中考数学专题复习训练 直角三角形(无答案)

合集下载

【备战2012】中考数学专题复习训练27 三角形的基本概念(无答案)

【备战2012】中考数学专题复习训练27 三角形的基本概念(无答案)

第27章 三角形的基本概念一、填空1. 已知:△ABC 中,∠A=100°,∠B-∠C=60°,则∠C=__________。

2. 已知:△ABC 中,∠A=21∠B=31∠C ,则△ABC 是_________三角形。

3. 已知:△ABC 中,∠A=2∠B=3∠C ,则△ABC 是_________三角形。

4. 已知:△ABC 中,∠A=∠B+∠C ,则∠A=____________。

5. 已知:△ABC 中,a=2cm ,b=3cm ,则它的周长p 的范围是_________。

6. 等腰三角形的两边长分别为3cm 和6cm ,则它的周长为___________。

7. 两根木棒分别为5cm 和7cm ,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值范围是____________。

8. 若三角形的三边长分别为5,3-2a ,7,则a 的范围是___________。

9. 已知:三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为_________。

10. 一个等腰三角形的周长为5cm ,如果它的三边长的数值都是整数,那么它的腰长______cm 。

11. 在△ABC 中,∠B 和∠C 的平分线相交于O ,若∠BOC=110°,则∠A=__________。

12. 顺次延长△ABC 的三边AB 、BC 、CA 所得的三个外角中最多有________个锐角。

13. 各边长均是整数的不等边三角形的周长小于13,这样的三角形有_________个。

14. 如图:∠A+∠B+∠C+∠D+∠E+∠F=_________。

15.若三角形的三边长分别为x-1,x,x+1,则x 的取值范围是 .16.如果一个三角形中任意两个内角的和都大于第三个角,则这个三角形是 三角形。

17.直角三角形两个锐角的平分线所构成的钝角是______度。

中考数学专题复习:解直角三角形

中考数学专题复习:解直角三角形

中考数学专题复习:解直角三角形【基础知识回顾】一、锐角三角函数定义:在RE△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为CBA= ∠A的正切:tanA= ,它们弦称为∠A的锐角三角函数【名师提醒:1、sinA、∠cosA、tanA表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】二、特殊角的三角函数值:【名师提醒:1、三个特殊角的三角函数值都是根据定义应用直角三角形性质算出来的,要在理解的基础上结合表格进行记忆2、当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而sin A3、几个特殊关系:⑴sinA+cos2A= ,tanA=⑵若∠A+∠B=900,则sinA= cosA.tanB= 】三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形的依据:RT∠ABC中,∠C900 三边分别为a、b、c⑴三边关系:⑵两锐角关系⑶边角之间的关系:sinA cosA tanAsinB cosB tanB【名师提醒:解直角三角形中已知的两个元素应至少有一个是当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在用上标上仰角和俯角⑵坡度坡角:如图:斜坡AB的垂直度H和水平宽度L的比叫做坡度,用i表示,即i=坡面与水平面得夹角为用字母α表示,则i=hl=⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA表示OB表示OC表示(也可称西南方向)3、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数字问题(画出平面图形,转化为解直角三角形的问题)⑵根据条件特点选取合适的锐角三角函数去解直角三角形⑶解数学问题答案,从而得到实际问题的答案【名师提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】【重点考点例析】考点一:锐角三角函数的概念例1 (•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.12B.55C.1010D.255思路分析:利用网格构造直角三角形,根据锐角三角函数的定义解答.解:如图:连接CD交AB于O,根据网格的特点,CD⊥AB,在Rt△AOC中,CO=2211+=2;AC=2213+=10;则sinA=OCAC=25510=.故选B.点评:本题考查了锐角三角函数的定义和勾股定理,作出辅助线CD并利用网格构造直角三角形是解题的关键.对应训练1.(•贵港)在平面直角坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.55B.52C.32D.121.A考点:锐角三角函数的定义;坐标与图形性质;勾股定理.专题:计算题.分析:过A作AC⊥x轴于C,利用A点坐标为(2,1)可得到OC=2,AC=1,利用勾股定理可计算出OA,然后根据正弦的定义即可得到sin∠AOB的值.解答:解:如图过A作AC⊥x轴于C,∵A点坐标为(2,1),∴OC=2,AC=1,∴OA=22OC AC+=5,∴sin∠AOB=1555ACOA==.故选A.点评:本题考查了正弦的定义:在直角三角形中,一个锐角的正弦等于这个角的对边与斜边的比值.也考查了点的坐标与勾股定理.考点二:特殊角的三角函数值例2 (•孝感)计算:cos245°+tan30°•sin60°= .思路分析:将cos45°=22,tan30°=33,sin60°=32代入即可得出答案.解:cos245°+tan30°•sin60°=12+33×32=12+12=1.故答案为:1.点评:此题考查了特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是解答本题的关键.对应训练(•南昌)计算:sin30°+cos30°•tan60°.思路分析:分别把各特殊角的三角函数代入,再根据二次根式混合运算的法则进行计算即可.解:原式=13322+⨯=1322+=2.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.考点三:化斜三角形为直角三角形例3 (•安徽)如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.6.思路分析:过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=23,∴CD=3,∴BD=CD=3,由勾股定理得:AD=22=3,AC CD∴AB=AD+BD=3+3,答:AB的长是3+3.点评:本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比较好的题目.对应训练3.(•重庆)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)3.考点:解直角三角形;三角形内角和定理;等边三角形的性质;勾股定理.专题:计算题.分析:根据等边三角形性质求出∠B=60°,求出∠C=30°,求出BC=4,根据勾股定理求出AC,相加即可求出答案.解答:解:∵△ABD是等边三角形,∴∠B=60°,∵∠BAC=90°,∴∠C=180°-90°-60°=30°,∴BC=2AB=4,在Rt△ABC中,由勾股定理得:AC=2222BC AB-=-=,4223∴△ABC的周长是AC+BC+AB=23+4+2=6+23.答:△ABC的周长是6+23.点评:本题考查了勾股定理,含30度角的直角三角形,等边三角形性质,三角形的内角和定理等知识点的应用,主要培养学生运用性质进行推理和计算的能力,此题综合性比较强,是一道比较好的题目.考点四:解直角三角形的应用例4 (•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=32千米,请据此解答如下问题:(1)求该岛的周长和面积;(结果保留整数,2≈1.41436≈2.45)(2)求∠ACD的余弦值.考点:解直角三角形的应用.分析:(1)连接AC ,根据AB =BC =15千米,∠B =90°得到∠BAC =∠ACB =45° AC =152千米,再根据∠D =90°利用勾股定理求得AD 的长后即可求周长和面积; (2)直接利用余弦的定义求解即可. 解:(1)连接AC∵AB =BC =15千米,∠B =90°∴∠BAC =∠ACB =45° AC =152千米 又∵∠D =90°∴AD =22 -AC CD =22(152)(32)123-=(千米)∴周长=AB +BC +CD +DA =30+32+123=30+4.242+20.784≈55(千米) 面积=S △ABC +18 6 ≈157(平方千米) (2)cos ∠ACD =CD 321==AC 5152点评:本题考查了解直角三角形的应用,与时事相结合提高了同学们解题的兴趣,解题的关键是从实际问题中整理出直角三角形并求解. 对应训练6.(•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC =75°. (1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千米/小时≈16.7米/秒)考点:解直角三角形的应用.专题:计算题.分析:(1)由于A到BC的距离为30米,可见∠C=90°,根据75°角的三角函数值求出BC的距离;(2)根据速度=路程÷时间即可得到汽车的速度,与60千米/小时进行比较即可.解答:解:(1)法一:在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC•tan∠BAC=30×tan75°≈30×3.732≈112(米).法二:在BC上取一点D,连接AD,使∠DAB=∠B,则AD=BD,∵∠BAC=75°,∴∠DAB=∠B=15°,∠CDA=30°,在Rt△ACD中,∠ACD=90°,AC=30,∠CDA=30°,∴AD=60,CD=303,BC=60+303≈112(米)(2)∵此车速度=112÷8=14(米/秒)<16.7 (米/秒)=60(千米/小时)∴此车没有超过限制速度.点评:本题考查了解直角三角形的应用,理解正切函数的意义是解题的关键.【聚焦山东中考】1.(•济南)如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.13B.12C.22D.31.A考点:锐角三角函数的定义.A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定3考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.分析:首先根据绝对值与偶次幂具有非负性可知cosA-12=0,sinB-22=0,然后根据特殊角的三角函数值得到∠A、∠B的度数,再根据三角形内角和为180°算出∠C的度数即可.解答:解:∵|cosA-12|+(sinB-22)2=0,∴cosA-12=0,sinB-22=0,∴cosA=12,sinB=22,∴∠A=60°,∠B=45°,则∠C=180°-∠A-∠B=180°-60°-45°=75°,故答案为:75°.点评:此题主要考查了非负数的性质,特殊角的三角函数值,三角形内角和定理,关键是要熟练掌握特殊角的三角函数值.5.(•潍坊)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:3=1.73,2=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.5.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD=CD==21 3tan303=36.33,在Rt△BDC中,BD=CD==7 3tan303=12.11,则AB=AD-BD=36.33-12.11=24.22≈24.2(米)。

中考数学专题15 解直角三角形-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

中考数学专题15 解直角三角形-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

专题15.解直角三角形一、单选题1.(2021·浙江温州市·中考真题)图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若1AB BC ==.AOB α∠=,则2OC 的值为( )A .211sin α+B .2sin 1α+C .211cos α+D .2cos 1α+2.(2021·浙江金华市·中考真题)如图是一架人字梯,已知2AB AC ==米,AC 与地面BC 的夹角为α,则两梯脚之间的距离BC 为( )A .4cos α米B .4sin α米C .4tan α米D .4cos α米 3.(2021·湖北随州市·中考真题)如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点A 处,底端落在水平地面的点B 处,现将梯子底端向墙面靠近,使梯子与地面所成角为β,已知3sin cos 5αβ==,则梯子顶端上升了( ) A .1米 B .1.5米 C .2米 D .2.5米4.(2021·湖南株洲市·中考真题)某限高曲臂道路闸口如图所示,AB 垂直地面1l 于点A ,BE 与水平线2l 的夹角为()090αα︒≤≤︒,12////EF l l ,若 1.4AB =米,2BE =米,车辆的高度为h (单位:米),不考虑闸口与车辆的宽度.①当90α=︒时,h 小于3.3米的车辆均可以通过该闸口;②当45α=︒时,h 等于2.9米的车辆不可以通过该闸口;③当60α=︒时,h 等于3.1米的车辆不可以通过该闸口.则上述说法正确的个数为( )A .0个B .1个C .2个D .3个5.(2021·湖南衡阳市·中考真题)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB 的倾斜角为37︒,大厅两层之间的距离BC 为6米,则自动扶梯AB 的长约为(sin370.6,cos370.8,tan370.75︒≈︒≈︒≈)( ).A .7.5米B .8米C .9米D .10米6.(2021·天津中考真题)tan30︒的值等于( )A B .2 C .1 D .27.(2021·重庆中考真题)如图,在建筑物AB 左侧距楼底B 点水平距离150米的C 处有一山坡,斜坡CD 的坡度(或坡比)为1:2.4i =,坡顶D 到BC 的垂直距离50DE =米(点A ,B ,C ,D ,E 在同一平面内),在点D 处测得建筑物顶A 点的仰角为50°,则建筑物AB 的高度约为(参考数据:sin500.77︒≈;cos500.64︒≈;tan50 1.19︒≈)A .69.2米B .73.1米C .80.0米D .85.7米8.(2021·云南中考真题)在ABC 中,90ABC ∠=︒,若s n 3100,5i A A C ==,则AB 的长是( ) A .5003 B .5035 C .60 D .809.(2021·山东泰安市·中考真题)如图,为了测量某建筑物BC 的高度,小颖采用了如下的方法:先从与建筑物底端B 在同一水平线上的A 点出发,沿斜坡AD 行走130米至坡顶D 处,再从D 处沿水平方向继续前行若干米后至点E 处,在E 点测得该建筑物顶端C 的仰角为60°,建筑物底端B 的俯角为45°,点A 、B 、C 、D 、E 在同一平面内,斜坡AD 的坡度1:2.4i =.根据小颖的测量数据,计算出建筑物BC 的高度约为( )1.732≈)A .136.6米B .86.7米C .186.7米D .86.6米10.(2021·重庆中考真题)如图,相邻两个山坡上,分别有垂直于水平面的通信基站MA 和N D .甲在山脚点C 处测得通信基站顶端M 的仰角为60°,测得点C 距离通信基站MA 的水平距离CB 为30m ;乙在另一座山脚点F 处测得点F 距离通信基站ND 的水平距离FE 为50m ,测得山坡DF 的坡度i =1:1.25.若58ND DE =,点C ,B ,E ,F 在同一水平线上,则两个通信基站顶端M 与顶端N 的高度差为( )(参1.73≈≈)A .9.0mB .12.8mC .13.1mD .22.7m11.(2021·四川泸州市·中考真题)在锐角ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,有以下结论:2sinA sinB sinCa cb R ===(其中R 为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( ) A .163π B .643π C .16π D .64π12.(2020·柳州市柳林中学中考真题)如图,在Rt △ABC 中,∠C =90°,AB =4,AC =3,则cos B =BC AB=( )A .35B .45CD .3413.(2020·山东济南市·中考真题)如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE 的央角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF//BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m14.(2020·贵州黔南布依族苗族自治州·中考真题)如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角ADE∠为55°,测角仪CD的高度为1米,其底端C与旗杆底端B 之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()A.6tan551x︒=-B.1tan556x-︒=C.1sin556x-︒=D.1cos556x-︒=15.(2020·辽宁大连市·中考真题)如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60︒方向,且与他相距200m,则图书馆A到公路的距离AB为()A.100m B.C.D.m316.(2020·内蒙古赤峰市·中考真题)如图,A经过平面直角坐标系的原点O,交x轴于点B(-4,0),交y 轴于点C(0,3),点D为第二象限内圆上一点.则∠CDO的正弦值是()A.35B.34-C.34D.4517.(2020·江苏镇江市·中考真题)如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP=x,QD =y.若y关于x的函数图象(如图②)经过点E(9,2),则cos B的值等于()A .25B .12C .35D .71018.(2020·吉林长春市·中考真题)比萨斜塔是意大利的著名建筑,其示意图如图所示.设塔顶中心点为点B ,塔身中心线AB 与垂直中心线AC 的夹角为A ∠,过点B 向垂直中心线AC 引垂线,垂足为点D .通过测量可得AB 、BD 、AD 的长度,利用测量所得的数据计算A ∠的三角函数值,进而可求A ∠的大小.下列关系式正确的是( )A .sin BD A AB = B .cos AB A AD =C .tan AD A BD = D .sin AD A AB=19.(2020·山东威海市·中考真题)如图,矩形ABCD 的四个顶点分别在直线3l ,4l ,2l ,1l 上.若直线1234//////l l l l 且间距相等,4AB =,3BC =,则tan α的值为( )A .38B .34CD .1520.(2020·广东深圳市·中考真题)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P 、Q 两点分别测定对岸一棵树T 的位置,T 在P 的正北方向,且T 在Q 的北偏西70°方向,则河宽(PT 的长)可以表示为( )A .200tan70°米B .200tan 70︒米C .200sin70°米D . 200sin 70︒米 21.(2020·湖南娄底市·中考真题)如图,撬钉子的工具是一个杠杆,动力臂1cos L L α=⋅,阻力臂2cos L l β=⋅,如果动力F 的用力方向始终保持竖直向下,当阻力不变时,则杠杆向下运动时的动力变化情况是( )A .越来越小B .不变C .越来越大D .无法确定22.(2020·江苏扬州市·中考真题)如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C 、D ,则sin ADC ∠的值为( )A .13BC .23D .3223.(2020·湖南湘西土家族苗族自治州·中考真题)如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x 轴的正半轴上,矩形的另一个顶点D 在y 轴的正半轴上,矩形的边,,AB a BC b DAO x ==∠=.则点C 到x 轴的距离等于( )A .cos sin a x b xB .cos cos a x b xC .sin cos a x b xD .sin sin a x b x24.(2019·浙江中考真题)如图,矩形ABCD 的对角线交于点O ,已知,,AB m BAC a =∠=∠则下列结论错误..的是( ) A .BDC α∠=∠ B .tan BC m a =⋅ C .2sin m AO α= D .cos m BD a= 25.(2019·山东中考真题)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为( )A .11米B .(36﹣C .米D .(36﹣)米26.(2019·四川绵阳市·中考真题)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则()2sin cos θθ-=( )A .15BCD .9527.(2019·重庆中考真题)如图,AB 是垂直于水平面的建筑物.为测量AB 的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC BC =.在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角AEF ∠为27︒(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)1:2.4i =,那么建筑物AB 的高度约为( ) (参考数据sin 270.45︒≈,cos270.89︒≈,tan 270.51︒≈)A .65.8米B .71.8米C .73.8米D .119.8米三、填空题目28.(2021·四川广元市·中考真题)如图,在44⨯的正方形网格图中,已知点A 、B 、C 、D 、O 均在格点上,其中A 、B 、D 又在O 上,点E 是线段CD 与O 的交点.则BAE ∠的正切值为________.29.(2021·浙江衢州市·中考真题)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE 与地面平行,支撑杆AD ,BC 可绕连接点O 转动,且OA OB =,椅面底部有一根可以绕点H 转动的连杆HD ,点H 是CD 的中点,F A ,EB 均与地面垂直,测得54cm FA =,45cm EB =,48cm AB =. (1)椅面CE 的长度为_________cm .(2)如图3,椅子折叠时,连杆HD 绕着支点H 带动支撑杆AD ,BC 转动合拢,椅面和连杆夹角CHD ∠的度数达到最小值30时,A ,B 两点间的距离为________cm (结果精确到0.1cm ).(参考数据:sin150.26︒≈,cos150.97︒≈,tan150.27︒≈)30.(2021·浙江绍兴市·中考真题)图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD 上,时钟中心在矩形ABCD 对角线的交点O 上.若30cm AB =,则BC 长为_______cm (结果保留根号).31.(2021·湖北武汉市·中考真题)如图,海中有一个小岛A ,一艘轮船由西向东航行,在B 点测得小岛A 在北偏东60︒方向上;航行12n mile 到达C 点,这时测得小岛A 在北偏东30方向上.小岛A 到航线BC 的距离是__________n mile (3 1.73≈,结果用四舍五入法精确到0.1).32.(2021·四川乐山市·中考真题)如图,已知点(4,3)A ,点B 为直线2y =-上的一动点,点()0,C n ,23n -<<,AC BC ⊥于点C ,连接AB .若直线AB 与x 正半轴所夹的锐角为α,那么当sin α的值最大时,n 的值为________.33.(2021·四川乐山市·中考真题)如图,为了测量“四川大渡河峡谷”石碑的高度,佳佳在点C 处测得石碑顶A 点的仰角为30,她朝石碑前行5米到达点D 处,又测得石顶A 点的仰角为60︒,那么石碑的高度AB 的长=________米.(结果保留根号)34.(2021·浙江中考真题)如图,已知在Rt ABC 中,90,1,2ACB AC AB ∠=︒==,则sin B 的值是______.35.(2021·浙江宁波市·中考真题)如图,在矩形ABCD 中,点E 在边AB 上,BEC △与FEC 关于直线EC 对称,点B 的对称点F 在边AD 上,G 为CD 中点,连结BG 分别与,CE CF 交于M ,N 两点,若BM BE =,1MG =,则BN 的长为________,sin AFE ∠的值为__________.36.(2021·四川乐山市·中考真题)在Rt ABC 中,90C ∠=︒.有一个锐角为60︒,4AB =.若点P 在直线AB 上(不与点A 、B 重合),且30PCB ∠=︒,则CP 的长为________.37.(2021·浙江杭州市·中考真题)sin30°的值为_____.38.(2020·贵州黔南布依族苗族自治州·中考真题)如图所示,在四边形ABCD 中,90B ∠=︒,2AB =,8CD =.连接AC ,AC CD ⊥,若1sin 3ACB ∠=,则AD 长度是_________. 39.(2020·辽宁阜新市·中考真题)如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角20α=︒,两树间的坡面距离5m AB =,则这两棵树的水平距离约为_________m (结果精确到0.1m ,参考数据:sin200.342,cos200.940,tan200.364︒≈︒≈︒≈).40.(2020·湖北荆州市·中考真题)“健康荆州,你我同行”,市民小张积极响应“全民健身动起来”号召,坚持在某环形步道上跑步,已知此步道外形近似于如图所示的Rt ABC ∆,其中90︒∠=C ,AB 与BC 间另有步道DE 相连,D 地在AB 的正中位置,E 地与C 地相距1km ,若3tan ,454ABC DEB ︒∠=∠=,小张某天沿A C E B D A →→→→→路线跑一圈,则他跑了_______km .41.(2020·湖北省直辖县级行政单位·中考真题)如图,海中有个小岛A ,一艘轮船由西向东航行,在点B 处测得小岛A 位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D 处,测得小岛A 在它的北偏西60°方向,此时轮船与小岛的距离AD 为________海里.42.(2020·湖北孝感市·中考真题)某型号飞机的机翼形状如图所示,根据图中数据计算AB 的长为______m .(结果保留根号)三、解答题43.(2021·青海中考真题)如图1是某中学教学楼的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转35︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据sin350.6︒≈,cos350.8︒≈ 1.4≈).44.(2021·四川成都市·中考真题)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A 处安置测倾器,测得点M 的仰角33MBC ∠=︒,在与点A 相距3.5米的测点D处安置测倾器,测得点M 的仰角45MEC ∠=︒ (点A ,D 与N 在一条直线上),求电池板离地面的高度MN的长.(结果精确到1米;参考数据:sin330.54,cos330.84,tan330.65︒≈︒≈︒≈)45.(2021·山东聊城市·中考真题)时代中学组织学生进行红色研学活动.学生到达爱国主义教育基地后,先从基地门口A 处向正南方向走300米到达革命纪念碑B 处,再从B 处向正东方向走到党史纪念馆C 处,然后从C 处向北偏西37°方向走200米到达人民英雄雕塑D 处,最后从D 处回到A 处.已知人民英雄雕塑在基地门口的南偏东65°方向,求革命纪念碑与党史纪念馆之间的距离(精确到1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)46.(2021·四川广元市·中考真题)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D 点处时,无人机测得操控者A 的俯角为75︒,测得小区楼房BC 顶端点C 处的俯角为45︒.已知操控者A 和小区楼房BC 之间的距离为45米,小区楼房BC 的高度为(1)求此时无人机的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB 的方向,并以5米/秒的速度继续向前匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点A ,B ,C ,D都在同一平面内.参考数据:tan 752︒=,tan152︒=.计算结果保留根号)47.(2021·四川资阳市·中考真题)资阳市为实现5G网络全覆盖,2020-2025年拟建设5G基站七千个.如图,在坡度为1:2.4i=的斜坡CB上有一建成的基站塔AB,小芮在坡脚C测得塔顶A的仰角为45︒,然后她沿坡面CB行走13米到达D处,在D处测得塔顶A的仰角为53︒(点A、B、C、D均在同一平面内)(参考数据:434sin53,cos53,tan53553︒≈︒≈︒≈)(1)求D处的竖直高度;(2)求基站塔AB的高.48.(2021·江苏宿迁市·中考真题)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,≈1.414≈=1.732).49.(2021·浙江嘉兴市·中考真题)一酒精消毒瓶如图1,AB 为喷嘴,BCD ∆为按压柄,CE 为伸缩连杆,BE 和EF 为导管,其示意图如图2,108DBE BEF ∠=∠=︒,6cm BD =,4cm BE =.当按压柄BCD ∆按压到底时,BD 转动到'BD ,此时'//BD EF (如图3).(1)求点D 转动到点'D 的路径长;(2)求点D 到直线EF 的距离(结果精确到0.1cm ). (参考数据:sin360.59︒≈,cos360.81︒≈,tan360.73︒≈,sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈)50.(2021·江苏连云港市·中考真题)我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿AB 摆成如图1所示.已知 4.8m AB =,鱼竿尾端A 离岸边0.4m ,即0.4m AD =.海面与地面AD 平行且相距1.2m ,即 1.2m DH =.(1)如图1,在无鱼上钩时,海面上方的鱼线BC 与海面HC 的夹角37BCH ∠=︒,海面下方的鱼线CO 与海面HC 垂直,鱼竿AB 与地面AD 的夹角22BAD ∠=︒.求点O 到岸边DH 的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角53BAD ∠=︒,此时鱼线被拉直,鱼线 5.46m BO =,点O 恰好位于海面.求点O 到岸边DH 的距离.(参考数据:3sin 37cos535︒=︒≈,4cos37sin 535=︒︒≈,3tan 374︒≈,3sin 228︒≈,15cos2216︒≈,2tan 225︒≈)51.(2021·浙江绍兴市·中考真题)拓展小组研制的智能操作机器人,如图1,水平操作台为l ,底座AB 固定,高AB 为50cm ,连杆BC 长度为70cm ,手臂CD 长度为60cm .点B ,C 是转动点,且AB ,BC 与CD 始终在同一平面内,(1)转动连杆BC ,手臂CD ,使143ABC ∠=︒,//CD l ,如图2,求手臂端点D 离操作台l 的高度DE 的长(精确到1cm ,参考数据:sin530.8︒≈,cos530.6︒≈).(2)物品在操作台l 上,距离底座A 端110cm 的点M 处,转动连杆BC ,手臂CD ,手臂端点D 能否碰到点M ?请说明理由.52.(2021·四川达州市·中考真题)2021年,州河边新建成了一座美丽的大桥.某学校数学兴趣小组组织了一次测桥墩高度的活动,如图,桥墩刚好在坡角为30的河床斜坡边,斜坡BC 长为48米,在点D 处测得桥墩最高点A 的仰角为35︒,CD 平行于水平线BM ,CD 长为AB 的高(结果保留1位小数).(sin350.57︒≈,cos350.82︒≈,tan350.70︒≈ 1.73≈)53.(2021·四川凉山彝族自治州·中考真题)王刚同学在学习了解直角三角形及其应用的知识后,尝试利用所学知识测量河对岸大树AB 的高度,他在点C 处测得大树顶端A 的仰角为45︒,再从C 点出发沿斜坡走D 点,在点D 处测得树顶端A 的仰角为30︒,若斜坡CF 的坡比为1:3i =(点E C H ,,在同一水平线上).(1)求王刚同学从点C 到点D 的过程中上升的高度;(2)求大树AB 的高度(结果保留根号).54.(2021·四川广安市·中考真题)如图①、图②分别是某种型号跑步机的实物图与示意图.已知跑步机手柄AB 与地面DE 平行,踏板CD 长为1.5m ,CD 与地面DE 的夹角15CDE ∠=︒,支架AC 长为1m ,75ACD ∠=︒,求跑步机手柄AB 所在直线与地面DE 之间的距离.(结果精确到0.1m .参考数据:sin150.26︒≈,cos150.97︒≈,tan150.27︒≈ 1.73≈)55.(2021·湖南邵阳市·中考真题)计算:()020212tan 60π--︒.56.(2021·四川眉山市·中考真题)“眉山水街”走红网络,成为全国各地不少游客新的打卡地!游客小何用无人机对该地一标志建筑物进行拍摄和观测,如图,无人机从A 处测得该建筑物顶端C 的俯角为24°,继续向该建筑物方向水平飞行20米到达B 处,测得顶端C 的俯角为45°,已知无人机的飞行高度为60米,则这栋建筑物的高度是多少米?(精确到0.1米,参考数据:2sin 245≈°,9cos 2410︒≈,9tan 2420︒≈)57.(2021·四川眉山市·中考真题)计算:(1143tan 602-⎛⎫-︒--+ ⎪⎝⎭58.(2021·安徽中考真题)学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD 为矩形,点B 、C 分别在EF 、DF 上,90ABC ∠=︒,53BAD ∠=︒,10AB cm =,6BC cm =.求零件的截面面积.参考数据:sin530.80︒≈,cos530.60︒≈.59.(2021·四川泸州市·中考真题)如图,A ,B 是海面上位于东西方向的两个观测点,有一艘海轮在C 点处遇险发出求救信号,此时测得C 点位于观测点A 的北偏东45°方向上,同时位于观测点B 的北偏西60°方向上,且测得C 点与观测点A 的距离为海里.(1)求观测点B 与C 点之间的距离;(2)有一艘救援船位于观测点B 的正南方向且与观测点B 相距30海里的D 点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C 点需要的最少时间.60.(2021·四川遂宁市·中考真题)小明周末与父母一起到遂宁湿地公园进行数学实践活动,在A 处看到B 、C 处各有一棵被湖水隔开的银杏树,他在A 处测得B 在北偏西45°方向, C 在北偏东30°方向,他从A 处走了20米到达B 处,又在B 处测得 C 在北偏东60°方向.(1)求∠C 的度数;(2)求两颗银杏树B 、C 之间的距离(结果保留根号).61.(2021·四川自贡市·中考真题)在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B 处测得办公楼底部D 处的俯角是53°,从综合楼底部A 处测得办公楼顶部C 处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据tan370.75︒≈,tan53 1.33︒≈ 1.73≈)62.(2020·四川广安市·中考真题)如图所示的是某品牌太阳能热水器的实物图和横断面示意图,己知真空集热管AB 与支架CD 所在直线相交于水箱横断面⊙O 的圆心,支架CD 与水平线AE 垂直,AB=154cm ,∠A=30°,另一根辅助支架DE=78cm ,∠E=60°.(1)求CD 的长度.(结果保留根号)(2)求OD 的长度.(结≈1.414)63.(2020·山东日照市·中考真题)阅读理解:如图1,Rt △ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,∠C =90°,其外接圆半径为R .根据锐角三角函数的定义:sin A =a c ,sin B =b c ,可得sin a A =sin b B =c =2R ,即:sin a A =sin bB =sin c C=2R ,(规定sin90°=1).探究活动:如图2,在锐角△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,其外接圆半径为R ,那么:sin aAsin bB sin c C(用>、=或<连接),并说明理由. 事实上,以上结论适用于任意三角形.初步应用:在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,∠A =60°,∠B =45°,a =8,求b . 综合应用:如图3,在某次数学活动中,小凤同学测量一古塔CD 的高度,在A 处用测角仪测得塔顶C 的仰角为15°,又沿古塔的方向前行了100m 到达B 处,此时A ,B ,D 三点在一条直线上,在B 处测得塔顶C的仰角为45°,求古塔CD 的高度(结果保留小数点后一位).,sin15°64.(2020·辽宁铁岭市·中考真题)如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB,在观测点C处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,观测点与大A B C M在同一平面内)(1)求大桥主架在桥桥主架的水平距离CM为60米,且AB垂直于桥面.(点,,,面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度AB.(结果精确到1米)50.(2020·辽宁盘锦市·中考真题)如图,某数学活动小组要测量建筑物AB的高度,他们借助测角仪和皮尺进行了实地测量,测量结果如下表.请根据需要,从上面表格中选择3个测量数据,并利用你选择的数据计算出建筑物AB的高度.(结果精确到0.1米,参考数据:︒=︒≈︒≈)(选择一sin670.92,cos670.39,tan67 2.36︒≈︒=︒=.sin220.37,cos220.93,tan220.40种方法解答即可)65.(2020·云南昆明市·中考真题)(材料阅读)2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度.其基本原理之一是三角高程测量法,在山顶上立一个规标,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为f=20.43dR(其中d为两点间的水平距离,R为地球的半径,R取6400000m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.(问题解决)某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山项觇标顶端E的仰角为37°,测量点A处的海拔高度为1800m.(1)数据6400000用科学记数法表示为;(2)请你计算该山的海拔高度.(要计算球气差,结果精确到0.01m)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)66.(2020·山东烟台市·中考真题)今年疫情期间,针对各种入口处人工测量体温存在的感染风险高、效率低等问题,清华大学牵头研制一款“测温机器人”,如图1,机器人工作时,行人抬手在测温头处测量手腕温度,体温合格则机器人抬起臂杆行人可通行,不合格时机器人不抬臂杆并报警,从而有效阻隔病原体.(1)为了设计“测温机器人”的高度,科研团队采集了大量数据.下表是抽样采集某一地区居民的身高数据:根据你所学的知识,若要更准确的表示这一地区男、女的平均身高,男性应采用厘米,女性应采用厘米;(2)如图2,一般的,人抬手的高度与身高之比为黄金比时给人的感觉最舒适,由此利用(1)中的数据得出测温头点P距地面105厘米.指示牌挂在两臂杆AB,AC的连接点A处,A点距地面110厘米.臂杆落下时两端点B,C在同一水平线上,BC=100厘米,点C在点P的正下方5厘米处.若两臂杆长度相等,求两臂杆的夹角.(参考数据表)67.(2020·海南中考真题)为了促进海口主城区与江东新区联动发展,文明东越江通道将于今年底竣工通车.某校数学实践活动小组利用无人机测算该越江通道的隧道长度.如图, 隧道AB 在水平直线上,且无人机和隧道在同一个铅垂面内,无人机在距离隧道450米的高度上水平飞行,到达点P 处测得点A 的俯角为30,继续飞行1500米到达点Q 处,测得点B 的俯角为45︒.(1)填空:A ∠=__________度,B ∠=_________度;(2)求隧道AB 的长度(结果精确到1米).( 1.732≈≈)68.(2020·山西中考真题)图①是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图②是两圆弧翼展开时的截面图,扇形ABC 和DEF 是闸机的“圆弧翼”,两圆弧翼成轴对称,BC 和EF 均垂直于地面,扇形的圆心角28ABC DEF ∠=∠=︒,半径60BA ED cm ==,点A 与点D 在同一水平线上,且它们之间的距离为10cm .(1)求闸机通道的宽度,即BC 与EF 之间的距离(参考数据:sin 280.47︒≈,cos280.88︒≈,tan 280.53︒≈); (2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的2倍,180人的团队通过一个智能闸机口比通过一个人工检票口可节约3分钟,求一个智能闸机平均每分钟检票通过的人数.69.(2020·江西中考真题)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图,量得托板长120mm AB =,支撑板长80mm CD =,底座长90mm DE =,托板AB 固定在支撑板顶端点C 处,且40mm CB =,托板AB 可绕点C 转动,支撑板CD 可绕点D 转动.(结果保留小数点后一位)(1)若80DCB ︒∠=,60CDE ︒∠=,求点A 到直线DE 的距离;(2)为了观看舒适,在(1)的情况下,把AB 绕点C 逆时针旋转10后,再将CD 绕点D 顺时针旋转,使点B 落在直线DE 上即可,求CD 旋转的角度.(参考数据:sin 400.643,cos 400.766︒︒≈≈,tan 400.839︒≈,sin 26.60.448≈,cos 26.60.894,tan 26.60.500︒︒≈≈ 1.732≈)70.(2020·湖南衡阳市·中考真题)小华同学将笔记本电脑水平放置在桌子上,当是示屏的边缘线OB 与底板的边缘线OA 所在水平线的夹角为120°时,感觉最舒适(如图①).侧面示意图为图②;使用时为了散热,他在底板下面垫入散热架,如图③,点B 、O 、C 在同一直线上,24cm OA OB ==,BC AC ⊥,30OAC ∠=︒.(1)求OC 的长;(2)如图④,垫入散热架后,要使显示屏的边缘线OB '与水平线的夹角仍保持120°,求点B '到AC 的距离.(结果保留根号)71.(2019·上海中考真题)图1是某小型汽车的侧面示意图,其中矩形ABCD 表示该车的后备箱,在打开后备箱的过程中,箱盖ADE 可以绕点A 逆时针方向旋转,当旋转角为60°时,箱盖ADE 落在AD E '的位置(如图2所示),已知90AD =厘米,30DE =厘米,40EC =厘米. (1)求点D 到BC 的距离;(2)求E 、E '两点的距离.72.(2019·江西中考真题)图1是一台实物投影仪,图2是它的示意图,折线B A O --表示固定支架,AO 垂直水平桌面OE 于点O ,点B 为旋转点,BC 可转动,当BC 绕点B 顺时针旋转时,投影探头CD 始终垂直于水平桌面OE ,经测量: 6.8cm AO =,8cm CD =,30cm AB =,35cm BC =.(结果精确到0.1)(1)如图2,70ABC ︒∠=,//BC OE .①填空:BAO ∠=_________°;②求投影探头的端点D 到桌面OE 的距离.(2)如图3,将(1)中的BC 向下旋转,当投影探头的端点D 到桌面OE 的距离为6cm 时,求ABC ∠的大小.(参考数据:sin 700.94︒≈,cos200.94︒≈,sin36.80.60︒≈,cos53.20.60︒≈)。

九年级数学下册专题28.4 解直角三角形的应用中考真题专项训练(50道)(举一反三)(人教版)

九年级数学下册专题28.4 解直角三角形的应用中考真题专项训练(50道)(举一反三)(人教版)

专题28.4 解直角三角形的应用中考真题专项训练(50道)【人教版】考卷信息:本套训练卷共50题,题型针对性较高,覆盖面广,选题有深度,涵盖了解直角三角形的应用中考真题的综合问题的所有类型!一.解答题(共50题)1.(2022·辽宁阜新·中考真题)如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB,在居民楼前方有一斜坡,坡长CD=15m,斜坡的倾斜角为α,cosα= 4.小文在C点处测得楼顶端A的仰角为60°,在D点处测得楼顶端A的仰角为30°(点A,B,5C,D在同一平面内).(1)求C,D两点的高度差;(2)求居民楼的高度AB.(结果精确到1m,参考数据:3≈1.7)2.(2022·山东东营·中考真题)胜利黄河大桥犹如一架巨大的竖琴,凌驾于滔滔黄河之上,使黄河南北“天堑变通途”.已知主塔AB垂直于桥面BC于点B,其中两条斜拉索AD、AC与桥面BC的夹角分别为60°和45°,两固定点D、C之间的距离约为33m,求主塔AB的高度(结果保留整数,参考数据:2≈1.41,3≈1.73)3.(2022·河南·中考真题)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,3≈1.7)4.(2022·四川资阳·中考真题)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进1003米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)5.(2022·辽宁朝阳·中考真题)某数学兴趣小组准备测量校园内旗杆顶端到地面的高度(旗杆底端有台阶).该小组在C处安置测角仪CD,测得旗杆顶端A的仰角为30°,前进8m 到达E处,安置测角仪EF,测得旗杆顶端A的仰角为45°(点B,E,C在同一直线上),测角仪支架高CD=EF=1.2m,求旗杆顶端A到地面的距离即AB的长度.(结果精确到1m.参考数据:3≈1.7)6.(2022·湖北襄阳·中考真题)位于岘山的革命烈士纪念塔是襄阳市的标志性建筑,是为纪念“襄樊战役”中牺牲的革命烈士及第一、第二次国内革命战争时期为襄阳的解放事业献身的革命烈士的而兴建的,某校数学兴趣小组利用无人机测量烈士塔的高度.无人机在点A处测得烈士塔顶部点B的仰角为45°,烈士塔底部点C的俯角为61°,无人机与烈士塔的水平距离AD 为10m ,求烈士塔的高度.(结果保留整数.参考数据:sin61°≈0.87,cos61°≈0.48,tan61°≈1.80)7.(2022·贵州安顺·中考真题)随着我国科学技术的不断发展,5G 移动通信技术日趋完善.某市政府为了实现5G 网络全覆盖,2021~2025年拟建设5G 基站3000个,如图,在斜坡CB 上有一建成的5G 基站塔AB ,小明在坡脚C 处测得塔顶A 的仰角为45°,然后他沿坡面CB 行走了50米到达D 处,D 处离地平面的距离为30米且在D 处测得塔顶A 的仰角53°.(点A 、B 、C 、D 、E 均在同一平面内,CE 为地平线)(参考数据:sin53°≈45,cos53°≈35,tan 53°≈43)(1)求坡面CB 的坡度;(2)求基站塔AB 的高.8.(2022·辽宁鞍山·中考真题)北京时间2022年4月16日9时56分,神舟十三号载人飞船返回舱成功着陆.为弘扬航天精神,某校在教学楼上悬挂了一幅长为8m 的励志条幅(即GF =8m ).小亮同学想知道条幅的底端F 到地面的距离,他的测量过程如下:如图,首先他站在楼前点B 处,在点B 正上方点A 处测得条幅顶端G 的仰角为37°,然后向教学楼条幅方向前行12m 到达点D 处(楼底部点E 与点B ,D 在一条直线上),在点D 正上方点C 处测得条幅底端F 的仰角为45°,若AB ,CD 均为1.65m (即四边形ABDC 为矩形),请你帮助小亮计算条幅底端F到地面的距离FE的长度.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)9.(2022·山东菏泽·中考真题)荷泽某超市计划更换安全性更高的手扶电梯,如图,把电梯坡面的坡角由原来的37°减至30°,已知原电梯坡面AB的长为8米,更换后的电梯坡面为AD,点B延伸至点D,求BD的长.(结果精确到0.1米.参考数据:sin37°≈0.60,cos37°≈0.80, tan37°≈0,75,3≈1.73)10.(2022·甘肃兰州·中考真题)如图,小睿为测量公园的一凉亭AB的高度,他先在水平地面点E处用高1.5m的测角仪DE测得∠ADC=31°,然后沿EB方向向前走3m到达点G 处,在点G处用高1.5m的测角仪FG测得∠AFC=42°.求凉亭AB的高度.(A,C,B三点共线,AB⊥BE,AC⊥CD,CD=BE,BC=DE.结果精确到0.1m)(参考数据:sin 31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)11.(2022·江苏盐城·中考真题)2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB、BC为机械臂,OA=1m,AB=5m,BC=2m,∠ABC=143°.机械臂端点C到工作台的距离CD=6m.(1)求A、C两点之间的距离;(2)求OD长.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,5≈2.24)12.(2022·山东日照·中考真题)2022年北京冬奥会的成功举办激发了人们对冰雪运动的热情.如图是某滑雪场的横截面示意图,雪道分为AB,BC两部分,小明同学在C点测得雪道BC的坡度i=1:2.4,在A点测得B点的俯角∠DAB=30°.若雪道AB长为270m,雪道BC 长为260m.(1)求该滑雪场的高度h;(2)据了解,该滑雪场要用两种不同的造雪设备来满足对于雪量和雪质的不同要求,其中甲设备每小时造雪量比乙设备少35m3,且甲设备造雪150m3所用的时间与乙设备造雪500m3所用的时间相等.求甲、乙两种设备每小时的造雪量.13.(2022·辽宁大连·中考真题)如图,莲花山是大连著名的景点之一,游客可以从山底乘坐索道车到达山项,索速车运行的速度是1米/秒,小明要测量莲花山山顶白塔的高度,他在索道A处测得白塔底部B的仰角的为30°,测得白塔顶部C的仰角的为37°.索道车从A 处运行到B处所用时间的为5分钟.(1)索道车从A处运行到B处的距离约为________米;(2)请你利用小明测量的数据,求白塔BC的高度(结果取整数).(参考数据:sin37°≈0.60, cos37°≈0.80,tan37°≈0.75,3≈1.73)14.(2022·上海·中考真题)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB 的长.(1)如图1所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,a的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义图2所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC 方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度15.(2022·湖南郴州·中考真题)如图是某水库大坝的横截面,坝高CD=20m,背水坡BC 的坡度为i1=1:1.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为i2=1:3,求背水坡新起点A与原起点B之间的距离.(参考数据:2≈1.41,3≈1.73.结果精确到0.1m)16.(2022·辽宁锦州·中考真题)某数学小组要测量学校路灯P―M―N的顶部到地面的距离,他们借助皮尺、测角仅进行测量,测量结果如下:测量项目测量数据从A处测得路灯顶部P的仰角αα=58°从D处测得路灯顶部P的仰角ββ=31°测角仪到地面的距离AB=DC=1.6m两次测量时测角仪之间的水平距离BC=2m计算路灯顶部到地面的距离PE约为多少米?(结果精确到0.1米.参考数据;cos31°≈0.86, tan31°≈0.60,cos58°≈0.53,tan58°≈1.60)17.(2022·辽宁盘锦·中考真题)如图,小欢从公共汽车站A出发,沿北偏东30°方向走2000米到达东湖公园B处,参观后又从B处沿正南方向行走一段距离,到达位于公共汽车东南方向的图书馆C处.(参考数据:2≈1.414,3≈1.732)(1)求小欢从东湖公园走到图书馆的途中与公共汽车站之间最短的距离;(2)若小欢以100米/分的速度从图书馆C沿CA回到公共汽车站A,那么她在15分钟内能否到达公共汽车站?18.(2022·辽宁辽宁·中考真题)数学活动小组欲测量山坡上一棵大树CD的高度,如图,DC ⊥AM 于点E ,在A 处测得大树底端C 的仰角为15°,沿水平地面前进30米到达B 处,测得大树顶端D 的仰角为53°,测得山坡坡角∠CBM =30°(图中各点均在同一平面内).(1)求斜坡BC 的长;(2)求这棵大树CD 的高度(结果取整数).(参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43,3≈1.73)19.(2022·辽宁锦州·中考真题)如图,一艘货轮在海面上航行,准备要停靠到码头C ,货轮航行到A 处时,测得码头C 在北偏东60°方向上.为了躲避A ,C 之间的暗礁,这艘货轮调整航向,沿着北偏东30°方向继续航行,当它航行到B 处后,又沿着南偏东70°方向航行20海里到达码头C .求货轮从A 到B 航行的距离(结果精确到0.1海里.参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192).20.(2022·山东青岛·中考真题)如图,AB 为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活·绿色出行”健步走公益活动.小宇在点A 处时,某艘海上观光船位于小宇北偏东68°的点C 处,观光船到滨海大道的距离CB 为200米.当小宇沿滨海大道向东步行200米到达点E 时,观光船沿北偏西40°的方向航行至点D 处,此时,观光船恰好在小宇的正北方向,求观光船从C 处航行到D 处的距离.(参考数据:sin40°≈0.64,cos40°≈0.77,tan 40°≈0.84,sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)21.(2022·贵州贵阳·中考真题)交通安全心系千万家.高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪C和测速仪E到路面之间的距离CD=EF=7m,测速仪C和E之间的距离CE=750m,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪C处测得小汽车在隧道入口A点的俯角为25°,在测速仪E处测得小汽车在B点的俯角为60°,小汽车在隧道中从点A行驶到点B所用的时间为38s(图中所有点都在同一平面内).(1)求A,B两点之间的距离(结果精确到1m);(2)若该隧道限速22m/s,判断小汽车从点A行驶到点B是否超速?通过计算说明理由.(参考数据:3≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4)22.(2022·四川广安·中考真题)八年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A处向正北方向走了450米,到达菜园B处锄草,再从B处沿正西方向到达果园C处采摘水果,再向南偏东37°方向走了300米,到达手工坊D处进行手工制作,最后从D处回到门口A处,手工坊在基地门口北偏西65°方向上.求菜园与果园之间的距离.(结果保留整数)参考数据:sin65°≈ 0.91,cos65°≈0.42,tan65°≈2.14,sin37°≈ 0.60,cos37°≈ 0.80,tan37°≈0.7523.(2022·辽宁营口·中考真题)在一次数学课外实践活动中,某小组要测量一幢大楼MN 的高度,如图,在山坡的坡脚A处测得大楼顶部M的仰角是58°,沿着山坡向上走75米到达B处.在B处测得大楼顶部M的仰角是22°,已知斜坡AB的坡度i=3:4(坡度是指坡面的铅直高度与水平宽度的比)求大楼MN的高度.(图中的点A,B,M,N,C均在同一平面内,N,A,C在同一水平线上,参考数据:tan22°≈0.4,tan58°≈1.6)24.(2022·贵州遵义·中考真题)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成如图2,AB是灯杆,CD是灯管支架,灯管支架CD与灯杆间的夹角∠BDC=60°.综合实践小组的同学想知道灯管支架CD的长度,他们在地面的点E处测得灯管支架底部D的仰角为60°,在点F处测得灯管支架顶部C的仰角为30°,测得AE=3m,EF=8m(A,E,F在同一条直线上).根据以上数据,解答下列问题:(1)求灯管支架底部距地面高度AD的长(结果保留根号);(2)求灯管支架CD的长度(结果精确到0.1m,参考数据:3≈1.73).25.(2022·江苏泰州·中考真题)小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN,MN与墙面AB所成的角∠MNB=118°,厂房高AB= 8 m,房顶AM与水平地面平行,小强在点M的正下方C处从平面镜观察,能看到的水平地面上最远处D到他的距离CD是多少?(结果精确到0.1 m,参考数据:sin34°≈0.56,tan34°≈0.68,tan56°≈1.48)26.(2022·湖北鄂州·中考真题)亚洲第一、中国唯一的航空货运枢纽一一鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C处看见飞机A的仰角为45°,同时另一市民乙在斜坡CF上的D处看见飞机A的仰角为30°,若斜坡CF的坡比=1:3,铅垂高度DG=30米(点E、G、C、B在同一水平线上).求:(1)两位市民甲、乙之间的距离CD;(2)此时飞机的高度AB,(结果保留根号)27.(2022·山西·中考真题)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测星AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E 处的俯角为30°,沿水平方向由点O飞行24m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC 的长(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,3≈1.73).28.(2022·湖南常德·中考真题)第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图是其示意图,已知:助滑坡道AF=50米,弧形跳台的跨度FG=7米,顶端E到BD的距离为40米,HG∥BC,∠AFH=40°,∠EFG=25°,∠ECB=36°.求此大跳台最高点A距地面BD的距离是多少米(结果保留整数).(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin25°≈0.42,cos 25°≈0.91,tan25°≈0.47,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)29.(2022·湖南湘潭·中考真题)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小≈0.618):文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中DHAH伞柄AH始终平分∠BAC,AB=AC=20cm,当∠BAC=120°时,伞完全打开,此时∠BDC=90°.请问最少需要准备多长的伞柄?(结果保留整数,参考数据:3≈1.732)30.(2022·海南·中考真题)无人机在实际生活中应用广泛.如图8所示,小明利用无人机测量大楼的高度,无人机在空中P处,测得楼CD楼顶D处的俯角为45°,测得楼AB楼顶A 处的俯角为60°.已知楼AB和楼CD之间的距离BC为100米,楼AB的高度为10米,从楼AB 的A处测得楼CD的D处的仰角为30°(点A、B、C、D、P在同一平面内).(1)填空:∠APD=___________度,∠ADC=___________度;(2)求楼CD的高度(结果保留根号);(3)求此时无人机距离地面BC的高度.31.(2022·四川自贡·中考真题)在东西方向的海岸线上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1h20min,又测得该轮船位于A的北偏东60°,且与A相距83km的C处.(1)求该轮船航行的速度.(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.32.(2022·四川达州·中考真题)某地是国家AAAA级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为“小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD,想法测出了尾部C看头顶B的仰角为40∘,从前脚落地点D看上嘴尖A的仰角刚好60∘,CB=5m,CD=2.7m.景区管理员告诉同学们,上嘴尖到地面的距离是3m.于是,他们很快就算出了AB的长.你也算算?(结果精确到0.1m.参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84.2≈1.41,3≈1.73)33.(2022·广东广州·中考真题)如图,某无人机于空中A处探测到目标B、D的俯角分别是30°、60°,此时无人机的飞行高度AC为60m,随后无人机从A处继续水平飞行303m到达A′处.(1)求之间的距离(2)求从无人机A′上看目标的俯角的正切值.34.(2022·浙江舟山·中考真题)小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA 所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.(1)求∠CAO'的度数.(2)显示屏的顶部B'比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?35.(2022·重庆·中考真题)某水库大坝的横截面是如图所示的四边形BACD,其中AB∥CD.瞭望台PC正前方水面上有两艘渔船M、N,观察员在瞭望台顶端P处观测渔船M的俯角α=31°,观测渔船N在俯角β=45°,已知NM所在直线与PC所在直线垂直,垂足为点E,PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝定加宽3米,背水坡FH的坡度为i=1:1.5,施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)36.(2022·贵州遵义·中考真题)下图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 m,AB=6 m,中间平台宽度DE=1 m,EN,DM,CB为三根垂直于AB的支柱,垂足分别为N,M,B,∠EAB=31°,DF⊥BC于点F,∠CDF=45°,求DM和BC的水平距离BM的长度.(结果精确到0.1 m.参考数据:sin 31°≈0.52,cos31°≈0.86,tan31°≈0.60)37.(2022·四川巴中·中考真题)2013年4月20日,四川雅安发生里氏7.0级地震,救援队救援时,利用生命探测仪在某建筑物废墟下方探测到点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距4米,探测线与地面的夹角分别为300和600,如图所示,试确定生命所在点C的深度(结果精确到0.1米,参考数据2≈1.41,3≈1.73)38.(2022·广西南宁·中考真题)如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF 的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)39.(2022·湖北黄石·中考真题)如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB和CD(均与水平面垂直),再将集热板安装在AD上.为使集热板吸热率更高,公司规定:AD与水平面夹角为θ1,且在水平线上的射影AF为1.4m.现已测量出屋顶斜面与水平面夹角为θ2,并已知tanθ1=1.082,tanθ2 =0.412.如果安装工人确定支架AB高为25cm,求支架CD的高(结果精确到1cm)?40.(2022·四川泸州·中考真题)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10 nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距82nmile.求B,D间的距离(计算过程中的数据不取近似值).41.(2022·重庆·中考真题)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:2≈1.414,3≈1.732)42.(2022·重庆·中考真题)湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C在A的北偏东30°方向上,B在A的北偏东60°方向上,且B在C的正南方向900米处.(1)求湖岸A与码头C的距离(结果精确到1米,参考数据:3=1.732);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计)43.(2022·辽宁朝阳·中考真题)一数学兴趣小组去测量一棵周围有围栏保护的古树的高,在G处放置一个小平面镜,当一位同学站在F点时,恰好在小平面镜内看到这棵古树的顶端A的像,此时测得FG=3m,这位同学向古树方向前进了9m后到达点D,在D处安置一高度为1m的测角仪CD,此时测得树顶A的仰角为30°,已知这位同学的眼睛与地面的距离EF=1.5m,点B,D,G,F在同一水平直线上,且AB,CD,EF均垂直于BF,求这棵古树AB的高.(小平面镜的大小和厚度忽略不计,结果保留根号)44.(2022·辽宁锦州·中考真题)如图,山坡上有一棵竖直的树AB,坡面上点D处放置高度为1.6m的测倾器CD,测倾器的顶部C与树底部B恰好在同一水平线上(即BC//MN),此时测得树顶部A的仰角为50°.已知山坡的坡度i=1∶3(即坡面上点B处的铅直高度BN 与水平宽度MN的比),求树AB的高度(结果精确到0.1m.参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)45.(2022·江苏徐州·中考真题)如图,斜坡AB的坡角∠BAC=13°,计划在该坡面上安装两排平行的光伏板.前排光伏板的一端位于点A,过其另一端D安装支架DE,DE所在的直线垂直于水平线AC,垂足为点F,E为DF与AB的交点.已知AD=100cm,前排光伏板的坡角∠DAC=28°.(1)求AE的长(结果取整数);(2)冬至日正午,经过点D的太阳光线与AC所成的角∠DGA=32°.后排光伏板的前端H在AB 上.此时,若要后排光伏板的采光不受前排光伏板的影响,则EH的最小值为多少(结果取整数)?参考数据:2≈1.41,3≈1.73,6≈2.45三角函数锐角A13°28°32°sin A0.220.470.53cos A0.970.880.85tan A0.230.530.6246.(2022·内蒙古呼伦贝尔·中考真题)如图,在山坡AP的坡脚A处竖有一根电线杆AB(即AB⊥MN),为固定电线杆,在地面C处和坡面D处各装一根引拉线BC和BD,它们的长度,∠PAN=30°,求点D到AB的距离.相等.测得AC=6米,tan∠BCA=4347.(2022·内蒙古鄂尔多斯·中考真题)图①是一种手机平板支架、由托板、支撑板和底座构成,手机放置在托板上,图②是其侧面结构示意图、托板长AB=115mm,支撑板长CD=70mm,板AB固定在支撑板顶点C处,且CB=35mm,托板AB可绕点C转动,支撑板CD可绕点D转动,∠CDE=60°.(1)若∠DCB=70°时,求点A到直线DE的距离(计算结果精确到个位);(2)为了观看舒适,把(1)中∠DCB=70°调整为90°,再将CD绕点D逆时针旋转,使点B 落在直线DE上即可、求CD旋转的角度.(参考数:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2,sin26.6°≈0.4,cos26.6°≈0.9,tan 26.6°≈0.5,3≈1.7)48.(2022·辽宁营口·中考真题)小张早起在一条东西走向的笔直马路上晨跑,他在A处时,D处学校和E处图书馆都在他的东北方向,当小张沿正东方向跑了600m到达B处时,E处图书馆在他的北偏东15°方向,然后他由B处继续向正东方向跑600m到达C处,此时D处学校在他的北偏西63.4°方向,求D处学校和E处图书馆之间的距离.(结果保留整数)(参考数据:sin63.4°≈0.9,cos63.4°≈0.4,tan63.4°≈2.0,2≈1.4,3≈1.7,6≈2.4)49.(2022·辽宁本溪·中考真题)如图,某地政府为解决当地农户网络销售农特产品物流不畅问题,计划打通一条东西方向的隧道AB.无人机从点A的正上方点C,沿正东方向以8m s 的速度飞行15s到达点D,测得A的俯角为60°,然后以同样的速度沿正东方向又飞行50s 到达点E,测得点B的俯角为37°.(1)求无人机的高度AC(结果保留根号);(2)求AB的长度(结果精确到1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan2137°≈0.75,3≈1.73)50.(2022·贵州安顺·中考真题)随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场B,C 两点之间的距离.如图所示,小星站在广场的B 处遥控无人机,无人机在A 处距离地面的飞行高度是41.6m ,此时从无人机测得广场C 处的俯角为63°,他抬头仰视无人机时,仰角为α,若小星的身高BE =1.6m ,EA =50m (点A,E,B,C 在同一平面内).(1)求仰角α的正弦值;(2)求B,C 两点之间的距离(结果精确到1m ).(sin63°≈0.89,cos63°≈0.45,tan63°≈1.96, sin27°≈0.45, cos27°≈0.89,tan27°≈0.51)。

中考数学专题训练---直角三角形的边角关系的综合题分类附答案解析

中考数学专题训练---直角三角形的边角关系的综合题分类附答案解析

中考数学专题训练---直角三角形的边角关系的综合题分类附答案解析一、直角三角形的边角关系1.如图,在平行四边形ABCD中,平分,交于点,平分,交于点,与交于点,连接,.(1)求证:四边形是菱形;(2)若,,,求的值.【答案】(1)证明见解析(2)【解析】试题分析:(1)根据AE平分∠BAD、BF平分∠ABC及平行四边形的性质可得AF=AB=BE,从而可知ABEF为平行四边形,又邻边相等,可知为菱形(2)由菱形的性质可知AP的长及∠PAF=60°,过点P作PH⊥AD于H,即可得到PH、DH 的长,从而可求tan∠ADP试题解析:(1)∵AE平分∠BAD BF平分∠ABC∴∠BAE=∠EAF ∠ABF=∠EBF∵AD//BC∴∠EAF=∠AEB ∠AFB=∠EBF∴∠BAE=∠AEB ∠AFB=∠ABF∴AB=BE AB=AF∴AF=AB=BE∵AD//BC∴ABEF为平行四边形又AB=BE∴ABEF为菱形(2)作PH⊥AD于H由∠ABC=60°而已(1)可知∠PAF=60°,PA=2,则有PH=,AH=1,∴DH=AD-AH=5∴tan∠ADP=考点:1、平行四边形;2、菱形;3、直角三角形;4、三角函数2.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O 于点E.(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)【答案】(1)AE=CE;(2)①;②.【解析】试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC,根据垂直平分线的性质可得AE=CE;(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.试题解析:(1)AE=CE.理由:连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,∴AE=CE;(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF.①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC•3DC=,∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED===;②当CF=aCD(a>0)时,sin∠CAB=.∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=DC•(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED==.考点:1.圆的综合题;2.探究型;3.存在型.3.问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.【答案】解:(1)22.(2)如图,在斜边AC上截取AB′=AB,连接BB′.∵AD平分∠BAC,∴点B与点B′关于直线AD对称.过点B′作B′F⊥AB,垂足为F,交AD于E,连接BE.则线段B′F的长即为所求 (点到直线的距离最短) .在Rt△AFB/中,∵∠BAC=450, AB/="AB=" 10,∴.∴BE+EF的最小值为【解析】试题分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P就是所求作的位置,根据题意先求出∠C′AE,再根据勾股定理求出AE,即可得出PA+PB的最小值:如图作点B关于CD的对称点E,连接AE交CD于点P,此时PA+PB最小,且等于A.作直径AC′,连接C′E,根据垂径定理得弧BD=弧DE.∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°.∴∠AOE=90°.∴∠C′AE=45°.又AC为圆的直径,∴∠AEC′=90°.∴∠C′=∠C′AE=45°.∴C′E=AE=AC′=2.∴AP+BP的最小值是22(2)首先在斜边AC上截取AB′=AB,连接BB′,再过点B′作B′F⊥AB,垂足为F,交AD于E,连接BE,则线段B′F的长即为所求.4.我市在创建全国文明城市的过程中,某社区在甲楼的A 处与E 处之间悬挂了一副宣传条幅,在乙楼顶部C 点测得条幅顶端A 点的仰角为45°,条幅底端E 点的俯角为30°,若甲、乙两楼之间的水平距离BD 为12米,求条幅AE 的长度.(结果保留根号)【答案】AE 的长为(123)+ 【解析】 【分析】在Rt ACF V 中求AF 的长, 在Rt CEF V 中求EF 的长,即可求解. 【详解】过点C 作CF AB ⊥于点F 由题知:四边形CDBF 为矩形12CF DB ∴==在Rt ACF V 中,45ACF ∠=︒tan 1AFACF CF∴∠== 12AF ∴= 在Rt CEF V 中,30ECF ∠=︒tan EFECF CF∴∠= 312EF ∴=43EF ∴=1243AE AF EF ∴=+=+∴求得AE 的长为(1243+【点睛】本题考查了三角函数的实际应用,中等难度,作辅助线构造直角三角形是解题关键.5.如图,AB 是⊙O 的直径,E 是⊙O 上一点,C 在AB 的延长线上,AD ⊥CE 交CE 的延长线于点D ,且AE 平分∠DAC .(1)求证:CD是⊙O的切线;(2)若AB=6,∠ABE=60°,求AD的长.【答案】(1)详见解析;(2)9 2【解析】【分析】(1)利用角平分线的性质得到∠OAE=∠DAE,再利用半径相等得∠AEO=∠OAE,等量代换即可推出OE∥AD,即可解题,(2)根据30°的三角函数值分别在Rt△ABE中,AE=AB·cos30°,在Rt△ADE中,AD=cos30°×AE即可解题.【详解】证明:如图,连接OE,∵AE平分∠DAC,∴∠OAE=∠DAE.∵OA=OE,∴∠AEO=∠OAE.∴∠AEO=∠DAE.∴OE∥AD.∵DC⊥AC,∴OE⊥DC.∴CD是⊙O的切线.(2)解:∵AB是直径,∴∠AEB=90°,∠ABE=60°.∴∠EAB=30°,在Rt△ABE中,AE=AB·cos30°333在Rt△ADE中,∠DAE=∠BAE=30°,∴AD=cos30°×AE=32×33=92.【点睛】本题考查了特殊的三角函数值的应用,切线的证明,中等难度,利用特殊的三角函数表示出所求线段是解题关键.6.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.【答案】(1)证明见解析;(2)1;(3)证明见解析.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【详解】(1)直线PD为⊙O的切线,理由如下:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,3∴0 tan30ODPD=,解得OD=1,∴22PO PD OD+,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.7.在Rt△ABC中,∠ACB=90°,AB=7,AC=2,过点B作直线m∥AC,将△ABC绕点C 顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.【答案】(1)60°;(2)PQ=72;(3)存在,S四边形PA'B′Q=33【解析】【分析】(1)由旋转可得:AC=A'C=2,进而得到BC3=∠A'BC=90°,可得cos∠A'CB3'BCA C==∠A'CB=30°,∠ACA'=60°;(2)根据M 为A 'B '的中点,即可得出∠A =∠A 'CM ,进而得到PB 32=BC 32=,依据tan ∠Q =tan ∠A 3=,即可得到BQ =BC 3⨯=2,进而得出PQ =PB +BQ 72=; (3)依据S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-,即可得到S 四边形PA 'B 'Q 最小,即S △PCQ 最小,而S △PCQ 12=PQ ×BC 3=PQ ,利用几何法即可得到S △PCQ 的最小值=3,即可得到结论. 【详解】(1)由旋转可得:AC =A 'C =2. ∵∠ACB =90°,AB 7=,AC =2,∴BC 3=.∵∠ACB =90°,m ∥AC ,∴∠A 'BC =90°,∴cos ∠A 'CB 3'BC A C ==,∴∠A 'CB =30°,∴∠ACA '=60°;(2)∵M 为A 'B '的中点,∴∠A 'CM =∠MA 'C ,由旋转可得:∠MA 'C =∠A ,∴∠A =∠A 'CM ,∴tan ∠PCB =tan ∠A 32=,∴PB 32=BC 32=. ∵∠BQC =∠BCP =∠A ,∴tan ∠BQC =tan ∠A 3=,∴BQ =BC 3⨯=2,∴PQ =PB +BQ 72=; (3)∵S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-,∴S 四边形PA 'B 'Q 最小,即S △PCQ 最小,∴S △PCQ 12=PQ ×BC 3=PQ , 取PQ 的中点G . ∵∠PCQ =90°,∴CG 12=PQ ,即PQ =2CG ,当CG 最小时,PQ 最小,∴CG ⊥PQ ,即CG 与CB 重合时,CG 最小,∴CG min 3=,PQ min =23,∴S △PCQ 的最小值=3,S 四边形PA 'B 'Q =33-;【点睛】本题属于几何变换综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8.如图,正方形ABCD的边长为2+1,对角线AC、BD相交于点O,AE平分∠BAC分别交BC、BD于E、F,(1)求证:△ABF∽△ACE;(2)求tan∠BAE的值;(3)在线段AC上找一点P,使得PE+PF最小,求出最小值.【答案】(1)证明见解析;(2)tan∠EAB=2﹣1;(3)PE+PF的最小值为22.【解析】【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)如图1中,作EH⊥AC于H.首先证明BE=EH=HC,设BE=EH=HC=x,构建方程求出x 即可解决问题;(3)如图2中,作点F关于直线AC的对称点H,连接EH交AC于点P,连接PF,此时PF+PE的值最小,最小值为线段EH的长;【详解】(1)证明:∵四边形ABCD是正方形,∴∠ACE=∠ABF=∠CAB=45°,∵AE平分∠CAB,∴∠EAC=∠BAF=22.5°,∴△ABF∽△ACE.(2)解:如图1中,作EH⊥AC于H.∵EA平分∠CAB,EH⊥AC,EB⊥AB,∴BE=EB,∵∠HCE=45°,∠CHE=90°,∴∠HCE=∠HEC=45°,∴HC=EH,∴BE =EH =HC ,设BE =HE =HC =x ,则EC =2x , ∵BC =2+1,∴x+x =2+1,∴x =1,在Rt △ABE 中,∵∠ABE =90°,∴tan ∠EAB =221BE AB ==+﹣1. (3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小.作EM ⊥BD 于M .BM =EM =22, ∵AC 22AB BC +2,∴OA =OC =OB =12AC 22+ , ∴OH =OF =OA•tan ∠OAF =OA•tan ∠EAB =222+ •2﹣1)=22, ∴HM =OH+OM =222+, 在Rt △EHM 中,EH 2222222EM HM 22⎛⎫⎛⎫+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=22+.. ∴PE+PF 22+【点睛】本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.9.如图,某次中俄“海上联合”反潜演习中,我军舰A 测得潜艇C 的俯角为30°.位于军舰A 正上方1000米的反潜直升机B 侧得潜艇C 的俯角为68°.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 3≈1.7)【答案】潜艇C离开海平面的下潜深度约为308米【解析】试题分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之间的关系列出方程求解.试题解析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,设AD=x,则BD=BA+AD=1000+x,在Rt△ACD中,CD=tan AD ACD=tan30x= 3x在Rt△BCD中,BD=CD•tan68°,∴325+x=3x•tan68°解得:x≈100米,∴潜艇C离开海平面的下潜深度为100米.点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.视频10.小明坐于堤边垂钓,如图①,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离(如图②).【答案】1.5米.【解析】试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出在Rt△ACD中,米,CD=2AD=3米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.试题解析:延长OA交BC于点D.∵AO的倾斜角是,∴∵在Rt△ACD中, (米),∴CD=2AD=3米,又∴△BOD是等边三角形,∴(米),∴BC=BD−CD=4.5−3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.11.在平面直角坐标系中,O为坐标原点,点A(0,1),点C(1,0),正方形AOCD的两条对角线的交点为B,延长BD至点G,使DG=BD,延长BC至点E,使CE=BC,以BG,BE为邻边作正方形BEFG.(Ⅰ)如图①,求OD的长及ABBG的值;(Ⅱ)如图②,正方形AOCD固定,将正方形BEFG绕点B逆时针旋转,得正方形BE′F′G′,记旋转角为α(0°<α<360°),连接AG′.①在旋转过程中,当∠BAG′=90°时,求α的大小;②在旋转过程中,求AF′的长取最大值时,点F′的坐标及此时α的大小(直接写出结果即可).【答案】(Ⅰ)12(Ⅱ)①α=30°或150°时,∠BAG′=90°②当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为2+2,此时α=315°,F′(12+2,12﹣2)【解析】【分析】(1)根据正方形的性质以及勾股定理即可解决问题,(2)①因为∠BAG′=90°,BG′=2AB,可知sin∠AG′B=12ABBG,推出∠AG′B=30°,推出旋转角α=30°,据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,②当α=315°时,A、B、F′在一条直线上时,AF′的长最大.【详解】(Ⅰ)如图1中,∵A(0,1),∴OA=1,∵四边形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如图2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋转角α=30°,根据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,综上所述,旋转角α=30°或150°时,∠BAG′=90°.②如图3中,连接OF,∵四边形BE′F′G′是正方形的边长为∴BF′=2,∴当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用.12.如图,△ABC是边长为6cm的等边三角形,点D从B点出发沿B→A方向在线段BA上以a cm/s速度运动,与此同时,点E从线段BC的某个端点出发,以b cm/s速度在线段BC上运动,当D到达A点后,D、E运动停止,运动时间为t(秒).(1)如图1,若a=b=1,点E从C出发沿C→B方向运动,连AE、CD,AE、CD交于F,连BF.当0<t<6时:①求∠AFC的度数;②求222AFFC BFAF FC+-⋅的值;(2)如图2,若a=1,b=2,点E从B点出发沿B→C方向运动,E点到达C点后再沿C→B 方向运动.当t≥3时,连DE,以DE为边作等边△DEM,使M、B在DE两侧,求M点所经历的路径长.【答案】(1)①120°;②1;(2)当3≤t≤6时,M点所经历的路径长为3.【解析】【分析】(1)①如图1,由题可得BD=CE=t,易证△BDC≌△CEA,则有∠BCD=∠CAE,根据三角形外角的性质可求得∠EFC=60°,即可得到∠AFC=120°;②延长FD到G,使得FG=FA,连接GA、GB,过点B作BH⊥FG于H,如图2,易证△FAG 是等边三角形,结合△ABC是等边三角形可证到△AGB≌△AFC,则有GB=FC,∠AGB=∠AFC=120°,从而可得∠BGF=60°.设AF=x,FC=y,则有FG=AF=x,BG=CF=y.在Rt△BHG中运用直角三角形的性质可得BH3,GH=12y,从而有FH=x﹣12y.在Rt△BHF中根据勾股定理可得BF2=x2﹣xy+y2,代入所求代数式就可解决问题;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得∠BEN=30°,BD=t,CE=2t﹣6,从而有BE=12﹣2t,BN=6﹣t,进而可得DN=EC.由△DEM是等边三角形可得DE=EM,∠DEM=60°,从而可得∠NDE=∠MEC,进而可证到△DNE≌△ECM,则有∠DNE=∠ECM=90°,故M点运动的路径为过点C垂直于BC的一条线段.然后只需确定点M的始点和终点位置,就可解决问题.【详解】(1)如图1,由题可得BD=CE=t.∵△ABC是等边三角形,∴BC=AC,∠B=∠ECA=60°.在△BDC和△CEA中,BD CEB ECABC AC=⎧⎪∠=∠⎨⎪=⎩,∴△BDC≌△CEA,∴∠BCD=∠CAE,∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°,∴∠AFC=120°;②延长FD到G,使得FG=FA,连接GA、GB,过点B作BH⊥FG于H,如图2.∵∠AFG=180°﹣120°=60°,FG=FA,∴△FAG是等边三角形,∴AG=AF=FG,∠AGF=∠GAF=60°.∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∴∠GAF=∠BAC,∴∠GAB=∠FAC.在△AGB和△AFC中,AG AFGAB FACAB AC=⎧⎪∠=∠⎨⎪=⎩,∴△AGB≌△AFC,∴GB=FC,∠AGB=∠AFC=120°,∴∠BGF=60°,∴∠GBH=30°.设AF=x,FC=y,则有FG=AF=x,BG=CF=y.在Rt△BHG中,GH=12y,BH=y,∴FH=FG﹣GH=x﹣12y.在Rt△BHF中,BF2=BH2+FH2=y)2+(x﹣12y)2=x2﹣xy+y2,∴222AF FC BFAF FC+-⋅=2222x y x xy yxy+--+()=1;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得:∠BEN=30°,BD=1×t=t,CE=2(t﹣3)=2t﹣6,∴BE=6﹣(2t﹣6)=12﹣2t,BN=12BE=6﹣t,∴DN=t﹣(6﹣t)=2t﹣6,∴DN=EC.∵△DEM是等边三角形,∴DE=EM,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°=90°,∴∠NDE=∠MEC.在△DNE和△ECM中,∵DN ECNDE CEMDE EM=⎧⎪∠=∠⎨⎪=⎩,∴△DNE≌△ECM,∴∠DNE=∠ECM=90°,∴M点运动的路径为过点C垂直于BC的一条线段.当t=3时,E在点B,D在AB的中点,此时CM=EN=CD=BC•sin B=6×2当t=6时,E在点C,D在点A,此时点M在点C;∴当3≤t≤6时,M点所经历的路径长为.【点睛】本题主要考查了等边三角形的判定与性质、全等三角形的判定与性质、锐角三角函数、特殊角的三角函数值、勾股定理、三角形外角的性质等知识,综合性比较强,有一定的难度;构造旋转型全等三角形(由共顶点的两个等边三角形组成)是解决第1(2)小题的关键,证到∠ECM=90°是解决第(2)小题的关键.。

中考数学高频考点训练——解直角三角形的应用 (1)

中考数学高频考点训练——解直角三角形的应用 (1)

中考数学高频考点训练——解直角三角形的应用 1. 如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A 到达点B 时,它经过了200m ,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B 到达点D 时,它又走过了200m ,缆车由点B 到点D 的行驶路线与水平面夹角∠β=42°,求缆车从点A 到点D 垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)2. 如图,在距某输电铁塔GH (GH 垂直地面)的底部点H 左侧水平距离60米的点B 处有一个山坡,山坡AB 的坡度i =13B 到坡顶A 的距离AB 等于40米,在坡顶A 处测得铁塔顶点G 的仰角为30°(铁塔GH 与山坡AB 在同一平面内).(1)求山坡的高度;(2)求铁塔的高度GH .(结果保留根号)3. 为了维护南海的主权, 我国对相关区域进行海空常态化立体巡航.如图, 在一次巡航中,预警机沿 AE 方向飞行, 驱护舰沿 BP 方向航行, 且航向相 同 ()AE BP ∥. 当顼紫机飞行到 A 处时,测得航行到 B 处的驱护舰的俯角为 45 ,此时 B 距离相关岛屿 P 恰为 60 千米; 当预警机飞行到 C 处 时 , 驱护舰恰好航行到预警机正下方 D 处,此时 10CD = 千米,当预警机继续飞行到 E 处时,驱护舰到达相关岛屿,P 且测得E 处的预警机的仰角为22.︒求预警机的飞行距离AE .(结果保留整数)(参考数据: sin220.37,cos220.93,tan220.40≈≈≈.)4. 如图,海面上甲、乙两船分别从A ,B 两处同时出发,由西向东行驶,甲船的速度为24n mile/h ,乙船的速度为15n mile/h ,出发时,测得乙船在甲船北偏东50°方向,且AB=10nmile ,经过20分钟后,甲、乙两船分别到达C ,D 两处.(参考值:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)(1)求两条航线间的距离;(2)若两船保持原来的速度和航向,还需要多少时间才能使两船的距离最短?(精确到0.01)5. 某课桌生产厂家研究发现,倾斜12°至24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度得桌面.新桌面的设计图如图1,AB 可绕点A 旋转,在点C 处安装一根长度一定且C 处固定,可旋转的支撑臂CD ,30AD cm =.(1)如图2,当24BAC =∠时,CD AB ⊥,求支撑臂CD 的长;(2)如图3,当12BAC =∠时,求AD 的长.(结果保留根号)(参考数据:sin 240.40≈,cos 240.91≈,tan 240.46≈,sin120.20≈)6. 如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处.已知AB=BD=800米,∠α=75°,∠β=45°,求山高DE(结果精确到1米).(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.7322=1.414)7. 地铁10号线某站点出口横截面平面图如图所示,电梯AB的两端分别距顶部9.9米和2.4米,在距电梯起点A端6米的P处,用1.5米的测角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度与长度.参考数据:sin14°≈0.24,tan14°≈0.25,cos14°≈0.97.8. 梁子湖是驰名中外的武昌鱼的故乡,“五一”期间游人络绎不绝.现有一艘游艇载着游客在湖中游玩,如图,当游艇在A处时,艇上游客发现P1处的青山岛和P2处的梁子岛都在东北方向;当游艇向正东方向行驶30km到达B处时,游客发现梁子岛在北偏西15°方向;当游艇继续向正东方向行驶20km到达C处时,游客发现青山岛在北偏西60°方向.(1)求A处到青山岛P1处的距离;(2)求青山岛P1处与梁子岛P2处之间的距离.(计算结果均保留根号)9. 如图,建在山腰点A 处的一座“5G”发射塔AB 与地面CM 垂直,在地面C 处测得发射塔AB 的底部A 、顶端B 的仰角分别为30°、60°,在地面D 处测得发射塔AB 的底部A 的仰角为45°.(1)若设AC k =,则AD = ;(用含k 的代数式表示)(2)若测得()18318CD =米,求AB .10. 如图1,我国古建筑的大门上常常悬挂着巨大的匾额,图2中的线段BC 就是悬挂在墙壁AM 上的某块匾额的截面示意图.已知2BC =米,37MBC ∠=︒.从水平地面点D 处看点C ,仰角45ADC ∠=︒,从点E 处看点B ,仰角53AEB ∠=︒.且 4.4DE =米,求匾额悬挂的高度AB 的长.(参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈)11. 如图,小华和同伴在春游期间,发现在某地小山坡的点E 处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE 的长度,小华站在点B 的位置,让同伴移动平面镜至点C 处,此时小华在平面镜内可以看到点E ,且BC =2.7米,CD =11.5米,∠CDE =120°,已知小华的身高为1.8米,请你利用以上的数据求出DE 的长度.(结果保留根号)12. “眉山水街”走红网络,成为全国各地不少游客新的打卡地!游客小何用无人机对该地一标志建筑物进行拍摄和观测,如图,无人机从A 处测得该建筑物顶端C 的俯角为24°,继续向该建筑物方向水平飞行20米到达B 处,测得顶端C 的俯角为45°,已知无人机的飞行高度为60米,则这栋建筑物的高度是多少米?(精确到0.1米,参考数据:2sin 245≈°,9cos 2410︒≈,9tan 2420︒≈)13. 河南省政府为促进农业发展,加快农村建设,计划扶持兴建一批新型钢管装配式大棚,如图1所示线段AB 、BD 分别为大棚的墙高和跨度,AC 表示保温板的长,已知墙高AB 为3米,墙面与保温板所成的角∠BAC=150°,在点D 处测得A 点、C 点的仰角分别为9°,15.6°,如图2所示求保温板AC 的长是多少米?(精确到0.1米)(参考数据:sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,314. 如图1是一台刷脸支付仪,由底柱、水平托板、支撑板和电子器材构成.图2是其上半部分的侧面示意图.电子器材长16cm AC =,支撑板长16cm BD =,水平托板DE 离地面的高度为120cm ,75CBD ∠=︒,60BDE ∠=︒,已知摄像头在点A 处,支撑点B 是AC 的中点,电子器材AC 可绕点B 转动,支撑板BD 可绕点D 转动.(1)如图2,求摄像头(点A )离地面的高度h (精确到0.1cm ).(2)如图3,为方便使用,把AC 绕点B 逆时针旋转15︒后,再将BD 绕点D 顺时针旋转α度,使点C 落在水平托板DE 上,求α(精确到0.1︒).(参考数据:tan26.60.5≈°,2 1.41≈3 1.73≈)15. 2021年,我市在创建全国文明城市的检查中发现,一些公交车候车亭有破损需修缮,现已更换新的公交候车亭(图1),图2所示的是侧面示意图,AB 为水平线段,CD AB ⊥,点E 为垂足, 3.56m, 2.78m AB AE ==,点C 在弧AB 上,且点O 为弧AB 所在的圆的圆心,27OAB ∠=︒,则CE 的长约为多少米?(参考数据:sin 270.45,cos 270.89,tan 2723 1.732︒≈︒≈︒≈≈,结果精确到0.01)。

中考数学复习《解直角三角形的应用解答题》专题提升训练

中考数学复习《解直角三角形的应用解答题》专题提升训练

数学中考复习《解直角三角形的应用解答题》专题提升训练1.如图,某小区A栋楼在B栋楼的南侧,两楼高度均为90m,楼间距为MN.春分日正午,太阳光线与水平面所成的角为55.7°,A栋楼在B栋楼墙面上的影高为DM;冬至日正午,太阳光线与水平面所成的角为30°,A栋楼在B栋楼墙面上的影高为CM,已知CD =45m.求楼间距MN(参考数据:tan30°≈0.58,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)2.图①是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,托板长AB =115mm,支撑板长CD=70mm,且CB=35mm,托板AB可绕点C转动.(1)当∠CDE=60°时,①求点C到直线DE的距离;(计算结果保留根号)②若∠DCB=70°时,求点A到直线DE的距离(计算结果精确到个位);(2)为了观看舒适,把(1)中∠DCB=70°调整为90°,再将CD绕点D逆时针旋转,使点B落在DE上,则CD旋转的角度为.(直接写出结果)(参考数据:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2.sin26.6°≈0.4,cos26.6°≈0.9,tan26.6°≈0.5,≈1.7)3.美丽的徒骇河穿城而过,成为市民休闲娱乐的风景带.某数学兴趣小组在一次课外活动中,测量徒骇河某段河的宽CD.如图所示,小组成员选取的点A,B是桥上的两点,点A,E,C在河岸的同一直线上,且AB⊥AC.若,AE间的距离80米,在B点处测得BD与平行于AC的直线间的夹角为30°,在点E处测得ED与直线AC之间的夹角为60°,求这段河的宽度CD.(结果保留根号)4.我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿AB摆成如图1所示.已知AB=4.8m,鱼竿尾端A离岸边0.4m,即AD=0.4m.海面与地面AD 平行且相距1.2m,即DH=1.2m.(1)如图1,在无鱼上钩时,海面上方的鱼线BC与海面HC的夹角∠BCH=37°,海面下方的鱼线CO与海面HC垂直,鱼竿AB与地面AD的夹角∠BAD=22°.求点O到岸边DH的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角∠BAD=53°,此时鱼线被拉直,鱼线BO=5.46m,点O恰好位于海面.求点O到岸边DH的距离.(参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈)5.如图1,将一个直角三角形状的楔子(Rt△ABC)从木桩的底端点P沿水平方向打入木桩台底下,可以使木桩向上运动.如果楔子底面的倾斜角∠ABC为10°,其高度AC为1.8厘米,楔子沿水平方向前进一段距离(如箭头所示),如图2,留在外面的楔子长度HC为3厘米.(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)(1)求BH的长.(2)木桩上升了多少厘米?6.筒车是我国古代利用水力驱动的灌溉工具,车轮缚以竹筒,旋转时低则舀水,高则泻水.如图,水力驱动筒车按逆时针方向转动,竹筒把水引至A处,水沿射线AD方向泻至水渠DE,水渠DE所在直线与水面PQ平行.设筒车为⊙O,⊙O与直线PQ交于P,Q两点,与直线DE交于B,C两点,恰有AD2=BD•CD,连接AB,AC.(1)求证:AD为⊙O的切线;(2)筒车的半径为3m,AC=BC,∠C=30°.当水面上升,A,O,Q三点恰好共线时,求筒车在水面下的最大深度(精确到0.1m,参考值:≈1.4,≈1.7).7.如图,一扇窗户垂直打开,即打开到OM⊥OP的状态,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向向内旋转45°到达ON位置,此时,点A、C的对应位置分别是点B、D.测出此时∠ODB为30°,BO的长为20cm.求滑动支架AC的长.(精确到1cm,≈1.41,≈1.73).8.如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)9.图1是疫情期间测温员用“额温枪”对学生测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直,量得胳膊MN=30cm,MB=44cm,肘关节M与枪身端点A之间的水平宽度为26.1cm(即MP的长度),∠ABM =113.6°.(1)求枪身BA的长度;(2)测温时规定枪身端点A与额头距离范围为3cm~5cm.在图2中,若测得∠BMN=68.6°,学生与测温员之间距离为50cm.问此时枪身端点A与学生额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据sin66.4°≈0.92,cos66.4°≈0.4,tan66.4°≈2.29,)10.动感单车是一种新型的运动器械.图①是一辆动感单车的实物图,图②是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC长为70cm,∠BCD的度数为58°.当AB长度调至34cm时,求点A到CD的距离AE的长度(结果精确到1cm).(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)11.某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)12.小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN,MN与墙面AB所成的角∠MNB=118°,厂房高AB=8m,房顶AM与水平地面平行,小强在点M的正下方C处从平面镜观察,能看到的水平地面上最远处D CD是多少?(结果精确到0.1m,参考数据:sin34°≈0.56,tan34°≈0.68,tan56°≈1.48)13.如图①是大家熟悉的柜式空调,关闭时叶片竖直向下.如图②,当启动时,出风口叶片会同步开始逆时针旋转到最大旋转角90°时返回,旋转速度是每秒10°,同时空调风从叶片口直线吹出.AB由5个叶片组成的出风口,经过测量,A点、B点距地面高度分别是170cm、145cm在空调正前方100cm处站着一个高70cm的小朋友(线段EF表示).(1)从启动开始,多长时间小朋友头顶E处感受到空调风;(2)若叶片从闭合旋转到最大角度的过程中,小朋友的头顶E处有多长时间感受到空调风;(3)当选择上下扫风模式时,叶片会旋转到最大角度后原速返回.从启动到第一次返回起始位的过程中,该小朋友头顶E处从第一次感受到空调风到再次感受到空调风中间间隔了多长时间.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).14.第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图1),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图2是其示意图,已知:助滑坡道AF=50米,弧形跳台的跨度FG=7米,顶端E到BD的距离为40米,HG∥BC,∠AFH=40°,∠EFG=25°,∠ECB=36°.求此大跳台最高点A距地面BD的距离是多少米(结果保留整数).(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)15.一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为△ABC,点B,C,D在同一条直线上,测得∠ACB=90°,∠ABC=60°,AB=32cm,∠BDE=75°,其中一段支撑杆CD=84cm,另一段支撑杆DE=70cm.(1)求BD的长.(2)求支撑杆上的点E到水平地面的距离EF是多少?(结果均取整数,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.732)16.图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知AB∥CD∥FG,A,D,H,G四点在同一直线上,测得∠FEC=∠A=72.9°,AD=1.6m,EF=6.2m.(结果保留小数点后一位)(1)求证:四边形DEFG为平行四边形;(2)求雕塑的高(即点G到AB的距离).(参考数据:sin72.9°≈0.96,cos72.9°≈0.29,tan72.9°≈3.25)17.如图①是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图②所示,已知晾衣臂OA=OB=120cm,支撑脚OC=OD=120cm,展开角∠COD=60°,晾衣臂支架PQ=MN=80cm,且OP=OM=40cm.(1)当晾衣臂OA与支撑脚OD垂直时,求点A距离地面的高度;(2)当晾衣臂OB从水平状态绕点O旋转到OB'(D、O、B'在同一条直线上)时,点N 也随之旋转到OB'上的点N'处,求点N在晾衣臂OB上滑动的距离.18.如图1是某小区门口的门禁自动识别系统,主要有可旋转高清摄像机和其下方固定的显示屏.图2是其结构示意图,摄像机长AB=20cm,点O是摄像机旋转轴心,O为AB的中点,显示屏的上沿CD与AB平行,CD=15cm,AB与CD连接杆OE⊥AB,OE=10cm,CE=2ED,点C到地面的距离为60cm.若AB与水平地面所成的角的度数为35°.(1)求显示屏所在部分的宽度;(2)求镜头A到地面的距离.(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700,结果保留一位小数)19.图1是一种可折叠台灯,它放置在水平桌面上,将其抽象成图2,其中点B,E,D均为可转动点,现测得AB=BE=ED=CD=20cm,经多次调试发现当点B,E都在CD的垂直平分线上时(如图3所示)放置最平稳.(1)求放置最平稳时灯座DC与灯杆DE的夹角的大小;(2)当A点到水平桌面(CD所在直线)的距离为42cm﹣43cm时,台灯光线最佳,能更好的保护视力.若台灯放置最平稳时,将∠ABE调节到105°,试通过计算说明此时光线是否为最佳.(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.73)20.为测量水城河两岸的宽度,某数学研究小组设计了三种不同的方案,他们在河岸边A 处测得河对岸的同学B恰好在正北方向,测量方案及数据如下表:.(1)哪一种方案无法计算出河两岸的宽度;(2)请选择其中一种方案计算出河两岸的宽度(精确到0.1m).(参考数据:≈1.73)参考答案1.解:如图,过点C、D分别作CE⊥PN,DF⊥PN,垂足分别为E、F,则,PN=90m,MB=DF=CE,DM=FN,CD=EF=45m,设MN=xm,在Rt△PDF中,∠PDF=55.7°,DF=MN=xm,∴PF=tan55.7°•DF≈1.47x(m),在Rt△PCE中,∠PCE=30°,CE=xm,∴PE=tan30°•CE≈0.58x(m),∵EF=PF﹣PE,即CD=PF﹣PE,∴1.47x﹣0.58x=45,解得x≈50.56(m),即MN=50.56m.2.解:(1)①如图,过点C作CF⊥DE于F,过点C、A分别作DE的平行线和垂线相交于点G,在Rt△CDF中,∠CDF=60°,CD=70mm,∴CF=CD•sin60°=70×=35(mm),即点C到直线DE的距离为35mm;②当∠DCB=70°时,∵CG∥DE,∴∠GCD=∠CDF=60°,又∵∠DCB=70°,∴∠ACG=180°﹣70°﹣60°=50°,在Rt△ACG中,AC=AC﹣BC=115﹣35=80(mm),∠ACG=50°∴AG=AC•sin50°≈80×0.8=64(mm),∴点A到直线DE的距离为AG+CF=64+35≈124(mm);(2)把(1)中∠DCB=70°调整为90°,再将CD绕点D逆时针旋转,使点B落在DE上,旋转后的图形如图③所示,在Rt△B′C′D中,B′C′=35mm,C′D=CD=70mm,∴tan∠C′DB′==0.5,又∵tan26.6°≈0.5,∴∠C′DB′=26.6°,∴∠CDC′=60°﹣26.6°=33.4°,故答案为:33.4°.3.解:如图,过点B作BF⊥CD于F,则AB=CF,AC=BF,∵,AE=80米,∴AB=20米=CF,在Rt△BDF中,∠DBF=30°,设DF=x,则BF=x=AC,∴EC=AC﹣AE=(x﹣80)米,在Rt△CDE中,∠DEC=60°,CD=(20+x)米,EC=(x﹣80)米,∵tan60°=,∴=,解得,x=40+10,经检验,x=40+10是原方程的根,∴DF=(40+10)米,∴CD=CF+DF=(40+30)米,答:这段河的宽度CD的长为(40+30)米.4.解:(1)过点B作BF⊥CH,垂足为F,延长AD交BF于E,垂足为E,则AE⊥BF,由cos∠BAE=,∴cos22°=,∴,即AE=4.5m,∴DE=AE﹣AD=4.5﹣0.4=4.1(m),由sin∠BAE=,∴,∴,即BE=1.8m,∴BF=BE+EF=1.8+1.2=3(m),又,∴,即CF=4m,∴CH=CF+HF=CF+DE=4+4.1=8.1(m),即点O到岸边DH的距离为8.1m;(2)过点B作BN⊥OH,垂足为N,延长AD交BN于点M,垂足为M,由cos∠BAM=,∴,∴,即AM=2.88m,∴DM=AM﹣AD=2.88﹣0.4=2.48(m),由sin∠BAM=,∴,∴,即BM=3.84m,∴BN=BM+MN=3.84+1.2=5.04(m),∴=(m),∴OH=ON+HN=ON+DM=4.58(m),即点O到岸边的距离为4.58m.5.解:(1)在Rt△ABC中,∠ABC=10°,tan∠ABC=,则BC=≈=10(厘米),∴BH=BC﹣HC=7(厘米);(2)在Rt△ABC中,∠ABC=10°,tan∠ABC=,则PH=BH•tan∠ABC≈7×0.18≈1.26(厘米),答:木桩上升了大约1.26厘米.6.(1)证明:连接AO,并延长交⊙O于G,连接BG,∴∠ACB=∠AGB,∵AG是直径,∴∠ABG=90°,∴∠BAG+∠AGB=90°,∵AD2=BD•CD,∴,∵∠ADB=∠CDA,∴△DAB∽△DCA,∴∠DAB=∠ACB,∴∠DAB=∠AGB,∴∠DAB+∠BAG=90°,∴AD⊥AO,∵OA是半径,∴AD为⊙O的切线;(2)解:当水面到GH时,作OM⊥GH于M,∵CA=CB,∠C=30°,∴∠ABC=75°,∵AG是直径,∴∠ABG=90°,∴∠CBG=15°,∵BC∥GH,∴∠BGH=∠CBG=15°,∴∠AGM=45°,∴OM=OG=,∴筒车在水面下的最大深度为3﹣≈0.9(m).7.解:由题意可知:∠BOE=45°,BO=20cm,BE⊥OD,∴BE=OE=BO•sin45°=10(cm),在Rt△BDE中,∠BDE=30°,∴sin∠BDE=,∴BD=20cm,∵BD=AC,∴AC=20≈28(cm),答滑动支架AC的长约为28cm.8.解:(1)过点A作AE⊥l,垂足为E,设CE=x米,∵CD=60米,∴DE=CE+CD=(x+60)米,∵∠ACB=15°,∠BCD=120°,∴∠ACE=180°﹣∠ACB﹣∠BCD=45°,在Rt△AEC中,AE=CE•tan45°=x(米),在Rt△ADE中,∠ADE=30°,∴tan30°===,∴x=30+30,经检验:x=30+30是原方程的根,∴AE=(30+30)米,∴河的宽度为(30+30)米;(2)过点B作BF⊥l,垂足为F,则CE=AE=BF=(30+30)米,AB=EF,∵∠BCD=120°,∴∠BCF=180°﹣∠BCD=60°,在Rt△BCF中,CF===(30+10)米,∴AB=EF=CE﹣CF=30+30﹣(30+10)=20(米),∴古树A、B之间的距离为20米.9.解:(1)过点B作BH⊥MQ,垂足为H,则BA=HP,AB∥MQ,∵∠ABM=113.6°,∴∠BMH=180°﹣∠ABM=66.4°,在Rt△BMH中,∠BMH=66.4°,BM=44cm,∴MH=BM•cos66.4°≈44×0.4=17.6(cm),∵MP=26.1cm,∴BA=HP=MP﹣MH=26.1﹣=8.5(cm),∴枪身BA的长度约为8.5cm;(2)此时枪身端点A与学生额头的距离不在规定范围内,理由:延长QM交FG于点K,则KQ=50cm,∠NKM=90°,∵∠BMN=68.6°,∠BMH=66.4°,∴∠NMK=180°﹣∠BMN﹣∠BMH=45°,在Rt△MNK中,MN=30cm,∴KM=MN•cos45°=30×=15(cm),∵KQ=50cm,∴PQ=KQ﹣KM﹣MP=50﹣15﹣26.1≈2.7(cm),∵测温时规定枪身端点A与额头距离范围为3cm~5cm,∴此时枪身端点A与学生额头的距离不在规定范围内.10.解:∵AB=34cm,BC=70cm,∴AC=AB+BC=104cm,在Rt△ACE中,sin∠BCD=,∴AE=AC•sin∠BCD≈104×0.85≈88cm.答:点A到CD的距离AE的长度约88cm.11.解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.512.解:连接MC,过点M作HM⊥NM,由题意得:∠DMC=2∠CMH,∠MCD=∠HMN=90°,AB=MC=8m,AB∥MC,∴∠CMN=180°﹣∠MNB=180°﹣118°=62°,∴∠CMH=∠HMN﹣∠CMN=28°,∴∠DMC=2∠CMH=56°,在Rt△CMD中,CD=CM•tan56°≈8×1.48≈11.8(米),∴能看到的水平地面上最远处D到他的距离CD约为11.8米.13.解:(1)如图,连接AE,过点E作EM⊥AC于M,由题意可知,CF=100cm=ME,AC=170cm,BC=145cm,EF=70cm=MC,∴AM=170﹣70=100(cm),在Rt△AEM中,AM=100cm,ME=100cm,∴∠MAE=∠AEM=45°,∴从启动开始,到小朋友头顶E处感受到空调风所用的时间为45÷10=4.5(s),答:从启动开始,4.5s小朋友头顶E处感受到空调风;(2)如图,连接BE,则BM=145﹣70=75(cm),在Rt△BEM中,∵tan∠BEM==0.75,∴∠BEM=37°,∴∠MBE=90°﹣37°=53°∴小朋友的头顶E处感受到空调风的时长为﹣=0.8(s),答:小朋友的头顶E处有0.8s的时间感受到空调风;(3)如图,当BE绕着点B旋转到BE′时,所用时间为=3.7(s),所以该小朋友头顶E处从第一次感受到空调风到再次感受到空调风中间间隔了时长为0.8+3.7×2=8.2(s),答:该小朋友头顶E处从第一次感受到空调风到再次感受到空调风中间间隔了8.2s.14.解:如图,过点E作EN⊥BC于点N,交HG于点M,则AB=AH﹣EM+EN.根据题意可知,∠AHF=∠EMF=∠EMG=90°,EN=40(米),∵HG∥BC,∴∠EGM=∠ECB=36°,在Rt△AHF中,∠AFH=40°,AF=50,∴AH=AF•sin∠AFH≈50×0.64=32(米),在Rt△FEM和Rt△EMG中,设MG=m米,则FM=(7﹣m)米,∴EM=MG•tan∠EGM=MG•tan36°≈0.73m,EM=FM•tan∠EFM=FM•tan25°≈0.47(7﹣m),∴0.73m=0.47(7﹣m),解得m≈2.7(米),∴EM≈0.47(7﹣m)=2.021(米),∴AB=AH﹣EM+EN≈32﹣2.021+40≈70(米).∴此大跳台最高点A距地面BD的距离约是70米.15.解:(1)在Rt△ABC中,∠ABC=60°,AB=32cm,∴BC=AB=16cm,∴BD=BC+CD=16+84=100(cm).(2)作DM⊥BA于点M,DN⊥EF于点N,在Rt△DBM中,sin∠DBM=,即=,∴DM=50,∵∠F=∠M=∠DNF=90°,∴四边形NFMD为矩形,∴NF=DM=50,DN∥FM,∴∠NDB=∠DBM=60°,∵∠BDE=75°,∴∠EDN=∠BDE﹣∠NDB=15°,∴在Rt△DEN中,sin∠EDN=,即sin15°=,∴EN=70sin15°,∴EF=EN+NF=50+70sin15°≈105(cm).16.(1)证明:∵AB∥CD,∴∠CDG=∠A,∵∠FEC=∠A,∴∠FEC=∠CDG,∴EF∥DG,∵FG∥CD,∴四边形DEFG为平行四边形;(2)解:如图,过点G作GP⊥AB于P,∵四边形DEFG为平行四边形,∴DG=EF=6.2,∵AD=1.6,∴AG=DG+AD=6.2+1.6=7.8,Rt△APG中,sin A=,∴=0.96,∴PG=7.8×0.96=7.488≈7.5.答:雕塑的高为7.5m.17.解:(1)过点O作OE⊥CD,垂足为E,过点A作AG⊥CD,垂足为G,过点O作OF ⊥AG,垂足为F,则OE=FG,∠FOE=90°,∵OC=OD=120cm,∠COD60°,∴∠DOE=∠COD=30°,∴OE=OD•cos30°=120×=60(cm),∴FG=OE=60cm,∵OA⊥OD,∴∠AOD=90°,∴∠AOD﹣∠DOF=∠EOF﹣∠DOF,∴∠AOF=∠DOE=30°,在Rt△AOF中,OA=120cm,∴AF=OA=60(cm),∴AG=AF+FG=(60+60)cm,∴点A距离地面的高度为(60+60)cm;(2)过点M作MK⊥OB,垂足为K,过点M作ML⊥OD,垂足为L,∵OC=OD=120cm,∠COD=60°,∴△COD是等边三角形,∴∠OCD=60°,∵OB∥CD,∴∠BOC=∠OCD=60°,在Rt△MKO中,OM=40cm,∴KO=OM•cos60°=40×=20(cm),MK=OM•sin60°=40×=20(cm),在Rt△MNK中,MN=80cm,∴NK===20(cm),∵OB=120cm,∴BN=OB﹣OK﹣NK=120﹣20﹣20=(100﹣20)cm,在Rt△OML中,∠COD=60°,∴ML=OM•sin60°=40×=20(cm),OL=OM•cos60°=40×=20(cm),在Rt△MN′L中,MN′=MN=80cm,∴N′L===20(cm),∴ON′=N′L﹣OL=(20﹣20)cm,∵OB′=OB=120cm,∴B′N′=OB′﹣ON′=(140﹣20)cm,∴B′N′﹣BN=140﹣20﹣(100﹣20)=40(cm),∴点N在晾衣臂OB上滑动的距离为40cm.18.解:(1)过点C作CM⊥DF,垂足为F,∵CD∥AB,AB与水平地面所成的角的度数为35°,∴CD与水平地面所成的角的度数为35°,∴∠DCM=35°,在Rt△DCM中,DC=15cm,∴CM=DC•cos35°≈15×0.819≈12.3(cm),∴显示屏所在部分的宽度约为12.3cm;(2)连接AC,过点A作AH⊥CM,交MC的延长线于点H,∵CE=2ED,DC=15cm,∴CE=CD=10(cm),∵O为AB的中点,∴OA=AB=10(cm),∴OA=CE=10cm,∵OA∥CE,∴四边形ACEO是平行四边形,∵OE⊥AB,∴∠AOE=90°,∴四边形ACEO是矩形,∴∠ACE=90°,AC=OE=10cm,∵∠DCM=53°,∴∠ACH=180°﹣∠ACE﹣∠DCM=55°,∴∠HAC=90°﹣∠ACH=35°,在Rt△AHC中,AH=AC•cos35°≈10×0.819=8.19(cm),∵点C到地面的距离为60cm,∴镜头A到地面的距离=8.19+60≈68.2(cm),∴镜头A到地面的距离约为68.2cm.19.解:(1)延长BE交DC于点F,由题意得:EF⊥CD,FD=CD=CD=10cm,在Rt△DEF中,DE=20cm,∴cos D===,∴∠D=60°,∴灯座DC与灯杆DE的夹角为60°;(2)过点A作AM⊥DC,交DC的延长线于点M,过点B作BG⊥AM,垂足为G,则GM=BF,∠GBF=90°,在Rt△DEF中,DE=20cm,DF=10cm,∴EF===10(cm),则GM=BF=BE+EF=(20+10)cm,∵∠ABE=105°,∴∠ABG=∠ABF﹣∠GBF=15°,在Rt△ABG中,AB=20cm,∴AG=AB⋅sin15°≈20×0.26=5.2(cm),∴AM=AG+GM=20+10+5.2≈42.5(cm),∴A点到水平桌面(CD所在直线)的距离约为42.5cm,∴此时光线最佳.20.解:(1)第一个小组的数据无法计算河宽,理由如下:∵第一小组给出的数据为BD的长,△ABC和△CDE无法建立联系,无法得到△ABC的任何一边长度,∴第二小组的数据无法计算河宽;(2)第二个小组的解法:∵∠ACB=∠ADB+∠CBD,∠ACB=60°,∠ADB=30°,∴∠ADB=∠CBD=30°,∴BC=CD=11.8m,∴AB=BC•sin60°=11.8×≈10.2(m).第三个小组的解法:设AB=xm,则AC=,AD=,∴+=23.5,解得x≈10.2.答:河宽约10.2m.。

2021年中考九年级数学压轴题专题复习:三角形 综合练习(无答案)

2021年中考九年级数学压轴题专题复习:三角形 综合练习(无答案)

2021年中考九年级数学压轴题专题复习:三角形综合练习1、如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.2、已知:如图,在△ABC中,∠C=90°,点D、E分别在边AB、AC上,DE∥BC,DE=3, BC=9.(1)求ADAB的值;(2)若BD=10,求sin∠A的值.3、如图,在Rt ABC==,点D在边AC上,且AC BC∠=︒,3∆中,90ACBAD CD=,2⊥,垂足为点E,联结CE,求:DE AB(1)线段BE的长;(2)ECB∠的余切值;4、如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:OA2=OE•OF.5、如图,在锐角三角形ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF=∠GAC . (1)求证:△ADE ∽△ABC ;(2)若AD=3,AB=5,求的值.6、如图,BD 是△ABC 的角平分线,它的垂直平分线分别交AB ,BD ,BC 于点E ,F ,G ,连接ED ,DG .(1)请判断四边形EBGD 的形状,并说明理由; (2)若∠ABC=30°,∠C=45°,ED=2,点H 是BD 上的一个动点,求HG+HC的最小值.AFAG7、如图,CAB∠90ACB.连接DCE=∠∆均是等腰直角三角形,并且︒∆与CDE=BE,AD的延长线与BC、BE的交点分别是点G与点F.(1)求证:BEAF⊥;(2)将CDECD//时,探究线段DA,DE,DG的数量关系,并证∆绕点C旋转直至BE明;(3)在(2)的条件下,若DA=4.5,DG=2,求BF的值.8、巳知Rt△ABC中,∠B =90°,AC = 20,AB= 10, P是边AC上一点(不包括端点 A、C),过点 P作PE⊥BC于点E,过点E作EF∥AC,交 AB 于点F,设PC =x,PE =y.(1)求y与x 的函数关系;(2)是否存在点 P使△PEF是Rt△,若存在,求此时的x的值,若不存在,请说明理由.9、如图,△ABC 中,点O 是边AC 上一个动点,过O 作直线MN ∥BC .设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F . (1)求证:OE =OF ;(2)若CE =12,CF =5,求OC 的长;(3)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.10、如图,在中,,,矩形CDEF 的顶点C 、D 、F 分别在边AO 、OB 、AB 上。

中考数学专题复习导学案直角三角形(含答案)

中考数学专题复习导学案直角三角形(含答案)

中考数学专题练习19《直角三角形》【知识归纳】1.直角三角形的定义有一个角是的三角形叫做直角三角形2.直角三角形的性质(1)直角三角形的两个锐角;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的;(3)在直角三角形中,斜边上的中线等于斜边的3.直角三角形的判定(1)两个内角的三角形是直角三角形;(2)一边上的中线等于这条边的的三角形是直角三角形4.勾股定理及逆定理勾股定理:如果直角三角形两条直角边分别为a,b,斜边为c,那么逆定理:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是三角形【基础检测】1.(·广西百色·3分)如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.6 C.6 D.122.(·贵州安顺·3分)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B. C. D.3.(广西南宁3分)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米 B.5cos36°米 C.5tan36°米 D.10tan36°米4.(海南3分)如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C 落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.35.(·四川南充)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC 的中点,则DE的长为()A.1 B.2 C.D.1+6. (·浙江省湖州市·4分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是.7. (·湖北随州·3分)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN= .8.(·湖北荆州·10分)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【达标检测】一.选择题1.(•毕节市)(第5题)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,, B. 1,, C. 6,7,8 D. 2,3,42.(•青岛,第4题3分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A. B. 2 C.3 D. +23. 如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个4.如图,在△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,连接AE,若CE=5,AC=12,则BE的长是A.5 B.10 C.12 D.135.(·湖北荆门·3分)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.106. 在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )A.120° B.90° C.60° D.30°7. 已知等腰三角形ABC中,腰AB=8,底BC=5,则这个三角形的周长为( )(第11题图)A. 21B. 20C. 19D. 188.(·四川宜宾)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2 C.3 D.29.(·湖北荆州·3分)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.2 B. C. D.二.填空题10.(湖北省鄂州市,15,3分)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为10 cm.11.(·四川宜宾)在平面直角坐标系内,以点P(1,1)为圆心、为半径作圆,则该圆与y轴的交点坐标是.12.(·四川内江)如图4,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=______.13. (·湖北武汉)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA =55,则BD的长为_______.14. 如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,=1.73).15. (·江西·3分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.DO CEBA图4三.解答题16.(江西,23,10分)某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是(填序号即可)①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧..作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程;●类比探索:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:.17.(·湖北咸宁)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.【知识归纳答案】1.直角三角形的定义有一个角是 90°的三角形叫做直角三角形2.直角三角形的性质(1)直角三角形的两个锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半3.直角三角形的判定(1)两个内角和为90°的三角形是直角三角形;(2)一边上的中线等于这条边的一半的三角形是直角三角形4.勾股定理及逆定理勾股定理:如果直角三角形两条直角边分别为a,b,斜边为c,那么a2+b2=c2逆定理:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形【基础检测答案】1.(·广西百色·3分)如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.6C.6D.12【考点】含30度角的直角三角形.【分析】根据30°所对的直角边等于斜边的一半求解.【解答】解:∵∠C=90°,∠A=30°,AB=12,∴BC=12sin30°=12×=6,故答选A.2.(·贵州安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B. C. D.【分析】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【解答】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.3.(广西南宁3分)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米 B.5cos36°米 C.5tan36°米 D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.4.(海南3分)如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C 落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.3【考点】翻折变换(折叠问题).【分析】根据折叠的性质判定△EDB是等腰直角三角形,然后再求BE.【解答】解:根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=3,即△EDB是等腰直角三角形,∴BE=BD=×3=3,故选D.【点评】本题考查了翻折变换,还考查的知识点有两个:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、等腰直角三角形的性质求解.5.(四川南充)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为()A.1 B.2 C.D.1+【分析】由“30度角所对的直角边等于斜边的一半”求得AB=2BC=2.然后根据三角形中位线定理求得DE=AB.【解答】解:如图,∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC=2.又∵点D、E分别是AC、BC的中点,∴DE是△ACB的中位线,∴DE=0.5 AB=1.故选:A.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.6. (浙江省湖州市·4分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是 5 .【考点】作图—基本作图;直角三角形斜边上的中线;勾股定理.【分析】首先说明AD=DB,利用直角三角形斜边中线等于斜边一半,即可解决问题.【解答】解:由题意EF是线段AB的垂直平分线,∴AD=DB,Rt△ABC中,∵∠ACB=90°,BC=6,AC=8,∴AB===10,∵AD=DB,∠ACB=90°,∴CD=AB=5.故答案为5.7. (湖北随州·3分)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN= 3 .【考点】三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定与性质.【分析】连接CM,根据三角形中位线定理得到NM=CB,MN∥BC,证明四边形DCMN是平行四边形,得到DN=CM,根据直角三角形的性质得到CM=AB=3,等量代换即可.【解答】解:连接CM,∵M、N分别是AB、AC的中点,∴NM=CB,MN∥BC,又CD=BD,∴MN=CD,又MN∥BC,∴四边形DCMN是平行四边形,∴DN=CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=3,∴DN=3,故答案为:3.8.(湖北荆州·10分)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【分析】(1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AO B=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;(2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE= AD,根据相似三角形的性质得到,求得EF=2﹣,根据直角三角形的性质即可得到结论.【解答】解:(1)连接OB,∵OA=OB=OC,∵四边形OABC是平行四边形,∴AB=OC,∴△AOB是等边三角形,∴∠AOB=60°,∵∠FAD=15°,∴∠BOF=30°,∴∠AOF=∠BOF=30°,∴OF⊥AB,∵CD∥OF,∴CD⊥AD,∵AD∥OC,∴OC⊥CD,∴CD是半圆O的切线;(2)∵BC∥OA,∴∠DBC=∠EAO=60°,∴BD=BC=AB,∴AE=AD,∵EF∥DH,∴△AEF∽△ADH,∴,∵DH=6﹣3,∴EF=2﹣,∵OF=OA,∴OE=OA﹣(2﹣),∵∠AOE=30°,∴==,解得:OA=2.【点评】本题考查了切线的判定,平行四边形的性质,直角三角形的性质,等边三角形的判定和性质,连接OB构造等边三角形是解题的关键.【达标检测答案】一.选择题1.(•毕节市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是() A.,, B. 1,, C. 6,7,8 D. 2,3,4【解析】勾股定理的逆定理..知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【解答】解:A、()2+()2≠()2,不能构成直角三角形,故错误;B、12+()2=()2,能构成直角三角形,故正确;C、62+72≠82,不能构成直角三角形,故错误;D、22+32≠42,不能构成直角三角形,故错误.故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2.(•青岛)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A. B. 2 C.3 D. +2【解析】含30度角的直角三角形.根据角平分线的性质即可求得CD的长,然后在直角△BDE 中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.故选C .【点评】本题考查了角的平分线的性质以及直角三角形的性质,30°的锐角所对的直角边等于斜边的一半,理解性质定理是关键.3. 如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE,则图中等腰三角形共有( )A .2个B .3个C .4个D .5个 【答案】D【解析】在△ABC 中,∠A=36°,AB=AC ,求得∠ABC=∠C=72°,且△ABC 是等腰三角形. 因为BD 是△ABC 的角平分线 所以∠ABD=∠DBC=36° 所以△ABD 是等腰三角形. 在△BDC 中有三角形的内角和求出∠BDC=72° 所以△BDC 是等腰三角形.所以BD=BC=BE 所以△BDE 是等腰三角形.所以∠BDE=72°, 所以∠ADE=36°, 所以△ADE 是等腰三角形.共5个. 故选D .4.如图,在△ABC 中,∠C=90°,AB 的垂直平分线交AB 于D ,交BC 于E ,连接AE ,若CE=5,AC=12,则BE 的长是 A .5B .10C .12D .13【解答】解:∵AD 是△ABC 的角平分线,DE ⊥AB ,∠C=90°, ∴CD=DE=1,又∵直角△BDE 中,∠B=30°, ∴BD=2DE=2, ∴BC=CD+BD=1+2=3.【答案】D.【解析】在Rt△CAE中,CE=5,AC=12,由勾股定理得:2213AE AC CE=+=又DE是AB的垂直平分线,∴BE=AE=13.故选D.5.(湖北荆门·3分)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.10【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选C.6. 在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )A.120° B.90° C.60° D.30°【答案】D.【解析】根据直角三角形两锐角互余列式计算即可得解:(第11题图)∵直角三角形中,一个锐角等于60°,∴另一个锐角的度数=90°﹣60°=30°.故选D.7. 已知等腰三角形ABC中,腰AB=8,底BC=5,则这个三角形的周长为( )A. 21B. 20C. 19D. 18【答案】A.【解析】由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解:∵8+8+5=21.∴这个三角形的周长为21.故选A.8.(四川宜宾)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2C.3 D.2【考点】旋转的性质.【分析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用勾股定理求出B、D两点间的距离.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选:A.9.(湖北荆州·3分)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC 的顶点都在格点上,则图中∠ABC的余弦值是()A.2 B. C. D.【分析】先根据勾股定理的逆定理判断出△ABC的形状,再由锐角三角函数的定义即可得出结论.【解答】解:∵由图可知,AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,且∠ACB=90°,∴cos∠ABC==.故选D.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.二.填空题10.(湖北省鄂州市,15,3分)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为10 cm.【解析】直角三角形斜边上的中线.【解答】连接OP,根据直角三角形斜边上的中线等于斜边的一半可得OP的长,画出的圆的半径就是OP长.【点评】解:连接OP,∵△AOB是直角三角形,P为斜边AB的中点,∴OP=AB,∵AB=20cm,∴OP=10cm,故答案为:10.11.(四川宜宾)在平面直角坐标系内,以点P(1,1)为圆心、为半径作圆,则该圆与y轴的交点坐标是(0,3),(0,﹣1).【考点】坐标与图形性质.【分析】在平面直角坐标系中,根据勾股定理先求出直角三角形的另外一个直角边,再根据点P的坐标即可得出答案.【解答】解:以(1,1)为圆心,为半径画圆,与y轴相交,构成直角三角形,用勾股定理计算得另一直角边的长为2,则与y轴交点坐标为(0,3)或(0,﹣1).故答案为:(0,3),(0,﹣1).12.(四川内江)如图4,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE ⊥BC,垂足为点E,则OE=______.[答案]12 5[考点]菱形的性质,勾股定理,三角形面积公式。

中考数学专题训练——专题五三角形的全等(无答案)

中考数学专题训练——专题五三角形的全等(无答案)

专题五全等三角形1、( 2019?重庆)在△ABC 中,∠ ABM=45°,AM ⊥ BM ,垂足为M ,点 C 是 BM 延伸线上一点,连结AC .(1)如图 1,若 AB=3 √2,BC=5 ,求 AC 的长;(2)如图 2,点 D 是线段 AM 上一点, MD=MC ,点 E 是△ ABC 外一点, EC=AC ,连结ED 并延伸交BC 于点 F,且点 F 是线段 BC 的中点,求证:∠ BDF=∠ CEF.2、( 2019 重庆)在△ ABC 中,∠ B=45°,∠ C=30°,点 D 是 BC 上一点,连结 AD ,过点 A 作 AG⊥ AD ,在 AG 上取点 F,连结 DF .延伸 DA 至 E,使 AE=AF ,连结 EG,DG,且GE=DF .证明: BD 1 CG23、( 2019 南开三模)如图,已知等腰Rt?ABC ,∠ ACB=90 °, CA=CB,以 BC 为边向外作等边 ?CBD ,连结 AD ,过点 C 作∠ ACB 的角均分线与AD 交于点 E,连结 BE。

(1)若 AE=2,求 CE 的长度(2)以 AB 为边向下作 ?AFB ,∠ AFB=60 °,连结 FE ,求证: FA FB3FE4、( 2019 一中二模) Rt ABC 中,BAC90 ,以 AC 为边向外作ACD ,为BC上一点,连结AF。

如图 2,若AB AC,F延长DC交AF延伸线于H点,且AHD90 ,BCH CAD ,连结BD交AF于M点。

求证:CD 2MH 。

练习:1、( 2019八中一模)如图,在菱形ABCD 中,BAD60 ,M为对角线BD延伸线上一点,连结AM 和CM, E 为CM上一点,且知足CB CE ,连结BE,交 CD于点F。

证明: AM CF DM。

2、( 2019 育才三模)已知等腰 Rt? ABC 与等腰 Rt?CDE ,∠ACB =∠ DCE =90°.把 Rt?ABC 绕点 C 旋转 .当 Rt? ABC旋转到如图 2 所示的地点时,过点 C 作 BD 的垂线交 BD 于点 F ,交 AE 于点 G,求证: BD =2CG.3、( 2019 巴蜀一模)如图,在等腰直角三角形ABC 中, AB=AC,∠ BAC=90 °,点 D 为 AC上一点,连结 BD ,过 C 点作 BD 的垂线交 BD 的延伸线于点E,连结 AE,过点 A 作 AF ⊥ AE 交 BD 于点 F,连结 CF 。

中考数学专题复习卷 三角形(含解析)-人教版初中九年级全册数学试题

中考数学专题复习卷 三角形(含解析)-人教版初中九年级全册数学试题

三角形一、选择题1.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】:∵在直角三角形中,勾为3,股为4,∴弦为故答案为:A.【分析】根据在直角三角形中,勾是最短的直角边,股是长的直角边,弦是斜边,知道勾和股利用勾股定理,即可得出答案。

2.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值X围是()A.8<BC<10B.2<BC<18C.1<BC<8D.1<BC<9【答案】D【解析】:如图∵▱ABCD,AC=8,BD=10,∴OB=BD=5,OC=AC=4∴5-4<BC<5+4,即1<BC<9故答案为:D【分析】根据平行四边形的性质求出OB、OC的长,再根据三角形三边关系定理,建立不等式组,求解即可。

3.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A. 80°B. 100°C. 120°D. 140°【答案】B【解析】如图,延长BC交AD于点E,∵∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,∴∠BCD=∠A+∠B+∠D,∵∠A=50°,∠B=20°,∠D=30°,∴∠BCD=50°+20°+30°=100°,故答案为:B.【分析】延长BC交AD 于点E,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,所以∠BCD=∠A+∠B+∠D,由已知可得∠BCD=50°+20°+30°=100°。

4.如图,BE∥AF,点D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数()A. 105°B. 115°C. 125°D. 135°【答案】C【解析】:∵BE∥AF,∴∠B=∠A=35°.∵DC⊥BE,∴∠DCB=90°,∴∠ADC=90°+35°=125°.故答案为:C.【分析】由平行线的性质可得∠B=∠A=35°,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠ADC=90°+35°=125°。

中考数学解直角三角形练习

中考数学解直角三角形练习

中考数学解直角三角形练习第一课时(锐角三角函数)课标要求1、 通过实例认识直角三角形的边角关系:即锐角三角函数(sinA 、cosA 、tanA 、cotA )2、 熟知300、450、600角的三角函数值3、 会用计算器求锐角的三角函数值:以及由已知的三角函数值求相应的锐角。

4、 通过特殊角三角函数值:知道互余两角的三角函数的关系。

5、 了解同角三角函数的平方关系。

sin 2α+cos 2α=1:倒数关系tan α·cot α=1.6、 熟知直角三角形中:300角的性质。

中招考点1、 锐角三角函数的概念:锐角三角函数的性质。

2、 300、450、600角的三角函数值及计算代数式的值。

3、 运用计算器求的三角函数值或由锐角三角函数值求角度。

典型例题[例题1] 选择题(四选一)1、如图19-1:在Rt △ABC 中:CD 是斜边AB 上的高:则下列线段比中不等于sinA 的是( )A. AC CDB. CB BDC.AB CBD.CBCD分析:sinA=AC CD ; sinA=sin ∠BCD=BC BD ;sinA= ABBC;从而判断D 不正确。

故应选D.。

2、在Rt △ABC 中:∠C =900:∠A =∠B :则cosA 的值是( ) A.21B. 22 C.23 D.1分析:先求出∠A 的度数:因为∠C =900:∠A =∠B :故∠A =∠B =450:再由特殊角的三角函数值可得:cosA=cos450=22故选B.。

3、在△ABC 中:∠C =900:sinA=23 ;则cosB 的值为( )A. 21B. 22C.23D.33分析:方法一:因为sinA=23;故锐角A =600。

因为∠C =900:所以∠B =300.cosB=23.故选C.方法二:因为 ∠C =900:故 ∠A 与 ∠B 互余.所以cosB=sin A =23.故选C..4、如图19-2:在△ABC 中:∠C =900:sinA=53.则BC :AC 等于( )A C图19-1A. 3:4B. 4:3C.3:5D.4:5 分析: 因为∠C =900:sinA =53 ;又sinA=AB BC .所以AB BC =53; 不妨设BC =3k ;AB=5k ;由勾股定理可得AC =22BC AB -=4k ;所以BC :AC =3k:4k=3:4故选A.。

【备战2012】中考数学专题复习训练39 三角函数(无答案)

【备战2012】中考数学专题复习训练39 三角函数(无答案)

第39章三角函数一、选择题:1、Rt ABC ∆中,C ∠=90︒,43AC BC ==,,cos B 的值为 ( )15A 、35B、 43C、 34D、 2、ABC ∆中,C ∠=90︒,tan 1A =,则sin B 的值是 ( )A 、B、1C、 D、3、在菱形ABCD 中,60ABC ∠=︒,AC=4,则BD 的长是 ( )A 、B、C、8D、4、ABC ∆中,C ∠=90︒,AC =A ∠的平分线交BC 于D,且,则tan A 的值 ( ) A 、B、C、 13D、5、AD 是ABC ∆的高,AB =,AC =2,45B ∠=︒,则C ∠的度数是 ( ) 30A ︒、 45︒B、 60︒C、 90︒D、6、在△ABC 中,A ,B 为锐角,且有 B A cos sin =,则这个三角形是 ( ) A 、等腰三角形 B 、直角三角形 C 、钝角三角形 D 、锐角三角形7、当锐角A 满足22cos >A 时,∠A 的值为 ( ) A 、小于︒45B 、小于︒30C 、大于︒45D 、大于6008、若∠A 为锐角,且132tan tan 0=∙A ,则∠A 的度数为 ( ) A 、032 B 、058 C 、 0)321(D 、 0)581( 9、当09045<<A 时,下列不等式中正确的是 ( ) A 、A A A sin cos tan >> B 、A A A sin tan cos >> C 、A A A cos tan sin >> D 、A A A cos sin tan >>10、某水库大坝的横断面是梯形,坝内斜坡的坡度3:11=i ,坝外斜坡的坡度1:12=i ,则两个坡角的和为( )A 、090 B 、060 C 、075 D 、0105二、填空题:11、在ABC Rt ∆中,C ∠=90︒,c = 8 , sinA =41,则b = . 12、Rt ABC ∆中,若C ∠=90︒,a = 15,b = 8,则 sin sin ______A B +=. 13、等腰三角形的周长为20,一边长为6,则底角的余弦值为____________.14、ABC ∆中,C ∠=90︒,a =ABCS ∆=,则 sin ______B =. 15、已知∠A +∠B =090,若8888.0cos =A ,则=B sin .16、等腰三角形腰长为10厘米,顶角是120°,则此三角形的面积是 . 17、已知方程x 2-7x+12=0两根为一直角三角形的两直角边,则其最小角的余弦值为 .18、在A B C ∆中,︒=∠90C ,∠A >∠B ,且A t a n和B tan 的值是方程013342=+-x x 的两个根,则∠A =__________.19、在⊿ABC 中,∠C = ︒90,5,2==c a ,则tanB= .20、在△ABC 中,︒=∠90B ,AC 边上的中线BD =5,AB =8,则ACB ∠tan = . 三、解答题:21、计算下列各式的值:① ︒∙︒-︒∙+︒∙︒60tan 60sin 45cos 245cos 30sin② 130sin 560cos 300--︒45cos 2+ 3tan 2300 - 460tan 460tan 002+-22、如图,某风景区的湖心岛有一凉亭A ,其正东方向有一棵大树B ,小明想测量A 、B 之间的距离,他从湖边的C 处测得A 在北偏西45°方向上,测得B 在北偏东32°方向上,且量得B 、C 之间的距离为100米,根据上述测量结果,请你帮小明计算A 、B 之间的距离是多少?(结果精确到1米.参考数据:sin32°=0.5299,cos32°=0.8480)23、在一次夏令营活动中,小明从营地A 点出发,沿北偏东600方向走了500米到达B 点,然后再沿北偏西300方向走了500米到达目的地C 点.(1)求A 、C 两地之间的距离;(2)确定目的地C 在营地A 的什么方向.24、已知,如图,水库大坝的横截面是梯形,坝顶宽是m 8,坝高为m 30,斜坡AD 的坡度为i 1 = 1:3,斜坡CB 的坡度为i 2 = 2:1,求斜坡AD 的坡角α,坝度宽AB 和斜坡AD 的长.25、已知,如图,海岛A 四周20海里范围内是暗礁区.一艘货轮由东向西航行,在B 处测得岛A 在北偏西︒60,航行24海里后到C 处,测得岛A 在北偏西︒30.请通过计算说明,货轮继续向西航行,有无触礁危险?26、已知:∠A 为锐角,并且sinA=178,求cosA 的值.27、证明:A 2tan 1+=A2cos 1(利用1cos sin 22=+A A )28、已知△ABC 中,∠C=90°,AD 是角平分线,且BD:CD=4:3.求sinB 的值.29、已知Rt △ABC 中,∠C=90°,sin ∠A+sin ∠B=m.求证:sin ∠A ∙sin ∠B=212-m .30、n 为何值时,方程()()01253152=++-+x n x n 的两个根分别是一个直角三角形两个锐角的正弦值.31、等腰三角形ABC 的周长为22+,腰AB 的长为1,求底角的度数.32、在△ABC 中,∠A 使关于x 的方程0sin cos sin 222=-+∙-A A x A x 有两个相等的实数根,斜边c 使关于y 的方程0682=-++c y cy 有两个相等的实数根,解这个直角三角形.33、已知在等腰梯形ABCD 中,AD+BC=18cm,sinABC=352,AC 与BD 相交于O, ∠BOC=120°,试求AB 的长.34、某片绿地的形状如图所示,其中∠A=60°,AB ⊥BC,AD ⊥CD,AB=200m,CD=100m,求AD 、BC 的长。

中考数学提高题专题复习直角三角形的边角关系练习题含详细答案

中考数学提高题专题复习直角三角形的边角关系练习题含详细答案

中考数学提高题专题复习直角三角形的边角关系练习题含详细答案一、直角三角形的边角关系1.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【答案】6.4米【解析】解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°.∴DC=BC•cos30°=3=⨯=米,639∵CF=1米,∴DC=9+1=10米,∴GE=10米,∵∠AEG=45°,∴AG=EG=10米,在直角三角形BGF中,BG=GF•tan20°=10×0.36=3.6米,∴AB=AG-BG=10-3.6=6.4米,答:树高约为6.4米首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高2.在等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,∠EMF=135°.将∠EMF绕点M旋转,使∠EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题:(1)当∠EMF绕点M旋转到如图①的位置时,求证:BE+CF=BM;(2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,tan∠BEM=,AN=+1,则BM=,CF=.【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣【解析】【分析】(1)由等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,可得BM=MN,∠BMN=135°,又∠EMF=135°,可证明的△BME≌△NMF,可得BE=NF,NC=NM=BM进而得出结论;(2)①如图②时,同(1)可证△BME≌△NMF,可得BE﹣CF=BM,②如图③时,同(1)可证△BME≌△NMF,可得CF﹣BE=BM;(3) 在Rt△ABM和Rt△ANM中,,可得Rt△ABM≌Rt△ANM,后分别求出AB、 AC、 CN 、BM、 BE的长,结合(1)(2)的结论对图①②③进行讨论可得CF的长.【详解】(1)证明:∵△ABC是等腰直角三角形,∴∠BAC=∠C=45°,∵AM是∠BAC的平分线,MN⊥AC,∴BM=MN,在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°,∵∠ENF=135°,,∴∠BME=∠NMF,∴△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵CN=CF+NF,∴BE+CF=BM;(2)针对图2,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=NF﹣CF,∴BE﹣CF=BM;针对图3,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=CF﹣NF,∴CF﹣BE=BM;(3)在Rt△ABM和Rt△ANM中,,∴Rt△ABM≌Rt△ANM(HL),∴AB=AN=+1,在Rt△ABC中,AC=AB=+1,∴AC=AB=2+,∴CN=AC﹣AN=2+﹣(+1)=1,在Rt△CMN中,CM=CN=,∴BM=BC﹣CM=+1﹣=1,在Rt△BME中,tan∠BEM===,∴BE=,∴①由(1)知,如图1,BE+CF=BM,∴CF=BM﹣BE=1﹣②由(2)知,如图2,由tan∠BEM=,∴此种情况不成立;③由(2)知,如图3,CF﹣BE=BM,∴CF=BM+BE=1+,故答案为1,1+或1﹣.【点睛】本题考查三角函数与旋转与三角形全等的综合,难度较大,需综合运用所学知识求解.3.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB 的延长线于切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=,求FG的长.【答案】(1)证明见解析;(2)AC∥EF,证明见解析;(3)FG= .【解析】试题分析:(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;(2)AC与EF平行,理由为:如图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;(3)如图3所示,连接OG,OC,先求出KE=GE,再求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.试题解析:(1)如图1,连接OG.∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.(2)AC∥EF,理由为连接GD,如图2所示.∵KG2=KD•GE,即,∴,又∵∠KGE=∠GKE,∴△GKD∽△EGK,∴∠E=∠AGD,又∵∠C=∠AGD,∴∠E=∠C,∴AC∥EF;(3)连接OG,OC,如图3所示,∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.∵sinE=sin∠ACH=,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即(3t)2+t2=(2)2,解得t=.设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,由勾股定理得:OH2+CH2=OC2,即(r-3t)2+(4t)2=r2,解得r= t=.∵EF为切线,∴△OGF为直角三角形,在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH=,∴FG=【点睛】此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.4.已知:△ABC内接于⊙O,D是弧BC上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB 于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=,BN=,tan∠ABC=,求BF的长.【答案】(1)证明见解析;(2)证明见解析;(3)24.【解析】试题分析:(1)易证OH为△ABC的中位线,可得AC=2OH;(2)∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,又∵∠PAC =∠BCD,可证∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,连接OB,易证∠GBN=∠ABC,所以BG=BQ.在Rt△BNQ中,根据tan∠ABC=,可求得NQ、BQ的长.利用圆周角定理可求得IC和AI的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.试题解析:(1)在⊙O中,∵OD⊥BC,∴BH=HC,∵点O是AB的中点,∴AC=2OH;(2)在⊙O中,∵OD⊥BC,∴弧BD=弧CD,∴∠PAC=∠BCD,∵∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,∴∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB 与OD相交于点M,连接OB,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴2∠AND=180°,∴∠AND=90°,∵tan∠ABC=,∴,∴,∴,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵∠ACI=90°,tan∠AIC=tan∠ABC=,∴,∴IC=,∴由勾股定理可求得:AI=25,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=,BH=BQ+QH=,∵OB2=BH2+OH2,∴,解得:,当QH=时,∴QD=,∴ND=,∴MN=,MD=15,∵,∴QH=不符合题意,舍去,当QH=时,∴QD=∴ND=NQ+QD=,ED=,∴GD=GN+ND=,∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴ BR=RG+BG=12,∴BF=2BR=24.考点:1圆;2相似三角形;3三角函数;4直角三角形.5.某条道路上通行车辆限速60千米/时,道路的AB段为监测区,监测点P到AB的距离PH为50米(如图).已知点P在点A的北偏东45°方向上,且在点B的北偏西60°方向上,点B在点A的北偏东75°方向上,那么车辆通过AB段的时间在多少秒以内,可认定为超速?(参考数据:3≈1.7,2≈1.4).【答案】车辆通过AB段的时间在8.1秒以内,可认定为超速【解析】分析:根据点到直线的距离的性质,构造直角三角形,然后利用解直角三角形的应用,解直角三角形即可.详解:如图,由题意知∠CAB=75°,∠CAP=45°,∠PBD=60°,∴∠PAH=∠CAB–∠CAP=30°,∵∠PHA=∠PHB=90°,PH=50,∴AH=tan PH PAH33,∵AC∥BD,∴∠ABD=180°–∠CAB=105°,∴∠PBH=∠ABD–∠PBD=45°,则PH=BH=50,∴3,∵60千米/时=503米/秒,∴时间t=50350503+=3+33≈8.1(秒),即车辆通过AB段的时间在8.1秒以内,可认定为超速.点睛:该题考查学生通过构建直角三角形,利用某个度数的三角函数值求出具体边长,即实际路程,并进行判断相关的量。

中考数学专题训练:解直角三角形及其应用(附参考答案)

中考数学专题训练:解直角三角形及其应用(附参考答案)

中考数学专题训练:解直角三角形及其应用(附参考答案)1.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论不正确的是( )A.sin B=ADAB B.sin B=ACBCC.sin B=ADAC D.sin B=CDAC2.如图,在由边长为1的小正方形组成的网格中,点A,B,C,D都在这些小正方形的格点上,AB,CD相交于点E,则sin ∠AEC=( )A.2√55B.√55C.12D.√1043.计算sin 30°·tan 45°的结果是( )A.12B.√32C.√36D.√244.已知在Rt△ABC中,∠C=90°,∠A=60°,则tan B的值为( ) A.√33B.1C.√3D.25.如图,在△ABC中,∠C=90°,∠A=30°,则cos B的值为( )A.13B.12C.√22D.√326.如图,AD是△ABC的高.若BD=2CD=6,tan C=2,则边AB的长为( )A.3√2B.3√5C.3√7D.6√27.已知α为锐角,且2sin (α-10°)=√3,则α等于( )A.50°B.60°C.70°D.80°8.如图,在点F处看建筑物顶端D的仰角为32°,向前走了15米到达点E,即EF=15米,在点E处看点D的仰角为64°,则CD的长用三角函数表示为( )A.15sin 32°B.15tan 64°C.15sin 64°D.15tan 32°9.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,E为BD上一点,使得AE =AC.若BE=3ED,则sin ∠BAE=( )A.12B.15C.35D.3410.如图,河对岸有铁塔AB,C,D,B三点共线,在C处测得塔顶A的仰角为30°,向铁塔方向水平前进14 m到达D处,在D处测得A的仰角为45°,塔高AB为( )A.4(4√3-1)m B.7(√3+1)mC.(16√3+7)m D.(10√3+7)m11.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的塔AB的高度,他从塔底部点B处前行30 m到达斜坡CE的底部点C处,然后沿斜坡CE前行20 m到达最佳测量点D处,在点D处测得塔顶A的仰角为30°,已知斜坡的斜面坡度i=1∶√3,且点A,B,C,D,E在同一平面内,小明同学测得塔AB的高度是( )A.(10√3+20)m B.(10√3+10)mC.20√3 m D.40 m12.如图,已知在Rt△ABC中,∠ACB=90°,AC=1,AB=2,则sin B的值是______.13.在△ABC中,∠A=45°,AB=4√2,BC=5,则△ABC的面积为_________.14.如图,在平面直角坐标系中,已知点A(1,0),点B(0,-3),点C在x轴上,,则点C的坐标为______.且点C在点A右方,连接AB,BC.若tan ∠ABC=1315.如图,在杭州西湖风景区游船处,在离水面高度为5 m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13 m,此人以0.5 m/s的速度收绳,10 s后船移动到点D的位置,则船向岸边移动了______________m.(假设绳子是直的,结果保留根号)16.某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿北偏东45°方向航行,那么“海天”号沿______________方向航行.17.湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C 接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C在A的北偏东30°方向上,B在A的北偏东60°方向上,且B在C的正南方向900米处.(1)求湖岸A与码头C的距离;(结果精确到1米,参考数据:√3≈1.732)(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计)18.如图,已知正方形ABCD和正方形BEFG,点G在AD上,GF与CD交于点H,tan ∠ABG=1,正方形ABCD的边长为8,求BH的长.219.小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2.已知AD=BE=10 cm,CD=CE=5 cm,AD⊥CD,BE⊥CE,∠DCE=40°.(结果精确到0.1 cm,参考数据:sin 20°≈0.34,cos 20°≈0.94,tan 20°≈0.36,sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84)(1)连接DE,求线段DE的长;(2)求点A,B之间的距离.参考答案1.C 2.A 3.A 4.A 5.B 6.D 7.C 8.C 9.C 10.B 11.A 12.12,0) 15.(12-√39) 16.北偏西45°13. 2或14 14.(9417.(1)湖岸A与码头C的距离约为1 559米(2)在接到通知后,快艇能在5分钟内将该游客送上救援船,理由略18.BH=1019.(1)DE的长为3.4 cm (2)点A,B之间的距离为22.2 cm。

2021年中考九年级数学第一轮专题复习:三角形 综合压轴题强化训练(无答案)

2021年中考九年级数学第一轮专题复习:三角形 综合压轴题强化训练(无答案)

2021年中考九年级数学第一轮专题复习:三角形综合压轴题强化训练1、已知,在Rt△ABC中,∠A=90°,点D在BC边上,点E在AB边上,,过点B作BF⊥DE交DE的延长线于点F.(1)如图1,当AB=AC时:①∠EBF的度数为;②求证:DE=2BF.(2)如图2,当AB=kAC时,求的值(用含k的式子表示).2、在等腰Rt△ABC中,∠BAC=90°,AB=AC,点P为AC上一点,M为BC上一点.(1)若AM⊥BP于点E.①如图1,BP为△ABC的角平分线,求证:PA=PM;②如图2,BP为△ABC的中线,求证:BP=AM+MP.(2)如图3,若点N在AB上,AN=CP,AM⊥PN,求的值.3、如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E分别是AC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s.解答下列问题:(1)当t为何值时,以点E、P、Q为顶点的三角形与△ADE相似?(2)当t为何值时,△EPQ为等腰三角形?(直接写出答案即可).4、如图,在△ABC中,∠ACB=90°,AC=BC=6cm,等腰RT△DEF中,∠D=90°,EF=4cm.EF在BC 所在直线L上,开始时点F与点C重合,让等腰RT△DEF沿直线L向右以每秒1cm的速度做匀速运动,最后点E和点B重合。

(1)请直接写出等腰RT△DEF运动6S时与△ABC重叠部分面积(2)设运动时间为xS,运动过程中,等腰RT△DEF与△ABC重叠部分面积为ycm²①在等腰RT△DEF运动6S后至运动停止前这段时间内,求y与x之间的函数关系式②在RT△DEF整个运动过程中,求当x为何值时,y=1/2.5、【操作发现】如图(1),在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=45°,连接AC,BD交于点M.①AC与BD之间的数量关系为;②∠AMB的度数为;【类比探究】如图(2),在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC,交BD的延长线于点M.请计算的值及∠AMB的度数;【实际应用】如图(3),是一个由两个都含有30°角的大小不同的直角三角板ABC、DCE组成的图形,其中∠ACB=∠DCE=90°,∠A=∠D=30°且D、E、B在同一直线上,CE=1,BC=,求点A、D之间的距离.6、如图1,在△ABC 中,AB =AC =10,,点D 为BC 边上的动点(点D 不与点B ,C 重合).以D 为顶点作∠ADE =∠B ,射线DE 交AC 边于点E ,过点A 作AF ⊥AD 交射线DE 于点F ,连接CF .(1)求证:△ABD ∽△DCE ;(2)当DE ∥AB 时(如图2),求AE 的长;(3)点D 在BC 边上运动的过程中,是否存在某个位置,使得DF =CF ?若存在,求出此时BD 的长;若不存在,请说明理由.7、如图,在△ABC 中,AB =AC ,△BAC =120°,D 为BC 边上的点,将DA 绕D 点逆时针旋转120°得到DE .(1)如图1,若△DAC =30°.△求证: AB =BE ;△直接写出BE 2+CD 2与AD 2的数量关系为 ;(2)如图2,点D 为BC 边上任意一点,线段BE 、CD 、AD 是否依然满足(1)中△的关系,请给出结论并证明.MBAABEDC DC B A8、已知△ABC≌△ADE,∠BAC=∠DAE=90°.(1)如图(1)当C、A、D在同一直线上时,连CE、BD,判断CE和BD位置关系,填空:CE_____BD.(2)如图(2)把△ADE绕点A旋转到如图所示的位置,试问(1)中的结论是否仍然成立,写出你的结论,并说明理由.(3)如图(3)在图2的基础上,将△ACE绕点A旋转一个角度到如图所示的△AC′E′的位置,连接BE′、DC′,过点A 作AN⊥BE′于点N,反向延长AN交DC′于点M.求的值.9、△ABC中,AC=BC,∠ACB=α,点D是平面内不与点A和点B重合的一点,连接DB,将线段DB绕点D顺时针旋转α得到线段DE,连接AE、BE、CD.(1)如图①,点D与点A在直线BC的两侧,α=60°时,的值是;直线AE与直线CD相交所成的锐角的度数是度;(2)如图②,点D与点A在直线BC两侧,α=90°时,求的值及直线AE与直线CD相交所成的锐角∠AMC的度数;DMDC(3)当α=90°,点D 在直线AB 的上方,S △ABD =S △ABC ,请直接写出当点C 、D 、E 在同一直线上时,的值.10、(1)问题发现如图1,在△OAB 和△OCD 中,OA =OB ,OC =OD ,△AOB =△COD =40°,连接AC ,BD 交于点M .填空: △BDAC的值为 ; △△AMB 的度数为 . (2)类比探究如图2,在△OAB 和△OCD 中,△AOB =△COD =90°,△OAB =△OCD =30°,连接AC 交BD 的延长线于点M .请判断BDAC的值及△AMB 的度数,并说明理由; (3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=7,请直接写出当点C与点M重合时AC的长.11、几何探究:【问题发现】(1)如图1所示,ABC∆是有公共顶点的等边三角形,BD、CE的关系是(选填“相等”∆和ADE或“不相等”);(请直接写出答案)【类比探究】(2)如图2所示,ABC∆是有公共顶点的含有30︒角的直角三角形,(1)中的结论还成立吗?∆和ADE请说明理由;【拓展延伸】(3)如图3所示,ADE∆和ABC∆绕点∆是有公共顶点且相似比为1:2的两个等腰直角三角形,将ADEA自由旋转,若BC=B、D、E三点共线时,直接写出BD的长.。

中考专题训练(解直角三角形应用题)—解析版

中考专题训练(解直角三角形应用题)—解析版

答:这两座建筑物顶端 C 、 D 间的距离为 20 39m .
【解答】解:过点 C 作 CD ⊥ AB 于点 D ,由题意得: BCD = 30 ,设 BC = x ,则:
在 RtBCD 中, BD = BC sin 30 = 1 x , CD = BC cos 30 = 3 x ;
2
2
AD = 30 + 1 x , 2
则 AD = AE + EB = 20 3 + 20 = 20( 3 + 1)(m) ,
在 RtADC 中, A = 30 , DC = AD = (10 + 10 3)m .
2 答:塔高 CD 为 (10 + 10 3)m .
测得屋檐 E 点的仰角为 60 ,房屋的顶层横梁 EF = 12m , EF / /CB , AB 交 EF 于点 G (点 C , D , B 在同一
∴tan30°= x , x+6
解得 x≈8.22, 根据题意可知: DM=MH=MN+NH, ∵ MN=AC=10, 则 DM=10+8.22=18.22, ∴ CD=DM+MC=DM+EF=18.22+1.6=19.82≈19.8(m). 答:建筑物 CD 的高度约为 19.8m.
9.(2020·四川眉山)某数学兴趣小组去测量一座小山的高度,在小山顶上有一高度为 20 米的发射塔 AB ,如 图所示,在山脚平地上的 D 处测得塔底 B 的仰角为 30 ,向小山前进 80 米到达点 E 处,测得塔顶 A 的仰角为 60 ,求小山 BC 的高度.
AD2 + CD2 = AC 2 ,即: (30 + 1 x)2 + ( 3 x)2 = 702 ,

中考数学专题复习 全等三角形的相关模型总结(无答案)

中考数学专题复习 全等三角形的相关模型总结(无答案)

全等的相关模型总结一、角平分线模型应用1.角平分性质模型:辅助线:过点G 作GE ⊥射线AC(1).例题应用:①如图1,在中ABC ∆,,cm 4,6,900==∠=∠BD cm BC CAB AD C 平分,那么点D 到直线AB 的距离是 cm.②如图2,已知,21∠=∠,43∠=∠.BAC AP ∠平分求证:.图1 图2①2 (提示:作DE ⊥AB 交AB 于点E )(2).模型巩固:练习一:如图3,在四边形ABCD 中,BC>AB ,AD=CD ,BD 平分BAC ∠..求证:︒=∠+∠180C A图3练习二:已知如图4,四边形ABCD 中,图4练习三:如图5,,,900CAB AF D AB CD ACB ABC Rt ∠⊥=∠∆平分,垂足为,中,交CD 于点E ,交CB 于点F.(1)求证:CE=CF.(2)将图5中的△ADE 沿AB 向右平移到'''E D A ∆的位置,使点'E 落在BC 边上,其他条件不变,如图6所示,是猜想:'BE 于CF 又怎样的数量关系?请证明你的结论.图5 图6练习四:如图7,90A AD BC =︒,∠∥,P 是AB 的中点,PD 平分∠ADC .求证:CP 平分∠DCB .图7练习五:如图8,AB >AC ,∠A 的平分线与BC 的垂直平分线相交于D ,自D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F .求证:BE=CF .图8练习六:如图9所示,在△ABC 中,BC 边的垂直平分线DF 交△BAC 的外角平分线AD 于点D ,F为垂足,DE ⊥AB 于E ,并且AB>AC 。

求证:BE -AC=AE 。

练习七: 如图10,D 、E 、F 分别是△ABC 的三边上的点,CE=BF ,且△DCE 的面积与△DBF 的面积相等,求证:AD 平分∠BAC 。

2.角平分线+垂线,等腰三角形比呈现辅助线:延长ED 交射线OB 于F 辅助线:过点E 作EF ∥射线OB(1).例题应用:①.如图1所示,在△ABC 中,∠ABC=3∠C ,AD 是∠BAC 的平分线,BE ⊥AD 于F 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
B
A
A
B C
D E F
G
第2题图
直角三角形
一、选择题
1.如图,△ABC 中,∠C =90°,AC =3,点P 是边BC 上的动点,则AP 长不可能...是( ) A
3 C .
4 D .5
2.都是边长为4的等边三角形,点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为( )
(A B )C )D )3.在△ABC 中,AB =6,AC =8,BC =10,则该三角形为( )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .等腰直角三角形
4.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点
B 与点A 重合,折痕为DE ,则BE 的长为( )
(A )4 cm (B )5 cm (C )6 cm (D )10 cm
第5题
5.图中,每个小正方形的边长为1,ABC ∆的三边c b a ,,的大小关系式:
(A )
b c a << (B )c b a << (C )b a c << (D )a b c << 6.下列四组线段中,可以构成直角三角形的是( ) A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,6 二、填空题
1.如图,在△ABC 中,AB =AC =8,AD 是底边上的高,E 为AC 中点,则DE = . 2.已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等
腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 .
第1题图
1A
第4题
B
C
D
E
3.勾股定理有着悠久的历史,它曾引起很多人的兴趣.l955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR 使得∠R=90°,点H 在边QR 上,点D ,E 在边PR 上,点G ,F 在边_PQ 上,那么∆PQR 的周长等于 .
4.已知,在△ABC 中,∠A = 45°,AC = 2,AB = 3+1,则边BC 的长为 .
5.如图,四边形ABCD 中,AB =AC =AD ,E 是CB 的中点,AE =EC ,∠BAC =3∠DBC ,BD
=则AB = .
第5题 第6题 第7题
6.如图,Rt △ABC 中,∠C=0
90, ∠ABC=0
30,AB=6.点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA=DE ,则AD 的取值范围是 .
7.两块完全一样的含30︒
角的三角板重叠在一起,若绕长直角边中点M 转动,使上面一块的斜边刚好过下面一块的直角顶点,如图6,∠A =30︒
,AC =10,则此时两直角顶点C 、C '间的距离是 。

8.一个承重架的结构如图所示,如果∠1=155°,那么∠2=_ _°.
9.在,90,
=∠∆ACB ABC Rt 中D 是AB 的中点,CD=4cm ,则AB= cm 。

10.Rt△ABC 中,∠BAC=90°,AB=AC=2,以AC 为一边,在△ABC 外部作等腰直角三角形 ACD ,
则线段BD 的长为 。

1
2
第8题
A B
C D 1.如图,AB = 3AC ,BD = 3AE ,又BD ∥AC ,点B ,A ,E 在同一条直线上.
(1) 求证:△ABD ∽△CAE ;
(2) 如果AC =BD ,AD =22
BD ,设BD = a ,求BC 的长.
2.如图所示,在Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,CD =5㎝,
求AB 的长.
[问题情境]
勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言。

[定理表述]
请你根据图1中的直角三角形叙述勾股定理(用文字及符号语言叙述);(3分)
[尝试证明]
以图1中的直角三角形为基础,可以构造出以a 、b 为底,以b a +为高的直角梯形(如图2),请你利用图2,验证勾股定理;(4分) [知识拓展]
利用图2中的直角梯形,我们可以证明
.2<+c
b
a 其证明步骤如下: AD
b a BC ,+= = 。

又∵在直角梯形ABCD 中有BC AD (填大小关系),即 ,
.2<+∴
c
b
a。

相关文档
最新文档