《数学物理方法》复习题

合集下载

数学物理方法试题(卷)

数学物理方法试题(卷)

数理方法概论试题及参考答案一、简答题(每小题5分,共20分)1. 写出高斯定理⎰⎰⋅∇=⋅SVdV d A S A2. 在斯托克斯定理()⎰⎰⋅⨯∇=⋅SLd A d S l A中, L 是式中那个量的边界线? 3. 定解问题包含那两部分?在数学上,边界条件和初始条件合称为定解条件,数学物理方程本身(不连带定解条件)叫做泛定方程.定解条件提出具体问题,泛定方程提供解决问题的依据,作为一个整体,叫做定解问题. 4. 边界条件有那几类?1) 直接规定边界上的值.这叫做第一类边界条件.()()t ,z ,y ,x f t ,z ,y ,x u S 000=2) 直接规定梯度在边界上的值.这叫做第二类边界条件.()t ,z ,y ,x f nu S000=∂∂3) 规定了边界上的数值与(外)法向导数在边界上的数值之间的一个线性关系.()t ,z ,y ,x f n u H u S 000=⎪⎭⎫ ⎝⎛∂∂+4) 除上述的边界条件外,在求解物理问题时,一般还会遇到所谓的自然边界条件.自然边界条件一般由物理问题本身提出,由于真实的物理量应该是有限的,而在无穷远或坐标原点处的数学的解往往会包含无穷大的解在内,这时从物理上考虑应该舍去这些解,这就构成了上述的自然边界条件.除此之外还有周期性自然边界条件.二、证明题(每小题20分,共40分)1. 证明 ϕϕ2∇≡∇⋅∇ 证: 2222222x y z x y z x y z ϕϕϕϕ⎛⎫⎛⎫∂∂∂∂∂∂∇⋅∇=++⋅++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎛⎫∂∂∂=++≡∇ ⎪∂∂∂⎝⎭xy z x y z e e e e e e 2. 证明不同阶的勒让德多项式在区间()11+-,上正交.()()()l k dx x P x P lk≠=⎰+-011证明:设本征函数k P 和l P 分别满足勒让德方程()()()()01101122=++⎥⎦⎤⎢⎣⎡-=++⎥⎦⎤⎢⎣⎡-l l k k P l l dx dP x dx d P k k dx dP x dx d前一式乘以l P ,后一式乘以k P ,然后相减得()()()()[]0111122=+-++⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-l k l k k lP P l l k k dx dP x dx d P dx dP x dx d P 从1-到1+积分得()()()()11221101111k l l k k l dP dP d d P x P x dx k k l l P Pdx dx dx dx dx ++--⎧⎫⎡⎤⎡⎤=---++-+⎡⎤⎨⎬⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭⎰⎰ ()()()()1122111111k l l k k l dP dP d x P x P dx k k l l P Pdx dx dx dx ++--⎧⎫=---++-+⎡⎤⎨⎬⎣⎦⎩⎭⎰⎰()()()()()()()()222211111111111111k l k l l k l k x x k l k l dP dP dP dP x P x P x P x P dx dx dx dx k k l l P Pdxk k l l P Pdx==-+-+-⎡⎤⎡⎤=-------⎢⎥⎢⎥⎣⎦⎣⎦++-+⎡⎤⎣⎦=+-+⎡⎤⎣⎦⎰⎰当l k ≠时即有:()110k lP Pdx k l +-=≠⎰三、计算题(每小题20分,共40分)1. 研究矩形波(见图1)1(0,)(2,(21))()1(,0)((21),2)m m f x m m ππππππ++⎧=⎨---⎩于以及于以及的频谱.解:根据()01cos sin k k k k x k x f x a a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑及()1cosln ln n a f d l lπξξξδ-=⎰ ()1sin l n l n b f d l lπξξξ-=⎰这里l π=可以求得:x()()000111(1)10222111cos (cos )cos 0n a f d d d a f n d n d n d ππππππππξξξξπππξξξξξξξπππ----==-+===-+=⎰⎰⎰⎰⎰⎰()[][]00122sin sin cos 22cos 1(1)1n nb f n d n d n n n n n ππππξξξξξξππππππ-===-⎡⎤=-+=--+⎣⎦⎰⎰当 220k n kb == 当 21421(21)k n k b k π+=+=+因此得到该函数的展开式为:04sin(21)()21k k xf x k π∞=+=+∑ 需要注意的是:由于所给函数是奇函数,所以展开式中只有sin 项而没有cos .如果所给函数是偶函数,那么展开式中就只有cos 项而没有sin 项.2. 求0=+''y y λ (0=+''ΦλΦ)满足自然周期条件()()x y x y =+π2 [()()φΦπφΦ=+2]的解.解:方程的系数()()λ==x q ,x p 0在指定的展开中心00=x ,单值函数(),x p 00=和()λ=0x q 是有限的,它们必然是有限的,它们必然在00=x 为解析的.因此,点00=x 是方程的常点.可设() +++++=k k x a x a x a a x y 2210从而()() ++++++='+k k x a k x a x a a x y 123211321()()() +++++⋅+⋅+⋅=''+k k x a k k x a x a a x y 2243212342312把以上的级数代入微分方程.至于()()λ==x q ,x p 0都是只有常数项的泰勒级数,无需再作展开.现在把各个幂次的项分别集合如下令上表各个幂次合并后的系数分别为零,得一系列方程01202=+⋅a a λ 02313=+⋅a a λ03424=+⋅a a λ 04534=+⋅a a λ............... ...............()()0122=++++kk a a k k λ最后一个式子是一般的.所有这些式子指出从kx 项的系数k a 可以推算出2+k x 项的系数2+k a ,因而叫做系数的递推公式.按照递推公式具体进行系数的递推.()()()()()()20312242053122120021112!3!434!545!11112!2!21!kk kkkkkkk k a a a a a a a a a a a a a a a k k k λλλλλλλλ++=-=-=-=+=-=+⋅⋅-=-=-=-=+这样,我们得到方程的解()()()()()()()()()()()()⎥⎦⎤⎢⎣⎡++-+-+-+⎥⎦⎤⎢⎣⎡-+-+-=+ 125312420!1211!51!31!211!41!211k k k kxk x x x a x k x x a x y λλλλλλλλ还需要确定这个级数的收敛半径.其实,上面两个[ ]正是cos θ和sin θ,其收敛半径为无穷大.于是()0y x a =既然1a 是任意常数,λ1a 当然还是任意常数,将λ1a 写成B ,0a 写成A ,则有()y x A B =+这个常微分方程和它的解实际早已知道,这里用级数方法只是为了了解级数解法的步骤.考虑到要满足自然周期条件()()x y x y =+π2则m =λ, 3210,,,m =.所以有解()cos sin y x A mx B mx =+。

数学物理方法试卷

数学物理方法试卷

数学物理方法试卷数学物理方法是一门重要的学科,它将数学和物理学相结合,以求解物理问题为目标。

本文档旨在提供一份针对数学物理方法的试卷,帮助学生加深对该学科的理解和应用能力。

一、选择题(共10题,每题2分)1. 下列哪个是四位数?A. 123B. 12345C. 123456D. 12342. 如何计算三角形的面积?A. 底乘高除以2B. 长乘宽C. 半径的平方乘以πD. 无法计算3. 下列哪个是速度的单位?A. 米/秒B. 千克C. 焦耳D. 牛顿4. 什么是牛顿第三定律?A. 物体的加速度和作用力成正比B. 物体的质量和加速度成正比C. 在力的作用下,物体会产生加速度D. 任何作用力都有一个相等且方向相反的反作用力5. 单位矩阵是什么?A. 所有元素都为1的矩阵B. 所有元素都为0的矩阵C. 对角线上元素都为1,其他元素为0的矩阵D. 所有元素都相等的矩阵6. 下列哪个是圆的面积公式?A. πr^2B. 2πrC. πd^2D. 0.5πr^27. 加速度的单位是什么?A. 米/秒^2B. 米/秒C. 十米/秒^2D. 千米/小时8. 下列哪个公式用于计算动能?A. F = maB. W = FdC. E = mc^2D. KE = 1/2mv^29. 如何计算两个向量的点积?A. 向量相乘再求和B. 向量相除C. 向量相减D. 无法计算10. 下列哪个没被广义相对论所解释?A. 引力B. 黑洞C. 宇宙膨胀D. 电磁力二、解答题(共3题,每题10分)1. 请用泰勒级数展开sin(x),并计算在x=π/6时的近似值。

2. 请用微分方程求解y'' + 4y = 0,并给出其特解。

3. 请解释质心是什么,并说明为什么在某些问题中质心坐标系非常有用。

本试卷针对数学物理方法的知识进行了全面的考察。

选择题部分测试了学生的基础知识和概念理解能力,而解答题则要求学生能够运用所学的数学物理方法进行实际问题的求解和解释。

数学物理方法复习资料及参考答案(一)

数学物理方法复习资料及参考答案(一)

数学物理方法复习资料及参考答案(一)数学物理方法复习资料及参考答案(一)一、填空题: 1. 复数ii -+11用三角式可表示为(主辐角[)π2,0)。

2. 已知幂级数∑∞=0k kk z a 和∑∞=0k kk z b 的收敛半径分别是1R 和2R ,则幂级数()∑∞=±0k k k k z b a 的收敛半径为:。

3. 勒让德多项式()l P x 的模l N = ()0,1,2,l = 。

4. 在00=z 的邻域上,z e z f 1)(=展开的洛朗级数为:。

5. 函数2)2)(1()(--=z z z z f 的留数)1(resf =。

6. 求解无限长弦的自由振动,设弦的初始位移为)(x ?,初始速度为)(/x a ?-,=),(t x u 。

7. 在00=z 的邻域上,z z f sin )(=的泰勒级数为:。

8. 幂级数()∑∞=-11k k i z k的收敛圆:。

9. 数理方程中的定解条件包括三大类初始条件、和衔接条件。

10. 在本征值问题()()()'''12012--+=-1<<±1??x y xy y x y λ有限中,方程()'''1202--+=x y xy y λ称为__ _ _ __微分方程,该本征值问题的本征值λn =___ _ ,相应本征函数是y x n ()=__________,其中n=___ _ ____,该本征函数称为______ __ _,写出它的表达式(至少一种):___________ _____。

二、简答题:1、孤立奇点分为几类?如何判别?2、简述施图姆-刘维尔本征值问题的共同性质。

三、基础题:1、计算实变函数定积分()()222294x dxI xx ∞=++?2、已知解析函数()f z 的实部233),(xy x y x u -=,0)0(=f ,求虚部和这个解析函数。

XXX《数学物理方法》复习思考题及答案

XXX《数学物理方法》复习思考题及答案

XXX《数学物理方法》复习思考题及答案数学物理方法》复思考题一、单项选择题1、函数f(z)以b为中心的罗朗(Laurent)展开的系数公式为C.k=0的情况为f(b),k>0的情况为f(k)(b)/k。

k<0的情况为f(k)(b)(z-b)^k2、本征值问题X''(x)+λX(x)=0,X(0)=0,X(l)=0的本征函数是B.sin(nπx/l)3、点z=∞是函数cot z的B.孤立奇点4、可以用分离变量法求解定解问题的必要条件是A.泛定方程和初始条件为齐次5、设函数f(z)在单连通区域D内解析,C为D内的分段光滑曲线,端点为A和B,则积分∫Cf(z)dzC.与积分路径及端点坐标无关6、条件z<1所确定的是一个A.单连通开区域7、条件|z-1|<2所确定的是一个B.复连通开区域8、积分∫|z|=1 zcosz^2 dz=B.-19、函数f(z)=1/(1-z)在z+1>2内展成z+1的级数为D.∑(n+1)z^n10、点z=-1是函数f(z)=sinz的B.孤立奇点二、填空1、复数(1-i√3)/2的三角形式为1,其指数形式为e^(-iπ/3)。

2、复数sin(π/5)+icos(π/5)的三角形式为cos(2π/5)+isin(2π/5),其指数形式为e^(i2π/5)。

3、复数(1+i√3)/2的实部u=1/2,幅角θ=π/3,虚部v=√3/2,模r=1.4、复数-2+i2的实部u=-2,虚部v=2,模r=2√2,幅角θ=3π/4.5、z^4+1=0的解为±1±i。

6、z^4+a^4=0的解为±a±ai。

1.z4-1-i的解为,ez=1+i的解为,ii=(删除明显有问题的段落)2.对于积分∫cosz dz,z=1,积分∫z3cosz dz,对于积分∫zcosz2 dz,z=1,积分∫zsinz dz=1,需要进行小幅度的改写。

数学物理方法

数学物理方法

《 数学物理方法 》试题(A 卷)说明:本试题共3页四大题,30小题。

1.z 为复数,则( )。

A ln z 没有意义;B ln z 为周期函数;C Ln z 为周期函数;D ln()ln z z -=-。

2.下列积分不为零的是( )。

A 0.51z dz z π=+⎰; B 20.51z dz z π=-⎰; C10.5z dzz π=+⎰; D211z dz z π=-⎰。

3.下列方程是波动方程的是( )。

A 2tt xx u a u f =+; B 2t xx u a u f =+;C 2t xx u a u =; D2tt x u a u =。

4.泛定方程2tt x u a u =要构成定解问题,则应有的初始条件个数为( )。

A 1个;B 2个;C 3个;D 4个。

5.二维拉普拉斯方程的定解问题是( )。

A 哥西问题; B 狄拉克问题; C 混合问题; D 狄里克雷问题。

6.一函数序列的序参量n趋于某值a时有()(,)()()n ax f n x dx x f x dx ϕϕ→−−−→⎰⎰则我们称( )。

A (,)f n x 收敛于()f x ;B (,)f n x 绝对收敛于()f x ;C (,)f n x 弱收敛于()f x ;D (,)f n x 条件收敛于()f x 。

7.傅里叶变换在物理学和信息学中能实现( )。

A 脉冲信号的高斯展宽;B 高斯信号压缩成脉冲信号;C 实空间信号的频谱分析;D 复频信号的单频滤波。

8.用分离变量法求解偏微分方程定解问题的一般步骤是( )。

A 分离变量 解单变量本征值问题 得单变量解得分离变量解; B 分离变量 得单变量解 解单变量本征值问题 得分离变量解; C 解单变量本征值问题 得单变量解 分离变量 得分离变量解; D 解单变量本征值问题 分离变量 得单变量解 得分离变量解。

9.下列表述中不正确的是( )。

A 3sin zz 在0z =处是二阶极点;B 某复变函数在开复平面内有有限个奇点,所有这些奇点的残数之和为零;C 残数定理表明,解析函数的围线积分为复数;D 某复变函数在某处为m 阶极点,则其倒函数在该奇点处为m 阶零点。

数学物理方法复习题[1]

数学物理方法复习题[1]

1数学物理方法复习题1. 利用Laplace 变换方法求解下述常微分方程()()()24,01,02,0 2.y y y y y y 좢¢¢¢¢-+=ïïí¢¢¢ï===-ïî 2. 利用Laplace 变换方法求解下述常微分方程组()()()320,20,00,01,00.x x x y y x x y y x x y ì¢¢-++-=ïï-++=íïï¢===ïïî 3. 应用积分变换求解下面的热传导方程()()20,,,0,|,.t xx t u a u f x t x t u x x j =ìï-=-¥<<¥>ïíï=-¥<<¥ïî 4. 利用积分变换求解半无界弦上的微小横振动问题 ()()20000,0,0,0,0,,lim ,.tt xx t t t x x u a u x t u u u f t u x t === +¥ìï-=>>ïïï==íïï=<+¥ïïïî 5. 求解硅片的恒定表面浓度扩散问题 2000,(0),0.t xx x t u a u x u N u ==ìï=>ïïï=íïï=ïïî 6. 求解初值问题2002350,5,0.xx xy yy y y y u u u u x u ==ì--=ïïíï==ïïî 7. 求圆锥杆的纵振动问题。

数学物理方法题库

数学物理方法题库

z 4 dz ,其中积分路径 C 为: 9, 计算 C z2 1 1 1 , z 1 ; (3) , z 2。 (1) , z 1 ; (2) 2 2
10, 设 f z


C
3 7 1 d ,其中积分路径 C 为圆周 x 2 y 2 3 ,求 f '(1 i ) 。 z
xn (n 1, 2,) 及 yn (n 1, 2,) 分别以 x0 及y 0 为极限。
17,证明:三角形三内角和等于 。
3
第二章
习题 1, 证明下列函数在 z 平面上处处不可导。 (1) z 。 2, 试证 (1) f ( z ) x iy 仅在原点有导数。
3 3
解析函数
2 2 2
(2) cos z cos xchy i sin xshy 。 (4) cos z cos x sh y 。
2 2 2
15, 证明 sin z 与 cos z 是以 2 为周期的函数,而 e , shz , chz 是以 2i 为周期的函数。
x
16, 证明 w 3 z 的三个单值分支在割破的 z 平面上的任一区域上都是解析的。 17, 设 w 3 z 确定在沿负实轴割破了的 z 平面上,并且 w(i ) i ,求 w(i ) 。 18, 试解方程 (1) e 1 i 3 。
2 2
11, 证明 f ( z ) 与 f ( z ) 必同时为解析函数或不是解析函数。 12, 设 w 是 z 的解析函数,证明 13, 定义 shz
x y x y , , ( w u iv, z x iy ) 。 u v v u
e z e z e z e z 和 chz 分别为双曲正弦函数及双曲余弦函数,试证 2 2

物理数学方法试题及答案

物理数学方法试题及答案

物理数学方法试题及答案一、选择题(每题2分,共10分)1. 以下哪项不是傅里叶变换的性质?A. 线性B. 可逆性C. 尺度变换D. 能量守恒答案:D2. 拉普拉斯变换的收敛区域是:A. 左半平面B. 右半平面C. 全平面D. 虚轴答案:B3. 以下哪项是线性微分方程的特征?A. 可解性B. 唯一性C. 线性叠加原理D. 非线性答案:C4. 在复数域中,以下哪个表达式表示复数的模?A. |z|B. z^2C. z*zD. z/|z|答案:A5. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = cos(x)答案:B二、填空题(每题3分,共15分)1. 傅里叶级数展开中,周期函数的系数可以通过______计算得到。

答案:傅里叶系数2. 拉普拉斯变换中,s = σ + jω代表的是______。

答案:复频域3. 线性微分方程的解可以表示为______的线性组合。

答案:特解4. 复数z = a + bi的共轭复数是______。

答案:a - bi5. 波动方程的一般解可以表示为______和______的函数。

答案:空间变量;时间变量三、简答题(每题5分,共20分)1. 简述傅里叶变换和拉普拉斯变换的区别。

答案:傅里叶变换主要用于处理周期信号,将时间域信号转换到频域;而拉普拉斯变换适用于非周期信号,将时间域信号转换到复频域。

2. 什么是波动方程?请给出其一般形式。

答案:波动方程是描述波动现象的偏微分方程,一般形式为∂²u/∂t² = c²∂²u/∂x²,其中u是波函数,c是波速。

3. 请解释什么是特征值和特征向量,并给出一个例子。

答案:特征值是线性变换中,使得变换后的向量与原向量方向相同(或相反)的标量。

特征向量则是对应的非零向量。

例如,对于矩阵A,如果存在非零向量v和标量λ,使得Av = λv,则λ是A的特征值,v是对应的特征向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学物理方法》复习题一、单项选择题【 】1、函数()f z 以b 为中心的罗朗(Laurent )展开的系数公式为11().2()k k f A C d i b γζζπζ+=-⎰ ()().!k k f b B C k =1().2k f C C d ib γζζπζ=-⎰ 1!().2()k k k f D C d ib γζζπζ+=-⎰【 】2、本征值问题()()0,(0)0,()0X x X x X X l λ''+===的本征函数是A .cosn x l π B .sin n x l π C .(21)sin 2n x l π- D .(21)cos 2n xlπ- 【 】3、点z =∞是函数cot z 的A. 解析点B. 孤立奇点C. 非孤立奇点D. 以上都不对【 】4、可以用分离变量法求解定解问题的必要条件是A. 泛定方程和初始条件为齐次B. 泛定方程和边界条件为齐次C. 初始条件和边界条件为齐次D. 泛定方程、初始条件和边界条件为齐次 【 】5、设函数()f z 在单连通区域D 内解析,C 为D 内的分段光滑曲线,端点为A 和B ,则积分()Cf z dz ⎰A. 与积分路径及端点坐标有关B. 与积分路径有关,但与端点坐标无关C. 与积分路径及端点坐标无关D. 与积分路径无关,但与端点坐标有关【 】6、 条件1z <所确定的是一个A .单连通开区域 B. 复连通开区域 C. 单连通闭区域 D. 复连通闭区域 【 】7、条件210<-<z 所确定的是一个A .单连通开区域 B. 复连通开区域 C. 单连通闭区域 D. 复连通闭区域 【 】8、积分2||1cos z z z dz ==⎰A .1B .12-C .12D .0 【 】9、函数1()1f z z=-在12z +>内展成1z +的级数为A .102(1)n n n z ∞+=-+∑ B .101n n z ∞+=∑ C .10(1)2n n n z ∞+=+∑ D .0nn z ∞=∑ 【 】10、点0z =是函数11()sin f z z -⎛⎫= ⎪⎝⎭的A. 解析点B. 孤立奇点C. 非孤立奇点D. 以上都不对二、填空1、 复数231i -的三角形式为,其指数形式为.2、 复数5cos5sinππi +的三角形式为,其指数形式为.3、 复数的实部u =,虚部v =,模r =,幅角θ=.4、 复数22i +-的实部=u ,虚部=v ,模=r ,幅角 =θ .5、 z 410+=的解为.6、 z a 440+= (a >0) 的解为.7、 014=--i z 的解为. 8、 i e z +=1的解为.9、 =i i .10、 积分dz z z cos ==⎰1.11、 积分⎰==++1222z z z dz. 12、 积分⎰==13cos z zdz z .13、 积分=⎰badz z z 2cos .14、 积分⎰==12cos z dz z z .15、 积分=⎰1sin zdz z .16、 幂级数n n nz ∑∞=121的收敛半径为.17、 幂级数∑∞=-1)1(n nn z 的收敛半径为.18、 0=z 为3cos 1)(z zz f -=的.(奇点的类型,极点的阶数) 19、 0=z 为3sin )(zzz f =的.(奇点的类型,极点的阶数)20、=-+-+iii i 524321 . 21、 =---)21()2(i i i . 22、(1)i i += .23、 积分dzz z z 216--==⎰.24、 幂级数121n z n n =∞∑的收敛半径为.25、 014=-z 的解为.26、 积分⎰==-+126z z z dz.27、 积分=⎰22sin πdz z z .28、 幂级数nn nz ∑∞=131的收敛半径为.29、 幂级数nn z n∑∞=11的收敛半径为 . 30、 函数zz f -=11)(在2|1|<+z 上展成)1(+z 的泰勒级数为 . 三、已知解析函数f z u x y iv x y ()(,)(,)=+的实部u x y (,)或虚部v x y (,),求此解析函数。

1、u x y xy x (,)=-3232、v x y e x y (,)cos =3、u x y x y (,)()=-214、v x y e y x (,)sin =5、xy y x y x u +-=22),( 6、233),(xy x y x v -=四、设)()(2323lxy x i y nx my z f +++=解析函数,试确定n m l 、、的值。

五、证明下列函数在复平面上解析,并求其导数。

1、y ie y e z f xx sin cos )(+=2、y ie y e z f xx cos sin )(-=六、证明函数z z z f Re )(=在复平面上不解析。

七、求下列积分1、 计算2112z z z dz C -+-⎰,(C :z =2)。

2、 计算dz z z C ⎰+1sin 24π,C 分别为:(1)、21=+i z ,(2)、21=-i z ,3、计算11z z dz z sin =⎰ 。

4、 算⎰-=i i zdzI ,(1)、沿路径C 1:z =1的左半圆周,(2)、沿路径C 2:z =1的右半圆周。

5、计算dz z e Cz⎰-2,C 分别为:(1)、z -=23,(2)、z +=23 。

6、 计算dz ze C z⎰5, C 为: 1=z7、 计算2|:|)3(,|1:|)2(,|1:|)1(,12112122==-=+-⎰z c z c z c dz z e c z8、 计算232|2:|,1=-+⎰i z c dz z e c iz9、 计算6|1:|,122=-+⎰z c dz z i c10、 计算2|:|,)1(2=-⎰z c dz z z e c iz八、将2)(+=z zz f 按1-z 的幂级数展开,并指明收敛范围。

九、将f z z z ()()()=--112在指定范围内展开成罗朗级数。

1、110<-<z ;2、120<-<z十、把f z z z ()()()=--123展为下列级数1、 将f z ()展为z 的泰勒级数,并给出收敛半径。

2、 将f z ()在23<<z 展为罗朗级数。

3、 将f z ()在3<<∞z 展为罗朗级数。

十一、把)2)(1(1)(--=z z z f 展为下列级数1、将f z ()展为z 的泰勒级数,并给出收敛半径。

2、将f z ()在21<<z 展为罗朗级数。

3、将f z ()在∞<<z 2展为罗朗级数。

十二、试用分离变数法求解定解问题.0,,0,0,0002=====-====t tt l x x xx tt u x uu u u a u ()0,0≥≤≤t l x十三、求解定解问题.)1(0)1(1)0,,002⎩⎨⎧≥<=>+∞<<∞-=-=x x u t x u a u t xx t (十四、试用分离变数法求解定解问题.,0,0,0002x uu u u a u t lx x xx t ====-===()00≤≤≥x l t ,十五、求解定解问题.0,0,,0,000002=====-====t t t lx x xx tt u uu uu u a u ()00≤≤≥x l t ,十六、求解定解问题.)(0)()0,,002⎩⎨⎧≥<=>+∞<<∞-=-=h x h x h Q u t x u a u t xx t (十七、求解定解问题.0,,0,00002====-===t l x x xx t u u u u u a u (),0≥≤≤t l x十八、求解定解问题.sin,sin,0,0,00002lxu lxu uuu a u t tt lx x xx tt ππ=====-====()0,0≥≤≤t l x十九、求解定解问题.sin,0,0,0002lxu uuu a u t lx x xx t π====-===()0,0≥≤≤t l x二十、试用分离变数法求解定解问题.0,,0,0,00002=====-====t tt lx xx xxx tt u x u u u u a u ()0,0≥≤≤t l x二十一、试用分离变数法求解定解问题.,0,0,0002x u u u u a u t lx xx xxx t ====-===()0,0≥≤≤t l x。

相关文档
最新文档