T a2T a3T)R(a1a2 a3)2 因为向量a1T与a2T的分量不成比例故a1T a2T 线性无关所以a1T a2T是一个最大无关组14 利用初等行变换求下列矩阵的列向量组的一个最大无关组(1)解因为所以第1、2、3列构成一个最大无关组.(2)解因为所以第1、2、3列构成一个最大无关组(关于14的说明:14题和书上的14题有些不同,答案看书后的那个)15 设向量组(a 3 1)T (2 b 3)T(1 2 1)T (2 3 1)T的秩为2 求a b解设a1(a 3 1)T a2(2 b 3)T a3(1 2 1)T a4(2 3 1)T因为而R(a1a2a3a4)2 所以a2 b516 设a1a2a n是一组n维向量已知n维单位坐标向量e1e2e n能由它们线性表示证明a1a2a n线性无关证法一记A(a1a2a n) E(e1e2e n) 由已知条件知存在矩阵K使EAK两边取行列式得|E||A||K|可见|A|0 所以R(A)n从而a1a2a n线性无关证法二因为e1e2e n能由a1a2a n线性表示所以R(e1e2e n)R(a1a2a n)而R(e1e2e n)n R(a1a2a n)n所以R(a1a2a n)n从而a1a2a n线性无关17 设a1a2a n是一组n维向量, 证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示证明必要性设a为任一n维向量因为a1a2a n线性无关而a1a2a n a 是n1个n维向量是线性相关的所以a能由a1a2a n线性表示且表示式是唯一的充分性已知任一n维向量都可由a1a2a n线性表示故单位坐标向量组e1 e2e n能由a1a2a n线性表示于是有nR(e1e2e n)R(a1a2a n)n即R(a1a2a n)n所以a1a2a n线性无关18 设向量组a1a2a m线性相关且a10证明存在某个向量a k (2km) 使a k能由a1a2a k1线性表示证明因为a1a2a m线性相关所以存在不全为零的数12m使a12a2m a m01而且23m不全为零这是因为如若不然则1a10由a10知10 矛盾因此存在k(2km) 使0 k1k2m0k于是a12a2k a k01a k(1/k)(1a12a2k1a k1)即a k能由a1a2a k1线性表示19 设向量组B b1b r能由向量组A a1a s线性表示为(b1b r)(a1a s)K其中K为sr矩阵且A组线性无关证明B组线性无关的充分必要条件是矩阵K的秩R(K)r证明 令B(b1b r) A(a1a s) 则有BAK必要性设向量组B线性无关由向量组B线性无关及矩阵秩的性质有rR(B)R(AK)min{R(A) R(K)}R(K)及R(K)min{r s}r因此R(K)r充分性因为R(K)r所以存在可逆矩阵C使为K的标准形于是(b1b r)C( a1a s)KC(a1a r)因为C可逆所以R(b1b r)R(a1a r)r从而b1b r线性无关20 设证明向量组12n与向量组12n等价证明将已知关系写成将上式记为BAK因为所以K可逆故有ABK1由BAK和ABK1可知向量组12n与向量组12n可相互线性表示因此向量组12n与向量组12n等价21 已知3阶矩阵A与3维列向量x满足A3x3A x A2x且向量组x A x A2x线性无关(1)记P(x A x A2x) 求3阶矩阵B使APPB解因为APA(x A x A2x)(A x A2x A3x)(A x A2x 3A x A2x)所以(2)求|A|解由A3x3A x A2x得A(3x A x A2x)0因为x A x A2x线性无关故3x A x A2x0即方程A x0有非零解所以R(A)3 |A|0(从22题开始,凡涉及到基础解系问题的,答案都不是唯一的,可以参考本文答案,也可以看书后的答案,不过以书后的答案为主。

线性代数(第四章)

线性代数(第四章)

第四章 二次型习题4.1 二次型及其标准形(P.108-P.109)1.用矩阵记号表示下列二次型:(1)2222426;f x xy y xz z yz =+++++(2)22221234121314232424264f x x x x x x x x x x x x x x =+++-+-+- 解:(1)2222426f x xy y xz z yz =+++++()111,,143131x x y z y x ⎛⎫⎛⎫⎪⎪'== ⎪⎪ ⎪⎪⎝⎭⎝⎭x Ax(2)22221234121314232424264f x x x x x x x x x x x x x x =+++-+-+-()1212343411211132,,,23101201x x x x x x x x --⎛⎫⎛⎫ ⎪⎪-- ⎪⎪'== ⎪ ⎪ ⎪ ⎪ ⎪⎪--⎝⎭⎝⎭x Ax 2.用配方法或矩阵变换法化下列二次型为标准形,并求所用的变换矩阵: (1)222123121323235448f x x x x x x x x x =+++--; 解:222123121323235448f x x x x x x x x x =+++--22212323232()34x x x x x x x =+-++- 2221232332()(2)x x x x x x =+-+--令:11231123223223333311122012001y x x x x y y y y x x x y y C y x x y =+-=----⎧⎧⎛⎫⎪⎪ ⎪=-⇒=+=⎨⎨ ⎪⎪⎪ ⎪==⎩⎩⎝⎭10C =≠ 得2221232f y y y =+-(2)222123122313210282f x x x x x x x x x =+++++; 解: 222123122313210282f x x x x x x x x x =+++++2221232323()96x x x x x x x =+++++ 2212323()(3)x x x x x =++++令112311232232233333211233013001y x x x x y y y y x x x y y C y x x y =++=-+-⎧⎧⎛⎫⎪⎪ ⎪=+⇒=-=-⎨⎨ ⎪⎪⎪ ⎪==⎩⎩⎝⎭, 10C =≠ 得 2212f y y =+ (3)122334f x x x x x x =++解:令11211212223343343444110110000110011x y y x y x y y x y x y y x y x y y x y =+⎧⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪=--⎪ ⎪ ⎪⎪⇒=⎨⎪ ⎪ ⎪=+⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪=--⎝⎭⎝⎭⎝⎭⎩ 121212343434()()()()()()f y y y y y y y y y y y y =+-+-+++-2222123413142324y y y y y y y y y y y y =-+-++--222213423423243411351()22442y y y y y y y y y y y y =++-+---- 2222134234341111()()2222y y y y y y y y =++-+++-令1134113422342234333344441111222211112222z y y y y z z z z y y y y z z z z y y z z y y z ⎧⎧=++=--⎪⎪⎪⎪⎪⎪=++=--⇒⎨⎨⎪⎪==⎪⎪⎪⎪==⎩⎩,即1122334411102211012200100001y z y z y z y z ⎛⎫-- ⎪⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭ ⎪⎝⎭得 22221234f z z z z =-+-变换矩阵:1110110011112211001111000122001100110010001100110001C ⎛⎫-- ⎪--⎛⎫⎛⎫ ⎪⎪ ⎪--⎪⎪ ⎪--== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪⎝⎭⎝⎭ ⎪⎝⎭40C =≠(4)222123121323255448f x x x x x x x x x =+++--解: 222123123232()334f x x x x x x x =+-++-222123233252()3()33x x x x x x =+-+-+ 令 1123112322322333331322,33x y y y y x x x y x x x y y C y x x y ⎧=-+⎪=+-⎧⎪⎪⎪⎪=-⇒=+=⎨⎨⎪⎪==⎪⎪⎩⎪⎩x y 即, 其中 11132013001C ⎛⎫- ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎝⎭, 10C =≠ 得 2221235233f y y y =++3.若矩阵1A 合同于12,B A 合同于2B ,试证:12⎛⎫⎪⎝⎭A 00A 合同于12⎛⎫ ⎪⎝⎭B 00B 。

线性代数第四章

线性代数第四章

1 0 0 0 b1 0 1 0 0 b2 b b3 b1 0 b2 0 b3 1 bn 0 0 0 0 1 b n 1 0 En 0 0 0 0 0 1 0 0 0 1 0 0 0 1
一般地,由于:
x1 a11 x2 a21 x1a1 x2a2 xm am a1 , a2 , , am x m a n1 a11 a21 a n1 a12 a1m x1 a22 a2 m x2 an 2 anm xm
R(A) = R(A, B)
R(B) = R( 1 2 1 0 例:设 a1 , a2 , a3 , b 2 1 4 3 2 3 0 1
b l1a1 l2a2 lmam
由P.77定理5立即可得如下结论(P.83 定理1 ): 向量b 能由 向量组 A 线性表示 线性方程组 Ax = b 有解
a12 a1m l1 a22 a2 m l2 b an 2 anm lm

结论:矩阵 C 的行向量组能由矩阵 B 的行向量组线性表示, A 为这一线性表示的系数矩阵.
定理:向量组 B:b1, b2, …, bl 能由向量组 A:a1, a2, …, am 线
性表示的充要条件是: R(A) = R(A, B)
证:因为向量组 B:b1, b2, …, bl 能由向量组 A:a1, a2, …, am 线性表示 存在矩阵 K,使得 AK = B 矩阵方程 AX = B 有解 R(A) = R(A, B) (P.84 定理2) 因为 R(B) ≤ R(A, B)

线性代数第四章习题答案

线性代数第四章习题答案

0 a+1 1 −1
1 − a2 = (a + 1)2 (a − 2). a
a −1 a
0 a + 1 −1 − a
1 −1
所以, a = −1 或 a = 2 时向量组线性相关. 更常规的思路是: 向量组 a1 , a2 , a3 线性相关, 则存在不全为零的数 k1 , k2 , k3 使得
k1 a1 + k2 a2 + k3 a3 = 0.
50
第四章 向量组的线性相关性 解: (1) 因为
A= −1 2 3 1 1 0 1 −1 0 0 2 7 2 1 7 2 −1 0 0 2 1 0 1 1 , 0
r2 + 3r1 4 r3 + r1 1
可见 R(A) = 2, 所以该向量组是线性相关的. 或者: 由 −1 2 1 3 + 1 = 4 1 0 1 知线性相关. (2) 因为

1 a3 = −1 1
4
.
解: 由 3(a1 − a) + 2(a2 + a) = 5(a3 + a) 得 2 10 1 1 5 + 1 1 a = (3a1 + 2a2 − 5a3 ) = 6 2 1 3 5 3= 3 0 1
2
;

4 −2 1 , b3 = B : b1 = , b2 = 1 1 1 3 1 2
2


0


4
.
即线性方程组

《线性代数》第四章:线性方程组-PPT课件

《线性代数》第四章:线性方程组-PPT课件
三角形线性方程组要求方程组所含方程的个数等于未知量的个数且第个方程第个变量的系数三角形线性方程组是一类特殊的情形解法也简单由克莱姆法则可以判断其解惟一一般只需要从最后一个方程开始求解逐步回代就可求出方程组的全部解11定义416线性方程组中自上而下的各方程所含未知量个数依次减少这种形式的方程组称为n元阶梯形线性方程组
❖ 例如 axbyc 是一个二元方程,a , b 不同时
为零时,方程有无穷多解,如 b0时,x0,yc
b
为二元方程 的一个特解, axbyc
b0 时 , xk,ycakk R
bb
为二元方程的通解;当 a , b 同时为零,若时c ,0
方程无解;当
a同, b 时为零,若 时c , 0 方程
有无穷多解任意一对有序实数都是方程的解。
❖ 消元法的目的就是利用方程组的初等变换将 原方程组化为阶梯形方程组, 由于这个阶梯形 方程组与原线性方程组同解, 解这个阶梯形方 程组得到的解就是原方程组的解。
❖ 注意:将一个方程组化为行阶梯形方程组的 步骤并不是惟一的, 所以,同一个方程组的行 阶梯形方程组也不是唯一的。
❖ n元线性方程组的一般形式为
cnnxn 0
❖ 其中 crr 0 则线性方程组有唯一解,即仅有零解。
❖ (2) 当 r n 时,方程组可以化为
c11x1 c12x2 c1rxr c1nxn 0
c22x2 c2rxr c2nxn 0 ..........................
crrxr crnxn 0
❖ 其中 crr 0 将其改写成
a11x1a12x2 a1rxrb1a1r1xr1 a1nxn a22x2 a2rxrb2a2r1xr1 a2nxn arrxrbrarr1xr1 arnxn

线代第四章共32页文档

线代第四章共32页文档
可得
0 10
200
Q = 1/ 2 0 1/ 2 , Q1AQ = QTAQ = 0 4 0 .
1/ 2 0 1/ 2
004

第四章 矩阵的特征值和特征向量
§4.4 实对称矩阵的相似对角化
注: 对于2=3=4, 若取(4E–A)x = 0的基础解系
2=(1, 1, 1)T, 3=(–1, 1, 1)T,
解之得
x1 x2
=k
1 1
(0 k R).
A的对应于2=4的特征向量为
k k
(0kR).

第四章 矩阵的特征值和特征向量
§4.2 特征值与特征向量
1 1 0
例2. 求 A 4 3 0 的特征值和特征向量.

1
0
2

解: |E–A| = (–2)(–1)2.
为(A) = 2A2 –3A +4E的特征值.
证明: 因为为A的特征值, 即有非零向量x使Ax = x,
于是(A)x = (2A2 –3A +4E)x
= 2(A2)x–3Ax +4x
= 22x–3x +4x
= (22 –3 +4)x
= ()x,
所以()为(A)的特征值.

例6. 设1, 2, …, m为方阵A的m个不同的特征值,
三. 性质
§4.2 特征值与特征向量
性质5. 设A~B, 则|E–A| = |E–B|.
性质6. 设A = (aij)nn的特征值为1, …, n, 则 (1) 1 + … + n = tr(A). (2) 1…n = |A|.
推论. A 可逆1, …, n全不为零.

线性代数第四章复习小结

线性代数第四章复习小结

α 1 , α 2 ,⋯ , α m
可由
线性相关, 线性相关,则
α1 , α 2 ,⋯ , α m 线性表示,且表示的系数唯一。 线性表示,且表示的系数唯一。
3).若向量组 ) 若向量组 可由向量组 β 1 , β 2 , ⋯ , β
α
α1,α2 ,⋯,αr
线性表示, 线性表示,且
r>s
s

α1 , α 2 ,⋯ , α r 线性相关。 线性相关。
线性无关。
7)A为n阶方阵, ( A ) ) 为 阶方阵 r 阶方阵, ,又设
= n −1
η1 , η2
是非齐次线性方程组
AX = b
的两个不同的解, 的两个不同的解,证明
η1 + η2 X = k ( η1 − η2 ) + 2
为非齐次线性方程组 的通解。 的通解。其中
AX = b
K为任意常数。 为任意常数。 为任意常数

a, b
取何值时?( )有唯一解;( ;(2)无解; 取何值时?(1)有唯一解;( )无解; ?( (3)有无穷多个解,并求其解。 )有无穷多个解,
6.设 .
α1 , α 2 , α 3
线性无关, 线性无关,证明
β1 = α1 + α 2 , β 2 = α 2 + 2α3 ,
β 3 = α 3 + 3α1
T T
T
,3 ) ) α4 =(−1 ,2,1 ,α5 =(−2,6,4,1
T
T
3.设向量组 .
1 4 3 2 1 , α = 0 , α = −1 , α = 1 α1 = 2 2 4 3 2 4 −2 0 1 1 3

线性代数第四章习题答案

线性代数第四章习题答案

习题四答案(A)1. 求下列矩阵的特征值与特征向量:(1) ⎪⎪⎭⎫ ⎝⎛--3113 (2) ⎪⎪⎪⎭⎫ ⎝⎛---122212221 (3) ⎪⎪⎪⎭⎫ ⎝⎛----020212022 (4)⎪⎪⎪⎭⎫ ⎝⎛--201034011 (5) ⎪⎪⎪⎭⎫ ⎝⎛--011102124 (6)⎪⎪⎪⎭⎫ ⎝⎛----533242111 解 (1)矩阵A 的特征多项式为=-A E λ)4)(2(3113--=--λλλλ,所以A 的特征值为4,221==λλ.对于21=λ,解对应齐次线性方程组=-X A E )2(O ,可得它的一个基础解系为)1,1(1=αT ,所以A 的属于特征值2的全部特征向量为)1,1(111k k =αT (01≠k 为任意常数).对于42=λ,解对应齐次线性方程组=-X A E )4(O ,可得它的一个基础解系为)1,1(2-=αT ,所以A 的属于特征值4的全部特征向量为)1,1(222-=k k αT(02≠k 为任意常数).(2)矩阵A 的特征多项式为=-A E λ)3)(1)(1(122212221--+=------λλλλλλ, 所以A 的特征值为11-=λ,12=λ,33=λ.对于11-=λ,解对应齐次线性方程组=--X A E )(O ,可得它的一个基础解系为)0,1,1(1-=αT ,所以A 的属于特征值-1的全部特征向量为)0,1,1(111-=k k αT (01≠k 为任意常数).对于12=λ,解对应齐次线性方程组=-X A E )(O ,可得它的一个基础解系为)1,1,1(2-=αT ,所以A 的属于特征值1的全部特征向量为)1,1,1(222-=k k αT (02≠k 为任意常数).对于33=λ,解对应齐次线性方程组=-X A E )3(O ,可得它的一个基础解系为)1,1,0(3-=αT ,所以A 的属于特征值3的全部特征向量为)1,1,0(333-=k k αT (03≠k 为任意常数).(3) 矩阵A 的特征多项式为=-A E λ)4)(1)(2(2021222--+=--λλλλλλ, 所以A 的特征值为11=λ,42=λ,23-=λ.对于11=λ,解对应齐次线性方程组=-X A E )(O ,可得它的一个基础解系为)2,1,2(1-=αT ,所以A 的属于特征值1的全部特征向量为)2,1,2(111-=k k αT (01≠k 为任意常数).对于42=λ,解对应齐次线性方程组=-X A E )4(O ,可得它的一个基础解系为)1,2,2(2-=αT ,所以A 的属于特征值4的全部特征向量为)1,2,2(222-=k k αT (02≠k 为任意常数).对于23-=λ,解对应齐次线性方程组=--X A E )2(O ,可得它的一个基础解系为)2,2,1(3=αT ,所以A 的属于特征值-2的全部特征向量为)2,2,1(333k k =αT (03≠k 为任意常数).(4)矩阵A 的特征多项式为=-A E λ)3()1(212123242--=------λλλλλ, 所以A 的特征值为12,1=λ(二重),23=λ.对于12,1=λ,解对应齐次线性方程组=-X A E )(O ,可得它的一个基础解系为)1,2,1(1-=αT ,所以A 的属于特征值1的全部特征向量为)1,2,1(111-=k k αT (01≠k 为任意常数).对于23=λ,解对应齐次线性方程组=-X A E )2(O ,可得它的一个基础解系为)1,0,0(2=αT ,所以A 的属于特征值2的全部特征向量为)1,0,0(222k k =αT (02≠k 为任意常数).(5)矩阵A 的特征多项式为=-A E λ2)2(11132124-=------λλλλλ, 所以A 的特征值为01=λ,23,2=λ(二重).对于01=λ,解对应齐次线性方程组=-X A E )0(O ,可得它的一个基础解系为)2,1,1(1--=αT ,所以A 的属于特征值0的全部特征向量为)2,1,1(111--=k k αT (01≠k 为任意常数).对于23,2=λ,解对应齐次线性方程组=-X A E )2(O ,可得它的一个基础解系为)0,1,1(2-=αT ,所以A 的属于特征值2的全部特征向量为22αk )0,1,1(2-=k T (02≠k 为任意常数).(6)矩阵A 的特征多项式为=-A E λ)3()1(212123242--=------λλλλλ, 所以A 的特征值为61=λ,23,2=λ(二重).对于61=λ,解对应齐次线性方程组=-X A E )6(O ,可得它的一个基础解系为)3,2,1(1-=αT ,所以A 的属于特征值6的全部特征向量为)3,2,1(111-=k k αT (01≠k 为任意常数).对于23,2=λ,解对应齐次线性方程组=-X A E )2(O ,可得它的一个基础解系为)0,1,1(2-=αT ,)1,0,1(3=αT ,所以A 的属于特征值2的全部特征向量为3322ααk k +)0,1,1(2-=k T )1,0,1(3k +T (32,k k 为不全为零的任意常数).2. 设A 为n 阶矩阵, (1) 若O A ≠,且存在正整数k ,使得O A k=(A 称为幂零矩阵),证明:A 的特征值全为零;(2) 若A 满足A A =2(A 称为幂等矩阵),证明:A 的特征值只能是0或1;(3) 若A 满足E A =2(A 称为周期矩阵),证明:A 的特征值只能是1或1-. 证明:设矩阵A 的特征值为λ,对应的特征向量为α,即λαα=A .(1)因αλαk k A =,而,O A k=故O k =αλ.又因O ≠α,故0=k λ,得.0=λ(2)因αλα22=A ,而,2A A =故αλααλα22===A A ,即.)(2O =-αλλ又因O ≠α,故02=-λλ,得0=λ或1.(3)同(2)可得αλααα22===A A ,即.)1(2O =-αλ又因O ≠α,故012=-λ,得1=λ或1-.3. 设21,αα分别为n 阶矩阵A 的属于不同特征值1λ和2λ的特征向量,证明:21αα+不是A 的特征向量.证明:反证法.若21αα+是A 的特征向量,相应的特征值为λ,则有)()(2121ααλαα+=+A ,即2121λαλααα+=+A A .又因21,αα分别为矩阵A 的属于特征值1λ和2λ的特征向量,即111αλα=A ,222αλα=A ,则2121λαλαλαλα+=+,即O =-+-2211)()(αλλαλλ.因21,αα是矩阵A 的属于不同特征值的特征向量,故21,αα线性无关,于是可得0,021=-=-λλλλ,即21λλλ==,矛盾.4. 证明定理4.4.若λ是n 阶矩阵A 的特征值,则(1)设m m x a x a a x f +++= 10)(,则)(λf 是)(A f 的特征值,其中m m A a A a E a A f +++= 10)()(N m ∈;(2)若A 可逆,则0≠λ,且λ1是1-A 的特征值,λ||A 是A 的伴随矩阵*A 的特征值. 证明:设矩阵A 属于特征值λ的特征向量为α,即λαα=A .(1)因αλαλλαλλαααααα)()()(101010f a a a a a a A a A a a A f m m m m m m =+++=+++=+++=故)(λf 是)(A f 的特征值. (2)因A 可逆,故0||≠A .而||A 为A 的特征值之积,故A 的特征值0≠λ.用1-A 左乘λαα=A 两端得αλλααα111---===A A A A .因0≠λ,故αλα11=-A ,即λ1是1-A 的特征值. 因1*||-=A A A ,故λ||A 是A 的伴随矩阵*A 的特征值.5. 证明:矩阵A 可逆的充分必要条件是A 的特征值全不等于零.证明:因矩阵A 可逆,故0||≠A .由n n A λλλλ,,(||11 =是A 的全部特征值)得01≠n λλ ,故),,1(0n i i =≠λ.6. 已知三阶矩阵A 的特征值为1,2,3,求*12,,3A A E A A -++的特征值. 解:由矩阵的特征值的性质得 A A 32+的特征值为41312=⨯+,102322=⨯+,183332=⨯+;1-+A E 的特征值为34311,23211,2111=+=+=+; 因6321||=⨯⨯=A *A 的特征值为236,326,616===. 7. A 是三阶矩阵,已知0|3|,0|2|,0||=-=-=+A E A E A E ,求|4|A E +.解:因,0||)1(||3=+-=--A E A E 0|3|,0|2|=-=-A E A E ,故三阶矩阵A 的全部特征值为-1,2, 3.因此A E +4的特征值为,734,624,3)1(4=+=+=-+于是126763|4|=⨯⨯=+A E .8. 已知向量)1,,1(k =αT 是矩阵⎪⎪⎪⎭⎫ ⎝⎛=211121112A 的逆矩阵1-A 的特征向量,求常数k 的值.解:因α是1-A 的特征向量,故也是A 的特征向量.设对应的特征值为λ,于是由λαα=A 可得⎪⎩⎪⎨⎧=++=++=++λλλ2112112k k k k ,解得2-=k 或1=k .9. 证明:如果矩阵A 可逆,则BA AB ~.证明:因BA BA A A A AB A ==--))(()(11,且A 可逆,则BA AB ~.10. 如果B A ~,证明:存在可逆矩阵P ,使得BP AP ~.证明:因B A ~,故存在可逆矩阵P ,使得AP P B 1-=.将上式两端右乘,P 得P AP P AP P BP )(11--==,即BP AP ~. 11. 如果B A ~,D C ~,证明:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛D O O B C O O A ~. 证明:因B A ~,D C ~,故存在可逆矩阵Q P ,,使得CQ Q D AP P B 11,--==.于是有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---D O O B Q O O P C O O A Q O O P Q O O P C O O A Q O O P 111.而⎪⎪⎭⎫ ⎝⎛Q O O P 可逆,故⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛D O O B C O O A ~. 12. 已知A 为二阶矩阵,且0||<A ,证明:存在可逆矩阵P ,使得AP P 1-为对角矩阵.证明:A 为二阶矩阵,且0||<A ,故A 必有两个不等特征值,因此必存在可逆矩阵P ,使得AP P 1-为对角矩阵.13. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛--=x A 14020112与矩阵⎪⎪⎪⎭⎫ ⎝⎛-=21y B 相似,求(1) 常数x 和y 的值;(2) 可逆矩阵P ,使得B AP P =-1.解:(1)因B A ~,故B A 与有相同的特征值.而B 的特征值为2,,1y -,故-1,2也是A 的特征值.而=-A E λ]42)2()[2(140201122+--+-=-----+x x xλλλλλλ. 将1-=λ代入上式中得3=x .于是可得)1()2(2+-=-λλλA E ,故有A 的特征值为2,2,1-,因此2=y .(2)由(1)知A 的特征值为11-=λ,23,2=λ(二重).对应11-=λ的无关特征向量为)1,0,1(1=αT ,对应23,2=λ的无关特征向量为)0,4,1(2=αT ,)4,0,1(3=αT ,令⎪⎪⎪⎭⎫ ⎝⎛=401040111P ,则P 可逆,且B AP P =-1.14. 设三阶矩阵A 的特征值为1, 2, 3, 对应的特征向量分别为)1,1,1(T ,)1,0,1(T ,)1,1,0(T ,求(1)A ;(2)n A .解:(1)令⎪⎪⎪⎭⎫ ⎝⎛=111101011P ,则⎪⎪⎪⎭⎫ ⎝⎛=-3211AP P .而⎪⎪⎪⎭⎫ ⎝⎛---=-1011101111P 则⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛=-4122121113211P P A . (2)因⎪⎪⎪⎭⎫ ⎝⎛==-3211ΛAP P ,所以1-=P P A Λ,故 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==-1011101113211111010111n nn n P P A Λ⎪⎪⎪⎭⎫ ⎝⎛-+------=13221311313112211n n n n n n n n. 15. 判断第1题中各矩阵是否可以对角化?若可以对角化,求出可逆矩阵P ,使得AP P 1-为对角阵.解:由第1题结果知 (1) 可以对角化, ⎪⎪⎭⎫ ⎝⎛-=1111P ;(2) 可以对角化, ⎪⎪⎪⎭⎫ ⎝⎛---=110111011P ;(3) 可以对角化, ⎪⎪⎪⎭⎫ ⎝⎛--=212221122P ; (4) (5) 不可以对角化;(6) 可以对角化, ⎪⎪⎪⎭⎫ ⎝⎛--=103012111P .16.证明正交矩阵的实特征值只能是1或1-.证明:设A 为正交矩阵,则AA T E A A T ==.设矩阵A 的特征值为λ,对应的特征向量为α,即λαα=A .将上式两端取转置得TT T A λαα=.将上面两式左右相乘得ααλααT T T A A 2=,即ααλααT T 2=.而ααT 为非零常数,故1,12±==λλ.17. 设⎪⎪⎪⎭⎫ ⎝⎛=111111111A ,求正交矩阵P ,使得AP P 1-为对角阵.解:矩阵A 的特征多项式为=-A E λ)3(1111111112-=---------λλλλλ, 所以A 的特征值为02,1=λ(二重),33=λ.对于02,1=λ,解对应齐次线性方程组=-X A E )0(O ,可得它的一个基础解系为)0,1,1(1-=αT ,)1,0,1(2-=αT .将其正交化,取⎪⎪⎪⎭⎫ ⎝⎛-=0111β,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=-=1212101121101),(),(1111222ββββααβ, 再单位化,得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-==366666,02222222111ββγββγ; 对于33=λ,解对应齐次线性方程组=-X A E )3(O ,可得它的一个基础解系为)1,1,1(3=αT.将其单位化,得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==333333333ααγ. 令⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=33360336622336622P ,则⎪⎪⎪⎭⎫⎝⎛==-3001ΛAP P .18. 设三阶实对称矩阵A 的特征值为1,23,21=-=λλ, 属于1λ的特征向量为)1,1,0(1=αT,求属于3,2λ的特征向量及矩阵A .解:设属于13,2=λ的无关特征向量为32,αα.因A 是实对称矩阵,故123,21=-=λλ的特征向量与的特征向量必正交,于是⎪⎩⎪⎨⎧==03121ααααTT , 即32,αα是齐次线性方程组O X T=1α的两个线性无关解向量.求得上述方程组的基础解系为)0,0,1(T ,)1,1,0(-T,故取)0,0,1(1=αT,)1,1,0(2-=αT,因此属于13,2=λ的全部特征向量为)0,0,1(1k T)1,1,0(2-+k T(21,k k 不全为零);令⎪⎪⎪⎭⎫⎝⎛-=101101010P ,则⎪⎪⎪⎭⎫ ⎝⎛-==-1121ΛAP P . 而⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=-21210011212101P ,故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----==-21230232100011P P A Λ. (B)1. 设n 阶矩阵A 的各行元素之和为常数a ,证明:a =λ是矩阵A 的一个特征值,)1,,1,1( T是对应的特征向量.证明:设n n ij a A ⨯=)(,其中T nj ija a)1,,1,1(,1==∑=α.由ααa a a a a a a A T nj nj nj j nj j ===∑∑∑===),,,(),,,(11211知a =λ是矩阵A 的一个特征值,)1,,1,1( =αT 是对应的特征向量.2. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n b b b a a a 2121,βα都是非零向量,且0=βαT,记αβ=A T ,求(1)2A ;(2)A 的特征值与特征向量.解:(1)由0=βαT得0)(==TTTβααβ,于是O A T T T T ===βαβααβαβ)())((2.(2)由A 组第2题(1)知A 的特征值为0.求A 的特征向量.⎪⎪⎪⎪⎪⎭⎫⎝⎛==n n n n n n T b a b a b a b a b a b a b a b a b a A 212221212111αβ,因βα,都是非零向量,故必存在某个i a 和j b 不为零,因此A 中元素0≠j i b a ,不妨设011≠b a .将A 做初等行变换得⎪⎪⎪⎪⎪⎭⎫⎝⎛00000021n b b b ,即1)(=A r ,故齐次线性方程组O AX =-的基础解系含有1-n 个解向量.令T n x x x ),,,(21 为T b )0,,0,(1 ,T b )0,,,0(1 ,T b ),,0,0(,1 ,得T b b )0,,0,,(121 -=α,T b b )0,,,0,(132 -=α,T n n b b ),,0,0,(,11 -=-α,于是所求特征向量为T n n b b k k k k )0,,0,,(121112211 -=+++--αααT b b k )0,,,0,(132 -+T n n b b k ),,0,0,(111 ---++,121,,,(-n k k k 不全为零).3. 已知三阶矩阵A 的特征值为2, 3, 4, 对应的特征向量分别为)1,2,1(1-=αT ,)2,1,2(2-=αT ,)2,3,3(3-=αT .令向量=β)6,5,4(T ,(1)将β用321ααα,,线性表示;(2)求βnA (n 为正整数).解:(1)由⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛---=210030104001622153124321),,,(321βααα得321234αααβ++=.(2)321321234)234(ααααααβnn n n n A A A A A ++=++=332211234αλαλαλnn n ++=,2332,23322(12131212++++++⨯-+⨯+⨯-=n n n n n n)23222212++++⨯+-n n n T .4. 设A 为三阶实对称矩阵,2)(=A r ,且满足条件O A A =+232,求矩阵A 的全部特征值.解:设矩阵A 的特征值为λ,则由O A A =+232得0223=+λλ,故0=λ或2-=λ.因A 为三阶实对称矩阵,故A 必与某三阶对角矩阵Λ相似.因2)(=A r ,故2)(=Λr ,所以Λ的对角线元素有两个-2和一个0.因此A 的全部特征值为22,1-=λ(二重),03=λ.5. 设四阶矩阵A 满足AAA E ,0|2|=+T0||,2<=A E ,求*A 的一个特征值.解:因0||<A ,故矩阵A 可逆.由E AA T 2=知422||=A 得4||-=A .因,0|2|)1(|2|4=+-=--A E A E 得2-=λ是矩阵A 的一个特征值,因此*A 的一个特征值为22.6. 设⎪⎪⎪⎭⎫ ⎝⎛=0011100y x A 有3个线性无关的特征向量,求x 与y 满足的条件.解:矩阵A 的特征多项式为=-A E λ2)1)(1(01110-+=-----λλλλλy x ,所以A 的特征值为11-=λ,13,2=λ(二重).因A 有3个线性无关的特征向量,故齐次线性方程组=-X A E )(O 的系数矩阵的秩为1,即1)(=-A E r .而⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛----=-000001011010101y x y x A E ,于是0=+y x .7. 问n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111 与⎪⎪⎪⎪⎪⎭⎫⎝⎛00100100 n 是否相似,为什么?解:令⎪⎪⎪⎪⎪⎭⎫⎝⎛=111111111 A ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00100100 n B ,则B A ~. 矩阵B 的特征值为1(01,,1-=-n n λ重),n n =λ.01,,1=-n λ对应的齐次线性方程组的系数矩阵为,1)(,000000001=-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→-B r B故属于01,,1=-n λ的无关特征向量有1-n 个;n n =λ对应的齐次线性方程组的系数矩阵为,1)(,00000001=-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→-B nE r n B nE故属于n n =λ的无关特征向量有1个.因此矩阵B 有n 个线性无关的特征向量,故B 可对角化,且;00~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n B Λ 因为0||,11===++A trA n n λλλλ ,故A 的特征值必有0和非零数值.因1)()(==-A r A r ,故特征值0有1-n 个线性无关的特征向量,所以0的重数至少为1-n ,则A 的非零特征值为n ,因此矩阵A 的特征值为1(01,,1-=-n n λ重),n n =λ.因A 为实对称矩阵,故必可对角化,且⎪⎪⎪⎪⎪⎭⎫⎝⎛=n A 00~ Λ,于是B A ~.8. 设A 为n 阶矩阵, O A ≠,且存在正整数m ,使得O A m=,证明A 不能对角化.解:反证法.假设A 可对角化,由A 组第2题(1)知,A 的特征值都为0,故O A ~,即存在可逆矩阵P ,使得O AP P =-1,则O A =,矛盾.9. 设矩阵,220021000030000⎪⎪⎪⎪⎪⎭⎫⎝⎛-=B 矩阵B A ~,求)3()(E A r E A r -+-. 解:矩阵B 的特征方程为=-B E λ0)3)(2(2=-+=λλλ,所以B 的特征值为01=λ,22-=λ,14,3=λ(二重).因矩阵B 是实对称矩阵,故属于14,3=λ的线性无关的特征向量必有2个,即224)3(=-=-B E r .因B A ~,则A 的特征值只有0,-2,3(二重),且属于3的线性无关的特征向量也有2个,即2)3(=-A E r .因1不是矩阵A 的特征值,故0||≠-A E ,即4)(=-A E r .因此6)3()(=-+-E A r E A r .。

武汉大学《线性代数》04 第四章.ppt

武汉大学《线性代数》04 第四章.ppt

2 1
,
a3
1 2
,
b
3 3
则 b 能由 a1 , a2 , a3 线性表示.
解方程组 x1a1 x2a2 x3a3 b
即解方程组
2 x1 x1 2
x2 x2
x3 x3
0 3
x1 x2 2 x3 3
2020/10/15
10

x1 1 1
x2 x3
2020/10/15
14
定义3: 设向量组 A :1,2 , ,m 及 B : 1, 2 , , l
若 B 组中的每一个向量都能由向量组 A 线性表示, 则称向量组 B 能由向量组 A 线性表示。
若向量组 A 与向量组 B 能相互线性表示, 则称向量组 A 与向量组 B 等价。
2020/10/15
第四章 向量组的线性相关性
2020/10/15
1
§1 向量组及其线性组合
定义1:n 个数 a1 , a2 , , an 所组成的有序数组
称为一个 n 维向量,这 n 个数称为该向量 的 n 个分量,第 i 个数 ai 称为第 i 个分量。
这里定义的 n 维向量就是指行(或列)矩阵。
2020/10/15
2020/10/15
8
定义2:设向量组 A :1,2 , ,m , 和向量 b 若存在一组实数 1,2 , m , 使得 b 11 22 mm
则称向量 b 是向量组 A的一个线性组合, 或称向量 b 能由向量组 A 线性表示。
2020/10/15
9
例如: 2
1
1 0
a1
1 1
,
a2
称为 n 维Euclid空间 Rn 中的 n-1维超平面。

线性代数课件第4章

线性代数课件第4章

11
2 1 1 例7: 求矩阵 A 0 2 0 的特征值和特征向量, 4 1 3
并求可逆矩阵P, 使 P 1 AP 为对角阵.
解:
2 1 1 2 | A E | 0 2 0 1 2 4 1 3
| A 3 A 2 E | 9
17
定理2:设 1 , 2 ,
, m 是方阵 A的 m 个特征值,
p1 , p2 ,
若 1 , 2 ,
, pm 依次是与之对应的特征向量。
, m 各不相等,则 p1 , p2 ,
, pm
线性无关。
方阵 A 的属于不同特征值的特征向量线性无关。

( n ) det( A)
ann )( )n1
1 2 n a11 a 22 1 2 n det( A)
a nn
8
1 1 0 例6: 求矩阵 A 4 3 0 的特征值和特征向量. 1 0 2
解:1、由矩阵 A 的特征方程,求出特征值.
1 1 0 1 1 3 0 (2 ) A E 4 4 3 1 0 2
1 2 0
2
特征值为 = 1, 2
9
2、把每个特征值 代入线性方程组 A E x 0, 求出基础解系。
(2) 有相同特征多项式的矩阵不一定相似。
25
矩阵可对角化的条件(利用相似变换把方阵对角化)
定理4: n 阶矩阵 A 与对角阵相似(A可对角化)
A有n个线性无关的特征向量。
26
Api i pi , i 1, 2,
( Ap1 , Ap2 ,

线性代数第四章

线性代数第四章
为m个数, 称向
k11+k22+…+kmm
为向量组1, 2, …, m的一个线性组合.
15

定义4.2.2 设 1, 2, …, m, Rn, 如果存在数
l1, l2, …, lm 使得
=l11+l22+…+lmm
则称向量 可由向量组1, 2, …, m线性表出.
故1,2,3, 4线性相关.
31
例 2 设向量组, , 线性无关. 证明向量组
+, + , + 也线性无关.
32
小结:判定给定的一向量组1, 2, …, m是否线 性相关或线性无关,通常运用“待定系数法”,即 设待定系数 满足关系式
k11 k22 kmm O
11
二. 向量子空间
定义4.1.3 设W是的Rn一个非空子集. 如果
(i) 对任意的, ∈W,均有 + ∈W ;
(ii) 对任意的∈W 和任意的k∈R,有k∈W.
则称W是Rn的一个子空间. 子空间中向量加法和数乘向量满足向量空间定 义中的八条运算律. 从而 将向量空间和它的子空 间均称为向量空间.
中每一向量可由1, 2, …, m线性表出.
20
注. 若W=span(1, 2, …, m) , 则称1, 2, …, m
是子空间W的一组生成元, 并称W为1, 2, …, m
生成的子空间.
21
§4.3
线性相关与线性无关
一. 定义 线性相关与线性无关是线性代数中十分重要的概
利用行初等变换的方法解此方程组.
29
(1) 解. 因为
1 1 2 4 2 r1 r2 2 1 1 0 4 r1 r3 4 3 2 0

线性代数课后习题答案第四章胡觉亮

线性代数课后习题答案第四章胡觉亮

习 题 四 (A )1.设T T T 123(1,1,0),(0,1,1),(3,4,0)v v v ===,求21v v -和32123v v v -+.解 T v v )1,0,1(21-=-,T v v v )2,1,0(23321=-+. 2.求解下列向量方程:(1)βα=+X 3,其中T T (1,0,1),(1,1,1)αβ==-. 解 11()(0,1,2)33T X βα=-=-. (2)βα+=+X X 332,其中T T )1,1,3(,)1,0,2(-==βα. 解 3(3,1,4)T X αβ=-=-.3.试问向量β可否由向量组1234,,,αααα线性表示?若能,求出β由1234,,,αααα线性表示的表达式.(1)12341111121111;,,,1111111111βαααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.解 设11223344x x x x ααααβ+++=.由12345100041111110100111124(,,,|)1111110010411111100014r ααααβ⎛⎫ ⎪ ⎪⎛⎫⎪⎪-- ⎪⎪=−−→ ⎪ ⎪-- ⎪-⎪⎪--⎝⎭⎪-⎪⎝⎭, 得12341234(,,,)(,,,|)4R R ααααααααβ==,所以β可由向量组1234,,,αααα线性表示,且12345111,,,4444x x x x ===-=-,得表达式12341(5)4βαααα=+--.(2)12340111121110;,,,0110011000βαααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.解 设11223344x x x x ααααβ+++=.由12341111010011110201001(,,,|)11000001021000100012r ααααβ-⎛⎫⎛⎫⎪ ⎪⎪ ⎪=−−→⎪ ⎪⎪ ⎪--⎝⎭⎝⎭,得12341234(,,,)(,,,|)4R R ααααααααβ==,所以β可由向量组1234,,,αααα线性表示,且12341,1,2,2x x x x =-===-,得表达式123422βαααα=-++-. 4.讨论下列向量组的线性相关性:(1)⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=132,713,531,512,42354321ααααα.解 向量组所含向量个数大于向量的维数,所以该向量组线性相关.(2)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=cz bz az cy by ay cx bx ax 321,,ααα,其中z y x c b a ,,,,,全不为零.解 12,αα对应的分量成比例,则12,αα线性相关,所以该向量组线性相关.(3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=21011α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=42112α ,32310α⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭. 解 ()123112112013013,,121001240000r ααα--⎛⎫⎛⎫⎪⎪-⎪ ⎪=−−→⎪ ⎪-⎪ ⎪-⎝⎭⎝⎭. 因为()123,,3R ααα=,所以该向量组线性无关.(4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1100,0121,3021,03214321αααα. 解 12341110111022200301(,,,)301100100301000r αααα--⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪=−−→ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭. 因为1234(,,,)34R αααα=<,所以该向量组线性相关. 5.(1)设n R ∈α,证明:α线性相关当且仅当0α=.(2)设n R ∈21,αα,证明:21,αα线性相关当且仅当它们对应的分量成比例. 证 (1)α线性相关0,0k k α⇔=≠⇔0α=. (2)21,αα线性相关11220k k αα⇔+=,其中12,k k 不全为零.不妨设10k ≠,则21,αα线性相关21221()k l k ααα⇔=-=,即21,αα对应的分量成比例. 6.任取n R ∈4321,,,αααα,又记,,,433322211ααβααβααβ+=+=+=144ααβ+=,证明4321,,,ββββ必线性相关.证 显然13123424ββααααββ+=+++=+,即1234(1)(1)0ββββ+-++-=,所以4321,,,ββββ必线性相关.7.若向量组321,,βββ由向量组321,,ααα线性表示为112321233123,,.βαααβαααβααα=-+⎧⎪=+-⎨⎪=-++⎩ 试将向量组321,,ααα由向量组321,,βββ表示.解 由112321233123,,βαααβαααβααα=-+⎧⎪=+-⎨⎪=-++⎩解得11222331311,2211,2211.22αββαββαββ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩8.设12,,,n s R ααα∈L 为一组非零向量,按所给的顺序,每一(1,2,,)i i s α= 都不能由它前面的1-i 个向量线性表示,证明向量组12,,,s αααL 线性无关.证 用数学归纳法证明.1s =时,10α≠,则1α线性无关.设s m =时成立,即12,,,m ααα 线性无关.当1s m =+时,若121,,,,m m αααα+ 线性相关,则1m α+可由12,,,m ααα 线性表示,矛盾,所以向量组12,,,s αααL 线性无关.9.设非零向量β可由向量组12,,,s αααL 线性表示,证明:表示法唯一当且仅当向量组12,,,s αααL 线性无关.证 β可由向量组12,,,s αααL 线性表示1212(,,,)(,,,|)s s R R ααααααβ⇔= .则表示法唯一1122s s x x x αααβ⇔+++= 有唯一解1212(,,,)(,,,|)s s R R s ααααααβ⇔==12(,,,)s R s ααα⇔=⇔ 12,,,s αααL 线性无关.10.设12,,,n n R ααα∈L ,证明:向量组12,,,n αααL 线性无关当且仅当任一n 维向量均可由12,,,n αααL 线性表示.证 必要性:12,,,n αααL 线性无关,任取n R β∈,则12,,,,n αααβL 线性相关,所以β可由12,,,n αααL 线性表示.充分性:任一n 维向量均可由12,,,n αααL 线性表示,则单位坐标向量12,,,n e e e L 可由12,,,n αααL 线性表示,有1212(,,,)(,,,)n n n R e e e R n ααα=≤≤L L ,所以12(,,,)n R n ααα=L ,即12,,,n αααL 线性无关.11.求下列各向量组的秩及其一个极大无关组,并把其余向量用该极大无关组线性表示.(1)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=131,020,011321ααα.解 123101100(,,)123010001001r ααα⎛⎫⎛⎫⎪ ⎪=−−→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以3),,(321=αααR ,本身为一个极大无关组;(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2202,7431,6514,31214321αααα. 解 12341121014129921305401(,,,)99154200036720000r αααα⎛⎫-- ⎪-⎛⎫⎪⎪--⎪⎪-=−−→ ⎪⎪-- ⎪⎪-- ⎪⎝⎭ ⎪⎝⎭, 所以2),,,(4321=ααααR ,21,αα为一个极大无关组,且21395911ααα+-=,2149492ααα--=. (3)123410321301,,,,217542146αααα⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭51120α⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭.解 123451032113011301101101(,,,,)217520001142146000000r ααααα-⎛⎫⎛⎫⎪ ⎪---⎪ ⎪=−−→⎪ ⎪⎪ ⎪⎝⎭⎝⎭,所以3),,,,(54321=αααααR ,421,,ααα为一个极大无关组,且2133ααα+=,4215αααα+--=.12. 设A :1,,s ααL 和B :1,,t ββL 为两个同维向量组,秩分别为1r 和2r ;向量组C A B =的秩为3r .证明:{}21321,max r r r r r +≤≤.证 先证{}123max ,r r r ≤.显然A 组与B 组分别可由C 组线性表示,则13r r ≤,且23r r ≤,所以{}123max ,r r r ≤.次证312r r r ≤+.设11,,i ir ααL 为A 组的一个极大无关组,21,,i ir ββL 为B 组的一个极大无关组,则C 组可由1211,,,,,i ir i ir ααββL L 线性表示,有1231112(,,,,,)i ir i ir r R r r ααββ≤≤+ .13.设B 为n 阶可逆阵,A 与C 均为n m ⨯矩阵,且C AB =.试证明)()(C R A R =.证 由C AB =,知C 的列向量组可由A 的列向量组线性表示,则()()R C R A ≤.因为B 可逆,则1A CB -=,知A 的列向量组可由C 的列向量组线性表示,则()()R A R C ≤.所以)()(C R A R =.14.设A 为n m ⨯矩阵,证明:O A =当且仅当0)(=A R .证 必要性显然,下证充分性:()0R A A O =⇒=.设α为A 的任一列向量,则()()0R R A α≤=,所以()00R αα=⇒=.由α的任意性知O A =.15.设T T T T )11,5,1(;)6,3,1(,)5,2,0(,)1,1,1(321====βααα.(1)求由向量组123,,ααα生成的向量空间的一组基与维数; (2)求向量β在此组基下的坐标.解 由12310111011(,,|)12350112156110000r αααβ⎛⎫⎛⎫⎪ ⎪=−−→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,得 (1)12,αα为由向量组123,,ααα生成的向量空间的一组基,且维数为2; (2)向量β在此组基下的坐标为)2,1(.16.设T T T )1,5,2(,)1,0,1(,)3,1,2(321---=-=-=ααα.证明向量组123,,ααα是3R 的一组基,并求向量T )3,6,2(=β在这组基下的坐标.证 由123710021222(,,|)10560108311310012r αααβ⎛⎫ ⎪---⎛⎫⎪ ⎪=-−−→- ⎪ ⎪ ⎪ ⎪-⎝⎭- ⎪⎝⎭ , 得123,,ααα是3R 的一组基,且β在这组基下的坐标为71(,8,)22--. 17.在3R 中取两组基:T T T )1,7,3(,)3,3,2(,)1,2,1(321===ααα;T T T )6,1,1(,)1,2,5(,)4,1,3(321-===βββ.(1)求由基123,,ααα到基123,,βββ的过渡矩阵.(2)若向量γ在基123,,βββ下的坐标为)1,1,1(,求向量γ在基123,,ααα下的坐标.解 设123123(,,)(,,)P βββααα=.由123123123351(,,|,,)237121131416αααβββ⎛⎫ ⎪= ⎪ ⎪-⎝⎭1002771410109209(|)0014128rE P ---⎛⎫ ⎪−−→= ⎪ ⎪⎝⎭, 得(1)由基123,,ααα到基123,,βββ的过渡矩阵27714192094128P ---⎛⎫⎪= ⎪⎪⎝⎭.(2)γ在基123,,ααα下的坐标为277141113992091384128124X PY ----⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.18.在4R 中求一向量γ,使其在下面两组基:T T T T )1,0,0,0(,)0,1,0,0(,)0,0,1,0(,)0,0,0,1(4321====αααα; T T T T )3,1,6,6(,)1,2,3,5(,)0,1,3,0(,)1,1,1,2(4321===-=ββββ下有相同的坐标.解 由12341234(,,,),(,,,)X X X γααααγββββ===,得1234(,,,)γββββγ=,即1234((,,,))0E ββββγ-=.令1234(,,,)T x x x x γ=.由12341056100112360101(,,,)1111001110120000r E ββββ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪-=−−→⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭, 得142434,,.x x x x x x =-⎧⎪=-⎨⎪=-⎩取41x =,得T )1,1,1,1(---=γ. 19.求下列齐次线性方程组的一个基础解系及通解.(1)123231230,0,220.x x x x x x x x ++=⎧⎪+=⎨⎪++=⎩ 解 由111100011011122000r A ⎛⎫⎛⎫⎪ ⎪=−−→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,得1230,.x x x =⎧⎨=-⎩令31x =,得方程组的一个基础解系(0,1,1)T ξ=-,通解为ξc X =,其中c 为任意常数.(2)123412341240,20,30.x x x x x x x x x x x +-+=⎧⎪-+-=⎨⎪++=⎩解 由11002111131121011231010000r A ⎛⎫⎪-⎛⎫ ⎪ ⎪ ⎪=--−−→- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭,得132341,23.2x x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩ 令3420,01x x ⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,得方程组的一个基础解系1(1,3,2,0)T ξ=-,T)1,0,1,0(2-=ξ,通解为2211ξξc c X +=,其中21,c c 为任意常数.(3)12341234123420,24530,4817110.x x x x x x x x x x x x ---=⎧⎪-++=⎨⎪-++=⎩解 由2120712115245300174817110000r A ⎛⎫-- ⎪---⎛⎫ ⎪ ⎪ ⎪=-−−→ ⎪ ⎪ ⎪- ⎪⎝⎭ ⎪ ⎪⎝⎭,得1243422,75.7x x x x x ⎧=+⎪⎪⎨⎪=-⎪⎩ 令2410,07x x ⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,得方程组的一个基础解系T )0,0,1,2(1=ξ,T)7,5,0,2(2-=ξ,通解为2211ξξc c X +=,其中21,c c 为任意常数.(4)1234512345123451234520,20,333340,455570.x x x x x x x x x x x x x x x x x x x x +--+=⎧⎪-++-=⎪⎨+--+=⎪⎪+--+=⎩解 由1102111131111250111333334000004555700000r A ⎛⎫- ⎪--⎛⎫⎪ ⎪--⎪⎪--=−−→ ⎪ ⎪-- ⎪⎪-- ⎪⎝⎭ ⎪⎝⎭,得1523451,35.3x x x x x x ⎧=⎪⎪⎨⎪=+-⎪⎩令3451000,1,0003x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,得方程组的一个基础解系 T )0,0,1,1,0(1=ξ,T )0,1,0,1,0(2=ξ,T )3,0,0,5,1(3-=ξ,通解为332211ξξξc c c X ++=,其中321,,c c c 为任意常数.20.判断下列非齐次线性方程组是否有解,若有解,并求其解(在有无穷多解的情况下,用基础解系表示全部解).(1)123124234124244,24, 321,3 2 3.x x x x x x x x x x x x --=⎧⎪---=⎪⎨++=⎪⎪++=-⎩解 方程组的增广矩阵()141000524104131201401005031214001031023500014r B A β⎛⎫-⎪--⎛⎫ ⎪⎪⎪----⎪ ⎪==−−→ ⎪ ⎪⎪ ⎪-⎝⎭⎪⎪⎝⎭. 因为()()4R A R B ==,所以方程组有唯一解,且解为TX )4,54,513,514(--=. (2)12345123452345123451,3235, 2262,54337.x x x x x x x x x x x x x x x x x x x ++++=-⎧⎪+++-=-⎪⎨+++=⎪⎪+++-=-⎩解 方程组的增广矩阵()111111321135012262543317B A β-⎛⎫ ⎪--⎪== ⎪ ⎪--⎝⎭ 101153012262000000000000r ----⎛⎫⎪ ⎪−−→ ⎪ ⎪⎝⎭, 因为()()25R A R B ==<,所以方程组有无穷多解,且1345234553,226 2.x x x x x x x x =++-⎧⎨=---+⎩ 令314253,,x c x c x c ===,得通解为123(3,2,0,0,0)(1,2,1,0,0)(1,2,0,1,0)(5,6,0,0,1)T T T T X c c c =-+-+-+-其中123,,c c c 为任意常数.(3)12341234123412342352,22,5,323 4.x x x x x x x x x x x x x x x x +--=-⎧⎪+-+=-⎪⎨+++=⎪⎪+++=⎩解 方程组的增广矩阵()231521003121120100311115001053123400010r B A β----⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪==−−→⎪ ⎪⎪ ⎪⎝⎭⎝⎭.因为()()4R A R B ==,所以方程组有唯一解,且解为(3,3,5,0)T X =-. 21.设三元非齐次线性方程组β=AX ,矩阵A 的秩为2,且T )2,2,1(1=η,T)1,2,3(2=η 是方程组的两个特解,试求此方程组的全部解.解 由已知得导出组的基础解系含()321n R A -=-=个解向量,设为ξ,则可取21(2,0,1)T ξηη=-=-.所以方程组的通解为*(2,0,1)(1,2,2)T T X c c ξη=+=-+,其中c 为任意常数. 22.设m ξξξ,,,21 是齐次线性方程组0=AX 的基础解系,求证122,,,m ξξξξ+ 也是0=AX 的基础解系.证 显然122,,,m ξξξξ+ 是0=AX 的解,只需证明它们线性无关.1221212100110(,,,)(,,,)(,,,)001m m m m m K ξξξξξξξξξξ⨯⎛⎫⎪⎪+== ⎪⎪⎝⎭.由10K =≠,得12212(,,,)(,,,)m m R R m ξξξξξξξ+== ,所以122,,,m ξξξξ+ 线性无关.23.设A 是n 阶方阵.证明:存在一个n 阶非零矩阵B ,使AB O =的充要条件是0=Α.证 存在B O ≠,使得0AB O AX =⇔=有非零解0A ⇔=.24.设A 是n 阶方阵,B 为s n ⨯矩阵,且n B R =)(.证明: (1)若AB O =,则A O =; (2)若B AB =,则n E A =.证 (1)AB O =,则()()R A R B n +≤.又()()0R B n R A A O =⇒=⇒=.(2)()AB B A E B O =⇒-=.由(1)得A E O A E -=⇒=.(B )1.设向量组321,,ααα线性相关,而432,,ααα线性无关,问: (1)1α能否由432,,ααα线性表示?为什么?(2)4α能否由321,,ααα线性表示?为什么?解 (1)432,,ααα线性无关,则23,αα线性无关;又321,,ααα线性相关,则1α可由23,αα线性表示;所以1α可由432,,ααα线性表示.(2)若4α可由321,,ααα线性表示,又1α可由23,αα线性表示,则4α可由23,αα线性表示,有432,,ααα线性相关,矛盾,所以4α不能由321,,ααα线性表示.2.若向量组T (,,,,),1,,i a b a i n α==L L L ,其中i α的第i 个分量为b ,余皆为a .试讨论该向量组的线性相关性.解 112,,,[(1)]()n n b a a a b ab n a b a a a bααα-==+-- .当b a ≠且11b a n ≠--时,12,,,0n ααα≠ ,向量组12,,,n ααα 线性无关;当b a =或11b a n =--时,12,,,0n ααα= ,向量组12,,,n ααα 线性相关. 3.设向量组s ααα,,,21 线性无关,211ααβ+=,322ααβ+=,…,1ααβ+=s s , 试讨论s βββ,,,21 的线性相关性.若向量组s ααα,,,21 线性相关呢?解 12121210011100(,,,)(,,,)(,,,)01100001s s s s s K βββαααααα⨯⎛⎫⎪⎪⎪== ⎪⎪ ⎪⎝⎭,且11(1)s K -=+-.(1)若s ααα,,,21 线性无关,则当s 为偶数时,0K =,有12(,,,)()s R R K s βββ≤< ,此时s βββ,,,21 线性相关;当s 为奇数时,0K ≠,有1212(,,,)(,,,)s s R R s βββααα≤= ,此时s βββ,,,21 线性无关.(2)若s ααα,,,21 线性相关,则1212(,,,)(,,,)s s R R s βββααα≤< ,此时s βββ,,,21 线性相关.4.设s ααα,,,21 为n 维非零向量,A 为n 阶方阵,若,,,3221 αααα==A A s s A αα=-1, ,0=s A α,试证明s ααα,,,21 线性无关.证 设1122110s s s s x x x x αααα--++++= .该式两边左乘以A ,得122310s s x x x ααα-+++=依此类推,得10s x α=.由0s α≠,得10x =.同理可证20,,0s x x == .所以s ααα,,,21 线性无关.5.设32321211,,αααααααα+=+==A A A ,其中A 为3阶方阵,321,,ααα为3维向量,且01≠α,证明321,,ααα线性无关.证 设1122330x x x ααα++=. (1) (1)式两边左乘以A ,得12123233()()0x x x x x ααα++++=. (2)(2)减去(1),得21320x x αα+=. (3)(3)式两边左乘以A ,得23132()0x x x αα++=. (4) (4)减去(3),得310x α=.因为10α≠,所以30x =.代入(3),得210x α=,所以20x =.代入(1),得110x α=,所以10x =.所以321,,ααα线性无关.6.设A 为n 阶方阵,α为n 维列向量.证明:若存在正整数m ,使0=αm A ,而01≠-αm A ,则1,,,m A A ααα-L 线性无关.证 设10110m m x x A x A ααα--+++=L ,该式两边左乘以1m A -,得100m x A α-=.因为01≠-αm A ,所以00x =.同理可证110m x x -=== .所以1,,,m A A ααα-L 线性无关.7.设向量组A 的秩与向量组B 相同,且A 组可由B 组线性表示,证明A 组与B 组等价.证 设r B R A R ==)()(,r ααα,,,21 为A 组的一个极大无关组,r βββ,,,21 为B 组的一个极大无关组.由A 组可由B 组线性表示,得r r r r K ⨯=),,,(),,,(2121βββααα .又12,,,()()r r R K R r ααα≥≥= ,则r K R =)(,即K 为可逆矩阵,有11212(,,,)(,,,)r r K βββααα-= ,即r βββ,,,21 可由r ααα,,,21 线性表示,所以B 组可由A 组线性表示.故A 组与B 组等价.8.设向量组A :s ααα,,,21 线性无关,向量组B :12,,,r βββL 能由A 线性表示为1212(,,,)(,,,)r s s r K βββααα⨯=L L ,其中s r ≤,证明:向量组B 线性无关当且仅当K 的秩r K R =)(.证 向量组B 线性无关121,,,)(0r r X βββ⨯⇔= 只有零解 121(,,,)()0s s r r K X ααα⨯⨯⇔= 只有零解12,,,10s s r r K X ααα⨯⨯=⇔线性无关只有零解()R K r ⇔=.9.设B A ,都是n m ⨯矩阵,试证明:)()()|()(B R A R B A R B A R +≤≤+.证 先证()(|)R A B R A B +≤.显然A B +的列向量组可由A 的列向量组和B 的列向量组线性表示,则()(|)R A B R A B +≤.此证(|)()()R A B R A R B ≤+.设(),()R A r R B s ==,ˆA 与ˆB 分别为A 与B 的列向量组的一个极大无关组,则(|)A B 的列向量组可由ˆA与ˆB 线性表示,有 (|)()()R A B r s R A R B ≤+=+,即(|)()()R A B R A R B ≤+.10.设321,,ααα是3R 的一组基,211ααβ+=,322ααβ+=,133ααβ+=.(1)证明123,,βββ是3R 的一组基;(2)求由基321,,ααα到基123,,βββ的过渡矩阵;(3)若向量γ在基321,,ααα下的坐标为)0,0,1(,求向量γ在基123,,βββ下的坐标.证 123123101,,)(,,)110011(βββααα⎛⎫ ⎪= ⎪ ⎪⎝⎭. (1)(1)由10111001120=≠,得123123,,),)3((,R R βββααα==,则123,,βββ线性无关,所以123,,βββ是3R 的一组基.(2)由(1)式,得由基321,,ααα到基123,,βββ的过渡矩阵101110011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (3)γ在基123,,βββ下的坐标1110111111111001110201101110Y P X ---⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪=-= ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎝⎭=⎭=111(,,)222T -.11.当q p ,为何值时,齐次线性方程组1231231230,20,0x qx x x qx x px x x ++=⎧⎪++=⎨⎪++=⎩只有零解?有非零解?在方程组有非零解时,求其全部解.解 方程组的系数行列式11121(1)11q A q q p p ==-.当0A ≠,即0)1(≠-p q 时只有零解.当0A =,即0)1(=-p q 时有非零解,且通解为(1,1,1)T X c p =--,其中c 为任意常数.12.设321,,X X X 是β=AX 的三个特解,则( )也是β=AX 的解.(A )332211X k X k X k ++; (B )332211X k X k X k ++,1321=++k k k ; (C )321)(X X X k ++; (D)32211)(X k X X k +-. 解 B .实质上,一般地有:若12,,,s X X X 为β=AX 的解,则1122s s k X k X k X +++ 也是β=AX 的解121s k k k +++⇔= .13.考虑线性方程组12345123452345123450,323,2263,5433.x x x x x x x x x x a x x x x x x x x x b ++++=⎧⎪+++-=⎪⎨+++=⎪⎪+++-=⎩问b a ,取什么值时有解?当有解时,求它的通解.解 方程组的增广矩阵()1111103211301226354331a B A b β⎛⎫ ⎪-⎪== ⎪ ⎪-⎝⎭111110012263000003000003r a b ⎛⎫⎪⎪−−→⎪+ ⎪+⎝⎭, 则当3a b ==-时方程组有解,且()B A β=101153012263000000000000r----⎛⎫⎪⎪−−→ ⎪ ⎪⎝⎭, 所以方程组的通解为T T T T c c c X )1,0,0,6,5()0,1,0,2,1()0,0,1,2,1()0,0,0,3,3(321-+-+-+-=,其中321,,c c c 为任意常数14.设矩阵),,,(4321αααα=A ,其中432,,ααα线性无关,且4321αααα+-=.向量4321432ααααβ+++=.试求方程组β=AX 的通解.解 由432,,ααα线性无关,且4321αααα+-=,得432,,ααα是1234,,,αααα的一个极大无关组,则1234,,,)3(R αααα=,即()3R A =,从而0AX =的基础解系含()441n R A -=-=个线性无关的解向量,设为ξ.由1234αααα=-+,得12340αααα-+-+=,则(1,1,1,1)T --是0AX =的解,故可取(1,1,1,1)T ξ=--.由1234234βαααα=+++,得(1,2,3,4)T 是AX β=的一个特解.所以β=AX 的通解为(1,1,1,1)(1,2,3,4)T T X c =--+,其中c 为任意常数. 15.设A 为r m ⨯矩阵,B 为n r ⨯矩阵,且AB O =.求证: (1)B 的各列向量是齐次线性方程组0AX =的解; (2)若,则B O =;(3)若B O ≠,则A 的各列向量线性相关.证 (1)令12(,,,)n B βββ= .由AB O =,得12(,,,)(0,0,,0)n A A A βββ= ,即0,1,2,,j A j n β== ,所以B 的各列向量是齐次线性方程组0AX =的解.r A R =)((2)若,则0AX =只有零解,所以B O =.(3)若B O ≠,则0AX =有非零解,所以A 的各列向量线性相关. 16.设A 为n 阶方阵(2≥n ),证明: (1)当n A R =)(时,n A R =*)(; (2)当1)(-=n A R 时,1)(=*A R ; (3)当1)(-<n A R 时,0)(=*A R .证 (1)当n A R =)(时,1*00n A A A-≠⇒=≠,所以()R A n *=.(2)当1)(-=n A R 时,由*AA A E O ==,得*()()R A R A n +≤有*()1R A ≤.又A 中至少有一个1n -阶子式不为零,则**()1A O R A ≠⇒≥,所以()1R A *=.(3)当1)(-<n A R 时,则A 中所有一个1n -阶子式全为零,有**()0A O R A =⇒=.r A R =)(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 0
102
系数行列式 1 2 4 0
157
齐次线性方程组有非零解,所以向量 1,2 ,3 线性相关 向量 1,2 对应分量不成比例,所以线性无关。
2020/4/4
22
例3: n维向量
e1 1,0, ,0 ,e2 0,1, ,0 , ,en 0,0, ,1
讨论它们的线性相关性.
解: E e1,e2,L ,en
x11 x22 x33 = 0 又 1,2,3 线性无关,
故 Kx = 0 ,而 R(K) = 3,于是 x = 0 ,
即 1, 2, 3 线性无关
2020/4/4
27
例5:已知向量 1,2 ,3 线性无关, 证明:向量 1 1 2 , 2 2 3 , 3 1 3
线性无关。
1 0 1
行向量组:
A (a1, a2 , , an )
1T
A
T 2
T m
2020/4/4
7
定义2:设向量组 A :1,2 ,L ,m , 及一组实数
k1, k2 ,L , km , 表达式
k11 k22 L kmm
称为向量组 A的一个线性组合, k1, k2 ,L , km 称为线性组合的系数。
个向量可由其余向量线性表示。
2020/4/4
24
定理5-1:若向量组 A :1,2 ,L ,m 线性相关, 则向量组 B :1,2 ,L ,m ,m1 也线性相关。
推论:若向量组 B :1,2 ,L ,m ,m1 线性无关, 则向量组 A :1,2 ,L ,m 也线性无关。
定理5-2:m个n维向量(m > n)构成的向量组一定线性相关. 特别地, n+1个n维向量线性相关.
0 1
,
2
1 0
,
3
1 1
的秩为2。
2020/4/4
38
0 0 0 0 1 1
0
1
202
5
例2 :求矩阵 A 0 2 5 1 1 8
0
0
3 3
4
1
0 3 6 0 7 2
的列向量组的一个最大无关组,并把其余的向量用
这个最大无关组线性表示。
2020/4/4
39
解: A (1,2 ,3 ,4 ,5 ,6 )
第四章 向量组的线性相关性
2020/4/4
1
§1 向量组及其线性组合
定义1:n 个数 a1 , a2 , , an 所组成的有序数组
称为一个 n 维向量,这 n 个数称为该向量 的 n 个分量,第 i 个数 ai 称为第 i 个分量。
这里定义的 n 维向量就是指行(或列)矩阵。
2020/4/4
2
a1
0 0
,
2
2 0
,
3
1 0
,
4450 Nhomakorabea0
0
0
可以验证 1, 2 , 4 是一个最大无关组
所以矩阵A的列秩是3。
2020/4/4
33
定理:矩阵的秩 = 矩阵的行向量组的秩 = 矩阵的列向量组的秩
向量组 A :1,2 ,L ,m 的秩也记作 R(1,2 ,L ,m )
线性表示,则 R(B) ≤ R(A) 。
其中 A (1,2 ,L ,m ), B (1, 2,L , l )
证:根据定理 2 有 R(A) = R(A, B) 而 R(B) ≤ R(A, B),因此 R(B) ≤ R(A)。
2020/4/4
18
§2 向量组的线性相关性
定义4:设向量组 A :1 ,2 ,L ,m , 若存在不全为零实数 1 , 2 ,L , m , 使得 11 22 L mm 0
a2
M
(a1 ,
a2 L
an )T
称为列向量。
an
(a1,a2,L ,an ) 称为行向量。
2020/4/4
3
例. 3 维向量的全体所组成的集合 R3 { ( x, y, z)T | x, y, z R }
通常称为 3 维Euclid几何空间。 集合
{ ( x, y, z)T | ax by cz d }
20
例2: 已知 :1 (1, 1, 1) , 2 (0, 2, 5) , 3 (2,4,7) 试讨论向量组 1 , 2 , 3 及向量组 1 , 2 的 线性相关性.
2020/4/4
21
解:设 x11 x22 x33 0
1 0 2 0

x1
1 1
x2
2 5
x3
4 7
2020/4/4
8
定义2:设向量组 A :1,2 ,L ,m , 和向量 b 若存在一组实数 1,2 ,L m , 使得 b 11 22 L mm
则称向量 b 是向量组 A的一个线性组合, 或称向量 b 能由向量组 A 线性表示。
2020/4/4
9
例如: 2
1
1 0
a1
1 1
,
a2
结论: 线性无关
上述向量组又称基本向量组或单位坐标向量组.
2020/4/4
23
一些结论:
(1) 一个零向量线性相关, 一个非零向量线性无关;
(2) 两个向量线性相关当且仅当 它们的对应分量成比例;
(3) 一个向量组线性无关,则增加其中每个向 量的分量所得新向量组仍线性无关。
(4) 向量组线性相关当且仅当向量组中至少有一
2020/4/4
30
注: (1)只含零向量的向量组没有最大无关组,规定秩为0 。
(2)一个线性无关向量组的最大无关组就是其本身。 (3)向量组的最大无关组一般不是唯一的。 (4)向量组 A能由A0线性表示。 (5)任意一个最大线性无关组都与向量组本身等价。
2020/4/4
31
1 1 3 1
例:设矩阵
km1
k1l kml
2020/4/4
16
定理2: 向量组 B : 1, 2 ,L , l 能由 A :1,2 ,L ,m
线性表示
AX B 有解,其中 A (1,2,L ,m )
R( A) R( A, B)
B (1, 2 ,L , l )
2020/4/4
17
定理3: 向量组 B : 1, 2 ,L , l 能由 A :1,2 ,L ,m
7 1 3 5 4
2
1
1
3
2
1 5 1 7 1
11
8
4
0
11
1 5 1 7 1
2
1
1
3
2
7 1 3 5 4
11
8
4
0
11
2020/4/4
36
1 5 1 7 1
0
9
1
11
0
0 36 4 44 3
0
63
7
77
0
1
0
0
0
R( A) 3
5 1 7 1
证: " " 1, 2 , 3 线性无关。 设 Kx = 0 ,其中 x ( x1, x2 , x3 )
则 x11 x22 x33 (1, 2 , 3 ) x
(1,2 ,3 )Kx = 0
故 x = 0 ,即 Kx = 0 只有零解,于是 R(K) = 3
2020/4/4
26
" " R(K ) 3 设 x11 x22 x33 0 ,x ( x1, x2 , x3 ) 则 (1,2 ,3 )Kx (1, 2 , 3 ) x
定理5-3:向量组 A :1,2 ,L ,m 线性无关, 向量组 B :1,2 ,L ,m ,b 线性相关,
则 b 能由向量组A线性表示,且表示式唯一.
2020/4/4
25
例4:已知向量 1,2 ,3 线性无关,向量 1, 2 , 3 可以由向量1,2 ,3 线性表示,并且
(1, 2 , 3 ) (1,2 ,3 )K 证明: 1, 2 , 3 线性无关的充要条件是 R(K) = 3
a2n
amn
x1
x
x2 xn
b1
b
b2 bm
2020/4/4
12
a1 j

A
1,2 ,L
,n ,
其中
j
a2 j
amj
则方程组的向量表示为
x11 x22 L xnn b
2020/4/4
13
定理1: 向量 b可由向量组 1,2 ,L ,m 线性表示
则称向量组 A线性相关. 否则称向量组A线性无关.
2020/4/4
19
定理4: n 维向量组 1 , 2 , , m 线性相关
Ax
0
有非零解,其中A
R( A) m
1 , 2 ,
, m
n 维向量组 1 , 2 , , m 线性无关
Ax
0
只有零解, 其中A
1,2 ,L
,m
R( A) m
2020/4/4
Ax b 有解,其中 A (1,2,L ,m ) R( A) R( A,b)
2020/4/4
14
定义3: 设向量组 A :1,2 ,L ,m 及 B : 1, 2 ,L , l
若 B 组中的每一个向量都能由向量组 A 线性表示, 则称向量组 B 能由向量组 A 线性表示。
若向量组 A 与向量组 B 能相互线性表示, 则称向量组 A 与向量组 B 等价。
0 1 2 0 2 5
0
0
1
1
3
2
0 0 3 3 4 1
0 0
0 0
0 0
0 0
相关文档
最新文档