采矿工程专业毕业设计外文文献翻译(中英文翻译)

合集下载

采矿专业毕业设计外文资料翻译--千万吨级矿井综采工作面的开采工艺性评价

采矿专业毕业设计外文资料翻译--千万吨级矿井综采工作面的开采工艺性评价

英文原文Fuzzy evaluation on coal seam geological condition of coal face inten million ton MineAbstract:Based on coal seam geological condition in Jisan Mine,quantitative evaluation on concrete coal seam geological condition is made by using fuzzy evaluation with the view of coal mining and coal face production.The evaluation content and its realization of coal seam geological condition,the structure and the index system of evaluation factor,the membership functions and weights of evaluation factor ,evaluation model and reliability are expounded in detail ,eighty-two coal face that will be exploited is classified,Fuzzy evaluation is the basal work to select coal mining technology and ensure a ming running efficiently,safely and steadily.Key words:fuzzy evaluation;membership function1 INTRODUCTIONWith the development of mining ,the difference of coal seam geological conditions will affect the suitability of coal mining technology and coal face outputs ,i.e. qualification and economic indicator.To ensure a mining running efficiently,safely and steadily ,coal seam geological conditions must be known roundly and detailed .Fuzzy evaluation on coal seam geological conditions is a evaluation on concrete coal seam geological condition with the comprehensive view of coal mining. The main characteristic of evaluation is that a coal face is a evaluation cell.The aticle tells of fuzzy evaluation on coal seam geological conditions in Jisan Mine.2 CONDITIONS OF SEAM AND GEOLOGYThere are three sections that are exploited in Jisan Mine,i.e. north section﹑east section﹑west section,they belongs to Sanxia coal seam. Sanxia coal seam is at the bottom of Shanxizu,mean thickness of coal seam is 5.26 metres,from east to west in Mine,thickness of coal seam reduce from 5 metres to 3.5 metre. Rock character of roof is sandrock or siltite,rock character of bottom is siltite or thin sandrock. There are many faults in Jisan Mine,there are fourteen faults that their drops are bigger thantwenty metres,and there are many smaller faults. Based on the coal seam geological conditions,strike longwall mining method in fully mechanized coalface is adopted.3 FACTORS AND INDEX OF EV ALUATION3.1 STRUCTURE OF EV ALUATION FACTORSAccording to the principle of system,feasibility and simplicity,based on coal seam geological characteristic ,the structure of evaluation factors is figure 3.1.It consists of seven compound factors and eleven smaller factors,these factors are quantified by fault density q1﹑fault length exponent q2﹑fault fall exponent q3﹑variation of coal seam and band coefficient γ﹑seam thickness m﹑seam angle α﹑seam hardness R﹑immediate roof hardnessσ﹑ratio of immediate roof and seam mining thickness N﹑false roof thickness h0﹑immediate bottom hardness q c﹑coal face length l and coal face advance length s.Figure 3-1 structure of evaluation factors of coal face3.2 INDEX SYSTEM OF EV ALUATIONExplanation of eleven smaller evaluation factors is as follows:(1)fault effect:describing fault effect on mining needs three index,faultdensity-fault number in unit area;fault length-sum of fault length in unit area;fault fall exponent-ratio of fault fall and seam thickness.(2) variation of coal seam and band coefficient : ratio of seam thickness sample standard deviation and seam thickness mean. (3) Seam thickness : seam sample thickness mean. (4) Seam angle : seam sample angle mean.(5) Seam hardness : seam compression strength.(6) Immediate roof hardness : immediate roof compression strength. (7) Main roof holding power :(8) False roof effect : false roof thickness.(9) Immediate bottom hardness : immediate roof compression strength. (10) C oal face length (11) C oal face advance3.3 MEMBERSHIP FUNCTIONS OF EV ALUATION FACTORSThe membership function of evaluation factor is the quantitative description on fuzzy relationship between the change of a geological factor and the mining effect. Membership function is the foundation to build a fuzzy evaluation model.Adopting statistic analogism method , method of undetermined coefficients and heterogeneous fuzzy statistic method , membership functions are obtained as follows : (1)membership function of fault effectμa =2/ (1+exp (0.0018+0.042×q 1+0.064×q 2+0.00071×q 3))(2)membership function of variation of coal seam and band coefficient(3)membership function of seam thickness⎪⎩⎪⎨⎧><≤+⨯-<=5.01.05.02.06.132.00.1)(000000h h h h h h μ(4)membership function of seam angle⎪⎩⎪⎨⎧≥<≤<=3N 1.03N 0.31.8 + N) Exp(-0.29 1.9-0.3N 0.05(N)μN(5)membership function of seam hardness0.17.2()0.51ln 0.917.2421.042c c R c c c c R R R R R μ<⎧⎪=⨯-≤≤⎨⎪>⎩⎪⎪⎩⎪⎪⎨⎧<≤>≥-<≤+⨯+⨯<=-8040403002.08.10.1301671.0012.01069.1ln(164.0)(24σσσσσσσσμσ(6)membership function of immediate roof hardness100010001001000.17.2)ln(5.00)(≥≤<≤⎪⎩⎪⎨⎧-=s s s s s S μ(7)main roof holding power⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤+-<≤+-<≤+-<≤<≤=5036528.10286.036180.101389.018125.104167.01260.1631667.0)(R R R R R R R R R R R μ(8)false roof effect⎩⎨⎧≥<≤⨯-=25.0025.00)(21)(5.0γγγγμγ(9)immediate bottom hardness⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤-⨯<≤+⨯<≤-⨯<≤-⨯<≤-⨯=1500.1150130275.00085.0130100483.0000667.0100805.00125.080607.0015.060401.0005.0)(l l l l l l l l l l l l L μ (10)coal face length⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤+⨯-<≤<≤-⨯<≤+⨯<≤-⨯<≤+⨯=0.50.10.55.470.05.45.370.12.05.38.20.18.25.252.19.05.20.243.012.00.24.123.045.04.10.105.025.0)(m m m m m m m m m m m m m m m μ (11)coal advance length⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤+⨯-<≤<≤-⨯<≤+⨯<≤-⨯<≤+⨯=0.50.10.55.470.05.45.370.12.05.38.20.18.25.252.19.05.20.243.012.00.24.123.045.04.10.105.025.0)(m m m m m m m m m m m m m m m μ 3.4 WEIGHTS OF EV ALUATION FACTORSWeight of evaluation factors is a quantity that show relative importance of per factor in system ,it is the key to unify systemic structure and function.Coam seam geological evaluation of coal face ascertains weights of evaluation factors by AHP.AHP is a easy method to quantify the quanlitative event.Appliacation of AHP needs five steps :building hierarchical model 、constructing judgement matrix 、single hierarchy collation and consistency check 、total hierarchy collation 、consistency check of total hierarchy collation.Comfirmatiom of judgement matrix is the key to use AHP ,value of judgement matrix is the quantitative description on relative importance of per factor ,the valves are one to nine and their reciprocals.Table1 shows the value ,Table2 to 4 show judgement matrix ,Table5 shows weights of evaluation factors.Figure 3B6~C judgement matrix3.5 FUZZY EV ALUATION MODELCoal seam geological conditions are multilayered evaluated by fuzzy evaluation model,fuzzy evaluation model images single factor evaluation value to total evaluation value by certain algorithm,whether propertis of evaluation sample is bad orgood are assured by total evaluation valve ,in order to comprehesively consider effect degree of per factor ,weighted avarage evaluation model is used ,the model :∑==⋅=ni ij i j m j r W b 1.....,1,2, In fomula :b j ——evaluation valve ; W i ——weight matrix 。

矿业工程科技文献翻译部分

矿业工程科技文献翻译部分

矿业工程科技文献翻译部分1) It is a fine summer’s day.那是一个晴朗的夏日。

2) The American family is dying because of the soaring divorce rate.由于离婚率直线上升,美国的家庭正在消亡。

3) Studies serve for delight, for ornament, for ability. Their chief use for delight, is in privateness and retiring; for ornament, is in discourse; and for ability, is in the judgement and disposition of business.读书足以怡情,足以博彩,足以长才。

其怡情也,最见于独处幽居之时;其博彩也,最见于高谈阔论之中;其长才也,最见于处世判事之际。

4) What works under one set of conditions at one time must work under the same conditions at other times.在一个时期的一定条件下起作用的东西,在另一些场合的相同条件下也必须起作用。

5) Influenza [influ’enz?] is spread in the same manner as a common cold.流感的传播方式和普通感冒相同。

6) A dry cell is dry only in the sense that there is no liquid in it.干电池之所谓干,只是就其中没有液体而言的。

7) There seems to be no limit to how hot things can get.物体能热到什么程度(或:物体能变得多热),似乎没有限度。

采矿工程中英文对照外文翻译文献

采矿工程中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)译文:新技术和新理论的采矿业跨世纪发展摘要:煤炭产业需要更长远的发展,对工作中所讨论的热点在工业中出现新的理论和高科技成功使用在二十世纪末是最美好的,作为被关心的问题需要较快一步的发展,在20世纪中后期产生的新型、高速的新技术是最有吸引力和标志性的,即使在所有行业中不同的冲击变得起来越相关以及部门间彼此合作并明确地叙述许多新的理论,煤炭行业的新科技和新理论是不可避免的,并且包括一切的不可能性。

作者在这篇文章中阐述了他关于采矿学的发展问题的意见,举出了许多令人信服的事实,并对大部分新的情况予以求证。

关键字:采矿工程,矿业产业, 矿业经济学,新技术和高科技1.采矿在国民经济中的重要性今天,科技世界的发展已经引起了对采矿空前的不容忽视,空间工程,信息工程,生物工程和海洋工程的发展,新能源的发现和研究与发展以及新原料在目前和将来逐渐地改变着人类生活的每个方面。

“科学技术是第一生产力”指出了新科技在国民经济的中扮演了重要的角色。

在全球的一些大的国家中,互相竞争为的是努力探测外部的空间,我们不应该忘记基本的事实:有超过五十亿个人生活在地球上。

想要保住地球上的人类,我们必须做到以下四个方面:也就是营养物,原料,燃料和环境。

营养物主要是空气、水、森林、谷物和各种植物,它们都是来自于自然。

原料有铁、铁的金属,稀罕的金属,宝贵的化学的原料和建材的金属。

燃料如:煤炭,石油,天然气,铀,放射性金属元素和其他的发光要素。

这些也在自然界中发生。

最后一种是靠人类来维持的生态环境。

在上述中三个必要的物质中,原料和燃料从地球表面经过采矿学取出服务人类。

生态学的环境和采矿已及上述的三个必要的财产抽出有莫大的关系。

然而,随着新技术和它们进入煤炭行业成果的提高,逐渐使它由朝阳产业变成当日落业并逐渐地褪色消失。

如采矿产业是最古老的劳工即强烈传统的产业,因此,那里没落是在一个民族的特定部份需要的印象而且要再作任何的更高深的研究,并在此之上发展采矿。

采矿工程毕业设计外文翻译----新技术和新理论的采矿业跨世纪发展

采矿工程毕业设计外文翻译----新技术和新理论的采矿业跨世纪发展

原文:DEVELOPING OF TRANS-CENTURY MINING SUBJECTWITH NEW TECHNOLOGY AND NEW THEORYAbstract:Mining subject needs further development and towards which the development would being the problems concerned over all along and to be succeeded with the public good enough attention to discussions to reach an identify of views admittedly. The emergence in succession of new-and-high techs in the mid-and late twentieth century is perhaps the most fascinating and epoch-marking event that has given to all the subjects certain but different degrees of impacts to become more closely interrelative and interdepartmental each other and feature specifically from that of the past for their entirely new conceptions in the result of formulating many new theories,new technologies and new subjects that mining subject is inevitably and unexceptionally the one inclusive. The acuter gives in this paper his opinion regarding the problem of the development of mining subject proving with many convincible facts and most informative new idea,Key words: mining subject; mineral industry; mineral economics; new-and-high tech.1 The Importance of Mining Industry in the National EconomyToday, it has been paid unprecedented attention to the development of technology worldwide.The advance of space engineering,information engineering,biological engineering and marine engineering,the discovery and the research and development of the new energy and new materials increasingly change every aspect of human life both at present and in the future.The words "Science and Technology being the First Production Force" has fatherly and penetratingly pointed out the important role of new technology in the course of national economy construction.In the competition of several big countries in the world striving for the exploration of outer space,one should not forget the essential fact that there are more than five billion people living on the earth. To assure the survival of mankind on the earth,four essential requirements should be considerably fulfilled,namely,the nutrients,materials,fuels and the environment. The nutrients mainly are air,water,forests,grains and miscellaneous plants,all of which are acquired from the nature. The materials refer to iron,ferrous metals,rare metals,precious metals,chemical raw materials and building materials. The fuels cover coal,petroleum,natural gas ,oil shale,uranium,thorium and other radioactive elements. These also occur in nature. The last one is the ecological environment depending on which mankind lives. In the above three essential substances,the materials and fuels are through mining engineering extract from bining industry is a conventional industry, however,with the advance of the new technologies and the introduction of them into mining industry which will be reduced of itself final1y- a technology-intensive industry. The emergence of highly mechanized and automated mines and robot-operated manless working face marks the renewal and substitution of technologies of mining industry and proves the fact that mining industry.However,is conventional industry, but not sunset industry. As long as mankind live on the earth,mining industry will last forever and never decline and fall,instead,as man's living demands increases,the output of fuels and raw materials will be increased by a big marg and mineral industry will still gain a much greater development.2The Object of Study of the Mining Subject2. 1 The Tasks and the Special Features of 1liining SubjectHistorically and the Special Features of 1liining Subject the development of mining subject has its own course of change and development both at home and abroad. Since mining industry is closely related with geology, metallurgical and energy industry consequently in the subject relationships,they are interrelative and interdepartmental each other. As mining subject branch of science dealing with the extraction and utilization of minerals and the resources from inside the earth,on the sake of the complexity and multiplicity of the rock mass and mineral resources of great nature which makes the basic theories of mining subject being more complicated than that of any other engineering subject. Especially in the following aspects featured: the objects of mining subjects are the ore bodies occurred in nature that they differ each other in structure,quality,and property.3Five Urgent Requirements on the Tendency towards the Trans-century Development of Modern Mining Subjects3. 1 Renewing the Knowledge of Strata 11ZechanicsAbove all rock and or ore properties are the prerequisites of the subjects of the study of mining engineering regardless of whether it is excavation,comminuting or strata ,stability strata mechanics is required to make the study along two aspects:(1)From the micro-study to the macro-study(2) The study of the contradictions between rock-breaking and rock stability in the course of mining and excavating. Therefore it is a very broad field of academic studyComparing with common solid materials,rocks are featured structurally for their non-homo.3.2 AnewKnowledgeofMiningEngineeringSystem-the"hian-Nature-Rfachine" Systern ,System engineering had found in recent years very rapid development,and wide applications m mining engineering. Been modeled after the "man-machine’s Generally, mining systems engineering considerably studies had system model used in aerospace engineering and other departments of en Bering. In recent years,Prof. Fettwice of the Montan University of Austria and the author of this paper both had put forth the opinion that the objects of mining engineerm8 Machine are ore bodies and rock strata, the activities of mining engineering are those played with by the man in getting the knowledge of the environment underground.3.3 Reforming the Conventional Mining Technologies and Industries withModern New technologiesThe major policy of China of reforming the conventional industries with new-and-high techsof great importance and no doubt to its conventional industries.The essential features of new-and-high techs are highly technology-intensive.Just as discussed in the beginning of this paper,speaking with respect to the reforming of mining engineering and coal industry with new-and-high techs,it is essential to introduce merely those ones which enable to make these two industries swiftly commercialized. Since mine is concerned with the natural surroundgas of ground,the newtechs,however,as those used in aerospace engineering in the care for "going up to sky" when used for 0gettingdown intothe earthin mining engineering practices evidently are needed to make completely different modalities. In 1080s,Berlin Poly }ethnic university had applied optic fiber telecommunication technology- in underground mining,giving rise to abundant interference problems of earth magnetism,electricity and light wave, and the insulation of strata to the conduction electronic waves. The BPM man had the problems s finally tailed,however,through a long time of research work. Therefore,to have the minerals industries well prepared technically for the 21st century,to paying great attention the following fields of study are required3.3.4Making the study of market-economy mineral economics theoriesFor a long time that the mineral economics theory in China had been given distinct features of planning economy,while in the theory itself,mineral resources were not recognized ascommodities and had no prices. Consequently,even though the mineral products had pricesbut were distorted ones making all national mining enterprises non-profitable and to exist depending on governmental policy-subsidization. Now the country, however,has changed intosocialist market economy, most mineral enterprises radically cannot accommodate themselvesto this new situation,in particular,from the point of view of "Enriching the peasants" policyto put forward to the exploitation of mineral resources,the near-term policy of the so-called“wherever there’ water,flow it fast",which had made the mineral industry from the repeated view-point of and the enriching the Pleasants policy, has caused the price deficit due to lowselling-price of minerals into even worse situation of disorder,no-restraint and anarchy ofscrambling for extracting the mineral resources putting the mineral industries in a tight spot unabling to feed themselves. Under this circumstance,the importance of undertaking the softscience research right now becomes more conspicuous to the mineral industries than ever before. One can predict that had the theoretical study of mineral economics theory been made ,portent break troughs,that it would radically change the face of our mineral industries.3.5 Relationship between Mineral Engineering and Natural EcologyMining engineering is the removal of rocks and minerals to the surface throughexcavations from underground deep in the earth or from the ground surface leaving the excavated space so formed. Every turn meters Surface every year subsidence in China. of the commodity flow of mining products reaches billion cubic Obviously it has caused many negative effects,for example:(1)uses of waste rock which results in the damages of farming lands and houses;(2) Large volrefuse and tailings occupy large area of land; and (3) Coal and oil burning products give off waste materials,such as exhaust gas,waste liquids,and solids and pollute the environment. In China,80 percent of 1. 1 billion tons of coalburned as fuel,from which,dust,sulpher and the of NO2and CO2 and the effective less heating effect seriously constitutes a menace to the ecological environment of China and the neighboring countries.4Suggestions opment of to the Science and Technology Circles of the Nation for the Develop-the Mining Subject4.1 An Unguent AppealNo doubt the "flying up into the sky" technology is the one most advanced,however,thegetting down into the earth" technology in mining engineering is no less complex,and even more difficult to pin down. It is no wonder that people consider that mineral engineering beingmuch simpler and pay less attention for lack of the knowledge of the resulting in the low rate ofmineral recovery and low rate of mineral extracting. For this country, but to spend a greatmany of valuable hard currency to import those actually need not to import raw materials andelse,naturally this is not favorable to the development of national economy. Hoping the science and technology circles,in particular their leading departments,renewing their recognitions to this awkward situation,and give necessary support to the urgently-needed topics of research studies of the mineral industries.4.2 National Resource PolicyNational resource policy concerns the future for many generations.Hoping the government population institutions relevant learn Iron the lesson of the past population policy,to take measures as early as possible to have the print up of mineral resources centralized.4.3 Mineral Investment PolicyThe investment policy and the set up of mineral industries should be dire; iron: tm common industries to assure in the long run the first energy supply 1vit} necessary and appropriate support.4.4 Make Ready the SuccessorsTo make ready the successors for the mineral industries and the development of the mining subjects,suggesting to give preferential treatment to the university.Admissionssystem and the recruitment of mineral workersand set mineral science.Foundation as an important subject independent from the foundations of those.Basic science in the natural science foundation.The aim of writing this paper is to hone that in the tonguingA of this centuryminim subject in China will have a new prosperous development with the of new technology to theory under the guidance of the national science policy.译文:新技术和新理论的采矿业跨世纪发展摘要:煤炭产业需要更长远的发展,对工作中所讨论的热点在工业中出现新的理论和高科技成功使用在二十世纪末是最美好的,作为被关心的问题需要较快一步的发展,在20世纪中后期产生的新型、高速的新技术是最有吸引力和标志性的,即使在所有行业中不同的冲击变得起来越相关以及部门间彼此合作并明确地叙述许多新的理论,煤炭行业的新科技和新理论是不可避免的,并且包括一切的不可能性。

采矿工程 毕业设计_外文翻译 英译汉 中英文

采矿工程 毕业设计_外文翻译 英译汉 中英文

ROOM-AND-PILLAR METHOD OF OPEN-STOPE MINING空场采矿法中的房柱采矿法Chapter 1.A Classification of the Room-and-Pillar Method of Open-Stope Mining第一部分,空场采矿的房柱法的分类OPEN STOPING空场采矿法An open stope is an underground cavity from which the initial ore has been mined. Caving of the opening is prevented (at least temporarily) by support from the unmined ore or waste left in the stope,in the form of pillars,and the stope walls (also called ribs or abutments). In addition to this primary may also be required using rockbolts , reinforcing rods, split pipes ,or shotcrete to stabilize the rock surface immediately adjacent to the opening. The secondary reinforcement procedure does not preclude the method classified as open stoping.露天采场台阶是开采了地下矿石后形成的地下洞室。

通过块矿或采场的支柱和(也称为肋或肩)采场墙形式的废料的支持来(至少是暂时的)预防放顶煤的开幕。

除了这个,可能还需要使用锚杆,钢筋棒,分流管,或喷浆,以稳定紧邻开幕的岩石表面。

采矿工程毕业翻译

采矿工程毕业翻译

2013 届毕业文献翻译题目文献翻译专业班级采矿工程学号 09010901xx学生姓名刘xx指导教师张电吉指导教师职称教授学院名称环境与城市建设学院完成日期: 2013 年 6 月日Room and pillar Mining MethodsBullock(1982a),quoting previous data, showed that room and pillar mining together with stope and pillar mining accounted for most of the underground mining in the United States. He estimated that 60% of noncoal minerals (about 80 million tons or 70 Mt) and 90% of coal ( about 290 million tons or 260 Mt) were obtained by room and pillar methods, and it is unlikely that things are radically different today. The method is cheap, highly productive, easily mechanized, and relatively simple to design.The room and pillar mining method (Fig.5. 2) is a type of open stoping used in near horizontal deposits in reasonably competent rock, where the roof is supported primarily by pillars. Ore is extracted from rectangular shaped rooms or entries in the ore body, leaving parts of the ore between the entries as pillars to support the hanging wall or roof. The pillars are arranged in a regular pattern, or grid, to simplify planning and operation. They can be any shape but are usually square or rectangular. The dimensions of the rooms and pillars depend on many design factors. These include the stability of the hanging wall and the strength of the ore in the pillars, the thickness of the deposit, and the depth of mining. The objective of design is to extract the maximum amount of ore that is compatible with safe working conditions. The ore left in the pillars is usually regarded as irrecoverable or recoverable only with backfill in noncoal mines.applications of pillar mining have been discussed by Hamrin ( 1982) and Hittman( Anon. . 1976) among others. Suitable conditions include ore that are horizontal or have a dip of less than 30°. A major requirement is that the hanging wall is relatively competent over a short period of time, or is capable of support by rock bolts that are used extensively in room and pillar mining. The method:! is particularly suited to bedded deposits of moderate thickness (2 to 6 m) such as coal-the main application一salt, potash, and limestone.Figure.5.2Room and pillar mining method.1, Methods of Room and Pillar MiningRoom and pillar mining takes place in sections or panels, which are usually rectangular and regular in plan. In hard rock mining of horizontal ore bodies, the method is very similar to open stoping. In many cases, ore grade control may be the primary requirement in mine design, and ground control and ventilation secondary considerations. This may lead to an ad hoc room and pillar design with irregular- , nonrecoverable pillars of low-grade ore.Hard-rock room and pillar mining is a effectively method of open stoping (stope and pillar mining) at a low angle to the horizontal, excavating rooms and leaving supporting pillars.Where mineral values vary, the method is similar to the old “gophering" method of mining where random excavations followed highly mineralized zones. Where mineral values are consistent, the mine layout can be regular. The method differs from most hard-rock mining methods in that gravity flow is limited, and ore must be loaded in the excavation where it has been blasted and transported from that point. In large operations this involves trucks and loaders or load — haul — dumps ( LHDs).There are various methods of room and pillar stoping. The most common are full-face slicing breast stoping and multiple slicing or bench and breast stoping. In the former, the rooms are opened to their full vertical height with no mineral or economic value left in the roof or the floor. probably the reasonable safe limit for full-face slicing is 8 to 10 m depending on drilling and support equipment, and beyond this, multiple slicing is used.2. Production CycleFor hard-rock ore bodies ,the basic cycle is similar to hard-rock tunneling four main elements, (1)mark out and drill blast holes , usually in a wedge pattern , (2) ,and ventilate to remove blast fumes ,(3) introduce mucker and muck and load,and ④scale the face and walls and bolt the roof where necessary. There is considerable complexity in the interaction among these elements that make up a basic critical path. In order to estimate the cycle time, it is necessary to determine unit loading and drilling rates and task times for these elements and also to estimate how subsidiary elements and tasks such as haulage and ventilation takeup may impinge upon the critical path in a badly organized mine.3.Panel DevelopmentA panel layout for a typical room and pillar mine in a noncoal mine is illustrated as follows :The excavation height is about 4.5m,and the normal sloping practice is to drive a single development drift about 10. 5 m wide a distance of about four or five rooms into the ore body. This will serve as the main haulage drift. Pillars are then marked out on the drift walls and rooms driven between them.To drill and blast the initial drive when the only exposed or free face is the drive face, some form of cut pattern is used. This is known as the “ face round or “ swing and in a 4. 5 by 10.5 m face will comprise 60 to 70 holes of about 8 mm to a depth at 3 to 3. 6 m. If more than one face is exposed,a group of holes may be drilled at a low angle to the free face in what is known as a " slab round or slabbing or “slashing”. This requires less explosive and less drilling than a single face. the most common form of face round is a wedge or V, cut although bum cuts can also beDrilling is carried out with jumbo-mounted hydraulic drills ;loading is usually by gathering arm loader, although in modern mines, trackless LHD vehicles are used to the load to a transfer raise where it is reloaded into trucks or conveyors.房柱法Bullock在1982年提出房柱法,它指在矿房与矿柱里回采矿物,在美国大多数地下开采应用柱式开采。

采矿工程专业毕业设计外文文献翻译(中英文翻译)

采矿工程专业毕业设计外文文献翻译(中英文翻译)

外文原文:Adopt the crest of the coal work noodles plank managementproblem studyCrest the plank management is the point that adopts a safe management of the coal work noodles.Statistics according to the data, crest the plank trouble has 60% of the coal mine trouble about, adopting the trouble of the coal work noodles and having a crest 70% of the plank trouble above.Therefore, we have to strengthen a plank management, reducing to adopt the coal work noodles crest the occurrence of the plank trouble.1,the definition of the crest,scaleboard and it categorizeEndow with the existence coal seam on of the close by rock strata be called a plank, endow with the existence coal seam under of the close by rock strata be called scaleboard.Crest the rock,strength of the scaleboard and absorb water sex and digging to work the management of the noodles contain direct relation, they is certain crest the plank protect a way and choose to adopt the empty area processing method of main basis.1.1 planks categorizeAccording to rock,thickness and return to adopt process to fall in the 垮of difficult easy degree, crest the plank is divided into the false crest,direct crest and old crest.According to direct crest sport to adopt a field to the influence for press, the direct crest is divided into broken up,unsteady,medium etc. stability,stability,strong and tough crest plank etc. is five.According to old crest the sport Be work mineral inside the noodles press to present degree and to work safe threat of noodles of size, the old crest is is divided in to press very and severely, press mightiness, press to compare obviously, don't obviously press etc. is four.1.2 scaleboards categorizeAccording to the opposite position relation of the rock strata and the coal seam, the scaleboard is divided into direct bottom with the old bottom.Locate coal seam directly under of the rock strata be called direct bottom;locate the direct bottom or coal seam under of the rock strata be called old bottom.The coal seam crest the scaleboard type expects the influence of the geology structure sport after be subjected to the deposition environment and, its growth in different region degree dissimilarity, the coal seam possibility for have isn't whole.2,crest that need to be control plank classification and adopt the processing way of the empty areaAccording to different crest the plank type and property, choose to pay to protect a way and adopt the empty area processing method differently, is a plank management of basic principle.2.1 crest needed to pull to make plank classificationPress a knothole rock strata strength, the crest plank that needs to be control can is divided into: general crest the plank,slowness descend to sink a plank and is whole fall the crest of the cave in the danger plank etc..2.2 work noodles adopt the processing method of the empty areaThe processing method that adopts empty area mainly has: all 垮s fall a method,partial full to fill a method,the coal pillar to prop up a method to alleviate to descend to sink a method slowly etc..3,crest the plank pressure present a characteristic3.1 top the cover rock strata of the sport regulation and the work in front pay to accept pressure to distribute behindDuring the period of mine, adopt empty area above of the rock strata will take place ambulation, according to crest the plank change mind condition, taking the cranny rock strata in up the cover rock strata follow the work noodles to push forward the direction demarcation as three areas: the coal wall prop up the influence area,leave layer area and re- press solid area.The noodles opens to slice an eye to go to push forward forward in the process from the work, break original should the equilibrium of the dint field, cause should the dint re- distribute.Be adopting the coal work noodles to become to pay to accept pressure in front and back, it concretely distributes shape to have something to do with adopting the empty area processing method.3.2 first times to press to press a main manifestation with the periodFirst time to press a main manifestation:BE a plank"by oneself the vield song" range enlargement;the coal wall transform and fall to fall(the slice help);pay to protect to drill bottom etc..First time to press to want to keep on more and suddenly and generally for 2-3 days.Period to press a main manifestation:Main manifestation BE:crest the plank descend to sink nasty play increment of speed, crest the plank descend to sink quantity to become big;pay what pillar be subjected to load widespread increment;adopt empty area to hang a crest;pay pillar to make a noise;cause the coal wall slice to help,pay pillar to damage,crest plank occurrence the step descend to sink etc..If pay the pillar parameter choice to be unsuited to a proper or single body to pay the pillar stability worse, may cause the partial crest or crest plank follow the work noodles to slice to fall etc..4,crest the plank choice for protectThe work noodles the function for protect decelerate a plank to descend to sink, supporting to control a crest to be apart from the knothole integrity inside the crest, assurance work space safety.4.1 choices that protect material and formPay to protect material to mainly there are the metals support and the wood support.Pay to protect a form to mainly have a little the pillar to protect,the cote type protect to press a support with liquid.4.2s protect a specification choiceWhile choosing to pay to protect specification, mainly control the following 2:00:1.Control the work noodles adopt high and its variety.Generally can according to drill a holethe pillar form or have already dug the tunnel data of to make sure to adopt high.From last the movable regulation of the cover rock strata, can the initial assurance crest plank at biggest control a crest to be apart from place of average biggest descend to sink quantity, select to pay a pillar model number suitablely2 control the crest plank of the normal appearance to descend to sink the quantity and support can the draw back pute the biggest and high Hmax and minimum and high Hmin that pays pillar, select specification of pay the prehensive the pillar model number and specification, check related anticipate, assurance the model number of the pillar.5,the work noodles manages everyday of pointEveryday crest the point of plank management is the with accuracy certain protects density and control a method, right arrangement and organize to adopt coal and control a crest to relate to in fixed time, strengthen to pay to protect the quality management before press, the assistance that chooses to use a good necessity protect etc., attain to expel to emit a trouble, assurance the purpose of[with] efficiency.1 choice that protects density and controls a methodAccording to the work noodles crest plank rock,adopt a periodic to press obvious degree, press strength and to press in front and back a crest knothole variety a circumstance etc., the certain protect density and control a method.It adopt coal in 2 production lines with control of the crest to relate to in fixed timePeriod to don't obviously press to adopt a field, emphasize to pay to protect,adopt coal, control a parallel homework, possibly contract to adopt coal,return to pillar to put distance between an operations with speed the work noodles propulsion degree;period to press more and obviously adopt a field, at to press in front and back adopt different of,control the relation organization project, before press should not adopt coal,put a crest in the meantime homework, press after should adopt to adopt coal,put a crest to keep minimum wrong be apart from parallel homework.Field to strengthen to pay to protect the quality management assurance to pay pillar to have to prop up dint,prevent°from paying pillar to drill bottom enough before press,right adoption the assistance protect.Adopt the coal work noodles crest, the plank manages everyday of the key lie in raising the spot management,the operation level, paying to protect and adapt to adopt a field to press and crest the scaleboard variety circumstance, adopt right of the assistance protect measure, well exertivecontrol a result.译文:采煤工作面的顶板管理问题探讨顶板管理是采煤工作面安全管理的重点。

测绘工程矿山测量论文中英文资料对照外文翻译文献综述

测绘工程矿山测量论文中英文资料对照外文翻译文献综述

测绘工程矿山测量中英文资料对照外文翻译文献综述The measurement of the surveying and mapping in mineSince the seventy s, as the electronic technology and laser technology development, the type of surveying and mapping instruments with electronics (such as range finder, electronic tachometer, gyroscopes) to the traditional surveying and mapping instruments methods produced profound effect. In satellite remote sensing, global positioning system, as a representative of the space on earth observation technology in surveying and mapping application in the science of mature, computer technology, system scientifically based geographic information system and application for the emergence of surveying and mapping information source of access, analyze, management, processing and application fully provide strong technical support, automation and intelligence of surveying and mapping system is already in investigation, therefore we can say, the modern mapping technology is undergoing a profound revolution. Mining of measuring technology of an important application field, in the vast coal, metal mines, nonferrous mine production process played an important role. Mine survey of modern task is: in mine exploration, design, development and production of the different stages of the operation of the ground and underground mining area, the space, resources, (in mineral and land resources and environment are mainly) information acquisition, storage, processing, display and use for reasonable and effective development resources, protecting the resources, protecting the environment, management, industrial and environmental services for the continuous development of the station. In order to realize its modern task, mine measurement must be making full use of modern surveying and mapping instruments and techniques, put the advanced modern technology with mine surveying the actual work,specific characteristics, and the combination of broaden the living space mine survey and business scope, promote the reform and development of mine survey, adapt to the market economy system and mining system reform needs. Electronic tachometer, space information technology, the inertial measurement system and other modern surveying and mapping instruments have been in mine survey technology is used to further development and are constantly.This paper to modern surveying and mapping instruments of the development of the technology and its application in mine.1、Electronic tachometer and its application in mine survey:Electronic tachometer as the most widely used surveying and mapping instruments, is electronic technology and optical technology development of the combination of the photoelectric measuring instrument, is also set range finder, electronic advantages in a wide range of instruments, application prospects, the intelligent electronic tachometer is currently the biggest selling surveying and mapping instruments, is also the main future development direction. Intelligent electronic tachometer is with light, electricity and magnetism, machine of the latest scientific achievements, set the location, measuring Angle for the integration of advanced instrument. The international advanced electronic tachometer are on a memory card, internal memory or electronic hand book way, way of double record data transmission communication function, can receive external computer instruction by the computer input data, also can to outside the computer output data. The international advanced electronic tachometer have Japanese SOKKIA POWERSET series production of electronic tachometer and SET5F, SET6F, SET5W electronic tachometer, Swiss produces the TCA100 and TCA1800 electronic tachometer, Japan NIKON DTM-A series of electronic tachometer, etc. Our country has just south of the surveying and mapping instruments company production NTS-200 series electronic tachometer. Electronic tachometer has set up a file in the engineering survey, mine surveying, cadastral etc a wide range of applications, its development and application is in rapid developing. Electronic tachometer because and has the advantages of transit and range finder, and provide measurement results in digital form, its simple operation, stable performance, data can be through the electronic hand book and thecomputer to carry on the advantages of communication in the mine in the measurement of a wide range of applications. The ground control survey, topographic, engineering surveying all available is, contact measurement, the measurement work can also be used inunderground i To as a representative of the intelligent, digital instrument is minesurveying instrument one of the development direction in the future. Based on theelectronic tachometer and the modern computer technology can establish a mine 3 d data to be automatic collection, transmission,processing of mine surveying dataprocessing system, instead of traditional hand book records, manual entry, detailed calculation of repetitive work. In addition, electronic tachometer in mine surfacemovement monitoring, land reclamation project implementation, mine construction aspects also have been applied, each big ore measurement organizations are to instead of traditional instruments for routine measure the work, not only improves the efficiency, picked up speed, and reduced the development, and to ensure the accuracy2、Space information technology and its application in the measurement of the mine.The core of spatial information technology and the subject is the "3 S" technology (Remote Sensing:RS)、 (Global Positioning System GPS)、 (Grographic Information System:GIS) Remote sensing including satellite remote sensing and remote sensing, remote sensing data topographic map surveying as the important means in practice has a wide range of applications, satellite remote sensing for mapping is also mine of study and has made some significant results, based on remote sensing data to build digital terrain model (DTM) and then used in surveying and mapping work has won more applications. GPS as a cause of surveying and mapping in the traditional concept of major change technology, has become a main technology of land measurement method, also is the most potential mobile technology, in mine measurement, control survey, project survey, environment monitoring, disaster prevention and reduction of the navigation transport plays a significant role. Because not only have all-weather GPS, high precision and high flexibility, and the advantages of the traditional measuring technology without strict control, compared the level measurement, don't take points between depending on the point, withoutthe need to build standard, there is no error accumulation, the three dimensional positioning etc, and in the field measurement model, error sources and data processing to the traditional concept of surveying and mapping is a revolutionary change. The geographic information system as the geographical distribution of space of therelevant data collecting, processing, management, analysis of computer technology system, and its development and application of surveying and mapping the development of science is of great significance, is the modern mapping technology of important technical support. With "3 S" integration or integrated as the leading technology of space information system has gradually become the surveying and mapping learning or the earth informat ics new technology system and the work pattern, its advanced nature, timeliness obvious. With the space information technology for technical support, modern surveying and mapping instruments, technology is in rapid development in. The measurement of the remote sensing technology in the mines application has experienced a long time, and has accumulated rich experience.For remote sensing, it can be used as remote sensing data mining on the data topographic map surveying data source, like a piece of correction, through visual interpretation, field adjustable draw the work, complete the topographic map surveying and mapping. Compared with the traditional mapping method, using remote sensing data of mapping speed, low cost, high precision, it is a kind of application very extensive mapping method. Remote sensing in mine measurement of the applications of the key theory and technology also is in the investigation. Application of remote sensing data mining area, can obtain real-time, dynamic and comprehensive information source, to the mining area environment monitoring of the mining area environment protection to provide decision support. Remote sensing data mining area for prospecting, geological conditions, roof and floor of coal seam in such aspects as research has been applied, all these, explains the application of remote sensing technique in mining measurement is mine surveying realize its modern task important guarantee. GPS technology in the measurement of the mine is mainly applied to replace traditional ground surveying and mapping work. Using GPS technology such as mining surface movement monitoring, hydrology monitoring, miningarea control elevation hole net establishment or measure, reform, GPS receiver with performance to price has been rising, and its application in the measurement of minework the ground has become a part of the modern mine survey is an important support technology. Used in mining area the geographic information system is for mine geographical information system, or called mine material source environment alinformation system (MRIES). MREIS has become the important developing directionmine survey. With mining area environment resources information system as a platformto all kinds of measurement techniques for data acquisition approach, can build a collection of data acquisition, processing, management, analysis and output in oneof the automation, intelligent technology system, as the sustainable developmentof mining decision support system. Mine survey MREIS work is to establish the fistwork, and to create a MREIS mine surveying is an inevitable trend. Therefore, theGPS in the mining area is first applied used in a mine measurement information system established measurement, and then based on this establish the mining area environment information system resources. Space information technology is mine surveying realize its modern task of important technical support and guarantee, "3S" technology and other measuring instrument technology on the basis of the organic combination of the mining area environment information system is the spatial data information technology in mine survey of the applications of the comprehensiveresults.3 .the inertial measurement system and its application in the measurement ofthe mineThe inertial measurement system (Inertial ISS) is a kind of navigation and positioning technology, have all-w, autonomous, fast can flexible and advantages,the earth measurement, engineering surveying and mining measure the work of automation and versatility provided another kind of new technology. It is to usethe principle of inertial navigation, and earn geodetic data (longitude and latitude, elevation, azimuth, gravity anomaly and vertical deflection, etc.) of a kind of technology system.ISS can be divided into two categories: platform utility system and typesystem in the field of surveying and mapping, ISS main application target includes:(1) control measure, such as the existing control point review, encryption, and aerial control, etc.; (2) pipeline monitoring, orientation, crustal deformation, the surface subsidence observation; (3) underground positioning, all kinds of engineering and construction measure; (4) earthquake, gravity survey, geophysical research; (5) shaft and cans of vertical way beam of monitoring, etc. GPS/ISS combination system is to meet high precision navigation and positioning of the development direction of the request. This combination system can make the GPS and the performance of theISS, can get a lot of complementary to the whole land measurement model dataprocessing, and make sure that 3 d coordinate and the positioning and the precision of the navigation unstable, and increased significantly. The inertial measurement system in mine to the measurement of the Lord is applied in application in themeasurement of the application, the activities of the underground measurement, and of course the ground also has been applied in many fields, such as stated above. ISS in mines in China, the application in the measurement of work is to carry out in-depth,continue to develop. With GPS + ISS combination system used in mines measurement is a promising a technologyFour other new technology in the new instrument of surveying and mapping application to the measurement of the mineOther modern surveying and mapping instruments, such as laser point to meter, the gyro th, digital levels and related technology are all mine surveying and mapping measurement is used, and with the instrument technology as the foundation, formed many mining measurement instrument, as mine survey for the application of modern instruments and techniques.Mine survey as a cross subject, the development and the progress and the mining technology and the development of the mining project, measuring instruments and equipment of science and technology and the development of other subjects like mathematical science, computer science, etc, the development are closely related. Modern mapping technology is based on the electronic technology, space technology, optical technology, computer technology based on comprehensive technology, and has the intelligence, automation and so on a series of advantages. Modern science and technology, the rapid development of surveying and mapping can surely promote the further development of mine survey. With modern technology, mining engineeringsurveying and mapping technology and related science and technology as the foundation, the mine survey will form and collect data acquisition, processing, management, transmission, analysis, expression, application, output for the integration of intelligence, automation technology system for mine resources, environmental information system establishment provide fundamental material, promoting mine sustainable development.测绘在矿山测量中的发展七十年代以来,随着电子技术和激光技术的发展,光电结合型的测绘仪器(如测距仪、全站仪、陀螺仪)对传统的测绘仪器方法产生了深刻的影响。

采矿专业英语文章带翻译

采矿专业英语文章带翻译

英译汉Underground Mining Methods地下采矿方法Room and Pillar Mining房柱采矿法Ramps (inclined tunnels) are excavated to connect the surface to the underground orebody. Drifts (horizontal tunnels) are excavated at different elevations to surround the orebody. Next, stopes (tunnels that have direct access to mining the ore) are mined to gain access to the ore. All tunnels are excavated by drilling and blasting. Jumbos are in charge of drilling the holes in the rocks and filling them with explosives. The loose rock, also called muck, is transported by either dump trucks back up to the surface for either waste disposal or processing.矿体由隧道(斜井)与地表联通。

阶段运输巷道分布在矿体的不同水平。

接下来,在采场采场开采矿石。

所有巷道通过钻孔和爆破的方式开掘的。

钻车是用来在岩石上钻研和并将钻孔填装炸药。

松动的岩石,也称为废石,由自卸卡车运输至废石场。

As mucking progresses, rooms (tunnels) are cut into the ore body. In order to provide safe roof support for mining, pillars of material around the rooms are left standing to hold up the rock ceiling above. Some parts of the mine roof can be particularly weak and fragile. In addition to pillar support, a jumbo is then brought back in for rock bolting of the roof to ensure safety.随着巷道的掘进,矿体被分割成矿块。

采矿工程毕业设计英文翻译

采矿工程毕业设计英文翻译

Underground MiningMost present-day mining in Europe occurs under 2000 to 4000 ft of overburden, as more easily mined coal deposits have been depleted. At this depth most mines are developed as shaft mines. All personnel, material, and coal have to be hoisted trough these shaft. Considering the two factors of hoisting capacity and required length of shaft, a considerable investment is necessary to reach the coal-bearing strata. The requires huge investments. Openings at this depth have to be equipped with costly supports, and periodic reworking and repair is necessary.Mines not only extend horizontally but also vertically through the development of new levels. The life of the mines is thus extend considerably, and surface installations can be amortize over a longer period.The more limited reserves have forced companies into mining less favorable deposits, and European government require that all possible deposits be mined to conserve the nation’s energy resources. These factor and the large percentage of inclined seams and faults make mining very difficult and costly. The population density and the heavy surface buildup cause additional expense in the form of payments for subsidence damage to surface structures. Therefore, backfilling is frequently practiced to reduce subsidence. The close spacing of faults often severely limits the size of a mining section, forcing frequent moves and excessive development work.The thickness of the overburden results in very high ground pressure. This would require extremely large pillars if the room and pillar method was applied. Additionally, support is required for any opening, adding prohibitive costs to a multiple-entry room and pillar operation.As a result, single-entry longwall operations requiring the minimum number of entries and allowing maximum recovery of resources is the mining method almost exclusively practiced.Shaft mines dominate the European coal mining industry. Shafts 20 to 30 ft in diameter, with circular cross section, lined with masonry, concrete, or steel are the dominant meansof gaining access to the coal-bearing strata. They are often extended beyond the last mining level to provide for future expansion. As in the Unite States, shafts are developed by drilling, blasting, and excavating or by large-diameter shaft-boring equipment. Shaft boring is more frequently used, particularly on the smaller and shorter subshaft, which connect the different levels but do not extend to the surface.Haulage in the shaft is usually accomplished by hoisting of the filled mine cars on multistage cages or by skips. Pumping of coal slurry is also done in special cases.The complex system of forces and the resulting rock mechanical problems developed by mining activities at different levels result in significant differences between European and US underground development. The rock mechanical interaction of the extraction operations at the various levels require that all deposits be mined as completely as possible. Pillars left after mining create zones of extreme and often unmanageable ground control problem, as well as a high probability of roof bounce.Since the number of entries is kept to a minimum because of cost, no bleeder systems are provided. If retreat mining is practiced, only two entries are advanced in to a new mining area.Panels are laid out as large as possible. The large-panel layout is used as another means of reducing the number ofentries. Minded–out panels are sealed off to prevent spontaneous combustion through the removal of oxygen.The main levels, with extensive entry systems, are used for coal, supply, and personnel haulage and for ventilation. They are often spaced with little regard to the position of the coal seams, because the deposits are reached selectively through other means. In the past, 165-or330-ft intervals were selected while increasing ground pressures and development and maintenance increase substantially, requiring large volumes of air for cooling. As a result, entry cross sections at these levels have to be increase.Fig.9.1 German multilevel, multiseam shaft-type coal mine.Underground facilities:(1) main shaft with skip hoisting;(2) exhaust ventilation shaft with multistage cage;(3) third-level station;(4) blind shaft with cylindrical storage bin;(5) blind shaft with car-hoisting facilities;(6) main entry;(7) main entry;(8) section or panel entry;(9) road heading machine(10) longwall section with plow;(11) longwall section with shearer;(12) longwall section in a steeply pitching seam mined manually with air picks;(13) longwall section in steeply pitching seam with plow;(14) minded-out gob area;(15) ventilation lock;(16) belt conveyor as main haulage;(17) main car haulage;(18) storage bin and skip-loading facilities;(19) supply haulage with a mono-rail;(20) supply haulage with mine cars;(21) monorail system as personnel carrier;(22) worker-trip cars;(23) pump station. Surface facilities:(a) hoisting tower with overhead hoist;(b) shaft building;(c) head frame;(d) main exhaust fan and diffuser;(e) coal preparation plant with loading facilities;(f) coking coal silo;(g) container vehicle for filling of coke ovens;(h) coke oven battery;(i) coke watering car;(k) coke quenching tower;(l) gas tank;(m) water-treatment plant;(n) refuse pile;(o) power plant;(p) cooling tower;(q) water tower;(r) supply storage area;(s) sawmill;(t) training and teaching center.地下采煤目前,大部分欧洲的煤矿开采都已经达到了2000到4000英尺,主要是因为浅部容易开采的煤层都已经采完。

采矿工程专业毕业论文外文翻译

采矿工程专业毕业论文外文翻译

英文原文:Analytical model and application of stressdistribution on mining coal floorAbstract:Given the analysis of underground pressure,a stress calculation model of cola floor stress has been established based on a theory of elasticity.The model presents the law of stress distribution on the relatively fixed position of the mining coal floor:the extent of stress variation in a fixed floor position decreases gradually along with depth.The decreasing rate of the vertical stress is clearly larger than that of the horizontal stress at a specific depth.The direction of the maximum principal stress changes gradually from a vertical direction to a horizontal direction with the advance of the working face.The deformation and permeability of the rock mass of the coal floor are obtained by contrasting the difference of the principal stress established from theoretical calculations with curves of stress-strain and permeability-strain from tests.Which is an important mechanical basis for preventing water inrush from confined aquifers.Key words:model;coal floor;stress distribution;analysis1 IntroductionWith the development of coal seam mining,The stress field of rock strata of coal seam floors will change and continue to be redistributed because of the effect of mining.The results will bring on floor deformation,displacement and possible destruction to attain a new balance[1].A study of the law of stress distribution of floors has important,practical implications in understanding deformation and destructive characteristics and predicting water inrush from floors and for designing suitable locations for tunnels and selecting maintenance methods when depth increased.At present,the study of the law of stress distribution of floors mostly proceeds from a number of calculations based on finite element analyses and similar material tests[2-6].In this paper,the study of stress distribution of floors in relatively fixed positions is discussed analytically with a theory of elasticity and we present an application combined with actual data of a particular site.2 Fundamental principleThe formulas of stress distribution are derived from the superposition principle,given the theory of elasticity on distributed loads on a semi-infinite plane[7-8].The vertical distribution load of AB on a semi-infinite plane is assumed to be q(x),as illustrated in Fig.1.We want to solve the state of stress at a specific point inside a semi-infinite plane,such as point M .Supposing the coordinate of point is (x,z),the micro-1ength dζfrom the origin of coordinate is ζon the AB segment,the micro-concentration force d p=q dζis regarded as its force and the state of stress of the micro-concentration force at point is defined as follows.In order to calculate the stress at point M from all distributed loads,the stress which is caused by every micro-concentration force is superposed.We need to integrate Eq.(1) from ζ= -a to ζ= b and Eq.(1) then becomes:3 Stress calculation of coal seam floor3.1Foundation of the mechanical modelBased on the theory of underground pressure,the mechanical model of supporting pressure in front of the working face can be simplified,as shown in Fig.2[9-11].Where the OA segment is the plastic area,with a length of x0;the AB segment is the elastic area,with a length of L0x0.In order to calculate easily the supporting pressure of both areas p z(1),p z(2),without losing its rational,we can assume the following two linear functions:Where is the supporting pressure of the plastic area(kPa),the supporting pressure of the elastic area(kPa),the maximum stress concentration coefficient,the width of the plastic area(m),H the buried depth of the coal floor(m),the width of the area affected by the supporting pressure(m) and is the average weight of the volume of the over-lying strata (kN/m3) .3.2Stress calculation processAccording to the theory of elasticity on distributed loads on a semi-infinite plane,we can use Eq.(2) to calculate the vertical stresses σz(1) and σz(2) and the horizontal stresses σx(1)and σx(2)which are affected by the supporting pressures and .The stress equations at point M(x, z) can then be obtained correspondingly by superposition (this calculation neglects the effect of the transferred load from the goaf and the overlying strata movement as well as the effect of the initial ground stress because it does not produce subsidiary stress at point M;largely we considered the action of the supporting pressure in front of the working face). The calculations are as follows:Therefore,σz = σz(1)+σz(2)(4) and σx = σx(1)+σx(2)(5). By coordinate transformation(x = x(n = 0,1,2,…)),x is regarded as x0 in Eqs.(4) and (5) and the stress values of each section can be calculated,where the variable expresses the relative distance from the pushing position of the working face to the origin of the coordinate system. Given the related parameters of supporting pressures,the stress values,located at the relatively fixed floor section,(x =) at different depths,can be calculated by computer when the working faces advance.When x = x,Eqs.(4) and (5) can be represented as follows:3.3Example analysisGiven the actual geological conditions and mining technology at the 2702 working face of the Yangcun Colliery of the Yanzhou Mining Group Limited Company,the following related parameters are determined:=3,=5 m,=50 m,=25 kN/m3 and H=500 ing Eqs.(6) and (7),the stress distribution curves are obtained on the relatively fixed floor section x=at different depths with the working face advancing by calculation. The results are shown means of computer in Figs. 3 and 4.Fig. 3 shows that vertical stress maintains its maximum at the interface between the coal seam and floor on the section x=from the original coordinates and then quickly decreases with the increasing depth and slowly decreases at a specific depth. A similar situation is obtained when the working face advances,i.e.,the range of the vertical stress decreases with an increase in depth. From the results it can be seen that the range of depth, given the variation of vertical stress, is relatively large, i.e., within 40 m. The range of the vertical stress is clearly smaller after the working face advances 30 m.According to the relationship of the variation between vertical and horizontal stress, the multiplication of the variation of vertical stress and its corresponding coefficient of horizontal pressure (λ) is equal to the increment of horizontal stress at the point M[1]. Then the increment of horizontal stress and the horizontal stress at the point M continues to be superposed, which is inversed analysis when the working face advances 30 m. The results of the variation in stress show that the vertical stress is larger than the horizontal stress when the working face is at its original position: the maximum principal stress is the vertical stress; the minimum principal stress is horizontal stress. Because the rate of decrease of the vertical stress is faster than the horizontal stress, the horizontal stress is larger than the vertical stress within 42 m when the working face advances 30 m (for details, see Fig. 4). Considering the effect of the variation in vertical stress, the horizontal stress is much larger than the vertical stress. The maximum principal stress is the horizontal stress and the minimum principal stress is the vertical stress. It agrees with the partial reasons of the mechanical principle of floor heave[12-14].Fig. 3 also shows that the variation is almost steady on the section x=when the working face advances 30 m. Therefore, the relationship of variation in stress with depth is calculated when the working face advances from 0 to 30 m. The details are shown in Table 1.Table 1 Data of rock characteristics and correlative stress of the floor on 2702 working face in Yangcun colliery (MPa)岩层深度(m)ΔλλΔx=0 m x=30 m x=30 m x=30 mλΔ泥岩0 37.50 0.00 0.00 0.00 37.500.4316.13 16.13 5 27.25 0.04 2.12 2.08 27.21 11.70 13.78砂岩10 22.53 0.28 3.83 3.55 22.250.327.12 10.67 15 19.95 0.77 4.91 4.14 19.18 6.14 10.28 21 18.17 1.46 5.40 3.94 16.71 5.35 9.29石灰岩25 16.75 2.21 5.46 3.25 14.540.284.07 7.32 28 15.55 2.94 5.24 2.30 12.61 3.53 5.83From the analysis of the related data, the stresses + λΔin Table 1 can be regarded as the stress values,obtained from mechanical rock tests. So the variations of the principal stress from theoretical calculations and the results from the servo-controlled tests can be contrasted. Given these contrasts it is seen that, the largest stress value of mudstone is 16.13 MPa and the largest stress value of sandstone10.67 MPa. When combining Fig. 5 with Table 1 it is seen that, the largest calculated principal stress is less than the peak value of the principal stress in Fig. 5, and the calculated section is at an elastic deformation section of Fig. 5, where permeability is relatively weak. So there is still a certain ability of water resistance. It can be shown that the obvious destruction is not produced in the mudstone and sandstone when the working face advances 30 m. This is essentially consistent with the conclusions of the survey report.4 Conclusions1) Based on the mechanical model of the floor, the analysis of stress distribution is obtained on the relatively fixed floor position with an advancing of working face. Owing to heterogeneity and discontinuity of the rock mass of the coal floor, there is a certain divergence between the ideal model and actual conditions. But from analyses and calculations, the basic variation law of stress distribution is discovered on the relatively fixed floor position with an advancing of working face when specific parameters are given for the working face.2) The decreasing rate of the vertical stress is faster than that of the horizontal stress up to a certain depth and the direction of the maximum principal stress is changed from vertical at the original position to horizontal with an advancing of the working face. The horizontal stress is larger than vertical stress within 42 m when the working face advances 30 m.3) The difference between the theoretically calculated principal stress and the results of the servo-controlled penetrability test can be contrasted. Deformation and penetrability can be obtained from the floor rock mass. From an example, it is seen that the mudstone and sandstone of coal floor are at an elastic deformation stage. There is no extreme destruction on the relatively fixed floor section with an advancing of working face and there still is a certain ability of water resistanceAcknowledgementsHere we express our sincere appreciation to director for Zhao Zhenzhong, minister Song Shun of Zhengzhou Coal Industry Group for their help during the course of the sampling. Appreciating Dr. Xi Yantao of China University of Mining and Technology for his help for modification.References:[1] Zhang J C, Zhang Y Z, Liu T Q. Rock Mass Permeability and Coal Mine Water Inrush.Beijing:Geological Publishing House, 1997. (In Chinese)[2] Miao X X, Lu A H, Mao X B, et al. Numerical simulation for roadways in swelling rock undercoupling function of water and ground pressure. Journal of China University ofMining and Technology, 2002, 12(2): 120-125.[3] Gong P L, Hu Y Q, Zhao Y S, et al. Three-dimensional simulation study on law of deformationand breakage of coal floor on mining above aquifer. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4396-4402. (In Chinese)[4] Shi L Q, Han J. Floor Water-Inrush Mechanism and Prediction. Xuzhou: China University ofMining and Technology Press, 2004. (In Chinese)[5] Jing H W, Xu G A, Ma S Z. Numerical analysis on displacement law of discontinuous rockmass in broken rock zone for deep roadway. Journal of China University of Mining and Technology, 2001, 11(2): 132-137.[6] Liu Y D, Zhang D S, Wang Ii S, et al. Simulation analysis of coal mining with top-coal cavingunder hard-and-thick strata. Journal of China University of Mining and Technology,2006, 16(2): 110-114.[7] Dun Z L, Gao J M. Mechanics of Elasticity and Its Application in Geotechnical Engineering.Beijing: China Coal Industry Publishing House, 2003. (In Chinese)[8] Xu Z L. A Concise Course in Elasticity. Beijing: Higher Education Press, 2002. (In Chinese)[9] Liu W Q, Miao X X. Numerical analysis of finite deformation of overbroken rock mass in gobarea based on Euler model of control volume. Journal of China University of Mining and Technology, 2006, 16(3): 245-248.[10] Jiang F X. Rock Pressure and Stress Control. Beijing: China Coal Industry Publishing House,2004. (In Chinese)[11] Qian M G, Shi P W. Rock Pressure and Stress Control. Xuzhou: China University of Miningand Technology Press, 2003. (In Chinese)[12] Xu N Z, Tu M. The mechanism and control of floor heave of road driving along next goaf ofhigh seam. Journal of Anhui University of Science and Technology (Natural Science), 2004, 24(2): 1-4. (In Chinese)[I3] Wang W J, Hou C J. Study of mechanical principle of floor heave of roadway driving along next goaf in fully mechanized sub-level caving face. Journal of Coal Science and Engineering, 2001, 7(1): 13-17.[14] Zhai X X, Li D Q, Shao Q, et al. Control over surrounding rocks deformation of soft floorand whole-coal gateways with trapezoidal supports. Journal of China University of Mining and Technology, 2005, 15(2): 118-123.中文译文:采场底板岩层应力的分析模型及应用摘要:在分析矿山压力的基础上,运用弹性理论建立了煤层底板应力分析计算模型。

采矿工程中英文对照外文翻译文献

采矿工程中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)译文:新技术和新理论的采矿业跨世纪发展摘要:煤炭产业需要更长远的发展,对工作中所讨论的热点在工业中出现新的理论和高科技成功使用在二十世纪末是最美好的,作为被关心的问题需要较快一步的发展,在20世纪中后期产生的新型、高速的新技术是最有吸引力和标志性的,即使在所有行业中不同的冲击变得起来越相关以及部门间彼此合作并明确地叙述许多新的理论,煤炭行业的新科技和新理论是不可避免的,并且包括一切的不可能性。

作者在这篇文章中阐述了他关于采矿学的发展问题的意见,举出了许多令人信服的事实,并对大部分新的情况予以求证。

关键字:采矿工程,矿业产业, 矿业经济学,新技术和高科技1.采矿在国民经济中的重要性今天,科技世界的发展已经引起了对采矿空前的不容忽视,空间工程,信息工程,生物工程和海洋工程的发展,新能源的发现和研究与发展以及新原料在目前和将来逐渐地改变着人类生活的每个方面。

“科学技术是第一生产力”指出了新科技在国民经济的中扮演了重要的角色。

在全球的一些大的国家中,互相竞争为的是努力探测外部的空间,我们不应该忘记基本的事实:有超过五十亿个人生活在地球上。

想要保住地球上的人类,我们必须做到以下四个方面:也就是营养物,原料,燃料和环境。

营养物主要是空气、水、森林、谷物和各种植物,它们都是来自于自然。

原料有铁、铁的金属,稀罕的金属,宝贵的化学的原料和建材的金属。

燃料如:煤炭,石油,天然气,铀,放射性金属元素和其他的发光要素。

这些也在自然界中发生。

最后一种是靠人类来维持的生态环境。

在上述中三个必要的物质中,原料和燃料从地球表面经过采矿学取出服务人类。

生态学的环境和采矿已及上述的三个必要的财产抽出有莫大的关系。

然而,随着新技术和它们进入煤炭行业成果的提高,逐渐使它由朝阳产业变成当日落业并逐渐地褪色消失。

如采矿产业是最古老的劳工即强烈传统的产业,因此,那里没落是在一个民族的特定部份需要的印象而且要再作任何的更高深的研究,并在此之上发展采矿。

采矿专业毕业设计外文翻译

采矿专业毕业设计外文翻译

附录外文翻译APPLICATION OF BLASTING IN DRIVING TUNNEL1 FRAGMENTATIONFragmentation is the breaking of coal, ore,or rock by blasting so that the bulk of the material is small enough to load, handle and transport.Fragmentation would be at its best when the debris is not smaller than necessary for handling and not so large as to require hand breaking or secondary blasting .Energy must be supplied to rock by direct or indirect means to fragment that rock and the type of loading system.Fragmentation energy is consumed by the main mechanisms: (1) creation of new surface area (fracture energy), (2)friction (plasticity) and (3)elastic wave enegy dispersion.The loading method determines the relative proportions and the amount of energy consumed in fragmenting a given rock type. Unonfined tensile failure consumes the least energy with an increasing a,mount of energy required as the rock is more highly confined within a compressive stress field during fragmentation The way energy is applied by tools to cause rock or mineral fragmentation is important in determining fragmentation efficiency. To best design fragmentation tools and optimize fragmentation systems it would be desirable to know how rock properties influence breakage.The strength of rock is influenced by the environmental conditions imposed on the rock.Those of most importance in rock are (1)confining pressure ,(2)pore fluid pressure, (3)temperature and (4)rate of load application .Increase in confining pressure, as with increasing depth beneath th earth's surface or under the action of a fragmentation tool, causes an increase in rock strength .Apparent rock strength decreases as porc fluid pressure increases, since it decreases the effect of confining pressure. Although chemical effects of pore fluids influence rock strength, they generally are small compared to the confining pressure effect, except for a small minority of rock types .Increase in rock temperature causes a decrease in rock strength.This effect is very small because of the small ambient temperature changesfound during mining. An increase in rate of load application causes an apparent increase in rock strength.Rock exhibits directional properties that in fluence the way it breaks. These are embodied in the concept of rock fabric ,which connotes the structure or configuration of the aggregate components as well as the physical or mechanical property manifestations. Rock fabric ont only relates to the preferred orientation of mineral constituents and their planes of weakness, but also to the configuration of discontinuities, microcracks and pores.Joints and bedding planes have great influence on fragmentation at field scale.Physical properties of rock (density,indentation,hardness,abrasivehardness and porosity ,)are frequently used in conjunction with mechanical properties to develop better empirical esti mations of rock fragmentation.2 BLASTHOLE CHARGING METHODSDrill hole charging can be carried out in different ways depending on whether the explosive used is in cartridges or in the form of loose material. The oldest charging method implies the use of a tamping rod and this system is still used to a very great extent .During the last 20years, compressed air chargers have been used and these machines provide both good capacity and also an improved level of charge concentration so that the drill holes are utilized to a higher degree. During the last few years semi-automatic chargers have been taken into use, primarily in underground work. Compressed air chargers for blasting powder in the form of loose material have also come into use on a large scale. As far as slurry blasting is concerned, special pumping methods have been developed through which charging capacity in the case of large diameter drill holes is practically good.A tamping rod must be made of wood or plastic. It must not be too thick in relation to the drill hole diameter since this can crush and damage fuse or electric detonator cables during charging work. If a good degree of packing is to be obtained during charging with a tamping rod then only one cartridge at a time should be charged and tamped. The detonator must be correctly fed into the drill hole during charging work.Compressed air chargers have been in use is Sweden for about 20 years. The first type consisted of aluminum pipes connected together and the cartridges were blown into the hole with an air pressure of 42 pounds per square inch .since that time the charging tube has been replaced by anti-static treated plastic hose of a special design.A charger includes a foot-operated valve, reduction vavle with air hose, breech, connecting tube and charging hose.The semi-automatic charger permits the continuous insertion of explosive cartridge at the same rate as they are charged in the hole by the hose .Instead of a valve being used ,the cartridges pass through an air lock between two flaps. The air pressure in the charging hose is retained while cartridges are pressure in the charging hose is retained while cartridges are beins inserted .The semi-automatic charger permits considerably higher charging capacity than the normal type of charger.Explosives in the form of the form of loose material, usually ammonium nitrate explosives(ANFO), require special chargers. Two types can be differentiated: pressrure vessel machines and ejector units. Pressure vessel machines are particularly suitable for crystalline An explosives with good charging capacity. Ejector units are operate by an ejector sucking up explosive from a container through a charging hose. The explosive is then blown through the charging hose into the drill hole .There are, also combined pressure ejector machines. The charging hose used for ANFO charging operations must conduct electricity and have a resistance of at least 1KΏ/m and max.30KΏ/M.Nitro Nobel has developed a special pumping procedure which consists of a tanker vehicle which is used to pump explosive directly the drill holes. The charging capacity is very high in the case of large diameter drill holes.3 CONTROLLED BLASTING TECHNIQUTESControlled blasting is used to reduce overbreak and minimize fracturing of the rock at the boundary of an excavation. The four basic controlled blasting techniques are: line drilling, presplitting, cushion blasting and smooth blasting.Line drilling, the earliest controlled blasting technique, involves drilling a row of closely spaced holes along the final excavation line, providing a plane of weakness towhich to break. Line drill holes, 2or 4 diameters apart and contain no explosive. The blastholes adjacent to the line drillholes normally are loaded lighter and are on closer spacing than the other blastholes. The maximum depth for line drilling is about 30 ft .Line drilling involves no blasting in the final row of holes, and thus minimizes damage to the final wall.Presplitting, sometimes called preshearing ,involves a single row of boreholes ,usually 2 to 4 in .in diameter ,drilled along the final excavation at a spacing of 6 to 12 borehole diameters .Dynamite cartridges 1to 1.5 in . in size on 1 to 2 ft .centers usually are string-loadde on detonating cord ,although special small-diameter cartridges with special couplers are available for total column loading .In unconsolidated formations ,closer spacings with lighter powder loads are required .The bottom 2 to 3 ft .of borehole usually is loaded somewhat heavier than the remainder .Stemming between and around the individual charges is optional .The top 2 to 3 ft . of borehole is not loaded ,but is stemmed. The depth that can bu presplit is limited by hole alignment ,with 50 ft .being about maximum .The presplit holes are fired before before the adjacent primary holes to provide a fracture plane to which the primary blast can break .In presplitting it is difficult to determine the results until the adjacent primary blast is shot .For this reason ,presplitting too far in advance is not recommended .Presplitting seldom is done underground.Cushion blasting involves drilling a row of 2 – to 6-in .diameter boreholes along the final excavation line ,loading with a light well-distributed charge ,completely stemmed and firing after the main excavation is removed rather than before ,as in presplitting. The burden on the holes is slightly larger than the spacing .Wedges may be used to abut the charges to the excavation side of the borehole and minimize damage to the final wall .Eeplosive loading is similar to that in presplitting .Cushion blasting has been done to depths near 100 ft .in a single lift with the larger-diameter boreholes because alignment is more easily retained .Cushion blasting seldom is done underground.Smooth blasting is the underground counterpart of cushion blasting .At the perimeter of the tunnel or drift ,closely spaced holes with a burden-to-spacing rationear 1.5:1 are loaded with light well-distributed charges .Smooth blasting differs from cushion blasting in that (1) except at the collar ,the charges are not stemmed and (2) the perimeter holes are fired on the last delay in the same round as the primary blast .Total column loading is most common ,although spacers may be used .The holes are stemmed to prevent the charges from being pulled out by the detonation of the previous delayed holes .Smooth blasting reduces overbreak in a drift and also provides a more competent back requiring less support .It involves more perimeter holes than does normal blasting.Combinations of controlled blasting techniques are used .In unconsolidated rock,line drilling sometimes is desirable between presplit or cushion boreholes . Corners sometimes are presplit when cushion blasting is used.4 TUNNEL BLASTINGThe most common methed of driving a mining tunnel is a cyclic operation in three sequences:(1)Drilling shot holes ;charging them with explosives and blasting.(2)Removing the resulting muck pile.(3)Inserting the tunnel linings into the newly excaved area; and advancing the ralls. ventilation arrangements, and power supplies ready for the next cycle of operations.The basic principle of tunnel blasting ,in its simplest term, is to loosen a volume of the virgin rock in such a way that when it is removed the line of the tunnel has advance in the correct direction with as nearly as possible the correct cross-section.The dilling pattern in which the holes to receive the explosives are drilled into the working face is designed so that :the holes are easy to drill; the minimurd total quantity of explosive is required ;and the periphery of the space left after the blast conforms as nearly as possible to the required tunnel section.A blast round consists of cut ,relief, breast and trim holes . The cut portion is the most important . The objective of the cut is to provide a free face to which the remainder of the round may break.The two general types of cuts are the angled cut and the burn .These can be usedin combinations to form various other cuts .Angled cuts are more advantageous than burn in wide headings ,due to the fewer boles and less explosive required per foot .A disadvangtage is the possibility of large pieces of rock being thrown from the “V”.The wedge or V-cut consists of two holes angled to meet or nearly meet at the bottom . The cut can consist of one or several Vs, either verticao or horizontal .For deeper rounds or hard-breaking rock ,double Vs can be used .The smaller is called the baby cut . It is useful in small rge-diameter burn holes provide excellent relief in big headings .Burn cuts permit deeper rounds than angled cuts and , due to the increased advance per round ,may prove more economical .In burn cuts ,the holes must be drilled parallel , with proper spacing ,and 0.5 : 1 ft deeper than the remainder of the round .Usually ,one or more holes (large-diameter) are left unloaded to provide relief for the loaded holes . Various combinations of spacing ,alignment and holes loaded are possible.Innumerable typesofblastingrounds are used in underground headings .Even in the same heading the round may have to be altered as different rock charateristics develop.An important factor in any round is the firing sequence .In general ,the holes are fired so that each hole or series of holes is blasted to the free face provided by the preceding holes .The depth of drift rounds depends on the complete drifting cycle and drift size.A general rule is that a round will not break much deeper than the least cross-sectional dimension of the drift . Rounds can be arranged that provide certain muck-pile shapes and positions for more efficient loading and cycles . In drifts requiring close support , rounds can be arranged to prevent damage.爆破在岩巷掘进中的应用1 破岩理论破岩是用爆破的方式把煤、矿石或岩石破碎,以便于大部分物料的块度小到便于装载、处理和运输。

采矿专业外文文献翻译----煤矿瓦斯预防和治理

采矿专业外文文献翻译----煤矿瓦斯预防和治理

西班牙Riosa–Olloniego煤矿瓦斯预防和治理María B. Díaz Aguado C. González NiciezaAbstractDepartment of Mining Exploitation, University of Oviedo, School of Mines, Independencia,13, 33004 Oviedo, Spain摘要矿井中有很多气体影响着煤矿工作环境,在这些气体中,甲烷是重要的,他伴随着煤的产生而存在。

尽管随着科技的发展,但我们始终无法完全消除。

瓦斯气体随着开采深度的增加而增多。

甲烷排放量高的地方,也适用于其他采矿有关的情况,如在生产率和它的产生的后果,增加深度:在控制日益增加的甲烷量的方面有很多困难,主要是提高机械化,使用爆炸品,而不是密切关注瓦斯控制系统。

本文的主要目的是建立实地测量,使用一些不标准的采矿控制风险评估方法的一部分,并分析了深部煤层瓦斯矿井直立的行为,以及防止发生瓦斯事故的关键参数。

最终目标是在开采条件的改善,提高矿井的安全性。

为此,设置了两个不同的地雷仪表进行矿井控制和监测。

这两个煤矿属于Riosa- Olloniego 煤田,在西班牙阿斯图里亚斯中央盆地。

仪器是通过subhorizontal 能级开采的,一个约1000 米的山Lusorio 根据实际深度覆盖的地区。

在本研究中,一个是有利于瓦斯突出的易发煤(第八层),测定其气体压力及其变化,这将有助于提供以前的特征以完成数据,并评估第一次测量的网站潜在的爆发多发地区提供一些指导。

本文运用一个气体测量管设计了一套用于测量一段时间由于附近的运作的结果,计算低渗气压力以及其变化..本文建立了作品的重叠效应,但它也表明了两个预防措施和适用功效,即高压注水和一个保护煤层(第七层)的开采,必须优先开采保护层以防止瓦斯气体的涌出。

这两项措施构成的开采顺序,提高矿井安全性。

毕业设计地质外文文献翻译中英文对照

毕业设计地质外文文献翻译中英文对照

地质英语论文Title:Orthomagmatic ore depositsOne.Orthomagmatic ore depositsThe magma contains a certain number of metal and volatile components of the silicate melt. All kinds of magma after crystallization and differentiation, make the forming materials dispersed in the magma gathered and formed deposits.And this deposits is called magmatic deposits.Magmatic deposits formed in the magmatic stage, the source of the material of the deposit is the main ore-bearing magma.Magmatic deposits is the product of the magma by crystallization and differentiation, and generally have the following properties:1、Deposits have the mainly relationship with the mafic and ultramafic rocks.And a small number of magmatic deposits with alkaline rocks or magmatic carbonatite-related. Mineralization and diagenesis often begin at the same time.And this is typical of syngenetic ore deposits. Few mineralization of the magmatic deposits may be continued to a later time, but generally does not exceed a total period of magmatic activity.2、The magmatic deposits ore body majority presentstratiform,stratiform, lenticular and podiform and so on.And they produced in the magma body,and the wall rock of containing ore is the mother rock.Few cases,orebody presenting vein and stockwork enter the wall rock which outside of the mother rock.Between the ore body and the wall rock generally is gradual change or rapid gradual change relationship,.Only penetration magmatic deposits have the clear boundaries with the wall rock.3、Except the rare and rare earth elements deposits of the magmatic carbonatite due to special causes have some alteration about the wall rock,the vast majority of magmatic deposits surrounding rock does not have a significant alteration phenomenon.4、The ore and the wall rock basically have the same mineral composition, when the useful minerals of the rock body aggregate and reach a certain size,they become the orebody.5、The ore of magmatic deposits often have,disseminated,thebanded,eye porphyritic,dense massive,brecciated and so on,ore structure.The ores structure can be broadly divided into the following categories: I.Structure sub-the different magmatic condensate crystalline or stacking interactions; II.Reflect the structure of the immiscible fluid crystallization process III.Reflect the changes in the structure of the physical and chemical conditions.IV.Epigenetic structure.6、The magmatic deposits forming temperature is high, generally between 1200 to 700 ° C. The mineralization depth changes,generally formed in the ground a few kilometers to tens of kilometers.Tow.The formation conditions of magmatic depositsMagma deposits are mainly derived from the magma, it is the combined effects of the product by a variety of geological factors, which playing a leading role is the geochemistry of ore-forming elements traits, the magmatic rock conditions, tectonic conditions and physical and chemical conditions and so on.1、Control the conditions of magmatic rocks formed by magmatic depositsMagma is the main provider of the metallogenic material of the magmatic deposits and the medium of containing mineralmedium.Therefore,how much of the content of useful components of magma is the possibility of the formation of magmatic deposits.I.Magmatic rocks metallogenic specializationMetallogenic specialization of magmatic rocks in the genesis of magmatic rocks with endogenous deposits showed regular contact, and specific types of magmatic rocks are often produced specific types of deposits.a)With mafic and ultramafic intrusive rocks related depositsMafic and ultramafic rock is the complex igneous complex formed by the combination of a variety of rock types, rock types from a single rock composed of rock mass is relatively rare.The size of the rock mass ranging mostly small,and rock strains, rock cover, rock, bedrock is the most common form of the rock mass. With facies and the different combinations,the mafic and ultramafic rocks can be divided into three types.b)Mineral deposits associated with syenite, nepheline syenite and carbonate igneous complexRelating to magmatic deposits of these rocks are mostly produced with the form of rock strain,the different components of rock mass facies zone often has ring distribution.II.The role of the volatile components in the magmaThe magma volatile components have the low melting point,highly volatile and they can delay the condensation rate of the magma, make the magma have more fully differentiation.III.Magmatic assimilation have an influence on the mineralization of the magma DepositsIV.Beyond one period of magma intrusion on control of the mineralization2、Tectonic conditions that control the formation of magmatic depositsTectonics have a major impact on the type of magmatic deposits, distribution, the most magmatic deposits associated with mafic and ultramafic igneous rocks on the Causes and space. Mafic and ultramafic magma formed by partial melting of mantle material,so the deep fault cuts through the crust to reach the upper mantle have a strict control effect on the mafic, ultramafic rocks and magmatic deposits which have some relationship with them.Three.Magmatic deposits formation and its characteristics1、The process of the magma’s useful components analysis, aggregation and positioning is called magmatic mineralization. Because the magmatic deposits mafic - ultramafic petrogenesis process is very complex, the mineralization also is varied.According to the way and feature of the mineralization,magmatic mineralization can be divided into four categories,the crystallization differentiation mineralization, melting away from the mineralization the magma eruption mineralization and magma eruption mineralization.When magma is condensed, with the temperature gradually decreased, the various mineral sequentially from which crystallized out, result in magma changing,and the magma changes in the composition promote the crystallization of certain components, liking magma composition changed with the crystallization process is called crystallization differentiation.2、Magmatic liquation mineralization and liquation deposit Magmatic liquation, also known as liquid separation action or immiscibility, refers to the the uniform composition magma melt with decreasing temperature and pressure separated into two components of different melt role.3、Magmatic eruptions and effusive the Mineralization its deposit Magma outbreak mineralization kimberlite magma, together with early crystallized olivine, pyrope, diamond crystals and xenoliths along deep faults,and rise rapidly emplaced at the surface produce 2 to 3 kilometers outbreak and the role of the deposit is formed.The magmatic eruption mineralization is the ore-bearing lava spray overflow to the surface or penetration into the crater near volcanic series along certain channels, the the condensate accumulation of deposit formation. Formed deposits called magma eruption deposits.Four.Implications for researchMagmatic deposits having very important industrial significance,most of chromium, nickel, platinum group elements as well as a substantial portion of iron, copper, titanium, cobalt, phosphorus, niobium, tantalum and rare earth elements and other deposits are all from magmatic deposits in the world. Mineralization conditions, the genesis of magmatic deposits and distribution law is of great significance.题目:岩浆矿床一、岩浆矿床岩浆是含有一定数量金属及挥发性组分的硅酸盐熔融体。

采矿工程中英文对照外文翻译文献

采矿工程中英文对照外文翻译文献

中英文资料外文翻译Optimization of soft rock engineering with particular reference to coalminingAbstractSoft rock engineering is a difficult topic which has received much attention in the field of rock mechanics and engineering. Research and practical work have been carried out, but much of the work has been limited to solving problems from the surface. For overcoming the difficulties of large deformations, long durationtime-dependent effects, and difficulties in stabilizing the soft rock, the problem should be tackled more radically, leading to a more effective method of achieving optimization of the engineering system in soft rock. A summary of the optimization procedure is made based on engineering practice.1. IntroductionThere are many soft rock engineering problems around the world, involving engineering for mines, highways, railways, bridges, tunnels, civil subways, buildings, etc. Engineering losses have occurred because of volumetric expansion, loss of stability of the soft rock, etc. This has been an important question to which much attention has been paid in engineering circles, and in the field of academic rock mechanics. Since the 1970s, considerable research and practical efforts have been made in the field of soft rock engineering in various countries, but the major efforts were concentrated on such aspects as the method of construction, the design and reinforcing of the supporting structures, measurement and analysis of the rock’s physical and mechanical properties, its constitutive relations and engineering measurement.It has been found that the soft rock engineering problem involves complex systematic engineering including such subsystems as classification of soft rocks, judgement concerning the properties of soft rock, project design and construction. Only by considering the integral optimization of the system can we obtain animproved solution to the problem. Hopefully, a radical approach can lead to engineering feasibility, lower costs and engineering stability in order to achieve the engineering objectives.1.1. Mechanical properties of soft rock and associated engineeringSoft rock is an uneven and discontinuous medium. Its strength is low, with a uniaxial compressive strength usually lower than 30 MPa. Some soft rocks expand when they are wet. Cracks in some soft rocks will propagate easily — which makes them exhibit volumetric expansion. Large deformation and creep can occur in soft rocks. Many soft rocks are compound ones which have composite properties formed from two or more sets of constituent properties. Soft rock can be graded into divisions according to its properties. After engineering has occurred, soft rock can deform rapidly and by time-dependent deformation, owing to its low strength and sensitivity to the stress field. With the effect of water, the expansive minerals in soft rocks volumetrically expand, which causes large convergent deformations, which leads to damage of the surrounding rock.The mechanical properties of soft rocks appear so various and different that it is difficult to express them with mathematical formula, which is the technological challenge for soft rock engineering.1.2. Engineering in soft rock and its optimizationBecause soft rock engineering can induce large deformations, the maintenance of the engineering can be difficult. Moreover, volumetric expansion and loss of stabilization of the surrounding rock often causes damage to supporting structures. If we use strong supports to control the deformation of the surrounding rock, the engineering cost will be high, and the construction time will be increased by repeated installation of support, sometimes the support itself has to be repaired. In order to obtain the benefits of easier construction and lower cost, the integral optimization of the system must be carried out and managed in a systematic and comprehensive way.Design and construction are the two important steps in soft rock engineering. These must begin by understanding the physical and mechanical properties of soft rock, in the context of the stress field, hydrogeology and engineering geology. The engineering design plan is conceived as a whole according to the theory of rock mechanics and combining practical data from adjacent or similar projects, including integrating the many factors. The establishment of the correct soft rock engineeringsystem should come from practice, basing on a full mastery of the factors. The scheme is shown in Fig. 1.Fig. 1. Engineering system for soft rock.Optimization of soft rock engineering is achieved by making the surrounding rock interface with the supporting structure such that the engineering will be stable. The key technological strategy is to avoid a high stress field and enhance the supporting ability of the surrounding rock. Feasible measures are as follows: reducing the external load; optimizing the engineering structure’s size and shape, improving planar and cubic layouts of engineering; choosing better strata, and structure orientation, etc., as shown in Fig. 2.Fig. 2. The principle of the optimization process.According to these ideas, take the development of a coal mine in soft rock as an example. Integrated optimization of the development system of the mine should take the relevant factors into account: existing information; an overall arrangement foroptimal development and production; eliminate adverse factors; and deal with the problems of soft rock by a simple construction method. The content of the first part of the optimization includes: choosing the mine development method; deciding on the mining level; and determining layers in which the main roadways are to be located. Also important is arranging a reasonable layout of the pit bottom and chamber groups and seeking to reduce the deviator stress caused by mutual interference of the openings. Openings perpendicular to the direction of horizontal principal stress should be avoided when choosing the driving direction of roadways. Optimizing the layout of the mining roadways reduces the damage to support caused by moving loads introduced by mining. Further optimization is related to the geometry and size of the roadway sections, the supporting structure, and the method and technology of construction. Finally, by measuring and monitoring during construction, feedback information can be obtained to ensure that the engineering is running on the expected track and, if there is any deviation, corrective action can be implemented. The system is shown in Fig. 3.Fig. 3. Systematic optimization of coal mining in soft rock.2. Engineering examples2.1. Mine No. 5 in Youjiang coal mine, ChinaThe mine is situated to the east of Baise Coalfield, in the West of Guangxi Zhuang Autonomous Region. It belongs to the new third Period. The mine area is located at the edge of the south synclinal basin. There are three coal layers; the average thickness of each seam is 1–2 m; above and below the coal layers are mudstone, whose colours are grey, greyish white, and green. There are minerals of mixed illite and montmorillonite in the rock, montmorillonite 5–8%, and illite 7–20%. The rock’suniaxial compressive strength is 4–5 MPa, the average being 4.8 MPa. There are irregular joints in the rock, but distributed irregularly, and the rock’s integral coefficient index is 0.55. Most of the cracks are discontinuous, without filling matter in them. The surrounding rock is a soft rock subject to swelling, with low strength, and is quite broken. The strike of the coalfield is NEE, the dip angle of the coal layers is 10–15°. The mine area is 6 km long along the strike, and 1 km long along its inclination, its area is 6 km2, the recoverable reserves are 4,430,000 tons. In the adjacent mine No. 4, the maximum principal stress is NNE–SSW, approximately along the seams’ inclined direction. A roadway perpendicular to this direction has convergence values of 70–100 mm, the damage of roadway supports is 51%. A roadway parallel to the direction of maximum principal stress has convergence values of 20–40 mm, the damage rate of supports is 12%, and the average damage rate of the mine is 40%.In the design of the mine, a pair of inclined shafts were included. The level of the shaft-top is +110 m, the elevation of the main mining level is located at −120 m. Strike longwall mining is planned, arranging with uphill and downhill stope areas, as shown in Fig. 4.Fig. 4. Development plans for Mine No. 5 in Youjiang.The first optimization measure is to weaken the strain effect of the surrounding rock in the mine roadway caused by the stress field. Roadways are arranged as far as possible to be parallel with the maximum principal stress (that is, approximately along the inclined direction) so as to reduce the angle between them. The strike longwall mining is changed into inclined longwall mining, the mine is mined upward by using the downhill stope area, the main mining level is elevated by 20 m, 1131 mof roadways are saved and the cost of the roadway construction and facilities is saved ¥2,760,000 ($336,600). The new system is shown in Fig. 5.Fig. 5. Development system plans after optimization for Mine No.5 in Youjiang.The second optimization measure is to change the layout of the pit bottom and openings to be parallel with the maximum principal stress as far as possible. The total length of roadways initially designed was 1481 m, and 30.11% of them were arranged to be perpendicular to the maximum principal stress. After amendment, the total length of roadways is 1191 m, which is a decrease of 290 m, and with only 24.69% of roadways that are perpendicular to the principal horizontal stress, roadways are easier to maintain. As shown in Fig. 6 and Fig. 7.Fig. 6. Layout of the pit bottom and chamber initially designed forMine No. 5 in Youjiang.Fig. 7. Layout of the pit bottom and chamber after the optimizationfor Mine No. 5 in Youjiang.The third optimization measure is to excavate the section of the roadway in a circular arch shape to reduce the stress concentrations. In order to increase the supporting ability of the surrounding rock itself, after the roadway has been excavated, rockbolts are installed as the first support. Considering the expansivity of the surrounding rock, guniting is not suitable. The secondary support is the use of precast concrete blocks. Between the support and the surrounding rock, the gaps should be filled with a pliable layer of mixed lime-powder with sand. This produces the effect of distributing the stress and has a cushioning effect when the soft rock is deforming; also, it inhibits the soft rock from absorbing water and expanding. This scheme is shown in Fig. 8Fig. 8. Optimization design for the supporting structure of the mainroadway for Mine No. 5 in Youjiang.The fourth optimization measure is to simplify the chamber layout so as to reduce the number of roadways. For example, in order to decrease the stress concentrations by the roadway, the number of passageways in the pumproom and the sub-station can be reduced from three to one, and the roadway intersections connecting atright-angles can be reduced from 14 to nine.The fifth optimization measure is in accordance with the different stratigraphical lithologies which the roadways pass through, and for harder rock regions to change the roadway section into a structure with straight-sided semicircular top arch and arc bottom arch, and another structure with a straight-sided horse-shoe arch, so that the investment of supporting structure can be saved when there are better rock masses with comparatively few fractures.In construction, waterproofing and draining off the water should be implemented, and the catchment in the roadway bottom should be strictly prevented because it may cause the bottom rock to expand. When the opening groups are excavated, the construction sequence must be considered, enough rock pillar must be reserved, and the construction method of ‘short-digging and short-building’ must not be used, so that the interactions can be avoided.By the optimization described above, after the roadways have been constructed, the serviceable roadway is 95.5% of the total, 55.5% more than that of the adjacent mine No. 4. The length of the roadway was reduced, and ¥3,700,000 ($450,000) saved. In addition, ¥3,000,000 ($360,000) was saved in the maintenance costs of the roadways before the mine was put into production, so, the cost saving totals¥6,700,000 ($810,000) in all. After the mine has been turned over to production, the main designed capacity was reached in that year, and added to the saved money for the maintenance cost of roadways in production, there was ¥8,700,000 ($1,050,000) saved.2.2. The coal mine at Renziping, ChinaThe mine lies to the south of Qinzhou coalfield in Guangxi Zhuang Autonomous Region. It belongs to the new third Period and synclinal coal basin tectonics. There are two coal layers in it, the main seam thickness is 12–15 m. The roof and floor of the coal layers are arenaceous–argillaceous rocks, whose colour is greyish white, and whose essential minerals are quartz and kaolinite. The uniaxial compressive strength of the rock is from 10 to 15 MPa. Rock masses are quite integral with fractures only in it occasionally. It belongs to the class of soft rock that has weak expansion, lower strength, and is quite broken. There are faults around the coalfield basin which are8 km long and 1.5 km or so wide. Slopes are inconsistent, the edge angles are 25–40°, and the bottom of the coalfield is gentle. Affected by tectonic stress in the NW–SE direction, there is an inverse fault in the south. After the mine had been developed and put into production, a main roadway at the 250 m level was excavated along the strike, and the mine was mined by the ‘uphill and downhill stope area’. Affected by the rock stress, many parts of the main roadway have ruptured, parts have been pressed out, and supports have been broken; the serviceable rate of roadway supports was less than 40%, which seriously affected the haulage and ventilation of the mine road. In the following 10 years of production, the rated production output was not achieved and losses occurred leading to economic disbenefit.Through on-the-spot observations, it is apparent that the coalfield is affected by the tectonic stress field, that the deformation in the soft rock is serious, and is larger than that caused only by the vertical stress component. The technological reformation measures for the mine are proposed as follows.The first measure is to extend the depth of the shaft and abandon the main roadway excavated along the strike, and transform it into a bottom panel stonedoor along the synclinal basin minor axis to make it parallel with the main principal horizontal stress. The mining face can be laid on top of it. The force endured by the stonedoor is quite small, and the stonedoor is easy to maintain, as shown in Fig. 9.Fig. 9. Contrasting layouts before and after optimization at the coalmine in Renziping.The second measure is to select an improved stratum to lay out the stonedoor. If it is placed in the grey arenaceous–argillaceous rock, its uniaxial compressive strength is 15 MPa and is easy to maintain, constructing in the normal excavation manner, and supported with a granite block building body.After the mine was constructed, the maintenance of the stonedoor was in a better state, the serviceability rate of the roadway was raised to 85%, which is 45% more than that before the optimization. The haulage and ventilation of the mine were also improved, to enhance the normal production. The coal production of the mine has surpassed the designed capacity, the loss has been reversed and the mine has been transformed to a profitable enterprise.3. ConclusionsSoft rock engineering for coal mining involves many complex factors. Unable to solve the problems completely by quantitative means, much of the engineering relies on feedback after observation on the spot. The technique described in the paper — of systematic decomposition of the system into the component elements, individual optimization and then synthesis into overall optimization — has achieved good results in practice, as illustrated by the three coal mine examples.In fact, the basis of the technique is the process of applying basic rock mechanics principles, such as orienting roadway tunnels to be parallel to the maximum horizontal principal stress and avoiding complex excavation shapes. This involves major changes to coal mine layouts and thus represents a strategy of taking radical measures to solve soft rock engineering problems. If such radical measures are taken together with holding stopgap measures, the soft rock engineering can be optimized.煤矿开采中的软岩优化工程摘要软岩工程是一个已引起广泛关注的岩石力学与工程领域中的困难课题。

煤矿开采煤矿安全中英文对照外文翻译文献

煤矿开采煤矿安全中英文对照外文翻译文献

中英文对照外文翻译(文档含英文原文和中文翻译)外文:Mine safetyCoal mining historically has been a hazardous occupation but, in recent years, tremendous progress has been made in reducing accidental coal mine deaths and injuries.the main aspect is as following:⑴ Safety of mine ventilation•Purposes of Mine Ventilation•Properly engineered control of the mine atmosphere is required to: •provide fresh air (oxygen) for men to breathe•provide a source of oxygen for internal combustion engines in machinery •dilute atmospheric contaminants to acceptable levels•maintain temperature and humidity within acceptable limits•remove atmospheric contaminants from the mine.Mine ventilation is twofold in purpose: first, it maintains life, and secondly it carries off dangerous gases. The historic role of ventilation was to provide a flow of fresh air sufficient to replace the oxygen consumed by the miners working underground. Today's mine ventilation primarily deals with noxious gases (mainly generated by trackless equipment underground).Canaries are said to have been used to detect gas in coal mines in the early stages of coal mining. This sensitive bird would be taken into the workings and, if it perished, the colliers would immediately leave the mine.In the 1920s the hand-turned fans were replaced with air-powered small turbine fans. Large fans of the suction type were placed on the surface and gradually increased in size. Air from surface compressors was piped into the mine to power machinery and to assist in ventilation.Unless the air is properly distributed to the face, the mine ventilation system is not performing its primary function [1]. While it has always been recognized that this last part of ventilation is the most import, it is also the most difficult to achieve.The primary means of producing and controlling the airflow are also illustrated on Figure 1. Main fans, either singly or in combination, handle all of the air that passesthrough the entire system.These are usually, but notnecessarily, located onsurface, either exhaustingair through the system asshown on Figure 1 or, alternatively, connected to downcast shafts or main intakes and forcing air into and through the system. Because of the additional hazards of gases and dust that may both be explosive, legislation governing the ventilation of coal mines is stricter than for most other underground facilities. In many countries, the main ventilation fans for coal mines are required, by law, to be placed on surface and may also be subject to other restrictions such as being located out of line with the connected shaft or drift and equipped with "blow-out" panels to help protect the fan in case of a mine explosion.Stoppings and Seals:In developing a mine, connections are necessarily made between intakes and returns. When these are no longer required for access or ventilation, they should be blocked by stoppings in order to prevent short-circuiting of the airflow. Stoppings can be constructed from masonry, concrete blocks or fireproofed timber blocks. Prefabricated steel stoppings may also be employed. Stoppings should be well keyed into the roof, floor and sides, particularly if the strata are weak or in coal mines liable to spontaneous combustion. Leakage can be reduced by coating the high pressure face of the stopping with a sealant material and particular attention paid to the perimeter. Here again, in weak or chemically active strata, such coatings may be extended to the rock surfaces for a few metres back from the stopping. In cases where the airways are liable to convergence, precautions should be taken to protect stoppings against premature failure or cracking. These measures can vary from "crush pads" located at the top of the stopping to sliding or deformable panels on prefabricated stoppings. In all cases, components of stoppings should be fireproof and should not produce toxicfumes when heated.As a short term measure, fire-resistant brattice curtains may be tacked to roof, sides and floor to provide temporary stoppings where pressure differentials are low such as in locations close to the working areas.Where abandoned areas of a mine are to be isolated from the current ventilation infrastructure, seals should be constructed at the entrances of the connecting airways. If required to be explosion-proof, these consist of two or more stoppings, 5 to 10 metres apart, with the intervening space occupied by sand, stone dust, compacted non-flammable rock waste, cement-based fill or other manufactured material. Steel girders, laced between roof and floor add structural strength. Grouting the surrounding strata adds to the integrity of the seal in weak ground. In coal mines, mining law or prudent regard for safety may require seals to be explosion-proof.Doors and airlocks:Where access must remain available between an intake and a return airway, a stopping may be fitted with a ventilation door. In its simplest form, this is merely a wooden or steel door hinged such that it opens towards the higher air pressure. This self-closing feature is supplemented by angling the hinges so that the door lifts slightly when opened and closes under its own weight. It is also advisable to fit doors with latches to prevent their opening in cases of emergency when the direction of pressure differentials may be reversed. Contoured flexible strips attached along the bottom of the door assist in reducing leakage, particularly when the airway is fitted with rail track.Ventilation doors located between main intakes and returns are usually built as a set of two or more to form an airlock. This prevents short-circuitingwhen one door is opened for passage of vehicles or personnel. The distance between doors should be capable of accommodating the longest train of vehicles required to pass through the airlock. For higher pressure differentials, multiple doors also allow the pressure break to be shared between doors. Mechanized doors, opened by pneumatic or electrical means are particularly convenient for the passage of vehicular traffic or where the size of the door or air pressure would make manual operation difficult. Mechanically operated doors may, again, be side-hinged or take the form of rollup or concertina devices. They may be activated manually by a pull-rope or automatic sensing of an approaching vehicle or person. Large doors may be fitted with smaller hinged openings for access by personnel. Man-doors exposed to the higher pressure differentials may be difficult to open manually. In such cases, a sliding panel may be fitted in order to reduce that pressure differential temporarily while the door is opened. Interlock devices can also be employed on an airlock to prevent all doors from being opened simultaneously.Cfd applied to ventilation sys tems:Due to recent advances in computer processing power CFD has been used to solve a wide range of large and complex flow problems across many branches of engineering (Moloney et. al. 1997/98/99). The increase in processor speed has also enabled the development of improved post processing and graphical techniques with which to visualize the results produced by these models. Recent research work has employed CFD models, validated by scale and full-scale experiments, to represent the ventilation flows and pollutant dispersion patterns within underground mine networks. In particular, studies by Moloney (1997) demonstrated that validated CFD models were able tosuccessfully replicate the ventilation flows and gaseous pollutant dispersion patterns observed within auxiliary ventilated rapid development drivages. CFD has proven a capable method by which to identify detailed characteristics of the flow within critical areas such as the cutting face. The results produced by the CFD models were able to demonstrate the relative efficiency of the different auxiliary ventilation configurations in the dilution, dispersion and transport of the methane and dust from the development face. Further recent studies by Moloney et. al. (1999) have demonstrated that such validated CFD models may be used to simulate the airflow and pollutant dispersion data for a wide range of mining and ventilation configurations. Each simulation exercise produces large sets of velocity, pressure and pollutant concentration data.⑵ Fires Methods of ControlFires that occur in mine airways usually commence from a single point of ignition. The initial fire is often quite small and, indeed, most fires are extinguished rapidly by prompt local action. Speed is of the essence. An energetic ignition that remains undetected, even for only a few minutes, can develop into a conflagration that becomes difficult or impossible to deal with. Sealing off the district or mine may then become inevitable.The majority of fires can be extinguished quickly if prompt action is taken. This underlines the importance of fire detection systems, training, a well-designed firefighting system and the ready availability of fully operational firefighting equipment. Fire extinguishers of an appropriate type should be available on vehicles and on the upstream side of all zones of increased fire hazard. These include storage areas and fixed locations ofequipment such as electrical or compressor stations and conveyor gearheads. Neither water nor foam should be used where electricity is involved until it is certain that the power has been switched off. Fire extinguishers that employ carbon dioxide or dry powders are suitable for electrical fires or those involving flammable liquids.Deluge and sprinkler systems can be very effective in areas of fixed equipment, stores and over conveyors. These should be activated by thermal sensors rather than smoke or gas detectors in order to ensure that they are operated only when open combustion occurs in the near vicinity.Except where electricity or flammable liquids are involved, water is the most common medium of firefighting. When applied to a burning surface, water helps to remove two sides of the fire triangle. The latent heat of the water as it vapourises and the subsequent thermal capacity of the water vapour assist in removing heat from the burning material. Furthermore, the displacement of air by water vapour and the liquid coating on cooler surfaces help to isolate oxygen from the fire.⑶ Methods of Dust ControlThe three major control methods used to reduce airborne dust in tunnels and underground mines: ventilation, water, and dust collectors.Ventilation air reduces dust through both dilution and displacement. The dilution mechanism operates when workers are surrounded by a dust cloud and additional air serves to reduce the dust concentration by diluting the cloud. The displacement mechanism operates when workers are upwind of dust sources and the air velocity is high enough to reliably keep the dust downwind.① Dilution Ventilation. The basic principle behind dilution ventilation is to provide more air and dilute the dust. Most of the time the dust is reduced roughly in proportion to the increase in airflow, but not always. The cost of and technical barriers to increased airflow can be substantial, particularly where air already moves through ventilation ductwork or shafts at velocities of 3,000 ft/min or more.②Displacement Ventilation. The basic principle behind displacement ventilation is to use the airflow in a way that confines the dust source and keeps it away from workers by putting dust downwind of the workers. Every tunnel or mine passage with an airflow direction that puts dust downwind of workers uses displacement ventilation. In mines, continuous miner faces or tunnel boring machines on exhaust ventilation use displacement ventilation. Enclosure of a dust source, such as a conveyor belt transfer point, along with extraction of dusty air from the enclosure, is another example of displacement ventilation. Displacement ventilation can be hard to implement. However, if done well, it is the most effective dust control technique available, and it is worth considerable effort to get it right. The difficulty is that when workers are near a dust source, say, 10 to 20 ft from the source, keeping them upwind requires a substantial air velocity, typically between 60 and 150 ft/min. There is not always enough air available to achieve these velocities.③ Water sprays. The role of water sprays in mining is a dual one: wetting of the broken material being transported and,airborne capture. Of the two, wetting of the broken material is far more effective.Adequate wetting is extremely important for dust control. The vast majorityof dust particles created during breakage are not released into the air, but stay attached to the surface of the broken material. Wetting this broken material ensures that the dust particles stay attached. As a result, adding more water can usually (but not always) be counted on to reduce dust. For example, coal mine operators have been able to reduce the dust from higher longwall production levels by raising the shearer water flow rate to an average of 100gpm. Compared to the amount of coal mined, on a weight basis, this 100gpm is equivalent to 1.9% added moisture from the shearer alone. Unfortunately, excessive moisture levels can also result in a host of materials handling problems, operational headaches, and product quality issues, so an upper limit on water use is sometimes reached rather quickly. As a result, an alternative to simply adding more water is to ensure that the broken material is being wetted uniformly.⑷ Mine DrainageWater invades almost every mine in the form of :direct precipitation (rain and snow), surface runoff, underground percolation. Flows of water have an important effect on the cost and progress of many mining operations and present life and property hazards in some cases.Means of Mine-water Control(Mine Drainage):As shafts and other mine openings extend below the water table, water is likely to be encountered and to seep into the openings to an extent depending upon the area of rock surface exposed, the hydrostatic pressure, and other factors. In order to continue mining operations, it is therefore necessary to lower the ground water level in the vicinity of the mine by artificial means to keep the workings free of water as well as preventing the flow of surfacewater into the (surface or underground) mine. This operation is known as mine drainage.Means of mine drainage are limited by circumstances and objectives. The following types of mine-water control can be used singly or more effectively in combination:① Locate shafts or excavations in best ground and protect from direct water inflow from surfaces.② Divert or drain water at or near surface.③Reduce permeability of rock mass by grouting with special types of cement, bentonite and liquid chemical grouts (water sealing).④ Case or cement exploration drill holes.⑤Drill pilot holes in advance of work wherever there may be sudden influents at rates potentially inconvenient.⑥Dewater bedrock at depth by pumping through dewatering wells or from an accessible place in the mine.。

采矿专业外文文献翻译----煤矿瓦斯预防和治理

采矿专业外文文献翻译----煤矿瓦斯预防和治理

原文Control and prevention of gas outbursts in coal mines,Riosa–Olloniego coalfield, SpainMaría B. Díaz Aguado C. González Nicieza AbstractUnderground coal mines have always had to control the presence of different gases in the mining environment. Among these gases, methane is the most important one, since it is inherent to coal. Despite of the technical developments in recent decades, methane hazards have not yet been fully avoided. This is partly due to the increasing depths of modern mines, where methane emissions are higher, and also to other mining-related circumstances, such as the increase in production rates and its consequences: difficulties in controlling the increasing methane levels, increasing mechanization, the use of explosives and not paying close attention to methane control systems.The main purposes of this paper are to establish site measurements using some critical parameters that are not part of the standard mining-control methods for risk assessment and to analyze the gas behavior of subvertical coal seams in deep mines in order to prevent gas incidents from occurring. The ultimate goal is the improvement in mining conditions and therefore in safety conditions.For this purpose, two different mines were instrumented for mine control and monitoring. Both mines belong to the Riosa–Olloniego coalfield, in the Asturias Central Basin, Spain and the areas instrumented are mined via subhorizontal sublevels at an actual depth of around 1000 m under the overburden of Mount Lusorio.During this research, a property favoring gas outbursts was site measured for the first time in an outburst-prone coal (8th Coalbed), gas pressure and its variations, which contributed to complete the data available from previous characterizations and to set some guidelines for assessing the potential outburst-prone areas. A gas-measurement-tube set has been designed for measuring gas pressure as well as its variation over time as a result of nearby workings and to calculate permeability.The paper establishes the effect of overlapping of works, but it also shows the efficacy of two preventive measures to be applied: high pressure water infusion and the exploitation of a protective coal seam (7th Coalbed), that must be mined preferably two complete sublevels before commencing the advance in the outburst-prone coalbed. Both measures constitute an improvement in the mining sequence and therefore in safety, and should be completed with a systematic measurement to control the risk: gas pressure in the 8th Coalbed in the area of influence of other workings, to establish the most suitable moment to renew the advance. Further researches could focus on ascertaining thepermeability, not only in mined areas but also in areas of the mine that are still not affected by mining work and on tuning more finely the ranges of influence of overstress time and overlap distance of the workings of the 7th Coalbed in the 8th Coalbed.1. IntroductionCoalbed and coal mine methane research is thriving due to the fact that power generation from coal mine methane will continue to be a growing industry over the coming years in certaincountries. For instance, China, where 790 Mm3 of CH4 were drained off in 1999 (Huang, 2000), has 30 Tm3 of estimated CBM potential in the developed mining areas (Zhu, 2000). The estimate by Tyler et al. (1992) of the in-place gas in the United States is about 19 Tm3, while Germany's total estimated coalbed methane resources are 3 Tm3, very similar to Polish or English resources (World Coal Institute, 1998).This increase in the CBM commerce has opened up new lines of research and has allowed the scientific community to increase its knowledge of some of the propertiesof coal and of methane gas, above all with respect to the properties that determine gas flow, which until now had not been sufficiently analyzed. Some of these parameters are the same ones that affect the occurrence of coal mining hazards, as methane has the potential to become a source of different fatal or non-fatal disastrous events.2. Description of the Asturian Central basin and of the 8th CoalbedThe 8th Coalbed of the Riosa–Olloniego unit, located in the Southwest of the Asturian Central Coal Basin (the largest coal basin in the Cantabrian Mountains, IGME, 1985), has CBM potential of about 4.81 Gm3. This is around 19.8% of the estimated resources of the Asturian Central Basin and 12.8 % of the total assessed CBM resources in Spain (Zapatero et al., 2004). 3.84 Gm3 of the CBM potential of the 8th Coalbed belongs to San Nicolás and Montsacro: 1.08 Gm3 to San Nicolás area and 2.76Gm3 to Riosa, down to the −800m level (IGME, 2002).The minable coalbeds of this unit are concentrated in Westphalian continental sediments (Suárez-Ruiz and Jiménez, 2004). The Riosa–Olloniego geological unit consists of three seams series: Esperanza, with a total thickness of 350 m, contains 3–6 coalbeds with a cumulative coal thickness of 3.5 to 6.5 m; Pudingas, which is 700 m thick, has 3–5 coalbeds with a thickness of 5–7m; whereas the Canales series, the most important one, I 800 m thick, with 8–12 coalbeds that sum up to 12–15 m thick. This series, which contains the 8th Coalbed, the coalbed of interest in this study, has a total thickness of 10.26mat SanNicolás and 15.13matMontsacro (Pendás et al., 2004). Fig. 1 shows the geological map of the two coal mines, whereas Fig. 2represents a front view of both mines and the location of the instrumented areas. In this particular study, the 8th Coalbed is situated at a depth of between 993 and 1017 m, in an area of low seismi intensity.Instantaneous outbursts pose a hazard to safe, productive extraction of coal in both mines. The mechanisms of gas outbursts are still unresolved but include the effect of stress, gas content and properties of the coal. Other factors such as geological features, mining methods, bord and pillarworkings or increase in rate of advance may combine to exacerbate the problem (Beamish and Crosdale, 1998). Some of the main properties of the 8th Coalbed favoring gas outbursts (Creedy and Garner, 2001; Díaz Aguado, 2004) had been previously studied by the mining company, in their internal reportsM.B. Díaz Aguado, C. González Nicieza / International Journal of Coal Geology 69 (2007) 253–266255Fig. 1. Geological map.as well as in the different research studies cited in Section1: the geological structure of the basin, the stress state of the coalbed and its surrounding wall rock and some properties of both coal-bearing strata and the coalbed itself. The next paragraphs summarize the state of the research when this project started.Many researchers have studied relationships between coal outbursts and geological factors. Cao et al. (2001), found that, in the four mining districts analyzed, outbursts occurred within tectonically altered zones surrounding reverse faults; this could help to delimit outburst-prone zones. In the 8th Coalbed, some minor outbursts in the past could be related to faults or changes in coal seam thickness. Hence, general geological inspections are carried out systematically, as well as daily monitoring of any possible anomalies. But, in any case, some other outbursts could be related neither to local nor general faults.Fig. 2. General location of the study area.M.B. Díaz Aguado, C. González Nicieza / International Journal of Coal Geology 69 (2007) 253–266 For some years now, the technical experts in charge of the mine have been studying the stress state of the coalbed by means of theoretical calculations of face end or residual rock mass projections that indicated potential risk areas, based on Russian standards (Safety Regulations for Coal and Oil Shale Miners, 1973).Assuming that there was an initial approach to the stress state, this parameter was therefore not included in the research study presented in this paper. In the Central Asturian Coal Basin, both the porosity and permeability of the coal-bearing strata are very low,the cleat structure is poorly developed and cleats are usually water-filled or even mineralized. Consequently, of 5.10 m3/t. In some countries, such as Australia (Beamish and Crosdale, 1998) or Germany, a gas outburst risk value has been established when methane concentration exceeds 9 m3/t (although close to areas of over-pressure, this risk value descends to 5.5 m3/t). As the average gas contents in the coalbed are comparable with those of the Ruhr Basin (which according to Freudenberg et al., 1996, vary from 0 to 15 m3/t), the values in the 8th Coalbed would be close to the risk values.Desorption rate was considered the most important parameter by Williams and Weissmann (1995), in conjunction with the gas pressure gradient ahead of the face. Gas desorption rate (V1) has been defined as the volume of methane, expressed in cm3, that is desorbed from a 10 g coal sample, with a grain size between 0.5 and 0.8 mm, during a period of time of 35 s (fromsecond 35 to 70 of the test). Desorption rates have been calculated from samples taken at 2 m, 3 m and 7 m, following the proceedings of the Technical Specification 0307-2-92 of the Spanish Ministry of Industry. The average values obtained during the research are: 0.3 cm3 / (10 g·35 s) at 2 m depth, 0.5 cm3 / (10 g·35 s) at 3 m and 1.6 cm3 / (10 g·35 s) at the only paths for methane flow are open fractures. Coal gas content is one of the main parameters that had been previously analyzed. The methane concentration in the Central Asturian Basin varies between 4 and 14 m3/t of coal (Suárez Fernández,1998). Particularly, in the Riosa–Olloniego unit, the gas content varies from 3.79 to 9.89 m3/t of coal (Pendás et al., 2004). During the research, the measured values in the area of study have varied between 4.95 and 8.10 m3/t, with an average value7m.Maximumvalues were of 1.7 cm3 / (10 g·35 s) at 2m depth, 3.3 at 3 m and up to 4.3 cm3 / (10 g·35 s) at 7 m.The initial critical safety value to avoid gas outbursts in the 8th Coalbed was 2 cm3 / (10 g·35 s). Due to incidents detected during this research study, the limit value was reduced to 1.5 cm3 / (10 g·35 s).But other properties, such as coal gas pressure, the structure of the coal itself and permeability, had beeninsufficiently characterized in the Riosa Olloniego unit before this research study.Two methods had been previously employed to determine the gas pressure in the mine: the Russian theoretical calculations for the analysis of the stress state and the indirect measurements of the gas pressure obtained by applying criteria developed for the coalbeds of the Ruhr Basin (Germany), Poland and the former Soviet Union. These indirect measurements were the Jahns or borehole fines test (Braüner, 1994), which establishes a potential hazard when the fines exceed a limiting value. Although there are tabulated values for the coalbeds of the Ruhr Basin, it is not the case for the coals of the Riosa–Olloniego unit. Therefore, in this paper an improvement to the gas pressure measurement technique is proposed by developing a method and a device capable of directly measuring in situ pressures.The 8th Coalbed is a friable bituminous coal, high in vitrinite content, locally transformed into foliated fabrics which, when subjected to abutment pressure, block methane migration intoworking faces (Alpern, 1970). With low-volatile content, it was formed during the later stages of coalification and, as stated by Flores (1998) this corresponds to a large amount of methane generated. Moreover, the coal is subject to sudden variations in thickness (that result in unpredictable mining conditions) and to bed-parallel shearing within the coalbed, that has been considered an influence on gas outbursts (Li, 2001). Its permeability had never been quantified before in this mining area. Thus, during research in the 8th Coalbed it was decided to perform in situ tests to measure pressure transients, to obtain site values that will allow future calculations of site permeability, in order to verify if it is less than 5 mD, limit value which, after Lama and Bodziony (1998), makes a coalbed liable to outbursts.Therefore, in this study we attempted to characterize gas pressure and pressure transients, for their importance in the occurrence of gas outbursts or events in which a violent coal outburst occurs due to the sudden release of energy, accompanied by the release of significant amount of gas (González Nicieza et al.,2001), either in breaking or in development of the coalbed (Hardgraves, 1983).3. ConclusionsCoalbed is still a major hazard affecting safety andproductivity in some underground coal mines. This paper highlights the propensity of the 8th Coalbed to give rise to gas outbursts, due to fulfilling a series of risk factors, that have been quantified for 8th Coalbed for the first time and that are very related to mining hazards: gas pressure and its variation, with high valuesmeasured in the coalbed,obtaining lower registers at Montsacro than at San Nicolás (where 480 kPa were reached in the gas pressure measurements at the greatest depth). These parameters, together with the systematic measurement of concentration and desorption rate that were already being carried out by the mine staff, require monitoring and control. A gas-measurement-tube set was designed, for measuring gas pressure and its variations as well as the influence of nearby workings to determine outburstprone areas. The efficacy of injection as a preventative measure was shown by means of these measurement tubes. Injection decreases the gas pressure in the coalbed, althoughthe test must be conducted maximizing all the precautionary measures, because gas outbursts may occur during the process itself.The instrumentation results indicated the convenienceof mining the 7th Coalbed at least one sublevel ahead of the 8th Coalbed. This means having completed longwall caving of the corresponding sublevel both eastward and westward, and having allowed the necessary time to elapse for distention to take effect. This distention time was estimated between two and three months.The constructed instrumentation likewise allowed the effect of overlapping of workings to be measured: as the longwall caving of the coalbed situated to the roof of the instrumented coalbed approaches the area of advance of the 8th Coalbed, an increase in the pressure of the gas is produced in the 8th Coalbed. This may even triplicate the pressure of the gas and is more pronounced as the longwall caving approaches the position of the measuring equipment. A spatial range of the influence of longwall caving of some 55–60 m was estimated and a time duration of 2–3 months. The main contribution of this article resides in theproposal of measures of control and risk of gas outbursts that complement the systematic measurements in the mine itself, with the aim of improving safety in mining work. This proposal, apart from certain practical improvements in mining work, above all regarding the exploitation sequence, would involve the installation of gas measurement tubes before initiating the advance or at the overlap of workings. It would consist intemporarily detaining the advance in the 8th Coalbed when an overlap of workings may occur or prior to the commencement of an advance in the 8th Coalbed, installing measurement tubes in the face. The values and the trend of the measured gas pressures, together with the values obtained from gas concentration tests, would enable control of the conditions of the coalbed and the establishing of what moment would be appropriate to renew the advance. The gas measurement tubes would hence be a reliable, economic control and evaluation measure of the risk of gas outbursts. Furthermore, this equipment would enable the openingof other lines of research, both for calibrating the time and range of influence of mining work in each advance, as well as for calculating the permeability of the coal. By means of the designed test (gas flow between two gasmeasurement-tube sets), permeability could be estimated by numerical models calibrated with site data, both in areas of the mine that have still to be affected by mining work and in those already subject to mining works. These calibrations would also allow the variation in permeability with the depth of the coalbed itself to be analyzed.References[1] Alexeev, A.D., Revva, V.N., Alyshev, N.A., Zhitlyonok, D.M., 2004.[2] True triaxial loading apparatus and its application to coal outburst prediction. Int. J. Coal Geol. 58, 245–250.[3] Alpern, B., 1970. Tectonics and gas deposit in coalfields: a bibliographical study and examples of application. Int. J. Rock Mech. Min. Sci. 7, 67–76.[4] Beamish, B.B., Crosdale, J.P., 1998. Instantaneous outbursts in underground coal mines: an overview and association with coal type. Int. J. Coal Geol. 35, 27–55.[5] Braüner, G., 1994. Rockbursts in Coal Mines and Their Prevention. Balkema, Rotterdam, Netherlands. 137 pp.[6] Cao, Y., He, D., Glick, D.C., 2001. Coal and gas outbursts in footwalls of reverse faults. Int. J. Coal Geol. 48, 47–63.[7] Creedy, D., Garner, K., 2001. UK-China Coalbed Technology Transfer. Report N° Coal R207 DTI/Pub URN 01/584, 24 pp.[8] Díaz Aguado, M.B., 2004. Análisis, Control y Evaluación de Riesgo de Fenómenos Gaseodinámicos en Minas de Carbón, PhD Thesis, University of Oviedo (Spain) Publishing Service,I.S.B.N.: 84-8317-434-0, 301 pp. (in Spanish, with English Abstract).[9] Durucan, S., Edwards, J.S., 1986. The effects of stress and fracturing on permeability of coal Min. Sci. Technol. 3, 205–216.[10] Flores, R.M., 1998. Coalbed methane: from hazard to resource. Int. J.Coal Geol. 35, 3–26西班牙Riosa–Olloniego煤矿瓦斯预防和治理María B. Díaz Aguado C. González NiciezaAbstract Department of Mining Exploitation, University of Oviedo, School of Mines,Independencia, 13, 33004 Oviedo, Spain摘要在煤矿井下开采环境中必须控制着不同气体的存在。

南非采矿业:概览毕业课程设计外文文献翻译、中英文翻译

南非采矿业:概览毕业课程设计外文文献翻译、中英文翻译

附录The South African mining industry:An overview c(Part)By J.J.Geldenhuys*Premier of the North-West Province,Mr Molefe,foreign dignitaries and guests,ladies and gentlemen.It is a pleasure and also a special honour for me to have been invited here this morning to make this address.The XV Congress of the Council of Mining and Metallurgical Institutions is,by its very nature,an extremely important event for the international minerals industry. But I believe that this specific Congress assumes an even greater significance because of the profound and far-reaching changes that have taken place in South Africa this year. These are exhilarating times ,a period when so much in out country hasaltered and when so much has to be done so quickly to build positively on our bold political decisions .Your Congress is taking place at the start of this critical building phase for South Africa,a phase which the mining industry is determined to contribute to in no small measure. And so ti is a special honour for me to make this address at such a vital time for the country and its mining interests.For more than a century now the mining industry has been the foundation of the South African economy .Today ,the industry remains robust ,energetic ,more innovative than ever,and still possessed of the capacity to be a reliable economic generator for this country and the region as a whole.Mining in this country is already ensconced in some of the challenges of our new era. South Africa’s mining houses,which for so long have been at the forefront of progress in mineral extraction,are researching new methods of enhancing production. They have already achieved technical breakthroughs to improve the safety of workersand ,on a broader front ,they are working on strategies to compete aggressively with growing international competition.I am pleased to report to you this mornig,that ,after a long drought our gold mining sector is buoyant and showing improving health.On an annualised basis ,working profit per kilogram of gold improved by 52.5 per cent last year. And,for the first six months of this year,working profits per kilgram rose another 16.2 per cent on the same period last year. This improvement has enabled the industry to re-evaluate its levels of capital expenditure and its strategies for new mining ventures.But, before I deal in more detail with the general state of the industry ,and in particular the outlook and the challenges for the nation’s gold mining operations ,mention must be made of the all-important relationship between our new Government and the miming industry.We are unequivocal in our belief that the mining industry can –and must –enter a cooperative replationship with Government .We believe such a relationship would not only be to the mutual benefit of both parties, but , would also help in the creation of an enticing and positive climate for investment in South Africa. In fact ,in recent days ,and specifically during a visit to Cape Town for the purpose ,the mining industry has indicated strongly to our elected leaders that it stands ready to use its diverse expertise to help the Government of National Unity to achieve its aims for a better life for all in partnership later.In an examination of the mining industry’s broad contribution—financial and otherwise—to the greater good of this country ,and its own economic state ,it remains clear that what was true a century ago remains true today:The mining industry is a mainstay of our economy both sa a foreign exchange earner and a direct and indirect contributor to the Gross Domestic Puoduct. It also remains a leading employer,in fact the second biggest behind the agricultural sector . In shot ,the industry has maintained,and in many ways reinforced , its capacity ot create wealth andemployment.Last year the industry generated,through the exports of primary and beneficiated mineral products ,more than 60 per cent fo South Africa’s foreign exchange earnings , It was also directly resposible for 8.7 pen cent of GDP or, more spectacularly ,18 pen cent of GDP if the so –called indirect backward and forward linkages were included.(Those linkages are the flow-on effects from mining into sectors such as manufac-turing,community services and electricity , and the effects of domestic industries making use of mining outputs such as coal .)Despite the protracted world recession and the generally depressed mineral markets ,the value of our mineral sales incpeased by 10.9 per cent to R46.7 billion last year .Our total export sales rose by 14.8 per cent ,and this was mainly the result of bigger exports of gold,platinum group metals ,iron ore and miscellaneous minerals ,among them diamonds .On a provincial basis ,latest statistics show that the impact of mining on economic growth in many of the provinces was significantly greater than the industry’s contribution to the national or overall economy . In the Free State ,imning is responsible for about 20 pen cent of the Gross Geographic Product; in North-West Province ,our hosts , about 43 per cent ; in North Cape Province almost 27 per cent and in Eastern Transaal Province mining is responsible for more than 20 pen cent of GGP .For the record , the PWV , which has by far the smallest surface area in the country , produces some 23 pen cent , or R9.7 billon worth , of the nation’s minerals . Its mining and quarrying activities contribute a little over five per cent to its Gross Geographic Product.………………………In conclusion ,the mining industry is determined to continue playing itseconomic anchor role in South Africa. We will create jobs and wealth ,both nationally and regionally ,wo will continue earing foreign exchange ,and we will build and sustain communities ,This determination is born of a faith in the political future of this country and its people .Political events in this country in the 90s, culminating in the breathtaking success of April’s transfer of power –a process of unimaginable political proportions a mere five or six years age –stand as monuments to the qualities of all South African people .Their capacity for forgiveness ,their tolerance ,their pragmatism and their determination form sturdy foundations for bright ,new South Africa.This country has now achieved a stable political dispensation , in which, almost all of the inhibiting tensions of the bygone era unambiguous signs that the right climate is being created for sound and prosperous investmet in South Africa .We hope that our faith in this country’s future and out commitment to aiding its continued well-being will act as an incentive to potential investors the world over.Ladies and Gentlemen,this has always been a country of ingenuity ,a nation which puts great store in innovation.Now that the shackles have been broken to enable all its resources to be tapped,the sky is South Africa’s limit.Thank you .The South African mining industry:An overview c:The South African Institute of Mining and Metallurgy,1994.SA ISSN 0038-223X/3.00+0.00. Address delivered at the opening plenary session of the XV CMMI Congress held at Sun City,South Africa on Monday, 5 September 1994.By J.J.Geldenhuys*:President,Chamber of Mines of South Africa南非采矿业:概览c(部分)By J.J.Geldenhuys*西北省议员, Molefe先生,外国政要和嘉宾,各位朋友。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

外文原文:Adopt the crest of the coal work noodles plank managementproblem studyCrest the plank management is the point that adopts a safe management of the coal work noodles.Statistics according to the data, crest the plank trouble has 60% of the coal mine trouble about, adopting the trouble of the coal work noodles and having a crest 70% of the plank trouble above.Therefore, we have to strengthen a plank management, reducing to adopt the coal work noodles crest the occurrence of the plank trouble.1,the definition of the crest,scaleboard and it categorizeEndow with the existence coal seam on of the close by rock strata be called a plank, endow with the existence coal seam under of the close by rock strata be called scaleboard.Crest the rock,strength of the scaleboard and absorb water sex and digging to work the management of the noodles contain direct relation, they is certain crest the plank protect a way and choose to adopt the empty area processing method of main basis.1.1 planks categorizeAccording to rock,thickness and return to adopt process to fall in the 垮of difficult easy degree, crest the plank is divided into the false crest,direct crest and old crest.According to direct crest sport to adopt a field to the influence for press, the direct crest is divided into broken up,unsteady,medium etc. stability,stability,strong and tough crest plank etc. is five.According to old crest the sport Be work mineral inside the noodles press to present degree and to work safe threat of noodles of size, the old crest is is divided in to press very and severely, press mightiness, press to compare obviously, don't obviously press etc. is four.1.2 scaleboards categorizeAccording to the opposite position relation of the rock strata and the coal seam, the scaleboard is divided into direct bottom with the old bottom.Locate coal seam directly under of the rock strata be called direct bottom;locate the direct bottom or coal seam under of the rock strata be called old bottom.The coal seam crest the scaleboard type expects the influence of the geology structure sport after be subjected to the deposition environment and, its growth in different region degree dissimilarity, the coal seam possibility for have isn't whole.2,crest that need to be control plank classification and adopt the processing way of the empty areaAccording to different crest the plank type and property, choose to pay to protect a way and adopt the empty area processing method differently, is a plank management of basic principle.2.1 crest needed to pull to make plank classificationPress a knothole rock strata strength, the crest plank that needs to be control can is divided into: general crest the plank,slowness descend to sink a plank and is whole fall the crest of the cave in the danger plank etc..2.2 work noodles adopt the processing method of the empty areaThe processing method that adopts empty area mainly has: all 垮s fall a method,partial full to fill a method,the coal pillar to prop up a method to alleviate to descend to sink a method slowly etc..3,crest the plank pressure present a characteristic3.1 top the cover rock strata of the sport regulation and the work in front pay to accept pressure to distribute behindDuring the period of mine, adopt empty area above of the rock strata will take place ambulation, according to crest the plank change mind condition, taking the cranny rock strata in up the cover rock strata follow the work noodles to push forward the direction demarcation as three areas: the coal wall prop up the influence area,leave layer area and re- press solid area.The noodles opens to slice an eye to go to push forward forward in the process from the work, break original should the equilibrium of the dint field, cause should the dint re- distribute.Be adopting the coal work noodles to become to pay to accept pressure in front and back, it concretely distributes shape to have something to do with adopting the empty area processing method.3.2 first times to press to press a main manifestation with the periodFirst time to press a main manifestation:BE a plank"by oneself the vield song" range enlargement;the coal wall transform and fall to fall(the slice help);pay to protect to drill bottom etc..First time to press to want to keep on more and suddenly and generally for 2-3 days.Period to press a main manifestation:Main manifestation BE:crest the plank descend to sink nasty play increment of speed, crest the plank descend to sink quantity to become big;pay what pillar be subjected to load widespread increment;adopt empty area to hang a crest;pay pillar to make a noise;cause the coal wall slice to help,pay pillar to damage,crest plank occurrence the step descend to sink etc..If pay the pillar parameter choice to be unsuited to a proper or single body to pay the pillar stability worse, may cause the partial crest or crest plank follow the work noodles to slice to fall etc..4,crest the plank choice for protectThe work noodles the function for protect decelerate a plank to descend to sink, supporting to control a crest to be apart from the knothole integrity inside the crest, assurance work space safety.4.1 choices that protect material and formPay to protect material to mainly there are the metals support and the wood support.Pay to protect a form to mainly have a little the pillar to protect,the cote type protect to press a support with liquid.4.2s protect a specification choiceWhile choosing to pay to protect specification, mainly control the following 2:00:1.Control the work noodles adopt high and its variety.Generally can according to drill a holethe pillar form or have already dug the tunnel data of to make sure to adopt high.From last the movable regulation of the cover rock strata, can the initial assurance crest plank at biggest control a crest to be apart from place of average biggest descend to sink quantity, select to pay a pillar model number suitablely2 control the crest plank of the normal appearance to descend to sink the quantity and support can the draw back pute the biggest and high Hmax and minimum and high Hmin that pays pillar, select specification of pay the prehensive the pillar model number and specification, check related anticipate, assurance the model number of the pillar.5,the work noodles manages everyday of pointEveryday crest the point of plank management is the with accuracy certain protects density and control a method, right arrangement and organize to adopt coal and control a crest to relate to in fixed time, strengthen to pay to protect the quality management before press, the assistance that chooses to use a good necessity protect etc., attain to expel to emit a trouble, assurance the purpose of[with] efficiency.1 choice that protects density and controls a methodAccording to the work noodles crest plank rock,adopt a periodic to press obvious degree, press strength and to press in front and back a crest knothole variety a circumstance etc., the certain protect density and control a method.It adopt coal in 2 production lines with control of the crest to relate to in fixed timePeriod to don't obviously press to adopt a field, emphasize to pay to protect,adopt coal, control a parallel homework, possibly contract to adopt coal,return to pillar to put distance between an operations with speed the work noodles propulsion degree;period to press more and obviously adopt a field, at to press in front and back adopt different of,control the relation organization project, before press should not adopt coal,put a crest in the meantime homework, press after should adopt to adopt coal,put a crest to keep minimum wrong be apart from parallel homework.Field to strengthen to pay to protect the quality management assurance to pay pillar to have to prop up dint,prevent°from paying pillar to drill bottom enough before press,right adoption the assistance protect.Adopt the coal work noodles crest, the plank manages everyday of the key lie in raising the spot management,the operation level, paying to protect and adapt to adopt a field to press and crest the scaleboard variety circumstance, adopt right of the assistance protect measure, well exertivecontrol a result.译文:采煤工作面的顶板管理问题探讨顶板管理是采煤工作面安全管理的重点。

相关文档
最新文档