南充2018中考数学试题

合集下载

2018年四川省南充市中考数学试卷

2018年四川省南充市中考数学试卷

2018年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答选项,其中只有一个是正确的。

请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、错涂或多涂记0分。

1.(3分)下列实数中,最小的数是()A.B.0 C.1 D.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.扇形B.正五边形C.菱形D.平行四边形3.(3分)下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1 4.(3分)下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6 D.﹣3a2+2a2=﹣a25.(3分)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60°C.64°D.68°6.(3分)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.7.(3分)直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2 D.y=2x+28.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.B.1 C.D.9.(3分)已知=3,则代数式的值是()A.B.C.D.10.(3分)如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B 作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF二、填空题(本大题共6个小题,每小题3分,共18分)请将答案填在答题卡对应的横线上。

四川省南充市2018年中考数学真题试题(含答案)

四川省南充市2018年中考数学真题试题(含答案)

四川省南充市2018年中考数学真题试题(含答案)一、选择题(本大题共10个小题,每小题3分,共30分) 1.下列实数中,最小的数是( )A .B .0C .1D 2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .扇形B .正五边形C .菱形D .平行四边形 3.下列说法正确的是( )A .调查某班学生的身高情况,适宜采用全面调查B .篮球队员在罚球线上投篮两次都未投中,这是不可能事件C .天气预报说明天的降水概率为95%,意味着明天一定下雨D .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1 4.下列计算正确的是( )A .422a b a b a b -÷=- B .222()a b a b -=-C .236a a a ⋅=D .22232a a a -+=- 5.如图,BC 是O 的直径,A 是O 上的一点,32OAC ∠=,则B ∠的度数是( )A .58B .60C .64D .68 6.不等式121x x +≥-的解集在数轴上表示为( )A .B .C .D . 7.直线2y x =向下平移2个单位长度得到的直线是( )A .2(2)y x =+B .2(2)y x =-C .22y x =-D .22y x =+8.如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为( )A .12 B .1 C .32D 9.已知113x y -=,则代数式232x xy yx xy y+---的值是( ) A .72-B .112-C .92D .3410.如图,正方形ABCD 的边长为2,P 为CD 的中点,连结AP ,过点B 作BE AP ⊥于点E ,延长CE 交AD 于点F ,过点C 作CH BE ⊥于点G ,交AB 于点H ,连接HF .下列结论正确的是( )A .CE =.2EF =C .cos CEP ∠=D .2HF EF CF =⋅ 二、填空题(本大题共6个小题,每小题3分,共18分)11.某地某天的最高气温是6C ,最低气温是4C -,则该地当天的温差为 C . 12.甲、乙两名同学的5次射击训练成绩(单位:环)如下表.比较甲、乙这5次射击成绩的方差2s 甲,2s 乙,结果为:2s 甲 2s 乙(选填“>”、“=”或“<”).13.如图,在ABC ∆中,AF 平分BAC ∠,AC 的垂直平分线交BC 于点E ,70B ∠=,19FAE ∠=,则C ∠= 度.14.若2(0)n n ≠是关于x 的方程2220x mx n -+=的根,则m n -的值为 . 15.如图,在ABC ∆中,//DE BC ,BF 平分ABC ∠,交DE 的延长线于点F ,若1AD =,2BD =,4BC =,则EF = .16.如图,抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠)与x 轴交于A ,B 两点,顶点(,)P m n .给出下列结论:①20a c +<;②若13,2y ⎛⎫-⎪⎝⎭,21,2y ⎛⎫- ⎪⎝⎭,31,2y ⎛⎫⎪⎝⎭在抛物线上,则123y y y >>;③关于x 的方程20ax bx k ++=有实数解,则k c n >-;④当1n a=-时,ABP ∆为等腰直角三角形,其中正确结论是 (填写序号).三、解答题(本大题共9个小题,共72分)17.0111sin 4522-⎛⎫⎛⎫-++ ⎪ ⎪ ⎪⎝⎭⎝⎭. 18.如图,已知AB AD =,AC AE =,BAE DAC ∠=∠. 求证:C E ∠=∠.19.“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:(1)这组数据的众数是 ,中位数是 .(2)已知获得10分的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率. 20.已知关于x 的一元二次方程22(22)(2)0x m x m m --+-=. (1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为1x ,2x ,且221210x x +=,求m 的值.21.如图,直线(0)y kx b k =+≠与双曲线(0)m y m x =≠交于点1(,2)2A -,(,1)B n -.(1)求直线与双曲线的解析式;(2)点P 在x 轴上,如果3ABP S ∆=,求点P 的坐标. 22.如图,C 是O 上一点,点P 在直径AB 的延长线上,O 的半径为3,2PB =,4PC =.(1)求证:PC 是O 的切线.(2)求tan CAB ∠的值.23.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元. (1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件. ①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50150n ≤≤,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价-进价-销售成本).24.如图,矩形ABCD 中,2AC AB =,将矩形ABCD 绕点A 旋转得到矩形'''AB C D ,使点B 的对应点'B 落在AC 上,''B C 交AD 于点E ,在''B C 上取点F ,使'B F A B =.(1)求证:'AE C E =. (2)求'FBB ∠的度数. (3)已知2AB =,求BF 的长.25.如图,抛物线顶点(1,4)P ,与y 轴交于点(0,3)C ,与x 轴交于点A ,B .(1)求抛物线的解析式.(2)Q 是物线上除点P 外一点,BCQ ∆与BCP ∆的面积相等,求点Q 的坐标. (3)若M ,N 为抛物线上两个动点,分别过点M ,N 作直线BC 的垂线段,垂足分别为D ,E .是否存在点M ,N 使四边形MNED 为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.南充市二〇一八年初中学业水平考试数学参考答案一、选择题1-5: ACADA 6-10: BCBDD 二、填空题11. 10 12. < 13. 24 14. 12 15. 2316. ②④ 三、解答题 17.解:原式1122=-++=. 18.证明:∵BAE DAC ∠=∠,∴BAE CAE DAC CAE ∠-∠=∠-∠. ∴BAC DAE ∠=∠. 在ABC ∆与ADE ∆中,AB ADBAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC ADE SAS ∆≅∆. ∴C E ∠=∠. 19.解:(1)8;9.(2)设获得10分的四名选手分别为七、八1、八2、九,列举抽取两名领操员所能产生的全部结果,它们是:七八1,七八2,七九,八1八2,八1九,八2九.所有可能出现的结果有6种,它们出现的可能性相等,其中恰好抽到八年级两名领操员的结果有1种.所以,恰好抽到八年级两名领操员的概率为16P =. 20.解:(1)根据题意,得22[(22)]4(2)40m m m ∆=----=>, ∴方程有两个不相等的实数根.(2)由一元二次方程根与系数的关系,得1222x x m +=-,2122x x m m ⋅=-.∵221210x x +=,∴21212()210x x x x +-=.∴22(22)2(2)10m m m ---=.化简,得2230m m --=,解得13m =,21m =-.∴m 的值为3或-1.21.解:(1)∵1(,2)2A -在my x =上, ∴212m=-,∴1m =-.∴1y x =-.∴(1,1)B -.又∵y kx b =+过两点A ,B ,∴1221k b k b ⎧-+=⎪⎨⎪+=-⎩, 解得21k b =-⎧⎨=⎩.∴21y x =-+.(2)21y x =-+与x 轴交点1(,0)2C ,ABP ACP BCP S S S ∆∆∆=+1121322CP CP =⋅⋅+⋅⋅=, 解得2CP =.∴5(,0)2P 或3(,0)2-.22.解:(1)证明:连接OC . ∵O 的半径为3,∴3OC OB ==.又∵2BP =,∴5OP =.在OCP ∆中,222222345OC PC OP +=+==, ∴OCP ∆为直角三角形,90OCP ∠=. ∴OC PC ⊥,故PC 为O 的切线.(2)过C 作CD OP ⊥于点D ,90ODC OCP ∠=∠=. ∵COD POC ∠=∠,∴OCD OPC ∆=∆.∴OC OP PC OD OC CD ==,∴2OC OD OP =⋅,∴295OC OD OP ==,453DC =,∴125CD =. 又∵245AD OA OD =+=, ∴在Rt CAD ∆中,1tan 2CD CAB AD ∠==.23.解:(1)设A 型进价为x 元,则B 型进价为(100)x -元,根据题意得:100008000100x x =-. 解得500x =.经检验,500x =是原方程的解. ∴B 型进价为400元.答:A 、B 两型的进价分别为500元、400元. (2)①∵1650m m m ≥⎧⎨≤-⎩,解得1625m ≤≤.②(8005002)w n m =--(600400)(50)n m +---(100)(1000050)n m n =-+-.当50100n ≤<时,1000n ->,w 随m 的增大而增大. 故25m =时,1250075w n =-最大. 当100n =时,5000w =最大.当100150n <≤时,1000n -<,w 随m 的增大而减小. 故16m =时,1160066w n =-最大.综上所述:1250075,501005000,1001160066,100150n n w n n n -≤<⎧⎪==⎨⎪-<≤⎩最大.24.解:(1)∵四边形ABCD 为矩形,∴ABC ∆为Rt ∆. 又∵2AC AB =,1cos 2AB BAC AC ∠==, ∴60CAB ∠=.∴30ACB DAC ∠=∠=,∴''60B AC ∠=. ∴'30''C AD AC B ∠==∠. ∴'AE C E =.(2)∵60BAC ∠=,又'AB AB =, ∴'ABB ∆为等边三角形.∴'BB AB =,'60AB B ∠=,又∵'90AB F ∠=,∴'150BB F ∠=. ∵''B F AB BB ==,∴''15B BF BFB ∠=∠=. (3)连接AF ,过A 作AM BF ⊥于M .由(2)可知'AB F ∆是等腰直角三角形,'ABB ∆是等边三角形. ∴'45AFB ∠=,∴30AFM ∠=,45ABF ∠=.在Rt ABM ∆中,cos AM BM AB ABM ==⋅∠22=⨯=在Rt AMF ∆中,tan 3AMMF AFM===∠∴BF =.25.解:(1)设抛物线解析式为:2(1)4(0)y a x a =-+≠.∵过(0,3),∴43a +=,∴1a =-.∴22(1)423y x x x =--+=-++.(2)(3,0)B ,(0,3)C .直线BC 为3y x =-+.∵PBC QBC S S ∆∆=,∴//PQ BC .①过P 作//PQ BC 交抛物线于Q ,又∵(1,4)P ,∴直线PQ 为5y x =-+. 2523y x y x x =-+⎧⎨=-++⎩. 解得1114x y =⎧⎨=⎩;2223x y =⎧⎨=⎩.∴1(2,3)Q . ②设抛物线的对称轴交BC 于点G ,交x 轴于点H .(1,2)G ,∴2PG GH ==. 过点H 作23//Q Q BC 交抛物线于2Q ,3Q .直线23Q Q 为1y x =-+.∴2123y x y x x =-+⎧⎨=-++⎩.解得113212x y ⎧+=⎪⎪⎨-⎪=⎪⎩;223212x y ⎧=⎪⎪⎨-⎪=⎪⎩∴2Q ⎝⎭,3Q ⎝⎭. 满足条件的点为1(2,3)Q,2Q ⎝⎭,3Q ⎝⎭. (3)存在满足条件的点M ,N .如图,过M 作//MF y 轴,过N 作//NF x 轴交MF 于F ,过N 作//NH y 轴交BC 于H . 则MNF ∆与NEH ∆都是等腰直角三角形.设11(,)M x y ,22(,)N x y ,直线MN 为y x b =-+.∵223y x by x x =-+⎧⎨=-++⎩,∴23(3)0x x b -+-=. ∴2221212()NF x x x x =-=+124214x x b -=-.MNF ∆等腰Rt ∆,∴222428MN NF b ==-.又∵22(3)NH b =-,∴221(3)2NE b =-. 如果四边形MNED 为正方形,∴22NE MN =,∴21428(69)2b b b -=-+. ∴210750b b +-=,∴115b =-,25b =.正方形边长为MN =MN =.。

2018年南充市中考数学试卷及答案解析版

2018年南充市中考数学试卷及答案解析版

2018四川南充中考数学试题(满分100分,考试时间90分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.(2018四川南充,1,3分)计算-2+3的结果是()A.-5B.1C.-1D.5答案:B解析:本题考查实数的运算,-2+3=1。

2.(2018四川南充,2,3分)0.49的算术平方根的相反数是()A.0.7B.-0.7C.D.0答案:B解析.0.49的算术平方根为0.7,又0.7的相反数为-0.7,所以,选B。

3.(2018四川南充,3,3分)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A.70°B.55°C.50°D.40°答案:D解析:因为AB=AC,所以∠C=∠B=70°,∠A=180°-70°-70°=40°4.(2018四川南充,4,3分)“一方有难,八方支援。

”2018年4月20日四川省芦山县遭遇强烈地震灾害,我市某校师生共同为地震灾区捐款135000元用于灾后重建,把135000用科学记数法表示为()A.1.35×106B.13.5×105C.1.35×105D.13.5×104答案:C解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值,135000=1.35×1055.(2018四川南充,5,3分)不等式组的整数解是()A.-1,0,1B.0,1C.-2,0,1D.-1,1答案:A解析:解第1个不等式,得:x>-2,解第2个不等式,得:,所以,,整数有:-1,0,1,选A。

6.(2018四川南充,6,3分)下列图形中,∠2>∠1()答案:C解析:由对顶角相等,知A中∠1=∠2,由平行四边形的对角相等,知B中∠1=∠2,由对顶角相等,两直线平行同位角相等,知D中∠1=∠2,由三角形的外角和定理,知C符合∠2>∠17.(2018四川南充,7,3分)有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆。

四川省南充市2018年中考数学试卷及答案解析(Word版)

四川省南充市2018年中考数学试卷及答案解析(Word版)

2018年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答选项,其中只有一个是正确的。

请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、错涂或多涂记0分。

1.(3分)下列实数中,最小的数是()A.B.0 C.1 D.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.扇形B.正五边形C.菱形D.平行四边形3.(3分)下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是14.(3分)下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6 D.﹣3a2+2a2=﹣a25.(3分)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60°C.64°D.68°6.(3分)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.7.(3分)直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2 D.y=2x+28.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.B.1 C.D.9.(3分)已知=3,则代数式的值是()A.B.C.D.10.(3分)如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B 作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF二、填空题(本大题共6个小题,每小题3分,共18分)请将答案填在答题卡对应的横线上。

四川省南充市2018年中考数学试题(word版,含答案)

四川省南充市2018年中考数学试题(word版,含答案)

南充市二〇一八年初中学业水平考试数学试题一、选择题(本大题共10个小题,每小题3分,共30分)1.下列实数中,最小的数是( )A .B .0C .1D 2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .扇形B .正五边形C .菱形D .平行四边形 3.下列说法正确的是( )A .调查某班学生的身高情况,适宜采用全面调查B .篮球队员在罚球线上投篮两次都未投中,这是不可能事件C .天气预报说明天的降水概率为95%,意味着明天一定下雨D .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1 4.下列计算正确的是( )A .422a b a b a b -÷=- B .222()a b a b -=-C .236a a a ⋅=D .22232a a a -+=- 5.如图,BC 是O 的直径,A 是O 上的一点,32OAC ∠=,则B ∠的度数是( )A .58B .60C .64D .68 6.不等式121x x +≥-的解集在数轴上表示为( )A .B .C .D . 7.直线2y x =向下平移2个单位长度得到的直线是( )A .2(2)y x =+B .2(2)y x =-C .22y x =-D .22y x =+ 8.如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为( )A .12 B .1 C .32D 9.已知113x y -=,则代数式232x xy yx xy y+---的值是( ) A .72-B .112-C .92D .3410.如图,正方形ABCD 的边长为2,P 为CD 的中点,连结AP ,过点B 作BE AP ⊥于点E ,延长CE 交AD 于点F ,过点C 作CH BE ⊥于点G ,交AB 于点H ,连接HF .下列结论正确的是( )A .CE =.2EF =C .cos 5CEP ∠=D .2HF EF CF =⋅ 二、填空题(本大题共6个小题,每小题3分,共18分)11.某地某天的最高气温是6C ,最低气温是4C -,则该地当天的温差为 C . 12.甲、乙两名同学的5次射击训练成绩(单位:环)如下表.比较甲、乙这5次射击成绩的方差2s 甲,2s 乙,结果为:2s 甲 2s 乙(选填“>”、“=”或“<”).13.如图,在ABC ∆中,AF 平分BAC ∠,AC 的垂直平分线交BC 于点E ,70B ∠=,19FAE ∠=,则C ∠= 度.14.若2(0)n n ≠是关于x 的方程2220x mx n -+=的根,则m n -的值为 . 15.如图,在ABC ∆中,//DE BC ,BF 平分ABC ∠,交DE 的延长线于点F ,若1AD =,2BD =,4BC =,则EF = .16.如图,抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠)与x 轴交于A ,B 两点,顶点(,)P m n .给出下列结论:①20a c +<;②若13,2y ⎛⎫-⎪⎝⎭,21,2y ⎛⎫- ⎪⎝⎭,31,2y ⎛⎫⎪⎝⎭在抛物线上,则123y y y >>;③关于x 的方程20ax bx k ++=有实数解,则k c n >-;④当1n a=-时,ABP ∆为等腰直角三角形,其中正确结论是 (填写序号).三、解答题(本大题共9个小题,共72分)17.0111sin 4522-⎛⎫⎛⎫-++ ⎪ ⎪ ⎪⎝⎭⎝⎭. 18.如图,已知AB AD =,AC AE =,BAE DAC ∠=∠. 求证:C E ∠=∠.19.“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:(1)这组数据的众数是 ,中位数是 .(2)已知获得10分的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率. 20.已知关于x 的一元二次方程22(22)(2)0x m x m m --+-=. (1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为1x ,2x ,且221210x x +=,求m 的值.21.如图,直线(0)y kx b k =+≠与双曲线(0)m y m x =≠交于点1(,2)2A -,(,1)B n -.(1)求直线与双曲线的解析式;(2)点P 在x 轴上,如果3ABP S ∆=,求点P 的坐标. 22.如图,C 是O 上一点,点P 在直径AB 的延长线上,O 的半径为3,2PB =,4PC =.(1)求证:PC 是O 的切线.(2)求tan CAB ∠的值.23.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元. (1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件. ①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50150n ≤≤,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价-进价-销售成本).24.如图,矩形ABCD 中,2AC AB =,将矩形ABCD 绕点A 旋转得到矩形'''AB C D ,使点B 的对应点'B 落在AC 上,''B C 交AD 于点E ,在''B C 上取点F ,使'B F A B =.(1)求证:'AE C E =. (2)求'FBB ∠的度数. (3)已知2AB =,求BF 的长.25.如图,抛物线顶点(1,4)P ,与y 轴交于点(0,3)C ,与x 轴交于点A ,B .(1)求抛物线的解析式.(2)Q 是物线上除点P 外一点,BCQ ∆与BCP ∆的面积相等,求点Q 的坐标. (3)若M ,N 为抛物线上两个动点,分别过点M ,N 作直线BC 的垂线段,垂足分别为D ,E .是否存在点M ,N 使四边形MNED 为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.南充市二〇一八年初中学业水平考试数学参考答案一、选择题1-5: ACADA 6-10: BCBDD二、填空题11. 10 12. < 13. 24 14.12 15. 2316. ②④ 三、解答题17.解:原式1122=-++=. 18.证明:∵BAE DAC ∠=∠,∴BAE CAE DAC CAE ∠-∠=∠-∠. ∴BAC DAE ∠=∠. 在ABC ∆与ADE ∆中,AB ADBAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC ADE SAS ∆≅∆. ∴C E ∠=∠. 19.解:(1)8;9.(2)设获得10分的四名选手分别为七、八1、八2、九,列举抽取两名领操员所能产生的全部结果,它们是:七八1,七八2,七九,八1八2,八1九,八2九.所有可能出现的结果有6种,它们出现的可能性相等,其中恰好抽到八年级两名领操员的结果有1种.所以,恰好抽到八年级两名领操员的概率为16P =. 20.解:(1)根据题意,得22[(22)]4(2)40m m m ∆=----=>, ∴方程有两个不相等的实数根.(2)由一元二次方程根与系数的关系,得1222x x m +=-,2122x x m m ⋅=-.∵221210x x +=,∴21212()210x x x x +-=.∴22(22)2(2)10m m m ---=.化简,得2230m m --=,解得13m =,21m =-.∴m 的值为3或-1.21.解:(1)∵1(,2)2A -在my x =上, ∴212m=-,∴1m =-.∴1y x =-.∴(1,1)B -.又∵y kx b =+过两点A ,B ,∴1221k b k b ⎧-+=⎪⎨⎪+=-⎩, 解得21k b =-⎧⎨=⎩.∴21y x =-+.(2)21y x =-+与x 轴交点1(,0)2C ,ABP ACP BCP S S S ∆∆∆=+1121322CP CP =⋅⋅+⋅⋅=, 解得2CP =.∴5(,0)2P 或3(,0)2-.22.解:(1)证明:连接OC . ∵O 的半径为3,∴3OC OB ==.又∵2BP =,∴5OP =.在OCP ∆中,222222345OC PC OP +=+==, ∴OCP ∆为直角三角形,90OCP ∠=. ∴OC PC ⊥,故PC 为O 的切线.(2)过C 作CD OP ⊥于点D ,90ODC OCP ∠=∠=. ∵COD POC ∠=∠,∴OCD OPC ∆=∆.∴OC OP PC OD OC CD ==,∴2OC OD OP =⋅,∴295OC OD OP ==,453DC =,∴125CD =. 又∵245AD OA OD =+=, ∴在Rt CAD ∆中,1tan 2CD CAB AD ∠==.23.解:(1)设A 型进价为x 元,则B 型进价为(100)x -元,根据题意得:100008000100x x =-. 解得500x =.经检验,500x =是原方程的解. ∴B 型进价为400元.答:A 、B 两型的进价分别为500元、400元. (2)①∵1650m m m ≥⎧⎨≤-⎩,解得1625m ≤≤.②(8005002)w n m =--(600400)(50)n m +---(100)(1000050)n m n =-+-.当50100n ≤<时,1000n ->,w 随m 的增大而增大. 故25m =时,1250075w n =-最大. 当100n =时,5000w =最大.当100150n <≤时,1000n -<,w 随m 的增大而减小. 故16m =时,1160066w n =-最大.综上所述:1250075,501005000,1001160066,100150n n w n n n -≤<⎧⎪==⎨⎪-<≤⎩最大.24.解:(1)∵四边形ABCD 为矩形,∴ABC ∆为Rt ∆. 又∵2AC AB =,1cos 2AB BAC AC ∠==, ∴60CAB ∠=.∴30ACB DAC ∠=∠=,∴''60B AC ∠=. ∴'30''C AD AC B ∠==∠. ∴'AE C E =.(2)∵60BAC ∠=,又'AB AB =, ∴'ABB ∆为等边三角形.∴'BB AB =,'60AB B ∠=,又∵'90AB F ∠=,∴'150BB F ∠=. ∵''B F AB BB ==,∴''15B BF BFB ∠=∠=. (3)连接AF ,过A 作AM BF ⊥于M .由(2)可知'AB F ∆是等腰直角三角形,'ABB ∆是等边三角形. ∴'45AFB ∠=,∴30AFM ∠=,45ABF ∠=.在Rt ABM ∆中,cos AM BM AB ABM ==⋅∠22=⨯=在Rt AMF ∆中,tan 3AMMF AFM===∠∴BF =.25.解:(1)设抛物线解析式为:2(1)4(0)y a x a =-+≠.∵过(0,3),∴43a +=,∴1a =-.∴22(1)423y x x x =--+=-++.(2)(3,0)B ,(0,3)C .直线BC 为3y x =-+.∵PBC QBC S S ∆∆=,∴//PQ BC .①过P 作//PQ BC 交抛物线于Q ,又∵(1,4)P ,∴直线PQ 为5y x =-+. 2523y x y x x =-+⎧⎨=-++⎩. 解得1114x y =⎧⎨=⎩;2223x y =⎧⎨=⎩.∴1(2,3)Q . ②设抛物线的对称轴交BC 于点G ,交x 轴于点H .(1,2)G ,∴2PG GH ==. 过点H 作23//Q Q BC 交抛物线于2Q ,3Q .直线23Q Q 为1y x =-+.∴2123y x y x x =-+⎧⎨=-++⎩.解得113212x y ⎧+=⎪⎪⎨-⎪=⎪⎩;223212x y ⎧=⎪⎪⎨-⎪=⎪⎩∴2Q ⎝⎭,3Q ⎝⎭. 满足条件的点为1(2,3)Q,2Q ⎝⎭,3Q ⎝⎭. (3)存在满足条件的点M ,N .如图,过M 作//MF y 轴,过N 作//NF x 轴交MF 于F ,过N 作//NH y 轴交BC 于H . 则MNF ∆与NEH ∆都是等腰直角三角形.设11(,)M x y ,22(,)N x y ,直线MN 为y x b =-+.∵223y x by x x =-+⎧⎨=-++⎩,∴23(3)0x x b -+-=. ∴2221212()NF x x x x =-=+124214x x b -=-.MNF ∆等腰Rt ∆,∴222428MN NF b ==-.又∵22(3)NH b =-,∴221(3)2NE b =-. 如果四边形MNED 为正方形,∴22NE MN =,∴21428(69)2b b b -=-+. ∴210750b b +-=,∴115b =-,25b =.正方形边长为MN =MN =.。

2018年四川省南充市中考数学试卷

2018年四川省南充市中考数学试卷

2018年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答选项,其中只有一个是正确的。

请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、错涂或多涂记0分。

1. 下列实数中,最小的数是()A.0B.−√2C.√83 D.12. 下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.扇形C.平行四边形D.菱形3. 下列说法正确的是()A.篮球队员在罚球线上投篮两次都未投中,这是不可能事件B.调查某班学生的身高情况,适宜采用全面调查C.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1D.天气预报说明天的降水概率为95%,意味着明天一定下雨4. 下列计算正确的是()A.(a−b)2=a2−b2B.−a4b÷a2b=−a2bC.−3a2+2a2=−a2D.a2⋅a3=a65. 如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32∘,则∠B的度数是()A.60∘B.58∘C.68∘D.64∘6. 不等式x+1≥2x−1的解集在数轴上表示为()A. B.C. D.7. 直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x−2)B.y=2(x+2)C.y=2x+2D.y=2x−28. 如图,在Rt△ABC中,∠ACB=90∘,∠A=30∘,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为( )A.1B.12C.√3D.329. 已知1x−1y=3,则代数式2x+3xy−2yx−xy−y的值是()A.−112B.−72C.34D.9210. 如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF,下列结论正确的是()A.EF=√22B.CE=√5C.HF2=EF⋅CFD.cos∠CEP=√55二、填空题(本大题共6个小题,每小题3分,共18分)请将答案填在答题卡对应的横线上。

2018年四川省南充市中考数学试卷

2018年四川省南充市中考数学试卷

2018年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答选项,其中只有一个是正确的。

请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、错涂或多涂记0分。

1.(3分)下列实数中,最小的数是()A.B.0 C.1 D.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.扇形B.正五边形C.菱形D.平行四边形3.(3分)下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1 4.(3分)下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6 D.﹣3a2+2a2=﹣a25.(3分)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60°C.64°D.68°6.(3分)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.7.(3分)直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2 D.y=2x+28.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.B.1 C.D.9.(3分)已知=3,则代数式的值是()A.B.C.D.10.(3分)如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B 作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF二、填空题(本大题共6个小题,每小题3分,共18分)请将答案填在答题卡对应的横线上。

2018年四川省南充市中考数学试卷(解析版)

2018年四川省南充市中考数学试卷(解析版)

2018年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答选项,其中只有一个是正确的。

请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、错涂或多涂记0分。

1.(3分)(2018•南充)下列实数中,最小的数是()A.B.0 C.1 D.2.(3分)(2018•南充)下列图形中,既是轴对称图形又是中心对称图形的是()A.扇形B.正五边形C.菱形D.平行四边形3.(3分)(2018•南充)下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是14.(3分)(2018•南充)下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6 D.﹣3a2+2a2=﹣a25.(3分)(2018•南充)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60°C.64°D.68°6.(3分)(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.7.(3分)(2018•南充)直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2 D.y=2x+28.(3分)(2018•南充)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F 分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.B.1 C.D.9.(3分)(2018•南充)已知=3,则代数式的值是()A.B.C.D.10.(3分)(2018•南充)如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF二、填空题(本大题共6个小题,每小题3分,共18分)请将答案填在答题卡对应的横线上。

2018年四川省南充市中考数学试卷

2018年四川省南充市中考数学试卷

2018年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答选项,其中只有一个是正确的。

请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、错涂或多涂记0分。

1.(3.00分)(2018•南充)下列实数中,最小的数是()A.B.0 C.1 D.2.(3.00分)(2018•南充)下列图形中,既是轴对称图形又是中心对称图形的是()A.扇形B.正五边形C.菱形D.平行四边形3.(3.00分)(2018•南充)下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1 4.(3.00分)(2018•南充)下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6 D.﹣3a2+2a2=﹣a25.(3.00分)(2018•南充)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60°C.64°D.68°6.(3.00分)(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.7.(3.00分)(2018•南充)直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2 D.y=2x+28.(3.00分)(2018•南充)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.B.1 C.D.9.(3.00分)(2018•南充)已知=3,则代数式的值是()A.B.C.D.10.(3.00分)(2018•南充)如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF二、填空题(本大题共6个小题,每小题3分,共18分)请将答案填在答题卡对应的横线上。

2018年四川省南充市中考数学试卷(答案版)

2018年四川省南充市中考数学试卷(答案版)

2018年四川省南充市中考数学试卷(含答案解析)一、选择题(本大题共10个小题,每小题2018年四川省南充市,共30分)每小题都有代号为A、B、C、D四个答选项,其中只有一个是正确的。

请根据正确选项的代号填涂答题卡对应位置,填涂正确记2018年四川省南充市,不涂、错涂或多涂记0分。

1.(2018年四川省南充市)下列实数中,最小的数是()A. B.0 C.1 D.【考点】2A:实数大小比较.【分析】将各项数字按照从小到大顺序排列,找出最小的数即可.【解答】解:根据题意得:﹣<0<1<,则最小的数是﹣.故选:A.【点评】此题考查了实数大小比较,正确排列出数字是解本题的关键.2.(2018年四川省南充市)下列图形中,既是轴对称图形又是中心对称图形的是()A.扇形B.正五边形C.菱形D.平行四边形【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、扇形,是轴对称图形,不是中心对称图形,故此选项错误;B、正五边形是轴对称图形,不是中心对称图形,故此选项错误;C、菱形既是轴对称图形又是中心对称图形,故此选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故此选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.3.(2018年四川省南充市)下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1[【考点】X3:概率的意义;V2:全面调查与抽样调查;X1:随机事件.【分析】利用概率的意义以及实际生活常识分析得出即可.【解答】解:A、调查某班学生的身高情况,适宜采用全面调查,此选项正确;B、篮球队员在罚球线上投篮两次都未投中,这是随机事件,此选项错误;C、天气预报说明天的降水概率为95%,意味着明天下雨可能性较大,此选项错误;D、小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1,此选项错误;故选:A.【点评】此题主要考查了随机事件的定义和概率的意义,正确把握相关定义是解题关键.4.(2018年四川省南充市)下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2?a3=a6D.﹣3a2+2a2=﹣a2【考点】4I:整式的混合运算.【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:﹣a4b÷a2b=﹣a2,故选项A错误,(a﹣b)2=a2﹣2ab+b2,故选项B错误,a2?a3=a5,故选项C错误,﹣3a2+2a2=﹣a2,故选项D正确,故选:D.【点评】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.5.(2018年四川省南充市)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60°C.64°D.68°【考点】M5:圆周角定理.【分析】根据半径相等,得出OC=OA,进而得出∠C=32°,利用直径和圆周角定理解答即可.【解答】解:∵OA=OC,∴∠C=∠OAC=32°,∵BC是直径,∴∠B=90°﹣32°=58°,故选:A.【点评】此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.6.(2018年四川省南充市)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【分析】根据不等式解集的表示方法,可得答案.【解答】解:移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:,故选:B.【点评】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.(2018年四川省南充市)直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2 D.y=2x+2【考点】F9:一次函数图象与几何变换.【分析】据一次函数图象与几何变换得到直线y=2x向下平移2个单位得到的函数解析式为y=2x﹣2.【解答】解:直线y=2x向下平移2个单位得到的函数解析式为y=2x﹣2.故选:C.【点评】本题考查了一次函数图象与几何变换:一次函数y=kx(k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+m.8.(2018年四川省南充市)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.B.1 C.D.【考点】KX:三角形中位线定理;KO:含30度角的直角三角形;KP:直角三角形斜边上的中线.【分析】根据直角三角形的性质得到CD=BD=AD,得到△CBD为等边三角形,根据三角形的中位线定理计算即可.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=BD=AD,∵∠ACB=90°,∠A=30°,∴∠B=60°,∴△CBD为等边三角形,∴CD=BC=2,∵E,F分别为AC,AD的中点,∴EF=CD=1,故选:B.【点评】本题考查的是三角形中位线定理、勾股定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.9.(2018年四川省南充市)已知=3,则代数式的值是()A.B. C.D.【考点】6B:分式的加减法;64:分式的值.【分析】由=3得出=3,即x﹣y=﹣3xy,整体代入原式=,计算可得.【解答】解:∵=3,∴=3,∴x﹣y=﹣3xy,则原式====,故选:D.【点评】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.10.(2018年四川省南充市)如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=B.EF=C.cos∠CEP=D.HF2=EF?CF【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质;T7:解直角三角形.【分析】首先证明BH=AH,推出EG=BG,推出CE=CB,再证明△ABC≌△CEH,Rt△HFE≌Rt △HFA,利用全等三角形的性质即可一一判断.【解答】解:连接EH.∵四边形ABCD是正方形,∴CD=AB═BC=AD=2,CD∥AB,∵BE⊥AP,CH⊥BE,∴CH∥PA,∴四边形CPAH是平行四边形,∴CP=AH,∵CP=PD=1,∴AH=PC=1,∴AH=BH,在Rt△ABE中,∵AH=HB,∴EH=HB,∵HC⊥BE,∴BG=EG,∴CB=CE=2,故选项A错误,∵CH=CH,CB=CE,HB=HE,∴△ABC≌△CEH,∴∠CBH=∠CEH=90°,∵HF=HF,HE=HA,∴Rt△HFE≌Rt△HFA,∴AF=EF,设EF=AF=x,在Rt△CDF中,有22+(2﹣x)2=(2+x)2,∴x=,∴EF=,故B错误,∵PA∥CH,∴∠CEP=∠ECH=∠BCH,∴cos∠CEP=cos∠BCH==,故C错误.∵HF=,EF=,FC=∴HF2=EF?FC,故D正确,故选:D.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.二、填空题(本大题共6个小题,每小题2018年四川省南充市,共12018年四川省南充市)请将答案填在答题卡对应的横线上。

四川省南充市2018年中考数学试题(精校版+解析版)

四川省南充市2018年中考数学试题(精校版+解析版)

南充市2018年中考数学试题(精校版)一、选择题(本大题共10个小题,每小题3分,共30分)1.下列实数中,最小的数是( )A .B .0C .1D 2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .扇形B .正五边形C .菱形D .平行四边形 3.下列说法正确的是( )A .调查某班学生的身高情况,适宜采用全面调查B .篮球队员在罚球线上投篮两次都未投中,这是不可能事件C .天气预报说明天的降水概率为95%,意味着明天一定下雨D .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1 4.下列计算正确的是( )A .422a b a b a b -÷=-B .222()a b a b -=- C .236a a a ⋅= D .22232a a a -+=-5.如图,BC 是O 的直径,A 是O 上的一点,32OAC ∠=,则B ∠的度数是( )A .58B .60C .64D .686.不等式121x x +≥-的解集在数轴上表示为( )A .B .C .D . 7.直线2y x =向下平移2个单位长度得到的直线是( )A .2(2)y x =+B .2(2)y x =-C .22y x =-D .22y x =+8.如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为( )A .12 B .1 C .32D9.已知113x y -=,则代数式232x xy y x xy y+---的值是( ) A .72-B .112-C .92D .3410.如图,正方形ABCD 的边长为2,P 为CD 的中点,连结AP ,过点B 作BE AP ⊥于点E ,延长CE 交AD 于点F ,过点C 作CH BE ⊥于点G ,交AB 于点H ,连接HF .下列结论正确的是( )A .CE =.2EF =C .cos 5CEP ∠= D .2HF EF CF =⋅ 二、填空题(本大题共6个小题,每小题3分,共18分)11.某地某天的最高气温是6C ,最低气温是4C -,则该地当天的温差为 C . 12.甲、乙两名同学的5次射击训练成绩(单位:环)如下表.比较甲、乙这5次射击成绩的方差2s 甲,2s 乙,结果为:2s 甲 2s 乙(选填“>”、“=”或“<”). 13.如图,在ABC ∆中,AF 平分BAC ∠,AC 的垂直平分线交BC 于点E ,70B ∠=,19FAE ∠=,则C ∠= 度.14.若2(0)n n ≠是关于x 的方程2220x mx n -+=的根,则m n -的值为 .15.如图,在ABC ∆中,//DE BC ,BF 平分ABC ∠,交DE 的延长线于点F ,若1AD =,2BD =,4BC =,则EF = .16.如图,抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠)与x 轴交于A ,B 两点,顶点(,)P m n .给出下列结论:①20a c +<;②若13,2y ⎛⎫-⎪⎝⎭,21,2y ⎛⎫- ⎪⎝⎭,31,2y ⎛⎫⎪⎝⎭在抛物线上,则123y y y >>;③关于x 的方程20ax bx k ++=有实数解,则k c n >-;④当1n a=-时,ABP ∆为等腰直角三角形,其中正确结论是 (填写序号).三、解答题(本大题共9个小题,共72分)17.0111sin 452-⎛⎛⎫++ ⎪ ⎝⎭⎝⎭.18.如图,已知AB AD =,AC AE =,BAE DAC ∠=∠.求证:C E ∠=∠.19.“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:(1)这组数据的众数是 ,中位数是 .(2)已知获得10分的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率.20.已知关于x 的一元二次方程22(22)(2)0x m x m m --+-=.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为1x ,2x ,且221210x x +=,求m 的值.21.如图,直线(0)y kx b k =+≠与双曲线(0)m y m x =≠交于点1(,2)2A -,(,1)B n -. (1)求直线与双曲线的解析式;(2)点P 在x 轴上,如果3ABP S ∆=,求点P 的坐标.22.如图,C 是O 上一点,点P 在直径AB 的延长线上,O 的半径为3,2PB =,4PC =.(1)求证:PC 是O 的切线.(2)求tan CAB ∠的值.23.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元.(1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50150n ≤≤,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价-进价-销售成本).24.如图,矩形ABCD 中,2AC AB =,将矩形ABCD 绕点A 旋转得到矩形'''AB C D ,使点B 的对应点'B 落在AC 上,''B C 交AD 于点E ,在''B C 上取点F ,使'B F AB =.(1)求证:'AE C E =.(2)求'FBB ∠的度数.(3)已知2AB =,求BF 的长.25.如图,抛物线顶点(1,4)P ,与y 轴交于点(0,3)C ,与x 轴交于点A ,B .(1)求抛物线的解析式. (2)Q 是物线上除点P 外一点,BCQ ∆与BCP ∆的面积相等,求点Q 的坐标.(3)若M ,N 为抛物线上两个动点,分别过点M ,N 作直线BC 的垂线段,垂足分别为D ,E .是否存在点M ,N 使四边形MNED 为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.南充市二〇一八年初中学业水平考试数学参考答案一、选择题1-5: ACADA 6-10: BCBDD二、填空题11. 10 12. < 13. 24 14. 12 15. 23 16. ②④三、解答题17.解:原式1122=-++=. 18.证明:∵BAE DAC ∠=∠,∴BAE CAE DAC CAE ∠-∠=∠-∠.∴BAC DAE ∠=∠.在ABC ∆与ADE ∆中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC ADE SAS ∆≅∆.∴C E ∠=∠.19.解:(1)8;9.(2)设获得10分的四名选手分别为七、八1、八2、九,列举抽取两名领操员所能产生的全部结果,它们是:七八1,七八2,七九,八1八2,八1九,八2九.所有可能出现的结果有6种,它们出现的可能性相等,其中恰好抽到八年级两名领操员的结果有1种. 所以,恰好抽到八年级两名领操员的概率为16P =. 20.解:(1)根据题意,得22[(22)]4(2)40m m m ∆=----=>,∴方程有两个不相等的实数根.(2)由一元二次方程根与系数的关系,得1222x x m +=-,2122x x m m ⋅=-. ∵221210x x +=,∴21212()210x x x x +-=.∴22(22)2(2)10m m m ---=.化简,得2230m m --=,解得13m =,21m =-.∴m 的值为3或-1.21.解:(1)∵1(,2)2A -在m y x =上,∴212m =-,∴1m =-.∴1y x =-.∴(1,1)B -.又∵y kx b =+过两点A ,B ,∴1221k b k b ⎧-+=⎪⎨⎪+=-⎩,解得21k b =-⎧⎨=⎩.∴21y x =-+.(2)21y x =-+与x 轴交点1(,0)2C ,ABP ACP BCP S S S ∆∆∆=+1121322CP CP =⋅⋅+⋅⋅=,解得2CP =. ∴5(,0)2P 或3(,0)2-. 22.解:(1)证明:连接OC .∵O 的半径为3,∴3OC OB ==.又∵2BP =,∴5OP =.在OCP ∆中,222222345OC PC OP +=+==,∴OCP ∆为直角三角形,90OCP ∠=.∴OC PC ⊥,故PC 为O 的切线.(2)过C 作CD OP ⊥于点D ,90ODC OCP ∠=∠=.∵COD POC ∠=∠,∴OCD OPC ∆=∆.∴OC OP PC OD OC CD ==,∴2OC OD OP =⋅,∴295OC OD OP ==,453DC =,∴125CD =. 又∵245AD OA OD =+=,∴在Rt CAD ∆中,1tan 2CD CAB AD ∠==.23.解:(1)设A 型进价为x 元,则B 型进价为(100)x -元,根据题意得:100008000100x x =-. 解得500x =.经检验,500x =是原方程的解.∴B 型进价为400元. 答:A 、B 两型的进价分别为500元、400元. (2)①∵1650m m m ≥⎧⎨≤-⎩,解得1625m ≤≤.②(8005002)w n m =--(600400)(50)n m +---(100)(1000050)n m n =-+-. 当50100n ≤<时,1000n ->,w 随m 的增大而增大.故25m =时,1250075w n =-最大.当100n =时,5000w =最大. 当100150n <≤时,1000n -<,w 随m 的增大而减小. 故16m =时,1160066w n =-最大.综上所述:1250075,501005000,1001160066,100150n n w n n n -≤<⎧⎪==⎨⎪-<≤⎩最大. 24.解:(1)∵四边形ABCD 为矩形,∴ABC ∆为Rt ∆. 又∵2AC AB =,1cos 2AB BAC AC ∠==,∴60CAB ∠=.∴30ACB DAC ∠=∠=,∴''60B AC ∠=.∴'30''C AD AC B ∠==∠.∴'AE C E =.(2)∵60BAC ∠=,又'AB AB =,∴'ABB ∆为等边三角形. ∴'BB AB =,'60AB B ∠=,又∵'90AB F ∠=,∴'150BB F ∠=.∵''B F AB BB ==,∴''15B BF BFB ∠=∠=.(3)连接AF ,过A 作AM BF ⊥于M .由(2)可知'AB F ∆是等腰直角三角形,'ABB ∆是等边三角形. ∴'45AFB ∠=,∴30AFM ∠=,45ABF ∠=.在Rt ABM ∆中,cos AM BM AB ABM ==⋅∠22=⨯=在Rt AMF ∆中,tan 3AMMF AFM===∠∴BF =.25.解:(1)设抛物线解析式为:2(1)4(0)y a x a =-+≠.∵过(0,3),∴43a +=,∴1a =-.∴22(1)423y x x x =--+=-++. (2)(3,0)B ,(0,3)C .直线BC 为3y x =-+.∵PBC QBC S S ∆∆=,∴//PQ BC . ①过P 作//PQ BC 交抛物线于Q ,又∵(1,4)P ,∴直线PQ 为5y x =-+.2523y x y x x =-+⎧⎨=-++⎩.解得1114x y =⎧⎨=⎩;2223x y =⎧⎨=⎩.∴1(2,3)Q . ②设抛物线的对称轴交BC 于点G ,交x 轴于点H .(1,2)G ,∴2PG GH ==.过点H 作23//Q Q BC 交抛物线于2Q ,3Q .直线23Q Q 为1y x =-+.∴2123y x y x x =-+⎧⎨=-++⎩.解得11x y ⎧=⎪⎪⎨⎪=⎪⎩22x y ⎧=⎪⎪⎨⎪=⎪⎩∴23122Q ⎛⎫-- ⎪ ⎪⎝⎭,33122Q ⎛-- ⎝⎭. 满足条件的点为1(2,3)Q,23122Q ⎛⎫-⎪ ⎪⎝⎭,331,22Q ⎛- ⎝⎭.(3)存在满足条件的点M ,N .如图,过M 作//MF y 轴,过N 作//NF x 轴交MF 于F ,过N 作//NH y 轴交BC 于H .则MNF ∆与NEH ∆都是等腰直角三角形.设11(,)M x y ,22(,)N x y ,直线MN 为y x b =-+.∵223y x by x x =-+⎧⎨=-++⎩,∴23(3)0x x b -+-=.∴2221212()NF x x x x =-=+124214x x b -=-.MNF ∆等腰Rt ∆,∴222428MN NF b ==-.又∵22(3)NH b =-,∴221(3)2NE b =-.如果四边形MNED 为正方形, ∴22NE MN =,∴21428(69)2b b b -=-+.∴210750b b +-=,∴115b =-,25b =.正方形边长为MN =MN =.2018年四川省南充市中考数学试卷(解析版)一、选择题(本大题共10个小题,每小题2018年四川省南充市,共30分)每小题都有代号为A、B、C、D四个答选项,其中只有一个是正确的。

四川省南充市2018年中考数学试题(word版,含答案)

四川省南充市2018年中考数学试题(word版,含答案)

南充市二◦一八年初中学业水平考试
数学试题
、选择题(本大题共10个小题,每小题3分,共30分)
1. 下列实数中,最小的数是()
A. -、、2 B . 0 C . 1
2. 下列图形中,既是轴对称图形又是中心对称图形的是()
3. 下列说法正确的是()
A. 调查某班学生的身高情况,适宜采用全面调查
B. 篮球队员在罚球线上投篮两次都未投中,这是不可能事件
C. 天气预报说明天的降水概率为95%,意味着明天一定下雨
D. 小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1
4. 下列计算正确的是( )
4 2 2
A. —a b - a b = —a b B
A是L O上的一点,.OAC =32,则.B的度数是(
(第5题)
A. 58 B . 60 C . 64 D . 68
6.不等式x • 1 一2x -1的解集在数轴上表示为()
—H ------ ■------ 1----- ——■------- i
1 0 1
2
3 4'-1 0 1 2 5 4-1 0 1 2 3 4-10123
A .
B .
C .
D .
7.直线y =2x向下平移2个单位长度得到的直线是(
A.扇形 B .正五边形 C .菱形D•平行四边形
(a -b)2=a2-b2
C. a2a3二a6 D . -3a22a2二-a2
5.如图,BC是L O的直径,。

2018年南充市中考数学试题

2018年南充市中考数学试题

2018年四川省南充市中考数学试卷(满分120分,时间120分钟)一、选择题(本大题共10个小题,每小题3分,共30分)1.(2018四川南充,1,3分)31 的值是( )A .3B .-3C .13D .-13【答案】C2.(2018四川南充,2,3分)下列运算正确的是( )A .a 3a 2=a 5B .(a 2) 3=a 5C .a 3+a 3=a 6D .(a +b )2=a 2+b 2【答案】A3.(2018四川南充,3,3分)下列几何体的主视图既是中心对称图形又是轴对称图形的是( )A B CD【答案】D4.(2018四川南充,4,3分)如图,已知AB∥CD,65C∠=︒,30E∠=︒,则A∠的度数为()DA(第2题图)A.30°B.32.5°C.35°D.37.5°【答案】C5.(2018四川南充,5,3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,则点C的坐标为()(第5题图)A.,1)B.(-1C.1)D.-1)【答案】A6.(2018四川南充,6,3分)不等式组1(1)22331xx x⎧+⎪⎨⎪-<+⎩…的解集在数轴上表示正确的是( )【答案】D7.(2018四川南充,7,3分)为积极响应南充市创建“全国卫生城市”的号召,某校1 500名学生参加了卫生知识竞赛,成绩记为A 、B 、C 、D 四等。

从中随机抽取了部分学生成绩进行统计,绘制成如下两幅不完整的统计图表,根据图表信息,以下说法不正确...的是( )DBA .样本容量是200B .D 等所在扇形的圆心角为15°C .样本中C 等所占百分比是10%D .估计全校学生成绩为A 等大约有900人 【答案】B8.(2018四川南充,8,3分)如图,在△ABC 中,AB =AC ,且D 为BC 上一点,CD =AD ,AB =BD ,则∠B 的度数为( )A .30°B .36°C .40°D .45-23AB C D°(第8题图)【答案】B9.(2018四川南充,9,3分)如图,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )(第9题图)A .25π2B .13πC .25π D.【答案】B10.(2018四川南充,10,3分)二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b +=0;③当m ≠1时,a b +>2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤AB CDl(第10题图)【答案】D二、填空题(本大题共6个小题,每小题3分,共18分)11.(2018四川南充,11,3分)分式方程212011x x +=--的解是__________. 【答案】x= -312.(2018四川南充,12,3分)因式分解3269x x x -+=__________.【答案】2-x x 3()13.(2018四川南充,13,3分)一组数据按从小到大的顺序排列为1,2,3,x ,4,5,若这组数据的中位数为3,则这组数据的方差是__________. 【答案】5314.(2018四川南充,14,3分)如图,两圆圆心相同,大圆的弦AB与小圆相切,AB =8,则图中阴影部分的面积是__________.(结果保留π)【答案】16π15. (2018四川南充,15,3分)一列数123,,,a a a ……n a ,其中1231211111,,,,111nn a a a a a a a -=-===---L L ,则12a a a a++++=L L__________. 【答案】2011216.(2018四川南充,16,3分)如图,有一矩形纸片ABCD ,AB =8,AD =17,将此矩形纸片折叠,使顶点A 落在BC 边的A ′处,折痕所在直线同时经过边AB 、AD (包括端点),设BA ′=x ,则x 的取值范围是.【答案】28x ≤≤三、解答题(本大题共9个小题,共72分)17.(2018四川南充,17,6分)计算:13130tan 3)23()12014(-⎪⎭⎫⎝⎛++---【答案】解:103130tan 3)23()12014(-⎪⎭⎫⎝⎛++---(第14题图)2+33⨯+1132++3=618. (2018四川南充,18,8分)如图,AD 、BC 相交于O ,OA=OC ,∠OBD=∠ODB . 求证:AB=CD.【答案】证明:∵∠OBD=∠ODB . ∴OB=OD在△AOB 与△COD 中,OA OC AOB OD OB OD =⎧⎪∠=∠⎨⎪=⎩∴△AOB ≌△COD (SAS ) ∴AB=CD.ABOCD(18题图)19.(2018四川南充,19,8分)(8分)在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动. 有A、B两组卡片,每组各3张,A组卡片上分别写有0,2,3;B组卡片上分别写有-5,-1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A组中随机抽取一张记为x,乙从B组中随机抽取一张记为y. (1)若甲抽出的数字是2,乙抽出的数是-1,它们恰好是ax-y=5的解,求a的值;(2)求甲、乙随机抽取一次的数恰好是方程ax-y=5的解的概率.(请用树形图或列表法求解)【答案】解:20.(2018四川南充,20,8分)(8分)已知关于x的一元二次方程x2-22x+m=0,有两个不相等的实数根.⑴求实数m的最大整数值;⑵在⑴的条下,方程的实数根是x1,x2,求代数式x12+x22-x1x2的值.【答案】解:⑴由题意,得:△>0,即:(24m-->0,m<2,∴m的最大整数值为m=1(2)把m=1代入关于x的一元二次方程x2-22x+m=0得x2-22 x+1=0,根据根与系数的关系:x1+x2 = 22,x1x2=1,∴x12+x22-x1x2= (x1+x2)2-3x1x2=(22)2-3×1=521.(2018四川南充,21,8分)(8分)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=mx 的图象相交于点A (2,5)和点B ,与y 轴相交于点C (0,7).(1)求这两个函数的解析式; (2)当x 取何值时,1y <2y .(第21题图)【答案】解:∵反比例函数y 2=mx的图象过点A (2,5)∴5=2m ,m=10即反比例函数的解析式为y =10x。

2018年四川省南充市中考数学试卷

2018年四川省南充市中考数学试卷

2018年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答选项,其中只有一个是正确的。

请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、错涂或多涂记0分。

1. 下列实数中,最小的数是()3 D.1A.0B.−√2C.√8【答案】此题暂无答案【考点】实数根盖比较【解析】此题暂无解析【解答】此题暂无解答2. 下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.扇形C.平行四边形D.菱形【答案】此题暂无答案【考点】轴正算图形中心较称图腾【解析】此题暂无解析【解答】此题暂无解答3. 下列说法正确的是()A.篮球队员在罚球线上投篮两次都未投中,这是不可能事件B.调查某班学生的身高情况,适宜采用全面调查C.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1D.天气预报说明天的降水概率为95%,意味着明天一定下雨【答案】此题暂无答案【考点】全面调表与弹样调查随验把件概使的钡义【解析】【解答】此题暂无解答4. 下列计算正确的是()A.(a−b)2=a2−b2B.−a4b÷a2b=−a2bC.−3a2+2a2=−a2D.a2⋅a3=a6【答案】此题暂无答案【考点】整式较混合轻算【解析】此题暂无解析【解答】此题暂无解答5. 如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32∘,则∠B的度数是()A.60∘B.58∘C.68∘D.64∘【答案】此题暂无答案【考点】圆明角研理【解析】此题暂无解析【解答】此题暂无解答6. 不等式x+1≥2x−1的解集在数轴上表示为()A. B.C. D.【答案】此题暂无答案【考点】在数较溴表示总等线的解集解一元因次不丙式此题暂无解答7. 直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x−2)B.y=2(x+2)C.y=2x+2D.y=2x−2【答案】此题暂无答案【考点】一正间仅图宽与几何变换【解析】此题暂无解析【解答】此题暂无解答8. 如图,在Rt△ABC中,∠ACB=90∘,∠A=30∘,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为( )A.1B.12C.√3 D.32【答案】此题暂无答案【考点】直使三碳形望边扩的中线三角形因位线十理含因梯否角样直角三角形【解析】此题暂无解析【解答】此题暂无解答9. 已知1x −1y=3,则代数式2x+3xy−2yx−xy−y的值是()A.−112B.−72C.34D.92分使的凝分式常加陆运算【解析】此题暂无解析【解答】此题暂无解答10. 如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF,下列结论正确的是()A.EF=√22B.CE=√5 C.HF2=EF⋅CF D.cos∠CEP=√55【答案】此题暂无答案【考点】全等三来形的稳质正方来的性稳解直于三角姆【解析】此题暂无解析【解答】此题暂无解答二、填空题(本大题共6个小题,每小题3分,共18分)请将答案填在答题卡对应的横线上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南充2018中考数学试题一、选择题(本大题共10个小题,每小题3分,共30分)1.下列实数中,最小的数是A .B .0C .1D 2.下列图形中,既是轴对称图形又是中心对称图形的是A .扇形B .正五边形C .菱形D .平行四边形 3.下列说法正确的是A .调查某班学生的身高情况,适宜采用全面调查B .篮球队员在罚球线上投篮两次都未投中,这是不可能事件C .天气预报说明天的降水概率为95%,意味着明天一定下雨D .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1 4.下列计算正确的是A .422a b a b a b -÷=-B .222()a b a b -=-C .236a a a ⋅=D .22232a a a -+=-5.如图,BC 是O e 的直径,A 是O e 上的一点,32OAC ∠=o ,则B ∠的度数是A .58oB .60oC .64oD .68o 6.不等式121x x +≥-的解集在数轴上表示为A .B .C .D . 7.直线2y x =向下平移2个单位长度得到的直线是A .2(2)y x =+B .2(2)y x =-C .22y x =-D .22y x =+8.如图,在Rt ABC ∆中,90ACB ∠=o ,30A ∠=o ,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为A .12 B .1 C .32D 9.已知113x y -=,则代数式232x xy y x xy y+---的值是 A .72-B .112-C .92D .3410.如图,正方形ABCD 的边长为2,P 为CD 的中点,连结AP ,过点B 作BE AP ⊥于点E ,延长CE 交AD 于点F ,过点C 作CH BE ⊥于点G ,交AB 于点H ,连接HF .下列结论正确的是A .CE =B .EF =C .cos 5CEP ∠=D .2HF EF CF =⋅ 二、填空题(本大题共6个小题,每小题3分,共18分)11.某地某天的最高气温是6C o ,最低气温是4C -o ,则该地当天的温差为 C o . 12.甲、乙两名同学的5次射击训练成绩(单位:环)如下表.比较甲、乙这5次射击成绩的方差2s 甲,2s 乙,结果为:2s 甲 2s 乙(选填“>”、“=”或“<”).13.如图,在ABC ∆中,AF 平分BAC ∠,AC 的垂直平分线交BC 于点E ,70B ∠=o ,19FAE ∠=o ,则C ∠= 度.14.若2(0)n n ≠是关于x 的方程2220x mx n -+=的根,则m n -的值为 . 15.如图,在ABC ∆中,//DE BC ,BF 平分ABC ∠,交DE 的延长线于点F ,若1AD =,2BD =,4BC =,则EF = .16.如图,抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠)与x 轴交于A ,B 两点,顶点(,)P m n .给出下列结论:①20a c +<;②若13,2y ⎛⎫-⎪⎝⎭,21,2y ⎛⎫- ⎪⎝⎭,31,2y ⎛⎫⎪⎝⎭在抛物线上,则123y y y >>;③关于x 的方程20ax bx k ++=有实数解,则k c n >-;④当1n a=-时,ABP ∆为等腰直角三角形,其中正确结论是 (填写序号).三、解答题(本大题共9个小题,共72分)17.0111sin 4522-⎛⎛⎫-++ ⎪ ⎝⎭⎝⎭o. 18.如图,已知AB AD =,AC AE =,BAE DAC ∠=∠. 求证:C E ∠=∠.19.“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:(1)这组数据的众数是 ,中位数是 .(2)已知获得10分的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率.20.已知关于x 的一元二次方程22(22)(2)0x m x m m --+-=. (1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为1x ,2x ,且221210x x +=,求m 的值.21.如图,直线(0)y kx b k =+≠与双曲线(0)m y m x =≠交于点1(,2)2A -,(,1)B n -.(1)求直线与双曲线的解析式;(2)点P 在x 轴上,如果3ABP S ∆=,求点P 的坐标.22.如图,C 是O e 上一点,点P 在直径AB 的延长线上,O e 的半径为3,2PB =,4PC =.(1)求证:PC 是O e 的切线. (2)求tan CAB ∠的值.23.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元. (1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件. ①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50150n ≤≤,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价-进价-销售成本).24.如图,矩形ABCD 中,2AC AB =,将矩形ABCD 绕点A 旋转得到矩形'''AB C D ,使点B 的对应点'B 落在AC 上,''B C 交AD 于点E ,在''B C 上取点F ,使'B F AB =.(1)求证:'AE C E =. (2)求'FBB ∠的度数. (3)已知2AB =,求BF 的长.25.如图,抛物线顶点(1,4)P ,与y 轴交于点(0,3)C ,与x 轴交于点A ,B .(1)求抛物线的解析式.(2)Q 是物线上除点P 外一点,BCQ ∆与BCP ∆的面积相等,求点Q 的坐标.(3)若M ,N 为抛物线上两个动点,分别过点M ,N 作直线BC 的垂线段,垂足分别为D ,E .是否存在点M ,N 使四边形MNED 为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.2018南充中考数学试题参考答案一、选择题1-5 ACADA 6-10 BCBDD二、填空题11. 10 12. < 13. 24 14.12 15. 2316. ②④ 三、解答题17.解:原式1122=-++=18.证明:∵BAE DAC ∠=∠,∴BAE CAE DAC CAE ∠-∠=∠-∠. ∴BAC DAE ∠=∠.在ABC ∆与ADE ∆中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC ADE SAS ∆≅∆. ∴C E ∠=∠. 19.解:(1)8;9.(2)设获得10分的四名选手分别为七、八1、八2、九,列举抽取两名领操员所能产生的全部结果,它们是:七八1,七八2,七九,八1八2,八1九,八2九.所有可能出现的结果有6种,它们出现的可能性相等,其中恰好抽到八年级两名领操员的结果有1种.所以,恰好抽到八年级两名领操员的概率为16P =. 20.解:(1)根据题意,得22[(22)]4(2)40m m m ∆=----=>, ∴方程有两个不相等的实数根. (2)由一元二次方程根与系数的关系,得1222x x m +=-,2122x x m m ⋅=-.∵221210x x +=,∴21212()210x x x x +-=.∴22(22)2(2)10m m m ---=.化简,得2230m m --=,解得13m =,21m =-.∴m 的值为3或-1.21.解:(1)∵1(,2)2A -在my x=上, ∴212m=-,∴1m =-.∴1y x =-. ∴(1,1)B -.又∵y kx b =+过两点A ,B ,∴1221k b k b ⎧-+=⎪⎨⎪+=-⎩, 解得21k b =-⎧⎨=⎩.∴21y x =-+.(2)21y x =-+与x 轴交点1(,0)2C ,ABPACP BCP S S S ∆∆∆=+1121322CP CP =⋅⋅+⋅⋅=, 解得2CP =.∴5(,0)2P 或3(,0)2-. 22.解:(1)证明:连接OC .∵O e 的半径为3,∴3OC OB ==. 又∵2BP =,∴5OP =.在OCP ∆中,222222345OC PC OP +=+==,∴OCP ∆为直角三角形,90OCP ∠=o. ∴OC PC ⊥,故PC 为O e 的切线.(2)过C 作CD OP ⊥于点D ,90ODC OCP ∠=∠=o .∵COD POC ∠=∠,∴OCD OPC ∆=∆. ∴OC OP PC OD OC CD==,∴2OC OD OP =⋅,∴295OC OD OP ==,453DC =, ∴125CD =. 又∵245AD OA OD =+=, ∴在Rt CAD ∆中,1tan 2CD CAB AD ∠==.23.解:(1)设A 型进价为x 元,则B 型进价为(100)x -元,根据题意得:100008000100x x =-. 解得500x =.经检验,500x =是原方程的解.∴B 型进价为400元.答:A 、B 两型的进价分别为500元、400元.(2)①∵1650m m m ≥⎧⎨≤-⎩,解得1625m ≤≤. ②(8005002)w n m =--(600400)(50)n m +---(100)(1000050)n m n =-+-.当50100n ≤<时,1000n ->,w 随m 的增大而增大.故25m =时,1250075w n =-最大.当100n =时,5000w =最大.当100150n <≤时,1000n -<,w 随m 的增大而减小.故16m =时,1160066w n =-最大.综上所述:1250075,501005000,1001160066,100150n n w n n n -≤<⎧⎪==⎨⎪-<≤⎩最大.24.解:(1)∵四边形ABCD 为矩形,∴ABC ∆为Rt ∆.又∵2AC AB =,1cos 2AB BAC AC ∠==, ∴60CAB ∠=o .∴30ACB DAC ∠=∠=o ,∴''60B AC ∠=o .∴'30''C AD AC B ∠==∠o .∴'AE C E =.(2)∵60BAC ∠=o,又'AB AB =,∴'ABB ∆为等边三角形.∴'BB AB =,'60AB B ∠=o ,又∵'90AB F ∠=o , ∴'150BB F ∠=o .∵''B F AB BB ==,∴''15B BF BFB ∠=∠=o .(3)连接AF ,过A 作AM BF ⊥于M .由(2)可知'AB F ∆是等腰直角三角形,'ABB ∆是等边三角形.∴'45AFB ∠=o ,∴30AFM ∠=o ,45ABF ∠=o .在Rt ABM ∆中,cos AM BM AB ABM ==⋅∠22=⨯=在Rt AMF ∆中,tan 3AM MF AFM ===∠∴BF =.25.解:(1)设抛物线解析式为:2(1)4(0)y a x a =-+≠. ∵过(0,3),∴43a +=,∴1a =-.∴22(1)423y x x x =--+=-++. (2)(3,0)B ,(0,3)C .直线BC 为3y x =-+.∵PBC QBC S S ∆∆=,∴//PQ BC.①过P 作//PQ BC 交抛物线于Q ,又∵(1,4)P ,∴直线PQ 为5y x =-+.2523y x y x x =-+⎧⎨=-++⎩. 解得1114x y =⎧⎨=⎩;2223x y =⎧⎨=⎩.∴1(2,3)Q . ②设抛物线的对称轴交BC 于点G ,交x 轴于点H .(1,2)G ,∴2PG GH ==. 过点H 作23//Q Q BC 交抛物线于2Q ,3Q .直线23Q Q 为1y x =-+.∴2123y x y x x =-+⎧⎨=-++⎩.解得113212x y ⎧+=⎪⎪⎨-⎪=⎪⎩;223212x y ⎧=⎪⎪⎨-⎪=⎪⎩∴2Q ⎝⎭,3Q ⎝⎭. 满足条件的点为1(2,3)Q,2Q ⎝⎭,3Q ⎝⎭. (3)存在满足条件的点M ,N .如图,过M 作//MF y 轴,过N 作//NF x 轴交MF 于F ,过N 作//NH y 轴交BC 于H . 则MNF ∆与NEH ∆都是等腰直角三角形.设11(,)M x y ,22(,)N x y ,直线MN 为y x b =-+. ∵223y x b y x x =-+⎧⎨=-++⎩,∴23(3)0x x b -+-=. ∴2221212()NF x x x x =-=+124214x x b -=-. MNF ∆等腰Rt ∆,∴222428MN NF b ==-. 又∵22(3)NH b =-,∴221(3)2NE b =-. 如果四边形MNED 为正方形,∴22NE MN =,∴21428(69)2b b b -=-+. ∴210750b b +-=,∴115b =-,25b =.正方形边长为MN =MN =.。

相关文档
最新文档