电子束的聚焦

合集下载

电子束的偏转与聚焦

电子束的偏转与聚焦

实验14 电子束偏转、聚焦及电子荷质比的测定带电粒子在电场和磁场作用下的运动是电学组成的基础。

带电粒子通常包括质子、离子、和自由电子等,其中电子具有极大的荷质比和极高的运动速度。

因此,在各种分支学科中得到了极其广泛的应用。

众所周知,快速运动的电子会在阴极射线管的荧光屏上留下运动的痕迹,可以利用观察此光迹的方法来研究电子在电场和磁场中的运动规律。

辅以聚焦、偏转和强度控制等系统,可以使电子束在荧光屏上清晰地成象。

电子束的聚焦和偏转可以通过电场和磁场对电子的作用来实现,前者称为电聚焦和电偏转,后者称为磁聚焦和磁偏转。

通过磁聚焦可测出电子的电荷与质量比,即验证电子带电荷量,并证明电子的质量m e 。

实习一 电子束的电偏转与电聚焦【实验目的】1. 了解示波管的基本构造和工作原理。

2. 掌握示波管中电子束电偏转和电聚焦的基本原理。

3. 掌握利用作图法求电偏转灵敏度的数据处理方法。

【实验原理】1. 示波管的基本构造和工作原理(参见实验--示波器的使用)2. 电子束的电偏转电子在两偏转板之间穿过时,如果两板之间电位差为零,电子则笔直穿过偏转板打在荧光屏中央(假定电子枪瞄准荧光屏中心)形成一个小亮斑,如果在两块Y (或X )偏转板上加有电压,电子就会受电场力的作用而发生偏转。

如图3-14-1所示,设两偏转板间距为d ,电压差为dy V ,可看做平行板电容器,则两板间的电场强度为:dy y V E d=(3-14-1) 电子所受电场力为: dy y y eV F eE d==(3-14-2)在同一点的垂直速度: 1dyy y zeV la t md νν==⋅(3-14-3)偏离z 轴的距离: 221111()()22dy y zeV ly a t md ν==⋅ (3-14-4)电子离开板右端时不再受电场力的作用,作匀速直线运动,到达屏上的垂直位移:图3-14-122dyy z zeV lL y t md ννν'==⋅⋅(3-14-5)电子在屏上的总位移 1222()2dy y z eV ll D y y t L md νν'=+==⋅+ (3-14-6) 令'2L lL +=,又因为电子在加速电压a V 的作用下,加速电场对电子所做的功全部转化为电子的动能,则有 a z eV mv =221 (3-14-7)将L 代入(3-14-6)式,并利用(3-14-7)式消去z v 后得电子束的垂直位移:2y dy alLD V dV =⋅ (3-14-8) 上式表明,偏转板的电压dy V 越大,屏上的光点的位移也越大,两者之间是线性关系。

实验二十三电子射线的电聚焦与磁聚焦

实验二十三电子射线的电聚焦与磁聚焦

实验二十三电子射线的电聚焦与磁聚焦一、实验目的1. 掌握带电粒子在电场与磁场中的运动规律,学习电聚焦与磁聚焦的基本原理 与实验方法;2. 掌握利用磁聚焦法测定电子荷质比的基本方法。

二、实验装置TH-EB 型电子束实验仪;米尺,游标卡尺三、实验原理1.电聚焦原理电子束电聚焦原理如图1所示,在示波管中,阴极K 经灯丝加热发射电子,第一阳极A1加速电子,使电子束通过栅极G 的空隙,由于栅极电位与第一阳极电位不等,在它们之间的空间便产生电场,这个电场的曲度像一面透镜,它使由阴极表面不一致点发出的电子在栅极前方汇聚,形成一个电子聚焦点。

由第一阳极与第二阳极构成的电聚焦系统,就把上述聚焦点成像在示波管的荧光屏上。

由于该系统与凸透镜对光的会聚作用相似,因此通常称之为电子透镜。

电子束通过电子透镜能否聚焦在荧光屏上,与第一阳极V A1与第二阳极V A2的单值无关,仅取决于它们之间的比值F 。

改变第一阳极与第二阳极的电位差,相当于改变电子透镜的焦距,选择合适V A1与V A2的比值,就能够使电子束的成像点落在示波管的荧光屏上。

在实际示波管内,由于第二阳极的特点结构,使之对电子直接起加速作用,因此称之加速极。

第一阳极要紧是用来改变V A1与V A2比值,便于聚焦,故又称聚焦极。

改变V A2也能改变比值V A1/V A2,故第二阳极又能起辅助聚焦作用。

2.磁聚焦原理 电子束磁聚焦的原理见图2所示,设一速度为v ,在一磁图1 电子束电聚焦原理图2 电子束磁聚焦原理感应强度为B 的均匀磁场中运动的电子,电子将受到洛仑兹力的作用,将v 分解成与B 平行的分量与与B 垂直的分量v h ,电子沿着B 的方向运动时不受力,故沿B 的方向作匀速直线运动。

电子在垂直于B 的方向运动时电子所受的洛仑兹力为:f 的方向与υh 垂直,故该力只改变电子运动的方向,不改变电子速度的大小,结果使电子在垂直于B 的平面内以半径为R 的圆作匀速圆周运动。

11实验十一-电子束电偏转与电聚焦解析PPT课件

11实验十一-电子束电偏转与电聚焦解析PPT课件
20、8SJ31J示波管。 21、磁偏转线圈:用来做磁偏转实验。 22、螺线管线圈:用来做磁聚焦实验。 23、换向开关:用以改变偏转线圈电流方向来
控制磁偏转的方向(向上、向下)。
24、0~2A输出插座:用来接通标准螺线管励 磁电流。
.
7
实验原理
一、示波管的基本结构及原理图:Fra bibliotek电子枪
偏转板
HK
Y2
X2
在电子枪内的第一加速阳极 A1 与第二加 速阳极A 2 之间形成一个静电透镜,可解决上述 问题。其作用的原理如下:
.
10
如图C给出了静电透镜聚焦作用的几何
示意图,这是假定电子
A1
A2
在两聚焦电极之间的区
域的路程远小于电子的
F
Z
总路程时电子运动的轨
P
迹简化形式。假定从第
V 图C
一加速极出来的那些电
子具有相同的轴向分量 v Z ,但具有不同的
9、Vdy偏转电压调节:-80~80V。 10、 调零Y:用来调节光点上下距离。
11、偏转电压指示:用来显示VdX、Vdy数值。 12、VdX、Vdy转换开关:当打到VdX档调节偏转
电压VdX,表头即可显示;当打到VdY档调节 偏转电压VdY,表头即可显示。
.
5
13、200mA、2A转换开关。
14、200mA、2A励磁电流数值:可显示0~ 200mA、0~2A。
以调节电极附近区域的电场分布,从而调节 电子束的聚焦和散焦。
4、V1电压指示:150~400V。 5、栅极电压VG(辉度):用以调节加在示波
管控制栅极上的电压大小,以控制阴极发射 的电子数量,从而控制荧光屏上光点的辉度。
.
4

电子束的偏转与聚焦实验报告

电子束的偏转与聚焦实验报告

南昌大学物理实验报告课程名称:普通物理实验(2)实验名称:电子束的偏转与聚焦学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、实验目的:1、了解示波管的构造和工作原理。

2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用下的偏转情况。

3、学会规范使用数字多用表。

4、学会磁聚焦法测量电子比荷的方法。

二、实验仪器:EB—Ⅲ电子束实验仪、直流稳压电源30V,2A、数字多用表。

三、实验原理:1、示波管的结构示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。

灯丝H用6.3V交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。

2、电聚焦原理电子射线束的聚焦是电子束管必须解决的问题。

在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。

栅极G的电压一般要比阴极K 的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。

所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。

当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。

加速电极的电压比阴极电位高几百伏至上千伏。

前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。

由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。

这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。

改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。

3、电偏转原理在示波管中,电子从被加热的阴极K 逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。

1311电子束的偏转与聚焦

1311电子束的偏转与聚焦
即 (4)
(5)
电子既在轴线方面作直线运动,又在垂直于轴线的平面内作圆周运动。它的轨道是一条螺旋线,其螺距用 表示,则有:
(6)
从(5)、(6)两式可以看出,电子运动的周期和螺距均与 无关。虽然各个点电子的径向速度不同,但由于轴向速度相同,由一点出发的电子束,经过一个周期以后,它们又会在距离出发点相距一个螺距的地方重新相遇,这就是磁聚焦的基本原理,由(6)式可得
(7)
长直螺线管的磁感应强度 ,可以由下式计算:
(8)
将(8)代入(7),可得电子荷质比为:
(9)
为真空中的磁导率 亨利/米
本仪器的其它参数如下:螺线管内的线圈匝数: 螺线管的长度: 螺线管的直径: 螺距( 偏转板至荧光屏距离)
(2)
2.电子的磁偏转原理:
电子束进入长度为 的区域,有一个垂直于纸面向外的均匀磁场 ,由此引起的磁场力的大小为 ,而且它始终垂直于速度,此外,由于这个力所产生的加速度在每一瞬间都垂直于 ,此力的作用只是改变 的方向而不改变它的大小,即粒子以恒定的速率运动。电子在磁场力的影响下作圆周运动的向心加速为 ,半径 。电子离开磁场区域之后,重新沿一条直线运动,最后,电子束打在荧光屏上某一点,这一点相对于没有偏转的电子束的位置移动了一段距离。
电子束的偏转与聚焦
【实验目的】
1.了解带电粒子在电磁场中的运动规律,电子束的电偏转、磁偏转、磁聚焦的原理;
2.学习测量电子荷质比的一种方法。
【实验仪器】
型电子束实验仪
【实验电子枪里射出来的速度是vz,电子在电子枪里的加速电压是V2(阳极电压) (1)
已知偏转电位差和偏转板的尺寸,设距离为 的两个偏转板之间的电位差 ,偏转板的长度为l,偏转板到荧光屏的距离为L,则电子在荧光屏上偏转的位移D为:

电子束聚焦与电子荷质比的测量实验报告

电子束聚焦与电子荷质比的测量实验报告

选做实验2 电子束聚焦与电子荷质比的测量电子电量e 和电子静质量m 的比值e /m 称为电子的荷质比,又称电子比荷。

1897年J.J.汤姆孙利用电磁偏转的方法测量了阴极射线粒子的荷质比,它比电解中的单价氢离子的荷质比约大2000倍,从而发现了比氢原子更小的组成原子的物质单元,定名为电子。

精确测量电子荷质比的值为1.75881962×1011库仑/千克,根据测定电子的电荷,可确定电子的质量。

20世纪初W.考夫曼用电磁偏转法测量β射线(快速运动的电子束)的荷质比,发现e /m 随速度增大而减小。

这是电荷不变质量随速度增加而增大的表现,与狭义相对论质速关系一致,是狭义相对论实验基础之一。

For personal use only in study and research; not for commercial use【实验目的】一、加深电子在电场和磁场中运动规律的理解; 二、了解电子束磁聚焦的基本原理;For personal use only in study and research; not for commercial use三、学习用磁聚焦法测定电子荷质比e /m 的值。

【实验原理】 一、示波管示波管是电子束试验仪和示波器的主要部分,其结构见图1,它由三部分组成:(1)电子枪:它发射电子,把电子加速到一定速度,并聚焦成电子束。

(2)由两对金属板组成的电子束偏转系统。

(3)在电子管末端的荧光屏,用来显示电子的轰击点。

所有这些部件都封在一个抽成真空的玻璃圆管内。

一般管内的真空度为10-4Pa ,这样可以使电子通过管子的过程中几乎不与气体分子碰撞。

阴极K 是一个表面涂有氧化物的金属圆筒,是电子源,经灯丝加热后温度上升,一部分电子作逸出功后脱离金属表面成为自由电子。

自由电子在外电场作用下形成电子流。

栅极G 为顶端开有小孔的圆筒,套在阴极之外,其电位比阴极低(-5V 至-20V ),使阴极发射出来具有一定初速的电子,通过栅极和阴极间的电场时减速。

16电子束的聚焦

16电子束的聚焦

实验十六 电子束的聚焦实验目的1.研究带电粒子在电场和磁场中的聚焦规律2.进一步了解电子束线管的结构和聚焦原理.3.掌握测量电子荷质比的一种方法.仪器与用具EBe-1型电子束实验仪,万用电表、直流电源等.实验原理1.电场聚焦电子枪的作用是产生电流密度很高,截面很小的电子束,并能使电子束到达荧光屏上的各个地方.其结构如图16-1所示.各电极均做成圆筒形,ff 为加热灯丝,K 为旁热式氧化阴极.在灯丝的烘烤下,温度约升到1100K 时,氧化物中自由电子获得较大的热动能而逸出表面,成为速度很小的游离态电子.栅极的电位低于阴极,形成阻滞电场.调节栅极电位可以改变进入阳极区电子数目,从而调节光斑的亮度.第一阳极A1和第三阳极A3称加速极,其作用是使电子向阳极区运动.第二阳极A2称聚焦阳极,其电压值主要影响亮点的大小.电子枪内非均匀电场分布,可以将阳极分布范围比较大的游离态电子,非常成功地在屏上聚成一点,这是成像清晰 的重要保证.若U A1K =U A3K >U A2K ,如图16-2所示,图中实线是电力线,可利用它定性地分析电子在电子枪内的运动.在GA1之间的非均匀场的作用下,电子受到的电场力可以分解成两个力:一个沿轴向,使电子加速;另一垂直轴线,这个力使电子向轴靠拢.由于此间电子速度很小,在这个力的作用下,很容易将分散在相当范围的游离态电子会聚到一点上,然后继续向前运动,而且又发散开来.电子在阳极区的非均匀场的作用下,按前面的方法对场的作用分解.可以看出,电子速度大时,径向力使电子“发散”(在A1、A3附近);速度较小时,径向力使电子“会聚”.这样就使得“会聚”作用比“发散”作用的时间长,两种作用的总效果使电子会聚,并且离轴越远,这种作用越强,这就为将所有的电子会聚到一点提供了可能.实验和理论都证明:不管亮度如何,聚焦的条件是G= UA 1K /U A2K =常数 (16-1)图16-1若U A1K >U A2K ,则G >1,称为正向聚焦;若U A1K<U A2K ,则G <1,称反向聚焦.由于光斑的亮度是由电子的速度及荧光屏上的单位面积的电子数决定,而反向聚焦速度比较小,因此光斑较暗.2.磁场聚焦磁场也可以使电子束线聚焦.把示波管放在螺旋管磁场中,将示波管的第一阳极、第二阳极、第三阳极、偏转板都联在一起,使得电子进入第一阳板后在等电位空间中运动.由于阴极发射出来的电子速度很小,可以认为电子的轴向速度是一样的,其大小由阳极电压U AK 来决定,即电子的径向速度⊥V 是不一样的,电子进入磁场后受到洛仑兹力B eV F ⊥=(B 为磁感应强度)的作用,⊥V 使电子在垂直于B 的平面作匀速圆周运动,而维持电子作匀速圆周运动的向心力是洛仑兹力,则 B eV R mV ⊥⊥=2,所以圆运动半径eB mV R ⊥=,电子作圆运动一周所需要的时间eB m V R T ππ22==⊥ (16-2)AK eU mV =2//21 (16-3)图16-2m eU V AK2//= (16-4)电子在轴向不受力的作用,因此,作匀速直线运动.显然,两种运动合成的结果使得电子的运动轨迹是螺旋线,其螺距为////2V eB mTV h π== (16-5)即,由一点出发的电子束,虽然各个电子的径向速度不相同,但由于轴向速度⊥V 相同,故各电子将沿不同的螺旋线前进,经过一个螺距h 后,又重新会聚到一点K ″,如图16-3所示,此即为磁聚现象.利用磁聚现象可以测定电子的荷质比.调节电流从0逐 渐增加,使电子束交叉点K ′到荧光屏的距离L 等于螺距的整数倍,荧光屏上将出现一个亮点,这时),3,2,1(22 ===k m eU eB m k kh L AKπ (16-6)示波管中的L 是固定的,对一定的//V 来说,K ∝B ,而B 与通过螺线管的电流成正比,即B=μ0nI .第一次k =1时,聚焦电流最小;k =2时,聚焦电流I 2是I 1的两倍,第n 次聚焦电流是I 1的n 倍,由此得n I I I I n++++=21211 (16-7)将B=μ0nI 代入(16-6)式得电子的荷质比22102)(8L I n U m e AK μπ= (16—8)当继续调节B,使h=L21或h=L31时,屏上将出现第二次、第三次聚焦.螺线管中的磁感应强度B与励磁电流I的关系近似为B=μ0nI式中n为螺线管单位长度的匝数。

电子束的偏转与聚焦实验报告

电子束的偏转与聚焦实验报告

南昌大学物理实验报告课程名称:普通物理实验(2)实验名称:电子束的偏转与聚焦学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、实验目的:1、了解示波管的构造和工作原理。

2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用下的偏转情况。

3、学会规范使用数字多用表。

4、学会磁聚焦法测量电子比荷的方法。

二、实验仪器:EB—Ⅲ电子束实验仪、直流稳压电源30V,2A、数字多用表。

三、实验原理:1、示波管的结构示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。

灯丝H用交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。

2、电聚焦原理电子射线束的聚焦是电子束管必须解决的问题。

在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。

栅极G的电压一般要比阴极K 的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。

所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。

当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。

加速电极的电压比阴极电位高几百伏至上千伏。

前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。

由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。

这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。

改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。

3、电偏转原理在示波管中,电子从被加热的阴极K 逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。

实验十四电子束的电聚焦和磁聚焦-实验十八电子束线的电聚焦

实验十四电子束的电聚焦和磁聚焦-实验十八电子束线的电聚焦

实验十四 电子束线的电聚焦与磁聚焦实验目的1.研究带电粒子在电场和磁场中聚焦的规律。

2.了解电子束线管的结构和原理。

3.掌握测量电子荷质比的一种方法。

实验仪器SJ —SS —2型电子束实验仪。

实验原理 1.电聚焦原理从示波管阴极发射的电子在第一阳极A 1的加速电场作用下,先会聚于控制栅孔附近一点(图4-18-1中O 点),往后,电子束又散射开来。

为了在示波管荧光屏上得到一个又亮又小的光点,必须把散射开来的电子束会聚起来,与光学透镜对光束的聚焦作用相似,由第一阳极A 1和第二阳极A 2组成电聚焦系统。

A 1、A 2是两个相邻的同轴圆筒,在A 1、A 2上分别加上不同的电压V 1、V 2,当V 1>V 2时,在A 1、A 2之间形成一非均匀电场,电场分布情况如图4-18-2所示,电场对Z 轴是对称分布的。

电子束中某个散离轴线的电子沿轨迹S 进入聚焦电场,图4-18-3画出了这个电子的运动轨迹。

在电场的前半区,这个电子受到与电力线相切方向的作用力F 。

F 可分解为垂直指向轴线的分力F r 与平行于轴线的分力F Z 。

F r 的作用使电子向轴线靠拢,F Z 的作用使电子沿Z 轴得到加速度。

电子到达电场后半区时,受到的作用力F ’ 可分解为相应的F ’r 和F ’Z 两个分量。

F ’z 分力仍使电子沿Z 轴方向加速,而F ’r 分力却使电子离开轴线。

但因为在整个电场区域里电子都受到同方向的沿Z 轴的作用力(F Z 和F ’Z ),由于在后半区的轴向速度比在前半区的大得多。

因此,在后半区电子受F ’r的作用时间短得多。

这样,电子在前半区受到的拉向轴线的作用大于在后半区受到离开轴线的作用,因此总效果是使电子向轴线靠拢,最后会聚到轴上某一点。

调节阳极A 1和A 2的电压可以改变电极间的电场分布,使电子束的会聚点正好与荧光屏重合,这样就实现了电聚焦。

2.磁聚焦原理将示波管的第一阳极A 1,第二阳极A 2,水平,垂直偏转板全连在一起,相对于阴极板加一电压V A ,这样电子一进入A 1后,就在零电场中作匀速运动,这时来自交叉点(图4-18-1中O 点)的发散的电子束将不再会聚,而在荧光屏上形成一个面积很大的光斑。

电子束的偏转与聚焦实验报告

电子束的偏转与聚焦实验报告

电子束的偏转与聚焦实验报告Prepared on 22 November 2020南昌大学物理实验报告课程名称:普通物理实验(2)实验名称:电子束的偏转与聚焦学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、实验目的:1、了解示波管的构造和工作原理。

2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用下的偏转情况。

3、学会规范使用数字多用表。

4、学会磁聚焦法测量电子比荷的方法。

二、实验仪器:EB—Ⅲ电子束实验仪、直流稳压电源30V,2A、数字多用表。

三、实验原理:1、示波管的结构示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。

灯丝H用交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。

2、电聚焦原理电子射线束的聚焦是电子束管必须解决的问题。

在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。

栅极G的电压一般要比阴极K的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。

所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。

当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。

加速电极的电压比阴极电位高几百伏至上千伏。

前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。

由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。

这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。

改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。

电子束的偏转与聚焦现象

电子束的偏转与聚焦现象

大学物理实验报告学生:___________ 学号:_______________ 专业班级:______________实验时间:_____时_____分第____周星期:______ 座位号:________电子束的偏转与聚焦现象一、实验目的1、了解示波管的构造和工作原理,分析电子束在匀强电场和匀强磁场作用下的偏转情况;2、学会使用数字万能表和聚焦法测量电子荷质比的方法。

二、实验原理1、示波管的结构示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。

灯丝H用6.3V交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。

KGA Y1SY2GU1KU2图1图22、电聚焦原理电子射线束的聚焦是电子束管必须解决的问题。

在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。

栅极G 的电压一般要比阴极K 的电压低20~100V ,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。

所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。

当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。

加速电极的电压比阴极电位高几百伏至上千伏。

前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。

由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。

这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。

改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。

电子束偏转与聚焦

电子束偏转与聚焦

电子来偏转与聚焦一、实验目的1、了解示波管的基本结构和工作原理2、研究带电粒子在电场和磁场中偏转的规律3、学会规范使用数字万用表4、通过磁聚焦原理测电子的核质比CB -1川型或DZS-D电子末实验仅直流税压中源数文用表三、实验原理1.电偏转与聚焦(示波管可基本结构及厚理)2电子束的磁偏转3.电子束的磁聚集四、实验步骤1、电偏转实验(1)开启电源开关,将“电子束一荷质比”功能选择开关K1和K2,打到“电子束”位置,适当调节亮度旋钮,使辉度适中,调节聚焦,使屏上光点聚成一细点。

(2)光点调零,用导线将偏转板插孔与电偏转电压表的输入插孔相连接(电源负极内部已连接),调节X“偏转电压”旋钮,使电压表的指示为“零”,再调节调零的旋钮,把光点移动到示波管垂直中线上。

同调零X一样,通过将调零旋钮,可以使光点位于示波管的中心原点处。

(3)测量光点移动距离D随偏转电压Ud大小的变化(X轴):调节阳极电压旋钮,固定阳极电压在U2=700V.改变电偏转电压值Ud和对应的光点的位移量D值,每隔3伏测一组Ud、D 值,把数据记录到表中.然后调节到U2=900V,重复以上实验步骤。

2、磁偏转实验(1)开启电源开关,将K1和K2“电子束-荷质比”选择开关打向“电子束”位置,辉度适当调节,并调.节聚焦,使屏上光点聚焦成一细点,应注意:光点不能太亮,以免烧坏荧光屏。

(2)光点调零,在磁偏转输出电流为零时,通过调节X“偏转电压”和丫“偏转电压”旋钮,使光点位于轴的中心(坐标原点)。

(3)测量偏转量D随磁偏电流|的变化,给定U2=700V,接好线,按下电流选择按钮开关,调节磁偏电流调节旋钮(改变磁偏电流的大小),每增加10mA磁偏.电流测量--组D值,改变U2=900V,再测一-组数据把数据记录到表中。

3、电子荷质比测量(1)把励磁电流接到励磁电流的接线柱上,把励磁电流调节旋钮逆时针旋到底。

(2)开启电子束测试仪电源开关,“电子束一荷质比”转换开关K1置于“荷质比”位置,K2为“电子束”此时荧光屏上出现一条直线,把阳极电压调到700V。

电子束的电偏转和电聚焦实验报告

电子束的电偏转和电聚焦实验报告

电子束的电偏转和电聚焦实验报告电子束的电偏转和电聚焦实验报告引言:电子束是一种由电子组成的束流,具有很高的能量和速度。

在现代科技中,电子束被广泛应用于电子显微镜、电子加速器等领域。

为了研究电子束的性质和控制电子束的运动,我们进行了电子束的电偏转和电聚焦实验。

本实验旨在通过调节电压和磁场,观察电子束的偏转和聚焦效应。

实验设备:1. 电子枪:产生电子束的装置。

2. 磁感应计:用于测量磁场的强度。

3. 电压源:用于提供电子束所需的电压。

4. 荧光屏:用于观察电子束的偏转和聚焦效果。

实验步骤:1. 将电子枪放置在实验台上,并将磁感应计放置在电子束轨迹的旁边。

2. 打开电压源,调节电压大小,使电子束能够稳定产生。

3. 调节磁感应计的位置和方向,使其能够测量到电子束轨迹上的磁场强度。

4. 通过调节电压源和磁感应计,观察电子束在不同电压和磁场条件下的偏转和聚焦效果。

5. 将荧光屏放置在电子束轨迹的末端,观察电子束在荧光屏上的聚焦效果。

实验结果:通过实验观察和测量,我们得到了以下结果:1. 当电子束通过电磁场时,电子束会受到力的作用而发生偏转。

当电压和磁场的方向相同时,电子束向外偏转;当电压和磁场的方向相反时,电子束向内偏转。

2. 当调节电压的大小时,电子束的偏转角度也会发生变化。

电压越大,电子束的偏转角度越大;电压越小,电子束的偏转角度越小。

3. 通过调节磁场的强度,可以控制电子束的偏转方向和角度。

磁场越强,电子束的偏转角度越大;磁场越弱,电子束的偏转角度越小。

4. 在适当的电压和磁场条件下,电子束能够在荧光屏上形成清晰的聚焦点。

当电子束偏转角度较小且能够聚焦时,聚焦点越明亮、清晰。

讨论:通过本次实验,我们深入了解了电子束的电偏转和电聚焦原理。

电子束的偏转和聚焦效果受到电压和磁场的调节影响。

在实际应用中,我们可以通过改变电压和磁场的大小和方向,来控制电子束的运动轨迹和聚焦效果。

这对于电子显微镜等设备的性能优化和精确控制具有重要意义。

电子束的偏转与聚焦实验报告

电子束的偏转与聚焦实验报告

电⼦束的偏转与聚焦实验报告图2物理实验报告⼀、实验名称:电⼦束的偏转与聚焦现象班级:黄昆班13 实验⽇期:2015年5⽉12⽇姓名:杨巧林学号: 41340072⼆、实验⽬的1、研究带电粒⼦在电场和磁场中偏转和聚焦的规律;2、了解电⼦束线管的结构和⼯作原理。

三、实验原理1】电⼦束的产⽣和控制如图,电⼦⽰波管的结构⽰意图:2、电偏转原理在⽰波管中,电⼦从被加热的阴极K 逸出后,由于受到阳极电场的加速作⽤,使电⼦获得沿⽰波管轴向的动能。

电⼦经过电势差为U 的空间后,电场⼒做的功eU 应等于电⼦获得的动能 2m 21v eU =→ 22v U mez =若在电⼦运动的垂直⽅向加⼀横向电场,电⼦在该电场作⽤下将发⽣横向偏转,如图2所⽰。

若偏转板板长为l 、偏转板末端到屏的距离为L 、偏转电极间距离为d 、轴向加速电压(即第⼆阳极A 2电压)为U 2,横向偏转电压为U d ,则荧光屏上光点的横向偏转量D 由下式给出:dlU U L D d 2)2l (2+= 在单位偏转电压的作⽤下,电⼦束在荧光屏上偏离轴向的距离DE/Ud 称为电偏转灵敏度。

图3B3、磁偏转原理电⼦通过A 2后,若在垂直Z 轴的X ⽅向外加⼀个均匀磁场,那么以速度v 飞越⼦电⼦在Y ⽅向上也会发⽣偏转,如图所⽰。

由于电⼦受洛伦兹⼒F=eBv 作⽤,F 的⼤⼩不变,⽅向与速度⽅向垂直,因此电⼦在F 的作⽤下做匀速圆周运动,洛伦兹⼒就是向⼼⼒,即有eBv=mv 2/R ,所以R=mv/eB电⼦离开磁场后将沿圆切线⽅向飞出,直射到达荧光屏。

在偏转⾓φ较⼩的情况下,偏转量:z2)2l (klI mU eL D += 在单位偏转线圈激励电流的作⽤下,电⼦束在荧光屏上偏离轴向的距离Dm/I 称为磁偏转灵敏度。

4、电聚焦原理电⼦聚焦的基本思路在于利⽤⾮均匀的电场使电⼦束加速电场使电⼦束形成交叉点。

电极的电压⽐阴极电位⾼⼏百伏⾄上千伏。

前加速阳极,聚焦阳极和第⼆阳极是由同轴的⾦属圆筒组成。

电子束的电偏转和电聚焦实验报告

电子束的电偏转和电聚焦实验报告

电子束的电偏转和电聚焦实验报告实验名称:电子束的电偏转和电聚焦实验目的:通过实验研究电子束的电偏转和电聚焦现象,掌握电子束的基本性质和原理。

实验器材:电子束实验仪、万用表、直流电源、T型管、荧光屏、螺旋线管、磁场探针等。

实验原理:电子束在电场和磁场中的运动可以用洛伦兹公式和牛顿第二定律来描述。

电子在电场中受到电力作用,会发生偏转;电子在磁场中受到洛伦兹力作用,会发生圆周运动。

实验步骤:1、将电子束实验仪接通电源,调整电压和电流使得电子束稳定。

2、安装T型管,接入电源和万用表,调整电压和电流,观察电子束在电场中的偏转情况。

3、安装螺旋线管和磁场探针,调整电流和磁场强度,观察电子束在磁场中的圆周运动情况。

4、将荧光屏放置在电子束路径上,观察电子束聚焦后的情况。

实验结果和分析:1、在电场中,电子束会受到电力作用,产生偏转现象。

当电压越大,电子束偏转角度越大;当电场方向改变时,电子束的方向也会发生改变。

2、在磁场中,电子束会受到洛伦兹力作用,产生圆周运动。

当磁场强度越大,电子束半径越小;当电子束速度越大,圆周运动的半径也越大。

3、通过调节电子束实验仪中的聚焦电场,可以使电子束在荧光屏上清晰地聚焦成一个点,实现电聚焦现象。

实验结论:1、电子束在电场中偏转角度与电场电压大小成正比,与电子束入射角度和电场方向有关。

2、电子束在磁场中运动半径与磁场强度成正比,与电子束速度成反比。

3、电子束聚焦的理论依据是通过调节聚焦电场,使电子束的散焦程度减小,从而将其聚焦成一个点。

参考文献:1、《电子技术基础实验教程》2、《原子物理、分子物理与光学实验讲义》。

电子束的偏转与聚焦研究

电子束的偏转与聚焦研究

专题实验究与创新物理与电信工程学院物理1202班电子束的偏转与聚焦研究姓名:杜超、雷钢、郝亚茹 年级:物理1202 专业:物理学指导老师:周平和【摘要】:带电粒子在电场中受电场力的作用,在磁场中受磁场力的作用,其运动形态将发生变化。

因此,人们可以利用电极形成的静电场实现电子束的偏转和聚焦,也可用电流形成的恒磁场实现电子束的偏转和聚焦,前者称为电偏转和电聚焦,后者称为磁偏转和磁聚焦。

这是示波管和显像管的工作基础,而且还被广泛的用于扫描电子显微镜、回旋加速器、质谱仪等许多仪器设备的研制之中,带电粒子的电荷量与质量比值,称为荷质比,是带电微观粒子的基本参量之一,是研究物质结构的基础。

本实验介绍用磁聚焦的方法测定电子荷质比。

了解阴极射线管的构造与工作原理。

研究带电粒子在电场和磁场中的运动规律,学习电聚焦和磁聚焦的基本原理和实验方法,掌握利用磁聚焦法测定电子荷质比的基本方法。

【关键字】:电偏转、磁偏转、电聚焦、磁聚焦、荷质比。

【正文】一、阴极射线管的基本结构示波器动态显示随时间变化的电压信号思路是将电压加在电极板上,极板间形成相应的变化电场,使进入这变化电场的电子运动情况相应地随时间变化,最后把电子运动的轨迹用荧光屏显示出来。

示波器主要由示波管和复杂的电子线路构成。

示波器的基本结构见图1。

电子枪偏转板荧光屏HK H U G G 1G 2A 1A 2Y 2Y 1X 2X 16.3V U 1U 2图a图(1)示波器的基本结构二、SJ-SS-2型电子束测试仪本实验使用SJ-SS-2型电子束测试仪进行测量。

实验前检查励磁电流电源开关应处于关闭状态,并把励磁电流调节旋钮逆时针旋到底,做好测量准备工作。

仪器参数为:螺线管内的线圈匝数N=4160T ,螺线管的长度L=0.201m ,螺线管的直径D=0.0915m ,螺距(Y 偏转板至荧光屏距离)L=0.3m ;0μ为真空中的磁导率,率,70410H/m μπ-=⨯。

电子束的聚焦和偏转与电子荷质比的测定

电子束的聚焦和偏转与电子荷质比的测定

电子束的聚焦和偏转与电子荷质比的测定07120111沈博炜物理学一、实验调研1.查找资料,了解示波管的原理以及求荷质比的方法2.熟悉实验器材3.了解实验内容,实验器材的使用方法以及实验操作的具体步骤二、实验调研结果1.实验目的1)利用纵向磁场聚焦法测定电子荷质比2)加深对电荷在磁场中运动规律的理解3.实验原理速度为v 的电子,在以磁感应强度为B 的匀强磁场中运动(设B 的方向沿z 轴方向,见图1),电子将受到洛伦兹力的作用,此力为B v e f ⨯=1)若电子速度v 的方向平行于B (记为||v ),电子此时受的力为零,电子将沿z 方向做匀速直线运动。

2)若电子的速度v 垂直于B (即在xy 平面内,此时电子的速度记为⊥v ),电子所受力为B ev f ⊥=f 的方向与⊥v 垂直且在xy 平面内,故该力只能改变电子的运动方向,不改变电子速的大小,结果使电子在垂直于B 的平面内作以半径为R 的匀速圆周运动。

根据牛顿第二定律可知Rmv B ev f 2⊥⊥== m 为电子的质量,电子旋转一圈所需的时间B me v R T ππ22==⊥ (1) 从(1)式可知:当B 保持变,电子的速度⊥v 不同时,电子作圆周运动的半径是不同的,但是电子旋转一周所需的时间(周期)相同,与电子速度无关。

所以如果图2中有很多电子都从同一磁场中的O 点出发,各电子运动速度⊥v 数值上尽管各不相同,但经过T 时间后,同时又回到O 点。

图中磁场从纸面垂直穿出。

以上是两个特例。

在一般情况下,电子通过O 点时的速度v 可能与B 成任意角度θ,则此时可将v 分解为与B 平行的分量及||v 与B 垂直的分量⊥v ,运动着的电子在磁场的作用下,电子速度的水平分量将保持不变,电子沿z 轴方向做匀速运动,而电子的垂直分量不改变大小,仅改变方向,及电子在垂直于磁场的平面做匀速圆周运动。

所以电子在磁场的作用下,其合成运动轨迹将为一条螺旋线。

见图3||||2v B me Tv h π== (3) 式中为螺距,即电子螺旋一周时它在B方向上所前进的路程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子束的聚焦
【实验目的】
1、研究带电粒子在电场和磁场中的聚焦规律。

2、进一步了解电子束线管的结构和原理。

3、掌握测量电子荷质比的一种方法。

【实验仪器】
DS-III 型电子束实验仪、 DX-III 型电子束示波器综合实验仪
【实验原理】
一、电聚焦
1A 和2A 相对阴极K 加上不同的电压1U ,2U 。

当21U U >时,如下图所示。

E
可分解为Z E 和
r E 两个分量。

在近1A 2A 端部时,r E 较大,而且r 越大,r E 越大,中部一段r E 很小,几乎只
受Z E 作用。

电子在电场中一方面被Z z F eE =-所加速,一方面受r r F eE =-作用而改变r V ,使 其变小。

电子偏离Z 越远,r 越大,r F 冲量越大,r V 该变量越大。

r F 的作用结果在前半区电子 运动轨迹向Z 轴方向弯——汇聚。

在后半区,因为r E 与前半区的反向,电子向上弯曲——发散。

但是由于Z F 的加速作用,在后半区的时间比前半区短,即总效果是汇聚。

若1U 、2U 选择恰当, 电子束将聚于荧光屏上,一般只要满足2
1
U G U =≈常数,即可认为此时光点处于聚焦状态。

二、磁聚焦
在示波管外套上同轴螺线管,若管长很大,则可看作成均匀磁场。

电子将做螺旋线运动。

存在
2
mv ev B R ⊥⊥= ⇒ mv R eB ⊥= , 22R m
T v eB
ππ⊥==。

v 不变,螺距为2m h T v v eB π== 调节B ,使L 其恰为h 时,可得:
2e v m hB π= 又 212
a mv eU = 联立上述两式得: 2228a
U e m L B
π= 70122(cos cos )10B n I πθθ-=-⨯ 其中0n 为螺线管单位长度匝数,1θ、2θ为螺线管中心对两端的张角。

【实验内容】
一、电场聚焦
选三种不同的栅压,分别调1U 、2U ,使光点聚焦,测2
1
U G U =,验证G 是否为常数。

二、磁场聚焦
套上螺线管,并通电。

加适量大小的dy U ,使光斑位于原点上方以便观察螺旋运动。

有小到大逐渐增大偏转电流,使其发生第一、二、三次聚焦,记下各次聚焦时的电流1I 、2I 、3I
【数据记录与处理】
一、电场聚焦
有上述数据可得结论: 二、磁场聚焦
1____I A =;2____I A =;3____I A =。

电流取平均值为:123
____123
I I I I A ++=
=++。

此时加速电压:____a U A =。

2227082____(2cos 10)a
a U U e A m L B L n I πθ-===⨯ 。

【注意事项】
1、实验中所需数据可由螺线管读出。

2、电子荷质比标准值为11
1.75910C
Kg
⨯。

3、实验前,切记将偏转电流调至最小处,然后再由小到大调节。

4、螺线管要轻拿轻放,切勿损坏。

【思考练习】
若螺线管既不加任何偏转电压,也不人为外加横向磁场,把螺线管聚焦调好以后,将仪器原地转一圈。

观察荧光屏上光点位置是否变?是否可根据光点的变化来估算当地地磁场的磁感应强度?。

相关文档
最新文档