三视图与展开图重点难点考点真题(word+答案)
新人教版七年级几何图形初步练习专题(一)---三视图、展开图专题
三视图、展开图专题【题型一】从不同方向看几何体1、如图所示的立体图形从上面看到的图形是( )2、从左面看图中四个几何体,得到的图形是四边形的几何体共有( ) A. 1个 B. 2个 C. 3个 D. 4个3、从不同方向看一只茶壶,如图,下列选项中从上往下看的效果图是( )。
4、从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )。
A. 圆柱B. 三棱锥C. 球D. 圆锥5、由四个相同的小正方体搭建了一个积木,它的左视图和主视图均如图所示,则这堆积木不可能是( )6、由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( )A . 从正面看面积最大B . 从左面看面积最大C . 从上面看面积最大D . 三个视图的面积一样大AB CD从左面看 从上面看从正面看ABC D7、5个棱长为1的正方体组成图所示的几何体.(1)该几何体的体积是 (立方单位),表面积是 (平方单位). (2)画出从正面看和从左面看到的平面图形.8、如图,这个图形从正面看是__________,从左面看是__________,从上面看是__________.【题型二】正方体的展开与折叠1、如图是一个长方体包装盒,则它的平面展开图是( )A .B .C .D .2、下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是( )A .B .C .D .3、把如图中的三棱柱展开,所得到的展开图是( )A .B .C .D .4、下列四个图形中,是三棱柱的平面展开图的是( )A .B .C .D .5、小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如1 2 3x y图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的平面展开图可能是( ).A. B. C. D6、一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“岳”相对的面上的汉字是( ) A .建 B .设C .和D .谐7、如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是( )A .我B .中C .国D .梦月8、一个正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )9、下面四个图形中,经过折叠能围成如图所示的几何图形的是【 】10、若要使图中平面展开图按折叠成正方体后,相对面上两个数之和为6,x=_ ___, y=______.A。
浙教新版九年级下册《第3章_三视图与表面展开图》2024年单元测试卷(4)+答案解析
浙教新版九年级下册《第3章三视图与表面展开图》2024年单元测试卷(4)一、选择题:本题共15小题,每小题3分,共45分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下面四个几何体中,其左视图为圆的是()A. B. C. D.2.将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的俯视图是()A.B.C.D.3.某物体如图所示,它的主视图是()A.B.C.D.4.一个几何体的三视图如图所示,则该几何体是()A.B.C.D.5.如图,这是一个底面为等边三角形的正三棱柱和它的主视图、俯视图,则它的左视图的面积是()A.4B.2C.D.6.如图2是图1长方体的三视图,若用S表示面积,,,则()A.B.C.D.7.某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为的标杆DF,如图所示,量出DF的影子EF的长度为1m,同时再量出旗杆AC的影子BC的长度为6m,那么旗杆AC的高度为()A.6mB.7mC.D.9m8.如图所示的几何体是由几个大小相同的小正方体搭成的,将正方体①移走后,从左面看到的图形是()A.B.C.D.9.将一正方体纸盒沿下如图所示的粗实线剪开,展开成平面图,其展开图的形状为()A.B.C.D.10.如图,一个几何体是由5个大小相同的小正方体搭成,该几何体的左视图是() A.B.C.D.11.如图,是一个几何体的三视图,则这个几何体是()A.B.C.D.12.把如图所示的纸片沿着虚线折叠,可以得到的几何体是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥13.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创字所在的面相对的面上标的字是()A.水B.陵C.力D.魅14.由完全一样的小正方体堆成一件物体,其正视图、俯视图如图所示,则这件物体最多用小正方体的个数为()A.10个B.11个C.12个D.14个15.如图是某几何体的三视图及相关数据,则判断正确的是()A. B. C. D.二、填空题:本题共3小题,每小题3分,共9分。
2020年中考数学必考考点专题27三视图与展开图(含解析)
专题13 三视图与展开图1.视图:当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
2.物体的三视图特指主视图、俯视图、左视图。
(1)主视图:从物体的前面向后面投射所得的视图称主视图,能反映物体的前面形状。
(2)俯视图:从物体的上面向下面投射所得的视图称俯视图,能反映物体的上面形状。
(3)左视图:从物体的左面向右面投射所得的视图称左视图,能反映物体的左面形状,有时也叫做侧视图。
物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。
3.展开图:平面图形有三角形、四边形、圆等.立体图形有棱柱、棱锥、圆柱、圆锥、球等.把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形。
【例题1】(2019•四川省达州市)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】B【解析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.从左面看可得到从左到右分别是3,1个正方形.专题知识回顾专题典型题考法及解析【例题2】(2019•甘肃)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为.【答案】(18+2)cm2.【解析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm2).【例题3】(2019•江苏连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A. B. C. D.【答案】B【解析】根据几何体的侧面展开图可知该几何体为四棱锥,所以它的底面是四边形.由题意可知,该几何体为四棱锥,所以它的底面是四边形.专题典型训练题一、选择题1.(2019广东深圳)下列哪个图形是正方体的展开图()A.B. C.D.【答案】B【解析】立体图形的展开图B中图形符合“一四一”模型,是正方体的展开图.故选B.2.(2019•山东省济宁市)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A.B.C.D.【答案】B.【解析】考点是几何体的展开图。
2020年中考数学必考34个考点专题27:三视图与展开图(含解析)
专题13 三视图与展开图1.视图:当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
2.物体的三视图特指主视图、俯视图、左视图。
(1)主视图:从物体的前面向后面投射所得的视图称主视图,能反映物体的前面形状。
(2)俯视图:从物体的上面向下面投射所得的视图称俯视图,能反映物体的上面形状。
(3)左视图:从物体的左面向右面投射所得的视图称左视图,能反映物体的左面形状,有时也叫做侧视图。
物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。
3.展开图:平面图形有三角形、四边形、圆等.立体图形有棱柱、棱锥、圆柱、圆锥、球等.把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形。
【例题1】(2019•四川省达州市)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】B【解析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.从左面看可得到从左到右分别是3,1个正方形.【例题2】(2019•甘肃)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积专题知识回顾专题典型题考法及解析为.【答案】(18+2)cm2.【解析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm2).【例题3】(2019•江苏连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.【答案】B【解析】根据几何体的侧面展开图可知该几何体为四棱锥,所以它的底面是四边形.由题意可知,该几何体为四棱锥,所以它的底面是四边形.专题典型训练题一、选择题1.(2019广东深圳)下列哪个图形是正方体的展开图()A.B.C.D.【答案】B【解析】立体图形的展开图B中图形符合“一四一”模型,是正方体的展开图.故选B.2.(2019•山东省济宁市)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A.B.C.D.【答案】B.【解析】考点是几何体的展开图。
2017年全国中考数学真题分类 三视图与展开图2017(选择题)
2017年全国中考数学真题分类三视图与展开图选择题一、选择题1..(2017四川广安,6,3分)如图所示的几何体,上下部分均为圆柱体,其左视图是( )答案:C,解析:从左边看,下方是一个大矩形,上方是一个小矩形.故选C.2.(2017浙江丽水·3·3分)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同答案:B.解析:根据三视图的概念,这个几何体的主视图和左视图是相同的长方形,俯视图是正方形,故选B.3.(2017四川泸州,4,3分)左下图是一个由4个相同的正方体组成的立体图形,它的左视图是( )答案:D,解析:该几何体从左面看,是一列两层的两个小正方形.故选D.4.(2017安徽中考·3.4分)如图,一个放置在水平试验台上的锥形瓶,它的俯视图为()A. B. C. D.答案:B.解析:根据俯视图的概念,该几何体的俯视图是两个同心圆,故选B.5.(2017浙江衢州,2,3分)下图是由四个相同的小立方块搭成的几何体,它的主视图是()主视方向A B C D答案:D,解析:主视图即是从正面看到的视图,易得左侧有2个正方形,右侧有一个正方形.故选D.6.(2017山东济宁,5,3分)下列几何体中,主视图、俯视图、左视图都相同的是A. B. C. D.答案:B,解析:根据几何体“三视图的定义”,如图,B选项球的主视图、俯视图、左视图都是圆,其他三个选项几何体的主视图、俯视图、左视图不一样.7.(2017山东德州,4,3分)如图,两个等直径圆柱构成如图所示的T型管道,则其俯视图正确的是()答案:B,解析:俯视图是从上往下看得到的图形,图中竖直圆柱的俯视图是圆形,横放的圆柱的俯视图是长方形,又它们等直径,故该T型管道的俯视图是选项B中图形.8.(2017山东威海,8,3分)一个几何体有n个大小相同的小正方形搭成,其左视图、俯视图、如图所示,则n的值最小是()A.5B.7C.9D.10答案:B,解析:由俯视图知该几何体1、2、3、4个位置上都有小正方体,结合左视图知1、2位置中,其中一个位置最多有三个另一个位置最少有一个小正方体,3、4位置中,其中一个位置最多有两个最少有一个小正方体,故该几何体至少有七个小正方体.1 23 49.(2017山东菏泽,3,3分)下列几何题是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()答案:C,解析:选项A的左视图和俯视图如图1所示,选项B的左视图和俯视图如图2所示,选项C的左视图和俯视图如图3所示,选项D的左视图和俯视图如图4所示.10.(2017年四川绵阳,4,3分)如图所示的几何体的主视图正确的是A. B. C. D.答案:D 解析:考查画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.11. (2017四川自贡,8,3分)下面是几何体中,主视图是矩形的是( )A .B .C .D .答案:A ,解析:选项A 中圆柱的主视图是矩形;选项B 中球的主视图是圆;选项C 中圆锥的主视图是等腰三角形;选项D 中圆台的主视图是等腰图形.12. (2017年四川南充,2,3分)图1是由7个小正方体组合而成的几何体,它的主视图是( )答案:A 解析:主视图是从前向后看立体图形所得到的平面图形.这里主视图共可看到四个正方形,其中左边从上到下共有3个正方形,右边只有1个正方形.故选A .13. (2017浙江舟山,4,3分)一个立方体的表面图如图所示,将其折叠成立方体后,“你”字对面的字是( ) A . 中B . 考C .顺D .利答案:C ,解析:解析:正方体的表面展开图共有如下11种:正面图1A .B .C .D .其中处在同一行上的间隔一个正方形的为对面,如图21中的1与2即为对面;不在同一行上的”之”字两端的正方形为对面,如图21与21中的1与2为对面,所以“你”字对面的字是“顺”,故选C.14. 2.(2017江苏盐城,2,3分)如图是某个几何体的主视图、左视图、俯视图,该几何体是A.圆柱B.球C.圆锥D.棱锥答案:C,解析:观察发现,主视图、左视图都是三角形,可猜想几何体可能是棱锥或圆锥,又因为俯视图是带圆心的圆,所以这个几何体是圆锥.15. (2017年四川内江,5,3分)由一些大小相同的小正方体搭成的几何体的俯视图如下图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是A B C D答案:A,解析:由已知条件可知,主视图有3列,每列小正方数形数目分别为1,2,3,由此可画出图形,如下所示:第2题图16.(2017山东临沂,5,3分)如图所示的几何体是由五个小正方体组成的,它的左视图是()答案:D解析:几何体的左视图有2列,左边一列小正方形数目是2,右边一列小正方形的数目是1,故选 D.17.(2017山东泰安,6,3分)下面四个几何体:其中,俯视图是四边形的几何体个数是()A.1 B.2 C.3 D.4答案:B,解析:根据几何体的形状以及摆放的方式可知,第一个正方体的俯视图为正方形,第二个圆柱体的俯视图为圆,第三个三棱柱的俯视图为矩形,第四个球体的俯视图为圆,所以俯视图是四边形的几何体的个数为2个.18. 5.(2017江苏连云港,5,3分)由6个大小相同的正方体塔成的几何体如图所示,比较它的正视图,左视图和俯视图的面积,则A.三个视图的面积一样大B.主视图的面积最小C.左视图的面积最小 D.俯视图的面积最小答案:C ,解析:分别画出这个几何体的正视图,左视图和俯视图,假设每个正方体的一个侧面的面积为1,则正视图的面积为5,左视图的面积为3,俯视图的面积为4,得到左视图的面积最小,故选择C选项.19.(2017四川达州2,3分)如图,几何体是由3个完全一样的正方体组成,它的左视图是()A. B. C. D.答案:B,解析:这个几何体从左边看,上下有两个正方体,故本题选B.20.(2017四川眉山,4,3分)右图所示几何体的主视图是答案:B,解析:主视图是指从立体图形的正面看到的平面图,从正面看,其主视图为2行2列,第一列有两个正方形,第二列也有两个正方形,故选择B.21. 2.(2017山东潍坊,2,3分)如图所示的几何体,其俯视图是()答案:D,解析:该杯子上口大下底小,且皆为圆形,又带着不透明的盖,故俯视图中下底圆形为虚线.22. 3.(2017浙江温州,3,4分)某运动会颁奖台如图所示,它的主视图是DCBA主视方向(第3题)A.B. C. D.答案:C,解析:主视图:从物体正面看到的平面图形,主视图能反映物体的正立面形状以及物体的高度和长度,及其上下、左右的位置关系.23. 3.(2017四川宜宾,3,3分)下面的几何体中,主视图为圆的是()A.B.C.D.答案:C,解析:圆柱的主视图是矩形,正方体的主视图是正方形,球体的主视图圆,圆锥的主视图是等腰三角形.24.(2017山东滨州,6,3分)图2是一个几何体的三视图,则这个几何体是()主视图左视图A. B. C. D.图2俯视图答案:B,解析:由主视图易知,只有B选项符合.25.(2017湖南岳阳,4,3分)下列四个立体图形中,主视图、左视图、俯视图都相同的是A.B.C.D.答案:B,解析:考察三视图,球体的主视图、俯视图、左视图是面积相等的圆,三视图相同.26. 5.(2017江苏扬州,,3分)经过圆锥顶点的截面的形状可能是【答案】B27. 4.(2017甘肃酒泉,4,3分)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是( )答案:D,解析:几何体的俯视图是指从上面看所得到的图形. 此题由上向下看是空心圆柱,看到的是一个圆环,中间的圆要画成实线.故选D.28. 2.(2017甘肃兰州,2,4分)如图所示,该几何体的左视图是从正面看DCBA【答案】DA B C D第4题图A B C D【解析】在三视图中实际存在而被遮挡的线用虚线来表示,故选D29. 4.(2017湖北黄冈,4,3分)已知:如图,是一几何体的三视图,则该几何体的名称为A .长方体B .正三棱柱C .圆锥D .圆柱答案:D ,解析:A .长方体的三个视图都是矩形; B .正三棱柱的视图应该有三角形;C .圆锥的视图也应该有三角形;D .圆柱的主视图和左视图都是矩形,俯视图是圆.30. 10.(2017湖北荆门,10,3分)已知:如图2,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( )B A .6个 B .7个 C .8个 D .9个答案:B ,解析:如答图1,以俯视图为基础,将另两个视图中小正方形的个数填写在俯视图的相应位置,即可得小正方体的个数是7.故选B .31. (2017山东烟台,4,3分)如图所示的工件,其俯视图是( )答案:B ,解析:从上面看到的图形是B 项中的图形.主视图 俯视图左视图图21 23 1 答图132. 5.(2017天津,3分)右图是一个由4个相同的正文体组成的立体图形,它的主视图是A B第5题C D答案:D,解析:从正面看立体图形,有两行三列,从下往上数,个数分别是3,1,且第二层的正方形在第一层的正中间,故选D.33. 3.(2017浙江义乌,3,4分)如图的几何体由五个相同的小正方体搭成,它的主视图是A.B. C. D.答案:A,解析:根据主视图是从物体的正面看得到的视图,从正面看可知第一层有3个正方形,第二层最左边有一个正方形.34. 4.(2017湖北咸宁,4,3分) 如图是某个几何体的三视图,该几何体是( )A.三棱柱 B.三棱锥 C.圆柱 D.圆锥答案:A解析:∵三棱柱的三视图符合所给的三视图的形状,∴A正确;∵三棱锥的三视图是三角形,与所给三视图不一致,∴B错误;∵圆柱的俯视图是圆,与所给三视图不一致,∴C错误;∵圆锥主视图、左视图都是三角形、俯视图是圆形,与所给三视图不一致,∴D错误.故选A.35.3.(2017湖北宜昌,3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美B.丽C.宜D.昌答案:C,解析:根据正方体展开图的相对面求解,如果以“爱”为底,则“我”和“美”分别为前侧面和后侧面,“丽”为右面,“宜”在上面,“昌在左面,故选择C .36.(2017湖南邵阳,4,3分)下列立体图形中,主视图是圆的是()A B C D答案:A,解析:因为球的主视图是圆,圆柱的主视图是长方形,圆锥的主视图是等腰三角形,正方体的主视图是正方形,故选A.37.4.(2017湖北鄂州,3分)如图是由几个大小相同的小正方形搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()答案:D,解析:从左向右看,一共有3列,左侧一列有2层,中间一列有2层,右侧一列有1层,故选D.A.B.C.D.1122第4题图38. (2017湖北十堰,2,5分)如图的几何体,其左视图是( )A .B .C .D .答案:B ,解析:左视图为从左向右看,此图从左向看看到的图形为B ,故选B .39.(2017湖北随州,3,3分)如图是某几何体的三视图,这个几何体是( )俯视图主视图A .圆锥B .长方体C .圆柱D .三棱柱答案:C ,解析:解析:A .圆锥的视图应该有三角形; B .长方体的三个视图都是矩形;C .圆柱的主视图和左视图都是矩形,俯视图是圆;D .三棱柱的视图应该有三角形.40. (湖南益阳,8,5分)如图,空心卷筒纸的高度为12cm ,外径(直径)为10cm ,内径为4cm ,在比例尺为1:4的三视图中,其主视图的面积是2·1·c ·n ·j ·y A .214πcm 2 B .2116πcm 2C .30cm 2D .7.5cm 2答案:D ,解析:圆柱的主视图是矩形,它的一边长是10cm ,另一边长是12cm.在比例尺为1:4的主视图中,它的对应边长分别为2.5cm ,3cm ,因而矩形的面积为7.5cm 2.因此选D .第8题图41.(2017江苏镇江,14,3分)如图是由6个大小相同的小正方体组成的几何体,它的主视图是A.答案:C,解析:这个几何体共两层三排三列,主视图看到的是这个几何体的长和高,故选C.44. (2017甘肃天水.2.4分)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()2题图A B C D答案:C,解析:俯视图即是从上面看到的视图,由实物图知从上面看到的是四个小正方形组成的大正方形,故选C.43.(2017湖南郴州,7,3分)如图(1)所示的圆锥的主视图是答案:A,解析:主视图就是从几何体的正面得到的投影,本题中主视图反映的是圆锥的高和底面·圆的直径,∴A符合.44. 3.(2017安徽中考·4分)如图,一个放置在水平试验台上的锥形瓶,它的俯视图为()A. B. C. D.答案:B.解析:根据俯视图的概念,该几何体的俯视图是两个同心圆,故选B.45.(2017新疆生产建设兵团,2,5分)某几何体的三视图如图所示,则该几何体是()A.球B.圆柱C.三棱锥D.圆锥答案:D 解析:由于主视图与左视图是三角形,俯视图是圆,该几何体是圆锥,故选D.46. 8. (2017浙江湖州,3分)如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是A.2002cm D.200π2cmcm C.100π2cm B.6002答案:D,解析:能够正确反映物体长、宽、高尺寸的正投影工程图(主视图,俯视图,左视图三个基本视图)称为三视图. 从物体的前面向后面投射所得的视图称主视图(正视图)--能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图--能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图(侧视图)--能反映物体的左面形状.由此可知,此几何体是圆柱体,由比例可知底面半径为5cm,高为20cm,所以该几何体的侧面积是一个长方形,即2=22520200r h cmSπππ⨯=⨯⨯=侧面积.47.4.(2017湖北天门,4,3分)如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是A.传B.统C.文D.化化文统传扬弘答案:C,解析:所给图形是正方体展开图中“132”型,∴把所给图形折成正方体后“弘”与“文”、“扬”与“统”、“传”与“化”相对,故选择C.48.6. (2017湖南张家界,3分)如图是一个正方体的表面展开图,则原正方体中与“美”字所在面相对的面上标的字是( )A.丽B.张C.家D.界答案:C,解析:同一行或列中,间一个小正方形就是一对相对面,所以“丽”与“张”是相对面;相对面不共顶点,所以“的”与“美”、“家”不是相对面,从而“的”与“界”是相对面;因此剩下的两个面“美”与“家”是相对面.49. 5.(2017浙江宁波,5,4分)如图所示的几何体的俯视图为( )【答案】D【解析】根据三视图的概念,俯视图是从物体的上面向下面看所得的视图,从上往下看,只有D 正确.故选D.50. 10.(2017四川凉山,10,4分)如图是一个几何体的三视图,则该几何体的侧面积是( ) A.213πB.10πC.20πD.413π【答案】A【解析】由三视图可知此几何体为圆锥,根据三视图的尺寸可得圆锥的底面半径为2,高为3,∴圆锥的母线长为:132322=+,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×2=4π,∴圆锥的侧面积=21×4π×13=213π.故选A.51. 3.(2017浙江绍兴,4分)如图的几何体由五个相同的小正方体搭成,它的主观图是A.B.C.D.【答案】A.【解析】从正面看第一层是三个小正方形,第二层左边一个小正方形,故选A.55.(2017北京,3,3分)右图是某个几何题的展开图,该几何体是()4 4334A.三棱柱B.圆锥C.四棱柱D.圆柱答案:A,解析:此图是三棱柱的展开图.53.(2017河南,3,3分)某几何体的左视图如下图所示,则该几何体不可能是( )A. B. C. D.答案:D,解析:从左视图可以看到几何体有几列,每列的最高层数是多少,选A、B、C从左面去看都只能看到2列,并且第一列的最高层数为2,第二列只有一层,和题中给出的左视图吻合,只有选项D的左视图应该可以看到有3列,第一列有2层,第2、3列均有1层,不符合题意,故应选D.55. (2017黑龙江齐齐哈尔,8,3分)一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b等于( )A. 10B. 11C. 12D.13答案:C解析:根据主视图可知俯视图中第一列最高为3块,第二列最高有1块,∴a=3×2+1=7,b=3+1+1=5,∴a+b=7+5=12.55.(2017湖北襄阳,6,3分)如图所示的几何体是由6个大小完全一样的正方体组合而成的,它的俯视图是()A. B. C. D.答案:A,解析:从几何体上面看几何体得到的平面图形是该几何体的俯视图.56.(2017山东聊城,6,3分)如图是由若跟个小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是()答案:C,解析:主视图是从前往后看,由俯视图可知从左到右最高层数依次为2,3,1,∴这个几何体的主视图是C.57.(2017新疆乌鲁木齐,8,4分)如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A. πB.2πC. 4πD. 5π答案:B,解析:观察三视图发现几何体为圆锥,其母线长为()2231+4,侧面积为12lR=12×2π×1×2=2π,故选B.58..(2017广西百色,7,3分)如图所示的正三棱柱,它的主视图、俯视图、左视图的顺序是( )A.①②③ B.②①③ C.③①② D.①③②答案:D,解析:主视图是三角形,俯视图是两个矩形,左视图是矩形.59. 4.(2017贵州安顺,4,3分)如图是一个圆柱体和一个长方体组成的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图为()A.B.C.D.答案:C,解析:根据简单组合体的三视图,从上边看矩形内部是个圆.60. 4.(2017年贵州省黔东南州,4,4分)如图所示,所给的三视图表示的几何体是A.圆锥 B.正三棱锥 C.正四棱锥 D.正三棱柱答案:D,解析:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个正三角形,∴此几何体为正三棱柱.61. 3.(2017江苏常州,3,3分)右图是某个几何体的三视图,则该几何体是( )A.圆锥B.三棱柱C.圆柱D.三棱锥【答案】B【解析】由俯视图知是三棱柱或三棱锥,再由主视图排除三棱锥.66. 2.(2017·辽宁大连,2,3分)一个几何体的三视图如图所示,则这个几何体是第2题A.圆锥B.长方体C.圆柱D.球答案:B 解析:观察发现,主视图、左视图、俯视图都是矩形,可以确定几何体是直棱柱,所以这个几何体是长方体,故选B.63. 3.(2017山东淄博,3,4分)下列几何体中,其主视图为三角形的是()A B C D答案:D,解析:圆锥体的主视图是三角形.64.(2017陕西,2,3分)如图所示的几何体是由一个长方体和一个圆柱组成的,则它的主视图为A .B .C .D .答案:B ,解析:主视图是从前面看,看到的应该是上下两个长方形.故选B .65. (2017年湖南长沙,7,3分)某几何体的三视图如图所示,因此几何体是A.长方体B.圆柱C.球D 正三棱柱答案:B ,解析:长方体的俯视图不是圆,错;C 球的三视图都是圆,对;D 正三棱柱的主视图是三角形,错。
立体图形的三视图与展开图知识导学
立体图形的视图与展开图知识导学一、视图1.准确理解三视图主视图:从物体的正面方向去观察,而只能看到的物体的长和高。
左视图:从物体的左边方向观察,而只能看到物体的高度和厚度。
俯视图:从物体的上方垂直向下看,只能看到物体的长和宽,而看不到物体的高度。
2.三视图的画法首先观察物体,画出视图外围轮廓线,然后将视图补充完整,其中看见的部分的轮廓线常用用实线,看不见的部分轮廓线常用用虚线。
3.掌握几种常见立体图形的三视图(1).正方体:三视图都是正方形;(2).球:三视图都是圆;(3). 圆柱:主视图和左视图都是长方形,俯视图是圆;(4). 圆锥:主视图和左视图都是三角形,俯视图是圆;(5).圆台:主视图和左视图都是梯形,俯视图是圆环;(6). 棱柱:主视图和左视图都是长方形,俯视图多边形,其中多边形的边数等于棱柱的棱数.4.中考实战练习:1.(07 浙江.台州)下图几何体的主视图是()A.B.C.D.(第1题)解析:从正面方向看,可以看到两层,第一层有三个小正方形,第二层有一个小正方形,而第二层的一个小正方形坐落在第一层最左边小正方形的上面。
由此可以看出,答案应选C.2. (07 山东.临淄)如图(1)放置的一个机器零件,若其主视图如图(2),则其俯视图是解析:首先明确俯视图是从物体的正上方向下看,本题从物体的上方向下看,可以看到外围的轮廓是长方形,而在外围轮廓的正中间,又可以看到一个小正方形,再结合主视图可以排除B 可选出正确答案C.3.(07 浙江.义乌)下面四个几何体中,主视图、左视图、俯视图是全等图形的几何图形是A.圆柱 B.正方体 C.三棱柱 D.圆锥解析:圆柱的主视图和左视图是长方形,俯视图是圆;正方体的正视图、左视图、俯视图都是正方形;三棱柱主视图和左视图都是长方形(或正方形),俯视图是三角形;圆锥的主视图和左视图都是三角形,俯视图是圆,因此可知答案为B.4. (07四川内江)4.如图(2)是一个立体图形的主视图、左视图和俯视图,那么这个立体图形是( )(A ) (B ) (C ) (D ) ( 2)( 1) (第2题)A .圆锥B .三棱锥C .四棱锥D .五棱锥解析:本题所给的四个答案的主视图和左视图都是三角形,故只有通过俯视图来判断到底是哪个立体图形,圆锥的俯视图是圆,三棱锥的俯视图是三角形,四棱锥的俯视图是四边形,五棱锥的俯视图是五边形,而本题中的俯视图是四边形,故只有B 答案符合题意,应选B.5.(07株洲)一个几何体的三视图如下图所示,主视图左视图俯视图那么这个几何体是( )A. B. C. D.解析:本题有三种解法:一、通过主视图判断,可直接得出只有C 的主视图是长方形;二、通过左视图也可发现只有C 的左视图是长方形,三、通过俯视图发现只有C 和D 的俯视图是三角形,再结合主视图或俯视图,就可排除D,故本题应选C.主视图 左视图俯视图 图(2)二、展开图1.准确理解展开图沿着立体图形的一些棱将它剪开,可以把立体图形开张成一个平面图形,同一个立体图形按不同的剪开方式得到的平面图形是不一样的。
中考数学真题《三视图与展开图》专项测试卷(附答案)
中考数学真题《三视图与展开图》专项测试卷(附答案) 学校:___________班级:___________姓名:___________考号:___________一.选择题(共9小题)1.(2024•顺义区二模)在下列几何体中主视图为三角形的是()A.B.C.D.2.(2024•大兴区二模)如图是某个几何体的展开图该几何体是()A.圆柱B.三棱锥C.三棱柱D.圆锥3.(2024•丰台区二模)榫卯(sǔnmǎo)是中国古代建筑家具及其它器械的主要结构方式是我国工艺文化精神的传承凸出部分叫榫凹进部分叫卯.如图是某个部件“榫”的实物图它的主视图是()A.B.C.D.4.(2024•海淀区二模)如图是一张长方形纸片用其围成一个几何体的侧面这个几何体可能是()A.圆柱B.圆锥C.球D.三棱锥5.(2024•朝阳区二模)如图是某个几何体的展开图该几何体是()A.圆柱B.圆锥C.三棱柱D.正方体6.(2024•石景山区二模)如图是某几何体的展开图该几何体是()A.三棱柱B.三棱锥C.四棱锥D.圆柱7.(2024•北京二模)下列几何体中主视图为三角形的是()A.B.C.D.8.(2024•西城区二模)如图是某几何体的三视图该几何体是()A.圆柱B.圆锥C.三棱柱D.长方体9.(2024•门头沟区二模)某几何体的展开图是由大小形状相等的两个正方形四个长宽不等的矩形组成则,该几何体是()A.正方体B.长方体C.四棱锥D.三棱柱10.(2024房山二模)右图是某几何体的展开图该几何体是(A)圆柱(B)长方体(C)圆锥(D)三棱柱参考答案与试题解析一.选择题(共9小题)1.(2024•顺义区二模)在下列几何体中主视图为三角形的是()A.B.C.D.【答案】D【考点】简单几何体的三视图【分析】根据主视图的定义判断即可.【解答】解:A.该几何体的主视图是矩形故本选项不合题意B.该几何体的主视图是一行两个矩形故本选项不合题意C.该几何体的主视图是正方形故本选项不合题意D.该几何体的主视图是等腰三角形故本选项符合题意故选:D.2.(2024•大兴区二模)如图是某个几何体的展开图该几何体是()A.圆柱B.三棱锥C.三棱柱D.圆锥【答案】D【考点】几何体的展开图【分析】根据展开图是一个扇形与圆知该几何体是圆锥.【解答】解:几何体的展开图是扇形与圆可知该几何体是圆锥故选:D.3.(2024•丰台区二模)榫卯(sǔnmǎo)是中国古代建筑家具及其它器械的主要结构方式是我国工艺文化精神的传承凸出部分叫榫凹进部分叫卯.如图是某个部件“榫”的实物图它的主视图是()A.B.C.D.【答案】D【考点】简单几何体的三视图【分析】从正面看到的平面图形是主视图根据主视图的含义可得答案.【解答】解:如图所示的几何体的主视图如下:.故选:D.4.(2024•海淀区二模)如图是一张长方形纸片用其围成一个几何体的侧面这个几何体可能是()A.圆柱B.圆锥C.球D.三棱锥【答案】A【考点】展开图折叠成几何体【分析】根据圆柱的侧面展开图是矩形解答即可.【解答】解:如图是一张长方形纸片用其围成一个几何体的侧面这个几何体可能是圆柱故选项A符合题意.故选:A.5.(2024•朝阳区二模)如图是某个几何体的展开图该几何体是()A.圆柱B.圆锥C.三棱柱D.正方体【答案】A【考点】几何体的展开图【分析】侧面为长方形底面为2个圆形故原几何体为圆柱.【解答】解:观察图形可知该几何体是圆柱.故选:A.6.(2024•石景山区二模)如图是某几何体的展开图该几何体是()A.三棱柱B.三棱锥C.四棱锥D.圆柱【答案】A【考点】几何体的展开图【分析】根据三棱柱的展开图解答.【解答】解:由图可知该几何体的两个底面是正三角形且有3个侧面侧面都是矩形故这个几何体是三棱柱.故选:A.7.(2024•北京二模)下列几何体中主视图为三角形的是()A.B.C.D.【答案】A【考点】简单几何体的三视图【分析】主视图是从找到从正面看所得到的图形注意要把所看到的棱都表示到图中.【解答】解:A圆锥的主视图是等腰三角形故此选项符合题意B三棱柱的主视图是一个矩形矩形内部有一个纵向的实线故此选项不符合题意C球的主视图是一个圆故此选项不符合题意D圆柱的主视图是一个矩形故此选项不符合题意.故选:A.8.(2024•西城区二模)如图是某几何体的三视图该几何体是()A.圆柱B.圆锥C.三棱柱D.长方体【答案】B【考点】由三视图判断几何体【分析】根据几何体的主视图和左视图是全等的等腰三角形可判断该几何体是锥体再根据府视图的形状可判断锥体底面的形状即可得出答案.【解答】解:因为主视图和左视图是全等的等腰三角形所以该几何体是锥体又因为府视图是含有圆心的圆所以该几何体是圆锥.故选:B.9.(2024•门头沟区二模)某几何体的展开图是由大小形状相等的两个正方形四个长宽不等的矩形组成则,该几何体是()A.正方体B.长方体C.四棱锥D.三棱柱【答案】B【考点】几何体的展开图【分析】根据常见几何体的展开图解答即可.【解答】解:A.正方体的展开图由大小形状相等的六个正方形组成故本选项不符合题意B.当长方体的两个底面是正方形时它的展开图是由大小形状相等的两个正方形四个长宽不等的矩形组成故本选项符合题意C.四棱锥的展开图是由一个四边形和四个三角形组成故本选项不符合题意D.三棱柱的展开图是两个三角形和三个矩形组成故本选项不符合题意.故选:B.10.(2024房山二模)右图是某几何体的展开图该几何体是(A)圆柱(B)长方体(C)圆锥(D)三棱柱【答案】A。
2017数学(理)一轮对点训练:8-1-1 三视图与直观图 Word版含解析
1.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8答案 B解析 由三视图可知,此组合体是由半个圆柱与半个球体组合而成的,其表面积为πr 2+2πr 2+4r 2+2πr 2=20π+16,所以r =2,故选B.2.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15 答案 D解析 如图,不妨设正方体的棱长为1,则截去部分为三棱锥A -A 1B 1D 1,其体积为16,又正方体的体积为1,则剩余部分的体积为56,故所求比值为15.故选D.3.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A .6 2B .6C .4 2D .4 答案 B解析 如图所示的正方体ABCD -A 1B 1C 1D 1的棱长为4.取B 1B 的中点G ,即三棱锥G -CC 1D 1为满足要求的几何体,其中最长棱为D 1G ,D 1G =(42)2+22=6.4.在空间直角坐标系O -xyz 中,已知A (2,0,0),B (2,2,0),C (0,2,0),D (1,1,2).若S 1,S 2,S 3分别是三棱锥D -ABC 在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( )A .S 1=S 2=S 3B .S 2=S 1且S 2≠S 3C .S 3=S 1且S 3≠S 2D .S 3=S 2且S 3≠S 1答案 D解析 三棱锥D -ABC 如图所示. S 1=S △ABC =12×2×2=2, S 2=12×2×2=2, S 3=12×2×2=2, ∴S 2=S 3且S 1≠S 3,故选D.5.一几何体的直观图如图,下列给出的四个俯视图中正确的是( )答案 B解析 俯视图为在水平投射面上的正投影,结合几何体可知选B.6.某空间几何体的正视图是三角形,则该几何体不可能是( ) A .圆柱 B .圆锥 C .四面体 D .三棱柱 答案 A解析 因为圆锥、四面体、三棱柱的正视图均可以是三角形,而圆柱无论从哪个方向看均不可能是三角形,所以选A.7.已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A.34a 2B.38a 2C.68a 2D.616a 2答案 D解析 如图①、②所示的平面图形和直观图. 由②可知,A ′B ′=AB =a ,O ′C ′=12OC =34a , 在图②中作C ′D ′⊥A ′B ′于D ′, 则C ′D ′=22O ′C ′=68a .∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.8.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是( )A .等腰四棱锥的腰与底面所成的角都相等B .等腰四棱锥的侧面与底面所成的二面角都相等或互补C .等腰四棱锥的底面四边形必存在外接圆D .等腰四棱锥的各顶点必在同一球面上 答案 B解析 因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A ,C 正确,且在它的高上必能找到一点到各个顶点的距离相等,故D 正确,B 不正确,如底面是一个等腰梯形时结论就不成立,故选B.9.给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A.0 B.1C.2 D.3答案 A解析①不一定,只有这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图1所示;③不一定是.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.10.已知一三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()答案 C解析由已知条件得直观图如图所示,正视图是直角三角形,中间的线是看不见的线P A形成的投影,应为虚线.故选C.11.如图,三棱锥V-ABC的底面为正三角形,侧面VAC与底面垂直且VA=VC,已知其正视图的面积为23,则其侧视图的面积为()A.32 B.33C.34 D.36答案 B解析设三棱锥V-ABC的底面边长为a,侧面VAC边AC上的高为h,则ah=43,其侧视图是由底面三角形ABC边AC上的高与侧面三角形VAC边AC上的高组成的直角三角形,其面积为12×32×43=33,故选B.。
(完整word版)三视图练习 (2)
三视图练习1.一个几何体的三视图如右图所示,它的正视图和侧视图均为半圆,俯视图为圆,则这个空间几何体的体积是( ) A .32π B .34π C .π4 D .π32.有一个几何体的三视图及其尺寸如下图(单位:cm),则该几何体的表面积为( )A .12πcm 2B .15πcm 2C .24πcm 2D .36πcm 23.某几何体的三视图如图所示,根据图中标出的数据.可得这个几何体的表面积为( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.124.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为( ). (A )38 (B )34(C )34 (D)325.一个简单几何体的三视图如图所示,其正视图和俯视图均为正三角形,侧视图为腰长是2的等腰直角三角形则该几何体的体积为( )A .B .1C .D .36.某几何体的三视图如图所示(单位:cm ),则该几何体的侧面PAB 的面积是( ) A .7B .2C .1D .37.说出下列三视图(依次为主视图、左视图、俯视图)表示的几何体是( )A .六棱柱B .六棱锥C .六棱台D .六边形8.一个空间几何体的三视图如图所示,则该几何体的体积为( )A .56πcm 3 B .3πcm 3 B .C .32πcm 3 D .37πcm 3 9.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( ) (A)9π (B )10π (C)11π (D)12π10.用若干单位正方体搭一个几何体,使它的正视图和俯视图如图所示,则它的体积的最大值和最小值分别为( )A. 9,14B.7,13C. 8,14D. 9,13 11.已知某几何体的三视图如上图所示,其中正视图,侧视图均是由三角形与半圆构成,视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( ) (A)2132π+(B)4136π+ (C)132+(D) 166+12.一个几何体的三视图如图所示,则该几何体的体积为( )(A)92 (B)72(C)3 (D)4 13.右图是一个几何体的三视图,根据图中数据,可得该几何体的体积是( )(A) 9π (B)1333π- (C )103π (D)133π 14.一个几何体的三视图如图所示,则该几何体的体积是( ) (A )64 (B )72 (C )80(D )11215.一个几何体的三视图如图所示,则该几何体的体积是( )A .64B .72C .80D .11216.已知一个几何体的三视图如下图所示(单位:cm),其中正视图是直角梯形,侧视图和俯视图都是矩形,则这个几何体的体积是________cm 3.17.如图为一个几何体的三视图,其中俯视为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为_______。
走进重高培优讲义专题集训 初中综合教练 第24讲 三视图与展开图
第24讲 三视图与展开图1.能识别常见的空间图形,理解图形三视图的概念.2.会画基本几何体的三视图,能判断简单物体(基本几何体的简单组合)的三视图.3.能根据三视图描述几何体和简单物体的实物原型.4.掌握立方体、长方体等常见棱柱的展开图,理解棱柱展开图的特征,并能进行相关计算.5.掌握圆柱、圆锥的展开图,理解常见旋转体的展开图的特征,并能进行相关计算.6.能进行立方体、长方体、圆柱、圆锥的侧面积或全面积的计算,能利用展开图将空间图形转化为平面图形.1.常见几何体的三视图要熟练掌握,对于几种几何体组成的组合体要注意各个部分的位置,通过认真观察实物,想象图形的三视图,或通过三视图想象实物.2.与三视图有关的综合题,关键在于正确判断图形的三视图,并掌握常见图形的面积、体积等计算方法.3.正方体和长方体都由六个面组成,展开图虽然有很多种情况,但都含有六个面,注意各个面之间的相互关系.4.圆柱的侧面展开图是一个矩形,其中矩形的一条边是底面周长,另一条边是母线,侧面积公式为2s rh π=;圆锥的侧面展开图是一个扇形,扇形的弧长是底面周长,半径是母线,侧面积公式为s =πrl .5.解决与空间图形有关的面积计算、最近距离等问题,一般都利用平面展开图将问题转化为平面图形,再利用三角形、四边形、圆等相关性质解决问题.例1 如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( ).A .主视图B .俯视图C .左视图D .一样大【参考答案】C【方法归纳】本题考查三视图的知识以及学生对该知识点的巩固.解题的关键是找到三种视图的正方形的个数.【误区提醒】理解三视图的概念,要清楚各个视图分别是怎样得到的,具备一定的空间想象能力是解决这类题的关键.例2 如图是一个包装纸盒的三视图(单位:cm),则制作一个纸盒所需纸板的面积是( ).2)31(75.cm A + 2)231(75.cm B + 2)32(75.cm C + 2)232(75.cm D +【参考答案】C【方法归纳】三视图问题一直是中考的高频考点,一般题目难度中等偏下,本题是由两种视图来推测整个几何体的特征,这种类型的问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽,【误区提醒】主视图是正面看到物体的形状,反映了物体左右、上下位置关系,俯视图是从上而下看到的物体形状,反映了物体的左右、前后位置关系,左视图是从左侧看到的物体形状,反映了物体前后、上下的位置关系,通过各个视图综合起来考虑整个图形可以判断原几何体的形状,例3 小明在学习了“展开与折叠”的知识后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②,根据你所学的知识,回答下列问题:(1)小明总共剪开了_________条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①中补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880 cm ,求这个长方体纸盒的体积.【方法归纳】本题主要考查几何体的展开图,结合具体的问题,辨析几何体的展开图,通过立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键,【误区提醒】长方体展开图有6个面,即有6个小矩形,注意相对两个面是全等图形.例4 如图是一个几何体的三视图.(1)写出这个几何体的名称.(2)根据数据计算这个几何体的表面积.(3)如果一只蚂蚁要从这个几何体表面的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程.【方法归纳】注意根据三视图描述立体图形及把立体图形转化为平面图形的思想方法,同时要掌握圆锥表面积的计算公式.【误区提醒】注意圆锥全面积与表面积的区别,母线与高的区别与联系,解题时不要混淆.例葛藤是一种刁钻的植物,它的腰杆不硬,为了争夺雨露阳光,常常绕着树干盘旋而上,它还有一手绝招,就是它绕树盘升的路线总是沿最短路线——螺旋前进的,难道植物也懂数学?通过阅读以上信息,解决下列问题:(1)如果树干的周长(即图中圆柱体的底面周长)为30 cm,绕一圈升高(即圆柱的高)40 cm,则它爬行一圈的路程是多少?(2)如果树干的周长为80 cm,绕一圈爬行100 cm,它爬行10圈到达树顶,则树干高多少?【方法归纳】本题考查平面展开图问题,解题的关键是正确理解圆柱的侧面展开图,将问题转化为求矩形对角线的长.1.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)中有两个相同,而另一个不同的几何体是( ).①正方体②圆柱③圆锥④球①②.A②③.B②④.C③④.D2.沿圆柱体上底面直径截去一部分的物体如图所示,它的俯视图是( ).3.【济宁】一个几何体的三视图如图所示,则该几何体的表面积是( ).π224.+Aπ416.+Bπ816.+Cπ1216.+D4.长方体的主视图、俯视图如图(单位:m),则其左视图的面积是( ).24.mA212.mB21.mC23.mD5.如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分(小正方形之间至少要有一条边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是( ).7.A6.B5.C4.D6.如图的正方体的展开图是( ).(第6题)(第7题)7.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是_______.8.【日照】如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算该几何体的表面积是_______.(第8题)(第9题)9.【黄冈】如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为______cm (杯壁厚度不计).10.如图是一个正方体的展开图,若此正方体的相对面上的数互为相反数,则a- (b-c)=________.11.如图是一个直四棱柱及其主视图和俯视图(等腰梯形).(1)根据图中所给数据,可得俯视图(等腰梯形)的高为(2)在虚线框内画出其左视图,并标出各边的长.(尺规作图,不写作法,保留作图痕迹)第10题 第11题12.有一块边长为a 的正方形铁皮,计划制成一个有盖的长方体铁盒,使得盒盖与相对的盒底都是正方形,如图1、图2给出了两种不同的裁剪方案(其中实线是剪开的线迹,虚线是折叠的线迹,阴影部分是余料),问哪一种方案制成的铁盒体积更大些?请说明理由.(接缝处忽略不计)图1 图213.在△ABC 中,.3,30,90==∠=∠BC A C(1)将△ABC 绕AB 所在的直线旋转一周,求所得几何体的侧面积.(2)折叠△ABC,使BC 边与CA 边重合,求折痕长和重叠部分的面积.14.问题探究:(1)如图1是一个半径为、π23高为4的圆柱体和它的侧面展开图,AB 是圆柱的一条母线,一只蚂蚁从点A 出发沿圆柱的侧面爬行一周到达点B ,求蚂蚁爬行的最短路程.(探究思路:将圆柱的侧面沿母线AB 剪开,它的侧面展开图如图1中的矩形//,ABB A 则蚂蚁爬行的最短路程即为线段/AB 的长.) (2)如图2是一个底面半径为、32母线长为4的圆锥和它的侧面展开图,PA 是它的一条母线,一只蚂蚁从点A 出发沿圆锥的侧面爬行一周后回到点A ,求蚂蚁爬行的最短路程.(3)如图3,在(2)的条件下,一只蚂蚁从点A 出发沿圆锥的侧面爬行一周到达母线PA 上的一点,求蚂蚁爬行的最短路程.图1 图2 图31.【青海】由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有( ).A .3块B .4块C .6块D .9块(第1题) (第2题)2.【宁波】如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( ).A .主视图B .左视图C .俯视图D .主视图和左视图3.【常州】下列图形中,属于圆锥的侧面展开图的是( ).4.【巴彦淖尔】如图是一个几何体的三视图,则这个几何体的表面积是( ).4860.+πA 4868.+πB 4848.+πC 4836.+πD(第4题) (第5题)5.【东营】如图,圆柱的高AB-3,底面直径BC=3.现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( ). π+13.A 23.B 243.2π+C 213.π+D6.【常建】把图1中的正方体的一角切下后摆在图2的位置,则图2中的几何体的主视图为( ).7.【呼和浩特】如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为________.(第7题) (第8题)8.【齐齐哈尔】三棱柱的三视图如图所示,已知△EFG 中,,45,12,8=∠==FFG cm EG cm EF 则AB 的长为 __________.cm9.【青岛】一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有________种,主视图 左视图10.【东营】我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是______尺.11.由一些大小相同、棱长为1的小正方体搭成的几何体的俯视图如图所示,数字表示该位置的正方体个数.(1)请画出它的主视图和左视图.(2)给这个几何体喷上颜色(底面不喷色),需要喷色的面积为_________.(3)在不改变主视图和俯视图的情况下,最多可添加_________块小正方体.12.一个几何体的三视图如图所示,则这个几何体的名称是_______.请根据三视图画出它的平面展开图,并求出其表面积S.13.如图,长方体底面是长为2 cm 、宽为lcm 的长方形,其高为8 cm.(1)如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,请利用侧面展开图计算,所用细线最短需要多长?(2)如果从点A 开始经过4个侧面缠绕2圈到达点B ,那么所用细线最短需要多少?14.如图,在△ABC 中,⋅===31sin ,61sin ,18C A AB (1)此三角形绕着AC 旋转一周,请你描述所得的几何体,并求出上述几何体的表面积.(2)-只蚂蚁要从点B 出发绕上述几何体爬一圈回到原地,求蚂蚁爬过的最短路线长.1.如图是由27个相同的小立方块搭成的几何体,它的三个视图是3×3的正方形,若拿掉若干个小立方块(几何体不倒掉),其三个视图仍都为3×3的正方形,则最多能拿掉小立方块的个数为( ).A.10 B.12 C.15 D.182.如图,将一张边长为6 cm的正方形纸片按虚线裁剪后,恰好围成底面是正六边形的棱柱,则这个六棱柱cm的侧面积为________.23.如图是“口子窖”酒的一个由铁皮制成的包装底盒,它是一个无盖的六棱柱形状的盒子(如图1),侧面是矩形120 该六棱柱的高为或正方形.经测量,底面六边形有三条边的长是9 cm,有三条边的长是3cm,每个内角都是,3 cm.现沿它的侧棱剪开展平,得到如图3所示的平面展开图.(1)制作这种底盒时,可以按图3中虚线裁剪出如图2所示的模片.现有一块长为17.5 cm、宽为16.5 cm的长方形铁皮,请问能否按图3的裁剪方法制作这样的无盖底盒?请你说明理由.(2)如果用一块正三角形铁皮按图4中虚线裁剪出如图2所示的模片,那么这个正三角形的边长至少应为_______cm.图1 图2图3 图4。
人教版九年级下册第29章 三视图有关的计算问题(18页)
100 50
100
50
思考: (1)你能由三视图想象出密封罐的形状吗? (2)密封罐由哪几部分组成,各部分是什么 形状?请说出尺寸. (3)根据密封罐各部分可以得到密封罐的表 面展开图吗? (4)求制作每个密封罐所需钢板的面积,就 是求密封罐的什么面积?怎样计算?
解:由三视图可知,密封罐的形状是正六棱柱. 密封罐的高为50 mm,底面正六边形的直径为100 mm,边长为50 mm, 如图,是它的展开图.
有3个
俯
有俯视图的直接用
2
视
它作为行列图
图
小正方体有2+3+1=6(个),或者2+3+2=7(个), 或者2+3+3=8(个).
(3)如图,根据主视图和左视图,能确定小正方体个数吗?请在行列图中填上
数据说明.
主
左右两列,左侧最
视 图
多1个,右侧最多3 个
左侧最多1个, 假设此处1个
结合两个视图 可知,此处有 3个
探索: (1)画图描述几何体的形状. (2)在如图所示的行列图中,填上 每部分的小正方体个数. (3)这个几何体中一共有几个小正 方体?
13 2
思考
(1)如图,根据主视图和俯视图,能确定小正方体个数吗?请画行列图
中填上数据说明.
主
由主视图可知左侧
视
位置1个,右侧最
图
有3个
当堂检测
1.教材第100页练习第1(1)题,第2题.
2.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个 立体图形的表面积是( B )
A.12cm2 C.16cm2
B.14cm2 D.18cm2
表面积为:2×(2+2+3)=14(cm2),故选B.
人教版九年级下册数学第二十九章第2节《三视图》训练题 (36)(含答案解析)
A. B. C. D.
21.如图,该立体图形的左视图是(由5个相同的小正方体组成的立体图形,它的主视图是()
A. B. C. D.
23.某物体的展开图如图所示,它的左视图为()
A. B. C. D.
24.如图的几何体是由四个大小相同的正方体组成的,它的主视图是()
两个底面是两个全等的直角三角形,
故选D.
本题考查的是利用三视图判断几何体的形状,同时考查简单几何体的表面积的计算,掌握以上知识是解题的关键.
10.B
【解析】
利用主视图以及俯视图即可得出该几何体是三棱柱,进而得出答案.
解:根据三视图可得这个几何体的名称是三棱柱;
故选:B.
此题考查简单几何体的三视图,正确掌握各几何体的三视图的图形是解题的关键.
根据左视图的画法解答即可.
A.不是三视图,故本选项错误;
B.是左视图,故本选项正确;
C.是主视图,故本选项错误;
D.是俯视图,故本选项错误.
故选:B.
本题考查了由三视图判断几何体,解题的关键是根据左视图的画法判断.
27.(1)C;(2)4
【解析】
(1)本题根据展开图可直接得出答案.
(2)本题根据体积等于底面积乘高求解即可.
11.C
【解析】
根据俯视图的定义和空间想象,得出图形即可.
解:俯视图从左到右分别是2,1,1个正方形,并且第一行有三个正方形.
故选C.
此题考查了简单组合体的俯视图,关键是对几何体的三种视图的空间想象能力.
12.A
【解析】
根据从上边看得到的图形是俯视图,可得答案.
从上边看如图,
,
故选:A.
考点26基本作图三视图与展开图(原卷版)
考点26 基本作图、三视图与展开图中考数学中,基本作图的考察方式正在发生着变化,不会再考基本作图的操作,而是考察其写法,放在题干上用以确定角平分线和中垂线,之后再用其性质求解后续问题。
三视图与展开图的考察难度则比较简单,一般只考察基础应用,所以考生在复习时要多注重该考点的概念以及应用。
一、基本作图二、三视图三、直棱柱的展开与折叠考向一:基本作图一.基本尺规作图(1)作一条线段等于已知线段,如图1;(2)作一个角等于已知角,如图2(3)作已知角的平分线,如图3;(4)作已知线段的垂直平分线,如图4 ;(5)过一点作已知直线的垂线,如图5;图1 图2 图3 图4 图5二.利用尺规作图作三角形(1)已知三边作三角形,如图1(2)已知两边及其夹角作三角形,如图2;(3)已知两角及其夹边作三角形,如图3,图1 图2 图3三.尺规作图的考察方法分析1.通常是在选择填空题中以尺规作图的语言描述来确定角平分线或者中垂线,之后再结合其他知识点完成后续问题。
2.在解答题中,尺规作图的另一类考法是放在网格图中和相似等知识点结合,考察固定长度的线段或者角度构造。
1.如图,是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质()A.SAS B.ASA C.AAS D.SSS2.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角两边距离相等的点在这个角的平分线上B.角平分线上的点到角两边的距离相等C.三角形三个内角的平分线交于同一个点D.三角形三个内角的平分线的交点到三条边的距离相等3.如图,在△ABC中,∠ACB=90°.分别以点A和点C 为圆心,大于的长为半径作弧,两弧相交于M,N两点,作直线MN.直线MN与AB相交于点D,连接CD,若CD=5,BC=8,则sin∠DCA=()A .B .C .D .4.如图,在平行四边形ABCD中,以点B为圆心,适当长度为半径作弧,分别交AB,BC于点F,G,再分别以点F,G 为圆心,大于长为半径作弧,两弧交于点H,作射线BH交AD于点E,连接CE,若AE=10,DE=6,CE=8,则BE的长为()A.2B.40C.4D.8考向二:三视图三视图主视图:从物体正面看到的图左视图:从物体左面看到的图俯视图:从物体上面看到的图易错在画几何体时:①长对正、高平齐、宽相等题型②图中看不到的棱用虚线画出来1.如图几何体中,从正面看(主视图)是长方形的是()A .B .C .D .2.如图是由四个相同的小正方体组成的几何体,若改变一个小正方体的位置后,它的俯视图和左视图都不变,那么变化后的主视图是()A .B .C .D .3.如图是由一些大小相同的小正方体搭成的几何体从上面看到的形状,其中小正方形中数字表示该位置小正方体的个数,则该几何体从左面看到的形状是()A .B .C .D .4.已知圆锥的三视图及相关数据如图所示,则这个圆锥的侧面积为()A.12πcm2B.15πcm2C.24πcm2D.10πcm2考向三:直棱柱的展开与折叠几何体展开图底面形状侧面形状三角形矩形四边形矩形正方形正方形多边形矩形1.下列平面图形中,是棱柱的展开图的是()A.B.C.D.2.由如图的正方体平面展开图可知,此正方体的“绿”字所在面的对面汉字是()A.低B.碳C.发D.展3.如图,有一个正方体纸盒,在它的三个侧面分别画有三角形、正方形和五边形,现用一把剪刀沿着它的棱剪开成一个平面图形,则展开图是()A.B.C.D.4.如图,将一个无盖正方体展开成平面图形的过程中,需要剪开_____条棱.()A.3B.4C.5D.不确定1.(2022•贵港)一个圆锥如图所示放置,对于它的三视图,下列说法正确的是()A.主视图与俯视图相同B.主视图与左视图相同C.左视图与俯视图相同D.三个视图完全相同2.(2022•宁波)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.3.(2022•衡阳)石鼓广场供游客休息的石板凳如图所示,它的主视图是()A.B.C.D.4.(2022•江西)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()A.B.C.D.5.(2022•菏泽)沿正方体相邻的三条棱的中点截掉一部分,得到如图所示的几何体,则它的主视图是()A.B.C.D.6.(2022•济南)如图是某几何体的三视图,该几何体是()A.圆柱B.球C.圆锥D.正四棱柱7.(2022•临沂)如图所示的三棱柱的展开图不可能是()A.B.C.D.8.(2022•鄂尔多斯)下列尺规作图不能得到平行线的是()A.B.C.D.9.(2022•盘锦)如图,线段AB是半圆O的直径.分别以点A和点O为圆心,大于的长为半径作弧,两弧交于M,N两点,作直线MN,交半圆O于点C,交AB于点E,连接AC,BC,若AE=1,则BC 的长是()A.B.4C.6D.10.(2022•巴中)如图,在菱形ABCD中,分别以C、D为圆心,大于CD为半径画弧,两弧分别交于点M、N,连接MN,若直线MN恰好过点A与边CD交于点E,连接BE,则下列结论错误的是()A.∠BCD=120°B.若AB=3,则BE=4C.CE=BC D.S△ADE=S△ABE11.(2022•内蒙古)如图,在△ABC中,AB=BC,以B为圆心,适当长为半径画弧交BA于点M,交BC于点N,分别以M,N为圆心,大于MN的长为半径画弧,两弧相交于点D,射线BD交AC于点E,点F为BC的中点,连接EF,若BE=AC=4,则△CEF的周长是()A.8B.2+2C.2+6D.2+212.(2022•通辽)如图,依据尺规作图的痕迹,求∠α的度数°.13.(2022•贵港)尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.14.(2022•重庆)我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a,高为h的三角形的面积公式为S=ah.想法是:以BC为边作矩形BCFE,点A在边FE上,再过点A作BC的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A作BC的垂线AD交BC于点D.(只保留作图痕迹)在△ADC和△CF A中,∵AD⊥BC,∴∠ADC=90°.∵∠F=90°,∴①.∵EF∥BC,∴②.又∵③,∴△ADC≌△CF A(AAS).同理可得:④.S△ABC=S△ADC+S△ABD=S矩形ADCF+S矩形AEBD=S矩形BCFE=ah.15.(2022•江西)课本再现(1)在⊙O中,∠AOB是所对的圆心角,∠C是所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O与∠C的位置关系进行分类.图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明∠C=∠AOB;知识应用(2)如图4,若⊙O的半径为2,P A,PB分别与⊙O相切于点A,B,∠C=60°,求P A的长.1.(2022•阜新)在如图所示的几何体中,俯视图和左视图相同的是()A.B.C.D.2.(2022•安徽)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.3.(2022•绵阳)如图所示几何体是由7个完全相同的正方体组合而成,它的俯视图为()A.B.C.D.4.(2022•青岛)如图①,用一个平面截长方体,得到如图②的几何体,它在我国古代数学名著《九章算术》中被称为“堑堵”.图②“堑堵”的俯视图是()A.B.C.D.5.(2022•攀枝花)如图是由5个相同的正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.6.(2022•永州)我市江华县有“神州瑶都”的美称,每逢“盘王节”会表演长鼓舞,长鼓舞中使用的“长鼓”内腔挖空,两端相通,两端鼓口为圆形,中间鼓腰较为细小.如图为类似“长鼓”的几何体,其俯视图的大致形状是()A.B.C.D.7.(2022•黑龙江)如图是由若干个相同的小正方体搭成的一个几何体的左视图和俯视图,则所需的小正方体的个数最多是()A.7B.8C.9D.108.(2022•湖北)某几何体的三视图如图所示,则该几何体是()A.圆锥B.三棱锥C.三棱柱D.四棱柱9.(2022•盐城)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.强B.富C.美D.高10.(2022•德州)在△ABC中,根据下列尺规作图的痕迹,不能判断AB与AC大小关系的是()A.B.C.D.11.(2022•威海)过直线l外一点P作直线l的垂线PQ.下列尺规作图错误的是()A.B.C.D.12.(2022•恩施州)如图,在矩形ABCD中,连接BD,分别以B、D为圆心,大于BD的长为半径画弧,两弧交于P、Q两点,作直线PQ,分别与AD、BC交于点M、N,连接BM、DN.若AD=4,AB=2.则四边形MBND的周长为()A.B.5C.10D.2013.(2022•淄博)如图,在△ABC中,AB=AC,∠A=120°.分别以点A和C为圆心,以大于AC的长度为半径作弧,两弧相交于点P和点Q,作直线PQ分别交BC,AC于点D和点E.若CD=3,则BD 的长为()A.4B.5C.6D.714.(2022•天津)如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及∠DPF的一边上的点E,F均在格点上.(Ⅰ)线段EF的长等于;(Ⅱ)若点M,N分别在射线PD,PF上,满足∠MBN=90°且BM=BN.请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明).15.(2022•烟台)如图,⊙O是△ABC的外接圆,∠ABC=45°.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC的长.1.(2022•宁波模拟)如图是一个底面为正三角形的直三棱柱,其主视图是()A.B.C.D.2.(2023•红桥区模拟)如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A.B.C.D.3.(2023•南山区模拟)图2是图1中长方体的三视图,若用S表示面积,S主=x2+3x,S左=x2+x,则S俯=()A.x2+4x+3B.x2+3x+2C.x2+2x+1D.2x2+4x4.(2022•孟村县校级模拟)如图,已知一个正方体是三个面分别标有〇、◎、※三种图案,则它的展开图可能是()A.B.C.D.5.(2022•宽城区校级一模)下列四个选项中,不是正方体展开图的是()A.B.C.D.6.(2022•东兴区校级二模)小欣同学用纸(如图)折成了个正方体的盒子,里面放了一瓶墨水,混放在下面的盒子里,只凭观察,选出墨水在哪个盒子中()A.B.C.D.7.(2022•丽水二模)如图,Rt△ABC中,∠C=90°,∠B=30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是()A.B.C.D.8.(2022•玉环市一模)如图,在△ABC中,∠A=30°,∠ABC=100°.观察图中尺规作图的痕迹,可知∠BFC的度数为()A.130°B.120°C.110°D.100°9.(2022•连山区三模)如图,在△ABC中,AB=AC=5,BC=6,AD平分∠BAC交BC于点D,分别以点A,C为圆心,大于长为半径作弧,两弧相交于点M和点N,作直线MN,交AD于点P,则DP的长为()A.B.C.D.110.(2023•定远县校级一模)如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC 于点E.若BF=8,AB=5,则AE的长为()A.5B.6C.8D.1211.(2022•柳东新区模拟)如图,在△ABC中,分别以A,C为圆心,大于AC长为半径作弧,两弧相交于点M,N,作直线MN,与AC,BC分别交于D,E,连结AE,若AB=6,BC=8,则△ABE的周长为()A.13B.14C.15D.1612.(2023•乌鲁木齐一模)如图,小颖按下面方法用尺规作角平分线:在已知的∠AOB的两边上,分别截取OC,OD,使OC=OD.再分别以点C,D为圆心、大于的长为半径作弧,两弧在∠AOB内交于点P,作射线OP,则射线OP就是∠AOB的平分线.其作图原理是:△OCP≌△ODP,这样就有∠AOP =∠BOP,那么判定这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS13.(2022•东胜区一模)尺规作图:过直线l外一点P作直线l的平行线.如图是四位同学的作图痕迹.其中作图错误的同学是()A.甲B.乙C.丙D.丁14.(2022•大名县校级四模)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要用尺规作图的方法在对边AD,BC上分别找点M,N,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案()A.只有乙、丙才是B.只有甲,丙才是C.只有甲,乙才是D.甲、乙、丙都是15.(2023•仙桃校级一模)如图,C、D是以线段AB为直径的⊙O上的两点,且四边形OBCD是菱形,连接BD.(1)在图1中,用无刻度的直尺作出△BOD的中线BP;(2)在图2中,用无刻度的直尺作出△BCD的中线DP.。
部编数学九年级下册专题09三视图(重难点突破)(解析版)_new含答案
专题09 三视图理解三视图的概念,掌握三视图之间的位置与数量关系,能熟练画出简单几何体重点的三视图能用一个物体的三视图来描述这个物体,并能应用三视图的知识解决一些实际问难点题易错画物体的三视图时用线易出现错误一、物体的三视图三视图中的各视图,分别从不同方面表示物体的形状,三者合起来能够较全面地反映物体的形状,单独一个视图难以全面地反映物体的形状,在实际生活中常用三视图描述物体的形状.【例1】关于如图所示的几何体的三视图,下列说法正确的是()A.主视图和俯视图都是矩形B.俯视图和左视图都是矩形C.主视图和左视图都是矩形D.只有主视图是矩形【答案】C【详解】解:依据圆柱体放置的方位来说,主视图和左视图都是矩形,俯视图是一个圆.故选:C.【例2】图中几何体的三视图是()A.B.C.D.【答案】C【详解】由几何体可知,该几何体的三视图为故选C二、根据三视图确定几何体1.由三视图想象立体图时,要先分别根据主视图、俯视图和左视图想象立体图的前面、上面和左侧面,然后再综合起来考虑整体图形.2.从实线和虚线想象几何体看得见和看不见的部分的轮廓线.【例1】如图是一个立体图形的正视图、左视图和俯视图,那么这个立体图形是()A.圆锥B.三棱锥C.四棱锥D.五棱锥【答案】C【详解】解:根据三视图可以想象出该物体由四条棱组成,底面是正方形,此只有四棱柱的三视图与题目中的图形相符,故选:C.【例2】在下面的几个选项中,可以把左边的图形作为该几何体的三视图的是( )A.B.C.D.【答案】C【详解】解:由主视图和左视图可知该几何体的正面与左侧面都是矩形,所以A 不符合题意;再由主视图中矩形的内部有两条虚线,可知B 不符合题意;根据俯视图,可知该几何体的上面不是梯形,而是一个任意的四边形,所以D 不符合题意.符合题意的是C .故选:C .三、由视图确定几何体的表面积和体积某些立体图可沿其中一些线剪开成一个平面展开图,在实际生产中,常将立体图、三视图和平面展开图相结合进行相关运算.【例1】一个几何体的三视图如图所示,则这个几何体的表面积是( )A .18pB .20pC .16pD .14p【答案】A 【详解】解:依题意知这个几何体是圆锥和圆柱的组合体,圆锥的底面半径422=¸=,母线长为3,圆柱的底面半径422=¸=,高为2,则这个几何体的表面积是223222264818p p p p p p p ´´+´+´´´=++=.故选:A .【例2】某圆锥的三视图如图所示,由图中数据可知,该圆锥的体积为( )A .312cm p B .320cm p C .332cm p D .348cm p 【答案】A 【详解】观察三视图得:圆锥的底面半径为()623cm ¸=,高为4cm ,即圆锥的体积为()223113412cm 33r h p p p =´´=,故选:A .一、单选题1.下面四个几何体中,俯视图是三角形的是( ).A .B .C .D .【答案】D 【详解】解:A 的俯视图是四边形,B 的俯视图是圆及圆心,C 的俯视图是圆,D 的俯视图是三角形,A 、故选项错误,不符合题意;B 、故选项错误,不符合题意;C 、故选项错误,不符合题意;D 、故选项正确,符合题意.故选:D .2.用四个相同的小正方体搭几何体,要求每个几何体从正面看、从左面看、从上面看得到的图形中,至少有两种图形的形状是相同的,下列四种摆放方式中,不符合要求的是( ).A .B .C .D .【答案】D 【详解】选项主视图左视图俯视图ABCD只有选项D的三视图两两都不相同,故选D.3.如图试一个几何体的三视图,则这个几何体的形状是()A.圆柱B.圆锥C.球D.三棱锥【答案】B【详解】由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:B.4.如图是一个立方体的三视图,这个立方体由一些相同大小的小正方体组成,这些相同的小正方体的个数是()A.4B.5C.6D.7【答案】D【详解】根据题意,在俯视图上标注各个位置的个数为:所以一共有:1+2+2+1+1=7(个)故选D.5.由5个完全相同的小长方体搭成的几何体的主视图和左视图如图所示,则这个几何体的俯视图是( )A.B.C.D.【答案】A【详解】解:结合主视图、左视图可知俯视图中右上角有2层,其余1层.故选:A.6.长方体的主视图与俯视图如图1所示,则这个长方体的体积是().A.52B.32C.24D.9【答案】C【详解】由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和2,因此这个长方体的长、宽、高分别为4、2、3,因此这个长方体的体积为4×2×3=24平方单位,故选C二、填空题7.如图,棱长为5cm的正方体,无论从哪一个面看,都有三个穿透的边长为1cm的正方形孔(阴影部分),则这个几何体的表面积(含孔内各面)是_______cm2.【答案】252【详解】解:由正方体的6个外表面的面积为5×5×6﹣1×1×3×6=132(cm2),9个内孔的内壁的面积为1×1×4×4×9﹣1×1×2×6=120(cm2),因此这个有孔的正方体的表面积(含孔内各面)为132+120=252(cm2),故答案为:252.8.如图所示的是从不同方向观察一个圆柱体得到的形状图,由图中数据计算此圆柱体的侧面积为________(结果保留π)【答案】6π【详解】解:∵圆柱的底面直径为2,高为3,∴侧面积= 2•π×3=6π..故答案为:6π.三、解答题9.请你在下边的方格中画出如图所示几何体的三视图.【答案】见解析【详解】解:如图所示:10.已知一个模型的三视图如图所示(单位:m).(1)请描述这个模型的形状;(2)若制作这个模型的木料密度为360 kg/m3,则这个模型的质量是多少?(3)如果用油漆漆这个模型,每千克油漆可以漆4 m2,那么需要多少千克油漆?【答案】(1)详见解析;(2)43380kg;(3)41.625kg.【详解】解:(1)此模型由两个长方体组成:上面的是小长方体,下面的是大长方体.(2)模型的体积=3×6×6+2.5×2.5×2=120.5(m3),模型的质量=120.5×360=43380(kg).(3)模型的表面积=2×2.5×2.5+2×2×2.5+2×6×3+2×3×6+2×6×6=166.5(m2),需要油漆:166.5÷4=41.625(kg).一、单选题1.下列几何体中,同一个几何体从正面看和从上面看不同的是()A.正方体B.球C.棱柱D.圆柱【答案】C【详解】解:A:正方体从正面看和从上面看均为正方形,故选项A不符合题意;B:球从正面看和从上面看均为圆,故选项B不符合题意;C:棱柱从正面看为长方形,从下面看为三角形,故选项C符合题意;D :圆柱从正面看和从上面看均为长方形,故选项D 不符合题意;故选:C .2.如图,分别是从上面、正面、左面看某立体图形得到的平面图形,则该立体图形是下列的( )A .长方体B .圆柱C .三棱锥D .三棱柱【答案】D 【详解】根据三视图的意义,该立体图形是三棱柱.故选:D .3.一个几何体由若干个大小相同的小正方体组成,从上面和左面观察这个几何体如图所示,则搭建这个几何体的小正方体的个数最多是( )A .8个B .10个C .12个D .13个【答案】D 【详解】解:由题意得:如图此时,小正方体的个数最多:3332213++++=;故选:D .4.图2是图1中长方体的三视图,用S 表示面积,223,,S x x S x x =+=+主左则S =俯( )A .232x x ++B .221x x ++C .243x x ++D .224x x+【答案】C 【详解】解:∵()233S x x x x =+=+主,()21S x x x x =+=+左,∴俯视图的长为()3x + ,宽为()1x +,∴()()23143S x x x x =++=++俯.故选:C5.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是( )A .212πcmB .215πcmC .224πcmD .230πcm【答案】B 【详解】解:由三视图可知,原几何体为圆锥,∵5l ==∴26ππ515πcm 2S r l =××=´´=侧故选:B .6.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD 为矩形,E F 、分别是AB DC 、的中点.若86AD AB ==,,则这个正六棱柱的侧面积为( )A .B .96C .144D .【答案】D 【详解】解:如图,正六边形的边长为AG BG 、,过点G 作GE AB ^∴GE 垂直平分AB ,由正六边形的性质可知,11203032AGB A B AE AB Ð=°Ð=Ð=°==,,,∴ cos30AE AG ===°正六棱柱的侧面积668AG AD =´=´=故选:D .二、填空题7.某款不倒翁如图①所示,其主视图如图②所示,PA ,PB 分别与¼AMB所在圆相切于点A ,B .若该圆半径是10cm ,36P Ð=°,则¼AMB 的长是______(结果保留p ).【答案】12πcm ##12π厘米【详解】解:如图,设¼AMB所在的圆的圆心为O ,连接AO ,BO ,∵PA ,PB 分别与¼AMB所在圆相切于点A ,B .∴AO PA ^,BO AB ^,∴90OAP OBP Ð=Ð=°,∵36P Ð=°,∴144AOB Ð=°,∴优弧AMB 对应的圆心角为360144216°-°=°,∴优弧AMB 的长是:216π1012π180´=,故答案为:12πcm .8.如图为一个用正方体积木搭成的几何体的三视图,俯视图中方格上的数字表示该位置上积木累积的个数.若保证正视图和左视图成立,则+++a b c d 的最大值为 _____.【答案】13【详解】解:由正视图第1列和左视图第1列可知a 最大为3,由正视图第2列和左视图第2列可知b 最大为3,由正视图第3列和左视图第1列和第2列可知c 最大为4,d 最大为3;所以+++a b c d 的最大值为:+++=334313故答案为:13三、解答题9.如图是一个几何体的展开图.(1)写出该几何体的名称______;(2)用一个平面去截该几何体,截面形状可能是______(填序号);①三角形;②四边形;③五边形;④六边形(3)根据图中标注的长度,求该几何体的表面积和体积.【答案】(1)长方体(2)①②③④(3)222m ;36m 【详解】(1)解:根据几何体的展开图共有6个面,且各面有正方形及长方形,∴此几何体为长方体,故答案为:长方体;(2)∵长方体有六个面,∴用平面去截长方体时最多与六个面相交得六边形,最少与三个面相交得三角形,∴用一个平面去截长方体,截面的形状可能是三角形、四边形、五边形、六边形,故答案为:①②③④;(3)231232221222(m )S =´´+´´+´´=,所以表面积是222m ;33216(m )V =´´=,所以体积是36m .10.用棱长为2cm 的若干小正方体按如所示的规律在地面上搭建若干个几何体.图中每个几何体自上而下分别叫第一层、第二层,L ,第n 层(n 为正整数)(1)搭建第④个几何体的小立方体的个数为 .(2)分别求出第②、③个几何体的所有露出部分(不含底面)的面积.(3)为了美观,若将几何体的露出部分都涂上油漆(不含底面),已知喷涂21cm 需要油漆0.2克,求喷涂第20个几何体,共需要多少克油漆?【答案】(1)30;(2)第②个几何体露出部分(不含底面)面积为264cm ,第③个几何体露出部分(不含底面)面积为2132cm ;(3)992克.【详解】(1)搭建第①个几何体的小立方体的个数为1,搭建第②个几何体的小立方体的个数为21412+=+,搭建第③个几何体的小立方体的个数为22149123++=++,归纳类推得:搭建第④个几何体的小立方体的个数为22212341491630+++=+++=,故答案为:30;(2)第②个几何体的三视图如下:由题意,每个小正方形的面积为2224()cm ´=,则第②个几何体的所有露出部分(不含底面)面积为()232324464()cm ´+´+´=;第③个几何体的三视图如下:则第③个几何体的所有露出部分(不含底面)面积为()2626294132()cm ´+´+´=;(3)第20个几何体从第1层到第20层小立方体的个数依次为221,2,,20L ,则第20个几何体的所有露出部分(不含底面)面积为()()2221220212202044960()cm éù´++++´++++´=ëûL L ,因此,共需要油漆的克数为49600.2992´=(克),答:共需要992克油漆.。
(完整word)七年级上册三视图与展开练习
三视图与展开图、选择题:2、右图中几1、下面右边的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是()C.D.6、小明从正面观察下图所示的物体,看到的是()D3、某工艺品由一个长方体和球组成(右图),则其俯视图是()B.7、某同学把下图所示的几何体的三种视图画出如下(不考虑尺寸);在这三种视图中,其正确的是:()A、B、①③,C、②③,D、②它们的三视图,则货架上的“康师傅”红烧肉面至少有()A.8桶B.9桶C.10桶D.11桶10、图2中几何体的正视图是()主视图左视图俯视图(第12题8、由若干个同样大小的正方体堆积成一个实物,不同侧面观察到如图8所示的投影图,则构成该实物的小正方体个 数为() A.6B.7C.8D.99、某超市货架上摆放着“康师傅”红烧肉面,如图1是11、由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数(A 、6个B 、7个C 、8个D 、9个12、如图是一些相同的小正方体构成的几何体的正视图和左视图,在这个几何体中,小正方体的个数不可能是()A 、7B 、8C 、9D 、1013、如图是正方体的展开图,则原正方体相对两个面上的数字和最小的是(). A.4B.6C.7D.814、右图所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是()16、下列几何体,正(主)视图是三角形的是()图1俯视图BC15、如图所示,右面水杯的俯视图是()ABCDA.B.C.D.17、有一实物如图所示,它的主视图是(n ora□ABCD18、骰子是一种特别的数字立方体,它符合规则:相对两面的点数之和总是7.下面四幅图中可以折成符合规则的骰子的是19、一个画家有14个边长为1m的正方体,他在地面上把它们摆成如图所示的形式,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为()B C(A)(B)Q⑪21、下面的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是()22、有6个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是()A主视图的面积最大C俯视图的面积最大B左视图的面积最大D三个视图的面积一样大如图所示的立方体,如果把它展开,可以是下列图形的()25、下列四个图形中,每个小正方形都标上了颜色.若要求一个正方体两个相对面上的颜色都一样,那么不可能是这黄绿红绿D.C、黄红27、一个由若干个相同的正方体搭成的物体的主视图与左视图都是右边的图形,这个物体有()种不同的搭建办法.A、2B、3C、4D、5二、填空题:1.如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为.2、如图所示,用字母M表示与A相对的面,请在下面的正方体展开图中填写相应的字母. □□丄主视图左视图3123、如图是一个由若干个正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的£视图左视图6、如图,右图是左图表面的展开图,右图已有两个面标出是长方体的下面和右面,请你在右图中把长方体的其他面标出来.7、如图是由大小相同的小正方体组成的简单几何体的主视图和左视图,那么组成这个几何体的小正方体的个数最多为.6、如图是一个由若干个棱长相等的正方体构成的几何体的三视图。
专题27 三视图与展开图(解析版)
专题13 三视图与展开图1.视图:当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
2.物体的三视图特指主视图、俯视图、左视图。
(1)主视图:从物体的前面向后面投射所得的视图称主视图,能反映物体的前面形状。
(2)俯视图:从物体的上面向下面投射所得的视图称俯视图,能反映物体的上面形状。
(3)左视图:从物体的左面向右面投射所得的视图称左视图,能反映物体的左面形状,有时也叫做侧视图。
物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。
3.展开图:平面图形有三角形、四边形、圆等.立体图形有棱柱、棱锥、圆柱、圆锥、球等.把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形。
【例题1】(2019•四川省达州市)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】B【解析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.从左面看可得到从左到右分别是3,1个正方形.专题知识回顾专题典型题考法及解析【例题2】(2019•甘肃)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为.【答案】(18+2)cm2.【解析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm2).【例题3】(2019•江苏连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.【答案】B【解析】根据几何体的侧面展开图可知该几何体为四棱锥,所以它的底面是四边形.由题意可知,该几何体为四棱锥,所以它的底面是四边形.专题典型训练题一、选择题1.(2019广东深圳)下列哪个图形是正方体的展开图()A. B.C.D.【答案】B【解析】立体图形的展开图B中图形符合“一四一”模型,是正方体的展开图.故选B.2.(2019•山东省济宁市)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A.B.C.D.【答案】B.【解析】考点是几何体的展开图。
六年级数学拓展题之《13展开图三视图(含答案)》
13.展开图三视图1.利图中的阴影部分刚好能做成一个圆柱形油桶(接头处忽略不计)。
求这个油桶的容积。
2. 下面图()恰好可以围成圆柱体。
(接头忽略不计,单位:厘米)3.请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。
你选择的材料是()号和()号。
4.在正方形铁皮上剪下一个圆和一个扇形,恰好围成一个圆锥模型(如图),如果圆的半径为r,大扇形的半径为R,那么r:R=()。
5.小芳用如下图的一张硬纸折成一个无盖的长方体纸盒,折成的长方体纸盒的容积是多少立方厘米?(纸的厚度忽略不计。
单位:厘米)6.小明用一张长方形纸正好可以画上一个棱长为3厘米的无盖的正方体的表面展开图,这张长方形纸的面积最小是多少平方厘米?7. 把一块面积为108平方厘米的正方形铁皮做成一个无盖的正方体盒子,这个盒子的表面积最大是多少?8.给下面添上一个正方形,使它变成一个有盖的正方体表面展开图,一共有多少种不同的添法?9.用一张长16cm,宽8cm的长方形铁皮,做成一个无盖的长方体铁盒,这个铁盒的容积最大是多少cm³?10.王师傅准备用一块长方形铁皮制作一个无盖的水箱,他在铁皮上画了一个水箱的平面展开图。
(1)王师傅设计的这个水箱容积是多少升?(铁皮厚度忽略不计)(2)若在水箱下方焊接一个水管,水管的内直径是20毫米。
放水时,如果水流的速度是0.7米/秒,那么一箱水大约多少分钟可以全部放完?(结果保留整数)(3)王师傅发现这样设计,剩余的铁皮太零碎。
你能在不改变水箱尺寸和底面形状的情况下,帮王师傅重新设计一个水箱平面展开图吗?请将你的想法画在下图中。
参考答案1.54π2.A3. 1、24.145.486.907.67.58.49.12810.24,2分或详细讲解,请参阅“小学六年级数学思维提升培优拓展题讲解之《13展开图三视图》”。
人教版九年级下册数学试题:29.2 三视图 经典题和易错题(含解析)
一 物体的三种视图 经典题+易错题1.如图,一个碗摆放在桌面上,则它的俯视图是( )分析:从上面往下看物体所得到的图形叫俯视图. 答案:C2.下图中所示的几何体的主视图是( )分析:从正面看物体所得到的图形叫正视图,也叫主视图. 答案:D3.在学校开展的“为灾区儿童过六一”的活动中,晶晶把自己最喜爱的铅笔盒送给了一位灾区儿童.这个铅笔盒的左视图是( )分析:从左面往右看物体所得到的图形叫左视图. 答案:B4.如图1所示的几何体的俯视图是( )分析:根据“H ”形图案中的数据示数,知该字母模型的俯视图是C 中图形,故答案应选C. 答案:C5.图2中几何体的主视图是( )A .B .C .D . a a a 图1 A . B . C .D . 正面 图2错解一: A错解二: B错解三: D剖析:观察已知物体,它是由下面是一个长方体,上面是一个球体组合而成的,其中球的直径小于长方体的长和宽,从正面看观察该物体可以看到一个长方形,左上方有一个小圆.错解一和错解二没有观察清楚物体的位置,错解三混淆了主视图和俯视图的概念.正解:C应对攻略:几何体的三视图需认真观察物体摆放的具体位置,根据物体的长短和大小作图.6.由4个相同的小立方块搭成的几何体如图所示,它的左视图是()分析:错解一:A错解二:B错解三:D剖析:本题要求的是几何体的左视图,错解一看成了正视图,错解二看成了俯视图,错解三对三视图的概念认识不清楚,以上错误的原因都是混淆了主视图、俯视图和左视图三者的概念.正解:C应对攻略:三视图都是对于观察者而言的,位于物体不同方向的观察者,他们所画的三视图可能是不一样的.所以一定要分清主视图、俯视图和左视图的区别和联系.二简单几何体的三视图经典题1.形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是()A.B.C.D.(俯视图)图1分析:两个长方体小木块的主视图都是长方形,但后面的小木块一部分被挡住,看不到,但客观存在,故用虚线. 答案:D2.某同学把下图所示的几何体的三种视图画出如下(不考虑尺寸);在这三种是图中,其正确的是: A.①② B.①③ C.②③ D.②分析:本题重在考查对三视图的理解。
2015-2019 三视图高考真题(含解析)
专题19 三视图以及表面积体积2019年1.(2019全国II 文16)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)2.(2019全国II 文17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积.3.(2019全国III 文16)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.4.(2019江苏9)如图,长方体1111ABCD A B C D 的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 .5.(2019天津文12)已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.6.(2019北京文12)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.7.(2019浙江4)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A .158B .162C .182D .322015-2018年一、选择题1.(2018全国卷Ⅰ)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π2.(2018全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为BAA .217B .25C .3D .23.(2018全国卷Ⅰ)在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B .2C .82D .834.(2018全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是5.(2018全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为3,则三棱锥D ABC 体积的最大值为 A .123B .183C .3D .36.(2018浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是俯视图正视图2211A .2B .4C .6D .87.(2018北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为俯视图侧(左)视图正(主)视图1221A .1B .2C .3D .48.(2017新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.34πC.2πD.4π9.(2017北京)某三棱锥的三视图如图所示,则该三棱锥的体积为A.60 B.30 C.20 D.1010.(2017浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是俯视图11311A.12π+B.32π+C.312π+D.332π+11.(2017新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π12.(2016年山东)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为A .1233π+ B .123π+ C .123π+ D .21π+ 13.(2016年全国I )如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是A .17πB .18πC .20πD .28π 14.(2016年全国II )如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A .20πB .24πC .28πD .32π15.(2016年全国III )如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A.18+ B.54+ C .90 D .81 二、填空题16.(2018天津)如图,已知正方体1111ABCD A B C D -的棱长为1,则四棱锥111A BB D D -的体积为__.D 1C 1B 1A 1D CBA17.(2018江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .18.(2017新课标Ⅰ)已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为________.19.(2017新课标Ⅱ)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 .20.(2017天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 21.(2017山东)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为 .俯视图侧视图(左视图)正视图(主视图)22.(2017江苏)如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题三视图与展开图1.视图:当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
2.物体的三视图特指主视图、俯视图、左视图。
(1)主视图:从物体的前面向后面投射所得的视图称主视图,能反映物体的前面形状。
(2)俯视图:从物体的上面向下面投射所得的视图称俯视图,能反映物体的上面形状。
(3)左视图:从物体的左面向右面投射所得的视图称左视图,能反映物体的左面形状,有时也叫做侧视图。
物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。
3.展开图:平面图形有三角形、四边形、圆等.立体图形有棱柱、棱锥、圆柱、圆锥、球等.把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形。
【例题1】(2019•四川省达州市)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【例题2】(2019•甘肃)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为.专题知识回顾专题典型题考法及解析【例题3】(2019•江苏连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.专题典型训练题一、选择题1.(2019广东深圳)下列哪个图形是正方体的展开图()A.B.C.D.2.(2019•山东省济宁市)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A.B.C.D.3.(2019•浙江宁波)如图,下列关于物体的主视图画法正确的是()A.B.C.D.4. (2019安徽)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.5.(2019湖北省鄂州市)如图是由7个小正方体组合成的几何体,则其左视图为()A.B.C.D.6.(2019•山东临沂)如图所示,正三棱柱的左视图()A.B.C.D.7.(2019湖北仙桃)如图所示的正六棱柱的主视图是()8.(2019山东东营)如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为()A.B C.3 D.9.(2019年广西柳州市)如图,这是一个机械零部件,该零部件的左视图是()A.B.C.D.10.(2019贵州省安顺市)如图,该立体图形的俯视图是()A.B.C.D.11. (2019黑龙江大庆)一个"粮仓"的三视图如图所示(单位:m),则它的体积是( )A.21πm3B30πm3 C.45πm3 D.63πm312.(2019辽宁本溪)如图所示,该几何体的左视图是()13.(2019广西桂林)一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A.πB.2πC.3πD.1)π+14.(2019湖南益阳)下列几何体中,其侧面展开图为扇形的是()A.B.C.D.15.(2019•黑龙江省齐齐哈尔市)如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5B.6C.7D.816.(2019江苏镇江)一个物体如图所示,它的俯视图是()17.(2019•山东潍坊)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变18.(2019四川泸州)下列立体图形中,俯视图是三角形的是()19.(2019•湖北省随州市)如图是一个几何体的三视图,则这个几何体的表面积为()A. B. C. D.20.(2019•四川省绵阳市)下列几何体中,主视图是三角形的是()A B C D二、填空题21. (2019•河北省)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=()A .x 2+3x +2B .x 2+2C .x 2+2x +1D .2x 2+3x22.(2019•广西贵港)如图,在扇形OAB 中,半径OA 与OB 的夹角为120°,点A 与点B 的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为.23.(2019•山东青岛)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若 干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以 取走 个小立方块.24.(2019湖南郴州)已知某几何体的三视图如图,其中主视图和左视图都是腰长为5,底边长为4的等腰三角形,则该几何体的侧面展开图的面积是 .(结果保留π)25.(2019北京市) 在如图所示的几何体中,其三视图中有矩形的是_______.(写出所有正确答案的序号)第11题图③圆锥②圆柱①长方体26.(2019湖北荆州)如图①,已知正方体ABCD﹣A1B1C1D1的棱长为4cm,E,F,G分别是AB,AA1,AD的中点,截面EFG将这个正方体切去一个角后得到一个新的几何体(如图②),则图②中阴影部分的面积为cm2.27.(2019•黑龙江省绥化市)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为.专题三视图与展开图1.视图:当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
2.物体的三视图特指主视图、俯视图、左视图。
(1)主视图:从物体的前面向后面投射所得的视图称主视图,能反映物体的前面形状。
(2)俯视图:从物体的上面向下面投射所得的视图称俯视图,能反映物体的上面形状。
(3)左视图:从物体的左面向右面投射所得的视图称左视图,能反映物体的左面形状,有时也叫做侧视图。
物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。
3.展开图:平面图形有三角形、四边形、圆等.立体图形有棱柱、棱锥、圆柱、圆锥、球等.把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形。
【例题1】(2019•四川省达州市)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示专题知识回顾专题典型题考法及解析该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】B【解析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.从左面看可得到从左到右分别是3,1个正方形.【例题2】(2019•甘肃)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为.【答案】(18+2)cm2.【解析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm2).【例题3】(2019•江苏连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.【答案】B【解析】根据几何体的侧面展开图可知该几何体为四棱锥,所以它的底面是四边形.由题意可知,该几何体为四棱锥,所以它的底面是四边形.一、选择题1.(2019广东深圳)下列哪个图形是正方体的展开图()A.B.C.D.【答案】B【解析】立体图形的展开图B中图形符合“一四一”模型,是正方体的展开图.故选B.2.(2019•山东省济宁市)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()专题典型训练题A.B.C.D.【答案】B.【解析】考点是几何体的展开图。
由平面图形的折叠及几何体的展开图解题,注意带图案的一个面不是底面.本题主要考查了几何体的展开图.解题时勿忘记正四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.3.(2019•浙江宁波)如图,下列关于物体的主视图画法正确的是()A.B.C.D.【答案】C【解析】根据主视图是从正面看到的图形,进而得出答案.物体的主视图画法正确的是:.4. (2019安徽)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.【答案】C【解析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.几何体的俯视图是:5.(2019湖北省鄂州市)如图是由7个小正方体组合成的几何体,则其左视图为()A.B.C.D.【答案】A【解析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左主视图中.从左面看易得其左视图为:6.(2019•山东临沂)如图所示,正三棱柱的左视图()A.B.C.D.【答案】A【解析】根据简单几何体的三视图,可得答案.主视图是一个矩形,俯视图是两个矩形,左视图是三角形。
7.(2019湖北仙桃)如图所示的正六棱柱的主视图是()【答案】B【解析】主视图是从正面看所得到的图形,根据正六棱柱的特点,知正六棱柱的主视图如图所示:8.(2019山东东营)如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为()A.B C.3 D.【答案】D【解析】如图,将圆锥侧面展开,得到扇形ABB′,取弧BB′的中点E,连接AE,取AE的中点F,连接BF,则BF为所求的最短路程.设∠BAB′=n°.∵6180nπ⋅=4π,∴n=120,即∠BAB′=120°.连接BE,∵E为弧BB′中点,∴∠BAF=60°,∴△ABE为等边三角形.∵F为AE的中点,∴BF⊥AE,∴∠AFB=90°,∴BF=AB•sin∠BAF=6D.9.(2019年广西柳州市)如图,这是一个机械零部件,该零部件的左视图是()A.B.C.D.【答案】C【解析】左视图就是从几何体左边看到的图形,从左看可得一个圆在长方形内,故选C.10.(2019贵州省安顺市)如图,该立体图形的俯视图是()A.B.C.D.【答案】C【解析】根据俯视图是从上面看到的图像判定即可11. (2019黑龙江大庆)一个"粮仓"的三视图如图所示(单位:m),则它的体积是( )A.21πm3B30πm3 C.45πm3 D.63πm3【答案】C【解析】由图可知"粮仓"是由一个圆锥和一个圆柱组成的,其中,底面直径为6m,圆柱的高为4m,圆锥的高为3m,所以体积=π×32×4+13π×32×3=45πm3,故选C.12.(2019辽宁本溪)如图所示,该几何体的左视图是()【答案】B.【解析】图中几何体的左视图如图所示:13.(2019广西桂林)一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A.πB.2πC.3πD.1)π+【答案】C【解析】∴正三角形的边长2==.∴圆锥的底面圆半径是1,母线长是2,∴底面周长为2π∴侧面积为12222ππ⨯⨯=,Q底面积为2rππ=,∴全面积是3π.14.(2019湖南益阳)下列几何体中,其侧面展开图为扇形的是()A.B.C.D.【答案】C【解析】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.根据特殊几何体的展开图,可得答案.A.圆柱的侧面展开图可能是正方形,故A错误;B.三棱柱的侧面展开图是矩形,故B错误;C.圆锥的侧面展开图是扇形,故C正确;D.三棱锥的侧面展开图是三角形,故D错误.15.(2019•黑龙江省齐齐哈尔市)如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5B.6C.7D.8【答案】B【解析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.综合主视图和俯视图,底层最少有4个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是6个.16.(2019江苏镇江)一个物体如图所示,它的俯视图是()【答案】D【解析】俯视图从图形上方观察即可得到,故选:D.17.(2019•山东潍坊)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变【答案】A【解析】利用结合体的形状,结合三视图可得出俯视图和左视图没有发生变化;将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变。