多选题猜不猜的概率统计
关于概率统计的一些“游戏”①
关于概率统计的一些“游戏”①1. 引言1.1 引言内容概率统计是一门研究事件发生频率规律的数学分支,它在现代社会中扮演着越来越重要的角色。
概率统计可以帮助我们预测未来事件的发生概率,辅助决策,并在各个领域为我们提供数据支持。
在我们生活中,很多“游戏”都可以通过概率统计来解析其中的规律,从而让我们更好地理解和掌握游戏的规则。
本文将为大家介绍一些关于概率统计的“游戏”,通过这些有趣的例子,我们可以更直观地感受到概率统计的魅力。
从掷骰子到扑克牌游戏,再到猜硬币的正反面和轮盘赌博,这些游戏将带领我们进入概率统计的世界,探索其中隐藏的规律和趣味。
让我们一起来探索概率统计的奥秘,通过这些“游戏”感受其中的趣味和挑战,相信你会对概率统计有更加深刻的理解和认识。
愿本文能够给您带来全新的启发和思考!2. 正文2.1 概率统计的基本概念概率统计是一门研究随机现象规律的学科,它通过数学方法来描述和分析随机现象的规律性。
在概率统计中,我们需要了解一些基本概念,这些基本概念包括样本空间、事件、随机变量、概率分布等。
首先,样本空间是指随机试验所有可能结果的集合,用Ω表示。
事件是指样本空间中的某些子集,表示了试验可能出现的结果。
随机变量是指随机试验结果的数值描述,常用X表示。
概率分布则是随机变量的取值与相应概率之间的对应关系。
在概率统计中,我们还需要了解一些基本的概率规则,如加法规则、乘法规则、全概率公式和贝叶斯定理等,这些规则能够帮助我们计算事件发生的概率。
除了基本概念和概率规则,概率统计还涉及到一些重要的概率分布,如均匀分布、正态分布、泊松分布等,这些分布在实际问题中具有重要的应用价值。
总的来说,概率统计是一门具有广泛应用领域的学科,它不仅在科学研究、工程技术、金融风险管理等领域有重要作用,同时也为我们认识世界、理解世界提供了重要的数学工具。
对于概率统计的基本概念的了解,可以帮助我们更好地理解和应用概率统计的知识。
2.2 游戏1:掷骰子掷骰子是一种常见的概率统计游戏,也是很多人小时候玩的经典游戏之一。
2021届新高考高三数学新题型专题10 概率统计多选题 (解析版)
第一篇备战新高考狂练新题型之高三数学提升捷径专题10 概率统计多选题1.下列判断正确的是( ) A .若随机变量ξ服从正态分布()21,N σ,()40.79P ξ≤=,则()20.21P ξ≤-=;B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的必要不充分条件;C .若随机变量ξ服从二项分布:14,4B ξ⎛⎫⎪⎝⎭,则()1E ξ=; D .已知直线2ax by +=经过点()1,3,则28a b +的取值范围是[)4,+∞ 【答案】ACD【解析】A 选项,若随机变量ξ服从正态分布()21,N σ,()40.79P ξ≤=,根据正态分布曲线的对称性有()()240.79P P ξξ≥-=≤=,所以()()21210.790.21P P ξξ≤-=-≥-=-=,A 选项正确;B 选项,因为//αβ,直线l ⊥平面α,所以直线l ⊥平面β,又直线//m 平面β,所以l m ⊥,充分性成立;设n αβ=,在α内取平行于n 的直线m n ≠,则l m ⊥且βn//,但是α与β相交,必要性不成立,B 不正确; C 选项,因为14,4B ξ⎛⎫⎪⎝⎭,所以1414E np ξ==⨯=,C 正确;D 选项,由题意知32a b +=,因为20a >,3820b b =>,所以2824a b +≥=,当且仅当11,3a b ==时取等号,故D 正确.故选:ACD2.由我国引领的5G 时代已经到来,5G 的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP 增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造岀更多的经济增加值.如图是某单位结合近年数据,对今后几年的5G 经济产出所做的预测.结合下图,下列说法正确的是( )A .5G 的发展带动今后几年的总经济产出逐年增加B .设备制造商的经济产出前期增长较快,后期放缓C .设备制造商在各年的总经济产出中一直处于领先地位D .信息服务商与运营商的经济产出的差距有逐步拉大的趋势 【答案】A BD【解析】由图可知设备制造商在各年的总经济产出中在前期处于领先地位, 而后期是信息服务商处于领先地位,故C 项表达错误. 故选:ABD .3.为了了解运动健身减肥的效果,某健身房调查了20名肥胖者,健身之前他们的体重(单位:kg )情况如三维饼图(1)所示,经过四个月的健身后,他们的体重情况如三维饼图(2)所示.对比健身前后,关于这20名肥胖者,下面结论正确的是( ) A .他们健身后,体重在区间[)90,100内的人增加了2个 B .他们健身后,体重在区间[)100,110内的人数没有改变 C .他们健身后,20人的平均体重大约减少了8kgD .他们健身后,原来体重在区间[)110,120内的肥胖者体重都有减少 【答案】 ABD【解析】体重在区间[)90,100内的肥胖者由健身前的6人增加到健身后的8人,故人增加了2个,故A 正确;他们健身后,体重在区间[)100,110内的百分比没有变,所以人数没有变,故B 正确; 他们健身后,20人的平均体重大约减少了()()0.3950.51050.21150.1850.4950.51055kg ⨯+⨯+⨯-⨯+⨯+⨯= ,故C 错误;因为图(2)中没有体重在区间[)110,120内的比例,所以原来体重在区间[)110,120内的肥胖者体重都有减少,故D 正确. 故选:ABD4.某大学为了解学生对学校食堂服务的满意度,随机调查了50名男生和50名女生,每位学生对食堂的服务给出满意或不满意的评价,得到如图所示的列联表.经计算2K 的观测值 4.762k ≈,则可以推断出( )A .该学校男生对食堂服务满意的概率的估计值为35B .调研结果显示,该学校男生比女生对食堂服务更满意C .有95%的把握认为男、女生对该食堂服务的评价有差异D .有99%的把握认为男、女生对该食堂服务的评价有差异 【答案】 AC【解析】对于选项A,该学校男生对食堂服务满意的概率的估计值为30330205=+,故A 正确;对于选项B,该学校女生对食堂服务满意的概率的估计值为4043401055=>+,故B 错误; 因为 4.762 3.841k ≈>,所以有95%的把握认为男、女生对该食堂服务的评价有差异,故C 正确,D 错误 故选:AC5.甲、乙、丙三家企业产品的成本分别为10000,12000,15000,其成本构成如图所示,则关于这三家企业下列说法正确的是( )A .成本最大的企业是丙企业B .费用支出最高的企业是丙企业C .支付工资最少的企业是乙企业D .材料成本最高的企业是丙企业【答案】 ABD【解析】由题意甲企业产品的成本为10000,其中材料成本1000060%6000⨯=、支付工资1000035%3500⨯=、费用支出500;乙企业产品的成本为12000,其中材料成本1200053%6360⨯=、支付工资1200030%3600⨯=、费用支出2040;丙企业产品的成本为15000,其中材料成本1500060%9000⨯=、支付工资1500025%3750⨯=、费用支出1500015%2250⨯=.所以成本最大的企业是丙企业,费用支出最高的企业是丙企业,支付工资最少的企业是甲企业,材料成本最高的企业是丙企业,A 、B 、D 选项正确,C 选项错误. 故选:ABD.6.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的45,女生喜欢抖音的人数占女生人数35,若有95%的把握认为是否喜欢抖音和性别有关则调查人数中男生可能有( )人 附表:附:()()()()()22n ad bc K a b c d a c b d -=++++ A .25 B .45C .60D .75【答案】 BC【解析】设男生的人数为()5n n N *∈,根据题意列出22⨯列联表如下表所示:则()221042310557321n n n n n n Kn n n n⨯⨯-⨯==⨯⨯⨯,由于有95%的把握认为是否喜欢抖音和性别有关,则23.841 6.632K≤<,即103.841 6.63221n≤<,得8.066113.9272n≤<,n N*∈,则n的可能取值有9、10、11、12,因此,调查人数中男生人数的可能值为45或60.故选:BC.7.下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:则下列判断中正确的是()A.该公司2018年度冰箱类电器销售亏损B.该公司2018年度小家电类电器营业收入和净利润相同C.该公司2018年度净利润主要由空调类电器销售提供D.剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低【答案】ACD【解析】根据表中数据知,该公司2018年度冰箱类电器销售净利润所占比为﹣0.48,是亏损的,A正确;小家电类电器营业收入所占比和净利润所占比是相同的,但收入与净利润不一定相同,B错误;该公司2018年度净利润空调类电器销售所占比为95.80%,是主要利润来源,C正确;所以剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低,D正确.故选:ACD.8.如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论正确的是()A .2018年3月至2019年3月全国居民消费价格同比均上涨B .2018年3月至2019年3月全国居民消费价格环比有涨有跌C .2019年3月全国居民消费价格同比涨幅最大D .2019年3月全国居民消费价格环比变化最快 【答案】 ABD【解析】对于选项A ,从图可以看出同比涨跌幅均为正数,故A 正确; 对于选项B ,从图可以看出环比涨跌幅有正数有负数,故B 正确;对于选项C ,从图可以看出同比涨幅最大的是2018年9月份和2018年10月份,故C 错误; 对于选项D ,从图可以看出2019年3月全国居民消费价格环比变化最快,故D 正确.故选ABD.9.设集合{2,3,4}M =,{1,2,3,4}N =,分别从集合M 和N 中随机取一个元素m 与n .记“点(,)P m n 落在直线x y k +=上”为事件()*38,k A k k N ≤≤∈,若事件k A 的概率最大,则k 的取值可能是( )A .4B .5C .6D .7【答案】 BC【解析】由题意,点(,)P m n 的所有可能情况为(2,1)、(2,2)、(2,3)、(2,4)、(3,1)、(3,2)、(3,3)、(3,4)、(4,1)、(4,2)、(4,3)、(4,4),共12个基本事件,则事件3A :点(,)P m n 落在直线3x y +=包含其中(2,1)共1个基本事件,所以()3112P A =;事件4A :点(,)P m n 落在直线4x y +=包含其中(2,2)、(3,1)共2个基本事件,所以()416P A =;事件5A :点(,)P m n 落在直线5x y +=包含其中(2,3)、(3,2)、(4,1)共3个基本事件,所以()514P A =;事件6A :点(,)P m n 落在直线6x y +=包含其中(2,4)、(3,3)、(4,2)共3个基本事件,所以()614P A =;事件7A :点(,)P m n 落在直线7x y +=包含其中(3,4)、(4,3)共2个基本事件,所以()716P A =;事件8A :点(,)P m n 落在直线8x y +=包含其中(4,4)共1个基本事件,所以()8112P A =.综上可得,当5k =或6时,()()()56max 14k P A P A P A ===.故选:BC.10.利用简单随机抽样的方法抽查某工厂的100件产品,其中一等品有20件,合格品有70件,其余为不合格品,现在这个工厂随机抽查一件产品,设事件A 为“是一等品”,B 为“是合格品”,C 为“是不合格品”,则下列结果正确的是( ). A .7()10P B =B .9()10P A B ⋃=C .()0P A B ⋂=D .()()P A B P C ⋃=【答案】 ABC【解析】由题意知A ,B ,C 为互斥事件,故C 正确;又因为从100件中抽取产品符合古典概型的条件,所以7()10P B =,2()10P A =,1()10P C =则9()10P A B ⋃=,故A 、B ,C 正确;故D 错误. 故选ABC.。
概率统计常见题型及方法总结
概率统计常见题型及方法总结(总41页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除常见大题:1. 全概率公式和贝叶斯公式问题B 看做“结果”,有多个“原因或者条件i A ”可以导致B 这个“结果”发生,考虑结果B 发生的概率,或者求在B 发生的条件下,源于某个原因i A 的概率问题全概率公式: ()()()1B |n i i i P B P A P A ==∑贝叶斯公式: 1(|)()()()()n i i i j jj P A B P A P B A P A P B A ==∑||一(12分)今有四个口袋,它们是甲、乙、丙、丁,每个口袋中都装有a 只红球和b 只白球。
先从甲口袋中任取一只球放入乙口袋,再从乙口袋中任取一只球放入丙口袋,然后再从丙口袋中任取一只球放入丁口袋,最后从丁口袋中任取一球,问取到红球的概率为多少?解 i B 表示从第i 个口袋放入第1+i 个口袋红球,4,3,2,1=i i A 表示从第i 个口袋中任取一个球为红球, 2分则ba a B P +=)(1, 2分)()()()()(1111111B A P B P B A P B P A P +=111++++++++=b a a b a b b a a b a a ba a += 2分 依次类推 2分ba a A P i +=)( 二(10分)袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽),在袋中任取一只,将它投掷r 次,已知每次都出现国徽,问这只硬币是次品的概率为多少?、解 记B ={取到次品},B ={取到正品},A ={将硬币投掷r 次每次都出现国徽} 则()(),n m P B P B m n m n==++,()1P A B =,()12r P A B =―—5分 ()()1()212()()()()12r r r n P B P A B n m n P B A n m n m P B P A B P B P A B m n m n ⨯+===++⨯+⨯++三、(10分)一批产品共100件,其中有4件次品,其余皆为正品。
高考真题与模拟训练 专题26 计数原理与概率统计(解析版)
专题26 计数原理与概率统计第一部分 真题分类1.(2021·天津高考真题)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为56和15,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________. 【答案】23 2027【解析】由题可得一次活动中,甲获胜的概率为564253⨯=;则在3次活动中,甲至少获胜2次的概率为23232122033327C ⎛⎫⎛⎫⨯⨯+= ⎪ ⎪⎝⎭⎝⎭.故答案为:23;2027.2.(2021·江苏高考真题)下图是某项工程的网络图(单位:天),则从开始节点①到终止节点⑧的路径共有( )A .14条B .12条C .9条D .7条【答案】B【解析】由图可知,由①→④有3条路径,由④→⑥有2条路径,由⑥→⑧有2条路径,根据分步乘法计算原理可得从①→⑧共有32212⨯⨯=条路径. 故选:B3.(2021·江苏高考真题)已知()12nx -的展开式中2x 的系数为40,则n 等于( ) A .5 B .6 C .7 D .8【答案】A【解析】()()222221n C x n n x -=-,所以()21405n n n -=⇒=.故选:A.4.(2021·天津高考真题)从某网络平台推荐的影视作品中抽取400部,统计其评分分数据,将所得400个评分数据分为8组:[)66,70、[)70,74、、[]94,98,并整理得到如下的费率分布直方图,则评分在区间[)82,86内的影视作品数量是( )A .20B .40C .64D .80【答案】D【解析】由频率分布直方图可知,评分在区间[)82,86内的影视作品数量为4000.05480⨯⨯=. 故选:D.5.(2020·天津高考真题)从一批零件中抽取80个,测量其直径(单位:mm ),将所得数据分为9组:[)[)[)[]5.31,5.33,5.33,5.35,,5.45,5.47,5.47,5.49,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A .10B .18C .20D .36【答案】B【解析】根据直方图,直径落在区间[)5.43,5.47之间的零件频率为:()6.25 5.000.020.225+⨯=, 则区间[)5.43,5.47内零件的个数为:800.22518⨯=. 故选:B.6.(2020·北京高考真题)在5(2)x 的展开式中,2x 的系数为( ). A .5- B .5C .10-D .10【答案】C 【解析】)52x 展开式的通项公式为:()()55215522r rrrr r r T Cx C x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-.故选:C.7.(2020·海南高考真题)我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是A .这11天复工指数和复产指数均逐日增加;B .这11天期间,复产指数增量大于复工指数的增量;C .第3天至第11天复工复产指数均超过80%;D .第9天至第11天复产指数增量大于复工指数的增量; 【答案】CD【解析】由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A 错误;由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B 错误;由图可知,第3天至第11天复工复产指数均超过80%,故C 正确;由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D 正确;8.(2021·江苏高考真题)已知关于x 的二次函数()24f x ax bx a =-+.(1)若{}1,1,2,3a ∈-,{}0,1,2b ∈,求事件(){A f x =在[)1,+∞上是增函数}的概率; (2)若[]1,2a ∈,[]0,2b ∈,求事件B =“方程()0f x =没有实数根”的概率. 【答案】(1)512;(2)38.【解析】(1)根据题意有:0a >,且对称轴21bx a=. 基本事件总数为114312C C ⋅=,满足事件A 的事件数为(1,0),(2,0),(2,1),(3,0),(3,1)共有5个,P ∴(A )512=; (2)方程240ax bx a -+=无实根,则22(4)40a b a ≠⎧⎨--<⎩,∴22040a ab ≠⎧⎨->⎩, 又[1a ∈,2],[0b ∈,2],20a b ∴->, 如图,∴11(1)1322()28P B +⨯==.9.(2021·全国高考真题)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)i P X i p i ===. (1)已知01230.4,0.3,0.2,0.1p p p p ====,求()E X ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x+++=的一个最小正实根,求证:当()1E X ≤时,1p =,当()1E X >时,1p <; (3)根据你的理解说明(2)问结论的实际含义. 【答案】(1)1;(2)见解析;(3)见解析. 【解析】(1)()00.410.320.230.11E X =⨯+⨯+⨯+⨯=.(2)设()()3232101f x p x p x p x p =++-+,因为32101p p p p +++=,故()()32322030f x p x p x p p p x p =+-+++,若()1E X ≤,则123231p p p ++≤,故2302p p p +≤.()()23220332f x p x p x p p p '=+-++,因为()()20300f p p p '=-++<,()230120f p p p '=+-≤, 故()f x '有两个不同零点12,x x ,且1201x x <<≤,且()()12,,x x x ∈-∞⋃+∞时,()0f x '>;()12,x x x ∈时,()0f x '<; 故()f x 在()1,x -∞,()2,x +∞上为增函数,在()12,x x 上为减函数, 若21x =,因为()f x 在()2,x +∞为增函数且()10f =,而当()20,x x ∈时,因为()f x 在()12,x x 上为减函数,故()()()210f x f x f >==,故1为230123p p x p x p x x +++=的一个最小正实根,若21>x ,因为()10f =且在()20,x 上为减函数,故1为230123p p x p x p x x +++=的一个最小正实根,综上,若()1E X ≤,则1p =.若()1E X >,则123231p p p ++>,故2302p p p +>. 此时()()20300f p p p '=-++<,()230120f p p p '=+->, 故()f x '有两个不同零点34,x x ,且3401x x <<<, 且()()34,,x x x ∈-∞+∞时,()0f x '>;()34,x x x ∈时,()0f x '<;故()f x 在()3,x -∞,()4,x +∞上为增函数,在()34,x x 上为减函数, 而()10f =,故()40f x <,又()000f p =>,故()f x 在()40,x 存在一个零点p ,且1p <.所以p 为230123p p x p x p x x +++=的一个最小正实根,此时1p <,故当()1E X >时,1p <.(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.10.(2020·海南高考真题)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)0.64;(2)答案见解析;(3)有.【解析】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为:2SO2.5PM[]0,150(]150,475合计[]0,7564 16 80 (]75,11510 10 20 合计7426100222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>,因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关.第二部分 模拟训练1.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用2⨯勾⨯股+(股-勾)2=4⨯朱实+黄实=弦实,化简,得勾2+股2=弦2,设勾股中勾股比为1:3,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在红(朱)色图形内的图钉数大约为()(参考数据:2 1.414,3 1.732≈≈)A.866 B.500 C.300 D.134【答案】A【解析】不妨设勾长13则朱色面积为1314232⨯=22132,面积为224=,所以落在红(朱)色图形内的图钉数大约为2310005003500 1.732866=≈⨯=.故选:A2.琵琶、二胡、编钟、箫、笛、瑟、琴、埙、笙和鼓这十种民族乐器被称为“中国古代十大乐器”.为弘扬中国传统文化,某校以这十种乐器为题材,在周末学生兴趣活动中开展了“中国古代乐器”知识讲座,共连续安排四节课,一节课只讲一种乐器,一种乐器最多安排一节课,则琵琶、二胡一定安排,且这两种乐器互不相邻的概率为()A.1360B.16C.115D.715【答案】C【解析】由题意得:10种乐器种任选4种,故总的可能性有410A种,琵琶、二胡一定安排且不相邻的可能性有2283A A种,所以两种乐器互不相邻的概率2283410115A APA==.故选:C3.造纸术、印刷术、指南针、火药被称为中国古代四大发明,这四种发明对中国古代的政治、经济、文化的发展产生了巨大的推动作用;2017年5月,来自“一带一路”沿线的20国青年评选出了“中国的新四大发明”:高铁、扫码支付、共享单车和网购.若从这8个发明中任取两个发明,则两个都是新四大发明的概率为( ) A .114B .17C .314D .14【答案】C【解析】从8个发明中任取两个发明共有28C 28=种, 两个都是新四大发明的有24C 6=种, ∴所求概率为632814P ==, 故选:C4.蟋蟀鸣叫可以说是大自然优美、和谐的音乐,殊不知蟋蟀鸣叫的频率x (每分钟鸣叫的次数)与气温y (单位:℃)存在着较强的线性相关关系.某地观测人员根据下表的观测数据,建立了y 关于x 的线性回归方程ˆ0.25yx k =+ x (次数/分钟)2030405060y (℃) 25 27.5 29 32.5 36则当蟋蟀每分钟鸣叫60次时,该地当时的气温预报值为( ) A .33℃ B .34℃C .35℃D .35.5℃【答案】C【解析】由题意,得40x=,30y =,则0.25300.254020k y x =-=-⨯=;当60x =时,35y =. 故选:C.5.将一线段AB 分为两线段AC ,CB ,使得其中较长的一段AC 是全长AB 与另一段CB 的比例中项,即满足AC AB =BC AC =512-≈0.618,后人把这个数称为黄金分割,把点C 称为线段AB 的黄金分割点.图中在ABC 中,若点P ,Q 为线段BC 的两个黄金分割点,在ABC 内任取一点M ,则点M 落在APQ 内的概率为( )A .512B 5-2C .514-D .522-【答案】B【解析】由几何概型公式知,所求概率为515112252 APQABCBC BCS PQ BQ BPS BC BC BC⎛⎫----⎪-⎝⎭====-.故选:B.6.在新冠疫情的持续影响下,全国各地电影院等密闭式文娱场所停业近半年,电影行业面临巨大损失.2011~2020年上半年的票房走势如下图所示,则下列说法正确的是()A.自2011年以来,每年上半年的票房收入逐年增加B.自2011年以来,每年上半年的票房收入增速为负的有5年C.2018年上半年的票房收入增速最大D.2020年上半年的票房收入增速最小【答案】D【解析】由图易知自2011年以来,每年上半年的票房收入相比前一年有增有减,增速为负的有3年,故A,B错误;2017年上半年的票房收入增速最大,故C错误;2020年上半年的票房收入增速最小,故D正确.故选:D7.某士特产超市为预估2021年元旦期间游客购买土特产的情况,对2020年元且期间的90位游客购买情况进行统计,得到如下人数分布表.购买金额(元)[0,15)[15,30)[30,45)[45,60)[60,75)[75,90)人数10 15 20 15 20 1060元与性别有关.不小于60元小于60元合计(23次,每次中奖概率为P (每次抽奖互不影响,且P 的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元若游客甲计划购买80元的土特产,请列出实际付款数X (元)的分布列并求其数学期望. 参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++附表:【答案】(1)列联表见解析,有95%的把握认为购买金额是否少于60元与性别有关;(2)分布列见解析,75EX =.【解析】(1)22⨯列联表如下:2290(12204018)1440 5.830 3.84130605238247K ⨯⨯-⨯==≈>⨯⨯⨯,因此有95%的把握认为购买金额是否少于60元与性别有关. (2)X 可能取值为65,70,75,80,且10201903p +==. 由题意知:33311(65)327P X C ⎛⎫=== ⎪⎝⎭,223122(70)339P X C ⎛⎫==⨯= ⎪⎝⎭,213124(75)339P X C ⎛⎫==⨯⨯= ⎪⎝⎭,30328(80)327P X C ⎛⎫=== ⎪⎝⎭, 所以X 的分布列为1246570758075279927EX =⨯+⨯+⨯+⨯=. 8.一年一度的剁手狂欢节——“双十一”,使千万女性朋友们非常纠结.2020年双十一,淘宝点燃火炬瓜分2.5个亿,淘宝、京东、天猫等各大电商平台从10月20号就开始预订,进行了强大的销售攻势.天猫某知名服装经营店,在10月21号到10月27号一周内,每天销售预定服装的件数x (百件)与获得的纯利润y (单位:百元)之间的一组数据关系如下表:(1)若y 与x (2)试求y 与x 的线性回归方程;(3)该服装经营店打算11月2号结束双十一预定活动,预计在结束活动之前,每天销售服装的件数x (百件)与获得的纯利润y (单位:百元)之间的关系仍然服从(1)中的线性关系,若结束当天能销售服装14百件,估计这一天获得的纯利润与前一周的平均利润相差多少百元?(有关计算精确到小数点后两位)参考公式与数据:ˆˆˆybx a =+,()()()121ˆniii nii x x y y b x x ==--=-∑∑,ˆˆay bx =-.713487i ii x y==∑.【答案】(1)y 与x 是正相关;(2)ˆ 4.7551.36yx =+;(3)结束当天获得的纯利润比前一周的平均利润多38.00百元.【解析】解:(1)由题目中的数据表格可以看出,y 随着x 的增大而增大, ∴判断出y 与x 是正相关; (2)由题设知,721280ii x==∑,345678967x ++++++==,6669738189909155977y ++++++==,∴5593487761337ˆ 4.7528073628b -⨯⨯===-⨯, 则559ˆ6 4.7551.367a=-⨯≈, ∴线性回归直线方程为ˆ 4.7551.36yx =+; (3)由(1)知,当14x =时, 4.751451.361ˆ17.86y=⨯+=(百元), ∴11月2号这天估计可获得的纯利润大约为117.86百元; 由(1)知,前一周的平均利润为55979.867y =≈(百元), 故结束当天获得的纯利润比前一周的平均利润多38.00百元.。
概率统计试题及答案
概率统计试题及答案概率统计是数学中的一个重要分支,它在自然科学、社会科学、工程技术等多个领域都有着广泛的应用。
本文将提供一套概率统计的试题及答案,以供学习和复习之用。
一、选择题1. 概率论中,如果事件A和B是互斥的,那么P(A∪B)等于:A. P(A) + P(B)B. P(A) - P(B)C. P(A) / P(B)D. 1 - (1 - P(A))(1 - P(B))答案:A2. 以下哪项不是随机变量的典型性质?A. 可测性B. 有界性C. 随机性D. 独立性答案:D3. 标准正态分布的数学期望和方差分别是:A. 0和1B. 1和0C. 1和1D. 0和0答案:A4. 若随机变量X服从参数为λ的指数分布,其概率密度函数为f(x) = λe^(-λx), x > 0,则λ的值为:A. E(X)B. Var(X)C. E(X)^2D. 1 / Var(X)答案:D5. 在贝叶斯定理中,先验概率是指:A. 基于经验或以往数据得到的概率B. 基于主观判断得到的概率C. 事件实际发生的概率D. 事件未发生的概率答案:B二、填空题1. 事件的空间是指包含所有可能发生的事件的集合,其记作______。
答案:Ω2. 若随机变量X服从均匀分布U(a,b),则X在区间[a, b]上的概率密度函数是______。
答案:1 / (b - a)3. 两个事件A和B相互独立的必要不充分条件是P(A∩B) = ______。
答案:P(A)P(B)4. 若随机变量X服从正态分布N(μ, σ^2),则其概率密度函数为f(x) = (1 / (σ * √(2π))) * e^(- (x - μ)^2 / (2σ^2)),其中μ是______,σ^2是______。
答案:数学期望,方差5. 拉普拉斯定理表明,对于独立同分布的随机变量序列,当样本容量趋于无穷大时,样本均值的分布趋近于______分布。
答案:正态三、简答题1. 请简述条件概率的定义及其计算公式。
《概率统计》练习题及参考答案
习题一 (A )1.写出下列随机试验的样本空间: (1)一枚硬币连抛三次;(2)两枚骰子的点数和;(3)100粒种子的出苗数;(4)一只灯泡的寿命。
2. 记三事件为C B A ,,。
试表示下列事件:(1)C B A ,,都发生或都不发生;(2)C B A ,,中不多于一个发生;(3)C B A ,,中只有一个发生;(4)C B A ,,中至少有一个发生; (5)C B A ,,中不多于两个发生;(6)C B A ,,中恰有两个发生;(7)C B A ,,中至少有两个发生。
3.指出下列事件A 与B 之间的关系:(1)检查两件产品,事件A =“至少有一件合格品”,B =“两件都是合格品”; (2)设T 表示某电子管的寿命,事件A ={T >2000h },B ={T >2500h }。
4.请叙述下列事件的互逆事件:(1)A =“抛掷一枚骰子两次,点数之和大于7”; (2)B =“数学考试中全班至少有3名同学没通过”; (3)C =“射击三次,至少中一次”;(4)D =“加工四个零件,至少有两个合格品”。
5.从一批由47件正品,3件次品组成的产品中,任取一件产品,求取得正品的概率。
6.电话号码由7个数字组成,每个数字可以是9,,1,0 中的任一个,求:(1)电话号码由完全不相同的数字组成的概率;(2)电话号码中不含数字0和2的概率;(3)电话号码中4至少出现两次的概率。
7.从0,1,2,3这四个数字中任取三个进行排列,求“取得的三个数字排成的数是三位数且是偶数”的概率。
8.从一箱装有40个合格品,10个次品的苹果中任意抽取10个,试求:(1)所抽取的10个苹果中恰有2个次品的概率;(2)所抽取的10个苹果中没有次品的概率。
9.设A ,B 为任意二事件,且知4.0)()(==B p A p ,28.0)(=B A p ,求)(B A p ⋃;)(A B p 。
10.已知41)(=A p ,31)(=AB p ,21)(=B A p ,求)(B A p ⋃。
高中数学第七章概率2古典概型第1课时古典概型的概率计算公式及其应用课后习题北师大版必修第一册
第1课时 古典概型的概率计算公式及其应用A级必备知识基础练1.下列事件属于古典概型的是( )A.任意抛掷两颗均匀的正方体骰子,所得点数之和作为基本事件B.篮球运动员投篮,观察他是否投中C.测量一杯水分子的个数D.在4个完全相同的小球中任取1个2.(2021浙江杭州期中)从一副52张的扑克牌中任抽一张,“抽到K或Q”的概率是( )A.1 26B.113C.326D.2133.将一枚质地均匀的骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有相等的实根的概率为( )A.1 12B.19C.136D.1184.(多选题)以下对各事件发生的概率判断正确的是( )A.甲、乙两人玩剪刀、石头、布的游戏,则玩一局甲不输的概率是13B.在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115C.将一个质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的概率是536D.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是125.20名高一学生、25名高二学生和30名高三学生在一起座谈,如果任意抽其中一名学生讲话,抽到高一学生的概率是 ,抽到高二学生的概率是 ,抽到高三学生的概率是 .6.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为 .7.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为 .8.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖(所有的球除颜色外都相同).(1)用球的标号列出所有可能的摸出结果.(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.9.为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛.该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙、丙三支队伍参加决赛.(1)求决赛中甲、乙两支队伍恰好排在前两位的概率;(2)求决赛中甲、乙两支队伍出场顺序相邻的概率.B级关键能力提升练10.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且a,b∈{1,2,3,4},若|a-b|≤1,则称甲、乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为( )A.5 8B.18C.38D.1411.若集合A={1,2,3},B={x∈R|x2-ax+b=0,a∈A,b∈A},则A∩B=B的概率是( )A.2 9B.13C.89D.112.(多选题)一个袋子中装有3件正品和1件次品,按以下要求抽取2件产品,其中结论正确的是( )A.任取2件,则取出的2件中恰有1件次品的概率是12B.每次抽取1件,不放回抽取两次,样本点总数为16C.每次抽取1件,不放回抽取两次,则取出的2件中恰有1件次品的概率是12D.每次抽取1件,有放回抽取两次,样本点总数为1613.天气预报说,今后三天每天下雨的概率相同,现用随机模拟的方法预测三天中有两天下雨的概率,用骰子点数来产生随机数.依据每天下雨的概率,可规定投一次骰子出现1点和2点代表下雨;投三次骰子代表三天;产生的三个随机数作为一组.得到的10组随机数如下:613,265,114,236,561,435,443,251,154,353.则在此次随机模拟试验中,每天下雨的概率的近似值是 ,三天中有两天下雨的概率的近似值为 .14.有6根细木棒,长度分别为1,2,3,4,5,6,从中任取3根首尾相接,能搭成三角形的概率是 .15.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.16.某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[40,50),[50,60), [60,70),…,[90,100]分成6组,制成如图所示频率分布直方图.(1)求图中x的值;(2)求这组数据的中位数;(3)现从被调查的问卷满意度评分值在[60,80)的学生中按分层随机抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.C级学科素养创新练17.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天100颗种子浸泡后的发芽数,得到如下资料:日期3月1日3月2日3月3日3月4日3月5日温差x/℃101113128发芽数y/颗2325302616 (1)求这5天发芽数的中位数;(2)求这5天的平均发芽数;(3)从3月1日至3月5日中任选2天,记前面一天发芽的种子数为m,后面一天发芽的种子数为n,的概率.用(m,n)的形式列出所有基本事件,并求满足{25≤m≤30,25≤n≤3018.从某商场随机抽取了2 000件商品,按商品价格(单位:元)进行统计,所得频率分布直方图如图所示.记价格在[800,1 000),[1 000,1 200),[1 200,1 400]对应的小矩形的面积分别为S1,S2,S3,且S1=3S2=6S3.(1)按分层随机抽样从价格在[200,400),[1 200,1 400]的商品中共抽取6件,再从这6件中随机抽取2件作价格对比,求抽到的两件商品价格差超过800元的概率;(2)在节日期间,该商场制定了两种不同的促销方案:方案一:全场商品打八折;方案二:全场商品优惠如下表,如果你是消费者,你会选择哪种方案?为什么?(同一组中的数据用该组区间中点值作代表)商品价格[200,400)[400,600)[600,800)[800,1 000)[1 000,1 200)[1 200,1 400]优惠/元3050140160280320第1课时 古典概型的概率计算公式及其应用1.D 判断一个事件是否为古典概型,主要看它是否具有古典概型的两个特征:有限性和等可能性. A选项,任意抛掷两颗均匀的正方体骰子,所得点数之和对应的概率不全相等,如点数之和为2与点数之和为3发生的可能性显然不相等,不属于古典概型,故A排除;B选项,“投中”与“未投中”发生的可能性不一定相等,不属于古典概型,故B排除;C选项,杯中水分子有无数多个,不属于古典概型,故C排除;D选项,在4个完全相同的小球中任取1个,每个球被抽到的机会均等,且包含的基本事件共有4个,符合古典概型,故D正确.故选D.2.D 设“抽到K或Q”为事件A,∵基本事件总数为52,事件A包含的基本事件数为8,∴P(A)=8 52=2 13.3.D 样本点总数为6×6=36,若方程有相等的实根,则b2-4c=0,满足这一条件的b,c的值只有两种:b=2,c=1;b=4,c=4,故所求概率为236=1 18.4.BCD 对于A,如图所示:由图可以看出,所有可能出现的结果共有9种,这些结果出现的可能性相等,P(甲获胜)=13,P(乙获胜)=1 3,故玩一局甲不输的概率是23,故A错误;对于B,不超过14的素数有2,3,5,7,11,13共6个,从这6个素数中任取2个,有(2,3),(2,5),(2,7), (2,11),(2,13),(3,5),(3,7),(3,11),(3,13),(5,7),(5,11),(5,13),(7,11),(7,13),(11,15),共有15种样本点,其中和等于14的只有(3,11)一组,所以在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115,故B正确;对于C,基本事件总共有6×6=36(种)情况,其中点数之和是6的有(1,5),(2,4),(3,3),(4,2),(5,1),共5种情况,则所求概率是536,故C正确;对于D,记三件正品为A1,A2,A3,一件次品为B,任取两件产品的所有可能为A1A2,A1A3,A1B,A2A3,A2B,A3B,共6种,其中两件都是正品的有A1A2,A1A3,A2A3,共3种,则所求概率为P=36=12,故D正确.故选BCD.5.4 151325 任意抽取一名学生是等可能事件,样本点总数为75,记事件A,B,C分别表示“抽到高一学生”“抽到高二学生”和“抽到高三学生”,则它们包含的样本点的个数分别为20,25和30.故P(A)=2075=415,P(B)=2575=13,P(C)=3075=25.6.15 “从5根竹竿中一次随机抽取2根竹竿”的所有可能结果为(2.5,2.6),(2.5,2.7),(2.5,2.8), (2.5,2.9),(2.6,2.7),(2.6,2.8),(2.6,2.9),(2.7,2.8),(2.7,2.9),(2.8,2.9),共10个样本点,又“它们的长度恰好相差0.3m”包括(2.5,2.8),(2.6,2.9),共2个样本点,由古典概型的概率计算公式可得所求事件的概率为210= 1 5.7.23 甲、乙、丙三人随机地站成一排有:(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙), (丙,乙,甲),共6种样本点,其中甲、乙相邻有:(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4种样本点.所以甲、乙两人相邻而站的概率为46= 2 3.8.解(1)所有可能的摸出结果是(A1,a1),(A1,a2),(A1,b1),(A1,b2),(A2,a1),(A2,a2),(A2,b1),(A2,b2), (B,a1),(B,a2),(B,b1),(B,b2).(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为(A1,a1),(A1,a2),(A2,a1),(A2,a2),共4种,所以中奖的概率为412=13,不中奖的概率为1-13=23>13.故这种说法不正确.9.解根据题意可知其样本空间Ω={(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙),(丙,乙,甲)},共6个样本点.(1)设“甲、乙两支队伍恰好排在前两位”为事件A,事件A包含的样本点有:(甲,乙,丙),(乙,甲,丙),共2个,所以P(A)=26=13.所以甲、乙两支队伍恰好排在前两位的概率为13.(2)设“甲、乙两支队伍出场顺序相邻”为事件B,事件B包含的样本点有:(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4个,所以P(B)=46= 2 3.所以甲、乙两支队伍出场顺序相邻的概率为23.10.A 甲、乙所猜数字的情况有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2), (3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16种情况,其中满足|a-b|≤1的情况有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4)共10种情况,故所求概率为1016= 5 8.11.C 随着a,b的取值变化,集合B有32=9(种)可能,如表.经过验证很容易知道其中有8种满足A∩B=B,所以概率是89.故选C.12.ACD 记4件产品分别为1,2,3,a,其中a表示次品.A选项,样本空间Ω={(1,2),(1,3),(1,a),(2,3),(2,a),(3,a)},“恰有一件次品”的样本点为(1,a),(2,a),(3,a),因此其概率P=36=12,A正确;B选项,每次抽取1件,不放回抽取两次,样本空间Ω={(1,2),(1,3),(1,a),(2,1),(2,3),(2,a),(3,1), (3,2),(3,a),(a,1),(a,2),(a,3)},共12种样本点,B错误;C选项,“取出的两件中恰有一件次品”的样本点数为6,其概率为12,C正确;D选项,每次抽取1件,有放回抽取两次,样本空间Ω={(1,1),(1,2), (1,3),(1,a),(2,1),(2,2),(2,3),(2,a),(3,1),(3,2),(3,3),(3,a),(a,1),(a,2),(a,3),(a,a)},共16种样本点,D正确.故选ACD.13.1315 每个骰子有6个点数,出现1或2为下雨天,共有6种,则每天下雨的概率的近似值为13,10组数据中,114,251,表示3天中有2天下雨,所以从得到的10组随机数来看,3天中有2天下雨的有2组,则3天中有2天下雨的概率近似值为210= 1 5.14.720 从这6根细木棒中任取3根首尾相接,有(1,2,3),(1,2,4),(1,2,5),(1,2,6),(1,3,4), (1,3,5),(1,3,6),(1,4,5),(1,4,6),(1,5,6),(2,3,4),(2,3,5),(2,3,6),(2,4,5),(2,4,6),(2,5,6), (3,4,5),(3,4,6),(3,5,6),(4,5,6),共20个样本点,能构成三角形的取法有(2,3,4),(2,4,5),(2,5,6),(3,4,5),(3,4,6),(3,5,6),(4,5,6),共7个样本点,所以由古典概型概率公式可得所求概率为P=720.15.解用数对(x,y)表示儿童参加活动先后记录的数,则样本空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.因为S中元素的个数是4×4=16,所以样本点总数n=16.(1)记“xy≤3”为事件A,则事件A包含的样本点共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P(A)=516,即小亮获得玩具的概率为516.(2)记“xy≥8”为事件B,“3<xy<8”为事件C.则事件B包含的样本点共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).所以P(B)=616=38.事件C包含的样本点共5个,即(1,4),(2,2),(2,3),(3,2),(4,1).所以P(C)=516.因为38>516,所以小亮获得水杯的概率大于获得饮料的概率.16.解(1)由(0.005+0.010+0.030+0.025+0.010+x)×10=1,解得x=0.020.(2)设中位数为m,则0.05+0.1+0.2+(m-70)×0.03=0.5,解得m=75.(3)可得满意度评分值在[60,70)内有20人,抽得样本为2人,记为a1,a2,满意度评分值在[70,80)内有30人,抽得样本为3人,记为b1,b2,b3,样本空间Ω={(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1), (a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3)},共10个样本点,记“5人中随机抽取2人作主题发言,抽出的2人恰在同一组”为事件A,A包含的样本点个数为4,利用古典概型概率公式可知P(A)=0.4. 17.解(1)因为16<23<25<26<30,所以这5天发芽数的中位数是25.(2)这5天的平均发芽率为23+25+30+26+16100+100+100+100+100×100%=24%.(3)用(m,n)表示所求基本事件,则有(23,25),(23,30),(23,26),(23,16),(25,30),(25,26), (25,16),(30,26),(30,16),(26,16),共10个基本事件.记满足{25≤m≤30,25≤n≤30为事件A,则事件A包含的基本事件为(25,30),(25,26),(30,26),共有3个基本事件.所以P(A)=310,即事件{25≤m≤30,25≤n≤30的概率为310.18.解(1)根据频率和为1的性质知0.00050×200+0.00100×200+0.00125×200+S1+S2+S3=1,又S1=3S2=6S3,得到S1=0.30,S2=0.10,S3=0.05.价格在[200,400)的频率为0.00050×200=0.10,价格在[1200,1400]的频率为S3=0.05.按分层随机抽样的方法从价格在[200,400),[1200,1400]的商品中抽取6件,则在[200,400)上抽取4件,记为a1,a2,a3,a4,在[1200,1400]上抽取2件,记为b1,b2.现从中抽出2件,所有可能情况为:a1a2,a1a3,a1a4,a1b1,a1b2,a2a3,a2a4,a2b1,a2b2,a3a4,a3b1,a3b2,a4b1,a4b2,b1b2,共计15个样本点,其中符合题意的有a1b1,a1b2,a2b1,a2b2,a3b1,a3b2,a4b1,a4b2共8个样本点,因此抽到的两件商品价格差超过800元的概率为P=815.(2)对于方案一,优惠的价钱的平均值为:(300×0.10+500×0.20+700×0.25+900×0.30+1100×0.10+1300×0.05)×20%=150;对于方案二,优惠的价钱的平均值为:30×0.10+50×0.20+140×0.25+160×0.30+280×0.10+320×0.05=140.因为150>140,所以选择方案一更好.。
概率统计-习题及答案-(2)
2.12 考虑函数 3(2)02/5 ()0C x x x f x ?-<<=? ? 其他 能否作为随机变量的概率密度?如果能,试求出常数C 的值。 2.13 已知随机变量X 的概率密度为 01 ()0 Ax x f x < ?其他 , 求:(1)系数A ;(2)概率{0.5}P X ≤; (3)随机变量X 的分布函数。 2.14 已知随机变量X 的概率密度为()x f x Ae
0}3{=>ηP 。 2.3 (1)ξ可能的取值为1,2,3。 从8个好灯泡和2个坏灯泡中任取3个,恰好取到k 个好灯泡和k -3个坏灯泡的概率为 3 10 32 8}{C C C k P k k -==ξ(3,2,1=k )。 由此求得ξ的概率分布为
ξ的分布函数为 ???? ??? ≥==+=+=<≤==+=<≤==<=≤=31 }3{}2{}1{3215
2.5 已知某人在求职过程中每次求职的成功率都是0.4,问他预计最多求职多少次,就能保证有99%的把握获得一个就业机会? 2.6 已知1000个产品中有100个废品。从中任意抽取3个,设X 为取到的废品数。 (1)求X 的概率分布,并计算X =1的概率。 (2)由于本题中产品总数很大,而从中抽取产品的数目不大,所以,可以近似认为是“有放回地任意抽取3次”,每次取到废品 的概率都是0.1,因此取到的废品数服从二项分布。试按照这一假设,重新求X 的概率分布,并计算X =1的概率。 2.7 一个保险公司推销员把保险单卖给5个人,他们都是健康的相同年龄的成年人。根据保险统计表,这类成年人中的每一个 人未来能活30年的概率是2/3。求: (1)5个人都能活30年的概率; (2)至少3个人都能活30年的概率; (3)仅2个人都能活30年的概率; (4)至少1个人都能活30年的概率。 2.8 一张答卷上有5道选择题,每道题列出了3个可能的答案,其中有一个答案是正确的。某学生靠猜测能答对至少4道题的概 率是多少?
概率论与数理统计期中考试复习指南
概率论与数理统计期中考试复习指南小朋友们呀,咱们来聊聊概率论与数理统计的期中考试复习。
这听起来有点难,但是就像玩游戏一样,有一些小窍门呢。
咱们先说概率这部分。
概率就像是猜东西的可能性。
比如说,咱们玩扔硬币的游戏。
硬币只有两面,正面和反面。
那扔一次硬币,得到正面的概率是多少呢?对啦,就是二分之一。
因为总共就两种情况,正面是其中一种。
这就好像是从两个小盒子里选一个,选中特定一个盒子的机会就是二分之一。
那要是扔两次硬币呢?这里面的情况就多一点啦。
可能是正正、正反、反正、反反这四种情况。
那两次都是正面的概率就是四分之一啦。
就像有四个小口袋,要正好找到特定的那个装着我们想要东西的口袋,是不是感觉有点难了呢?不过别担心,只要咱们把所有可能的情况都列出来,就能算出概率啦。
再说说数理统计。
咱们想象一下,咱们班同学的身高。
老师想知道大家身高大概是多少,这时候就会用到数理统计啦。
老师会把每个同学的身高都记下来,这就像收集小宝贝一样。
然后呢,老师可能会找最中间的那个身高,这个就叫做中位数。
比如说咱们班有10个同学,按身高从矮到高排好队,第5个和第6个同学身高的中间值就是中位数啦。
还有平均数呢。
就是把所有同学的身高加起来,再除以同学的个数。
就像分糖果一样,如果有好多好多糖果,要平均分给怎么分才公平呢?就是用这种办法。
要是有个特别高或者特别矮的同学,这个平均数就可能会被拉高或者拉低一点,这时候中位数就可能更能代表大多数同学的身高啦。
在复习的时候呢,咱们可以多做一些这样的小例子。
就像做游戏一样,做着做着就熟练啦。
比如说扔骰子,骰子有六个面,扔到每个面的概率都是六分之一。
咱们可以自己在本子上写一写扔两次骰子,得到不同点数组合的概率。
再想象一下,咱们在数小区里不同颜色花朵的数量,这也是数理统计呢。
咱们可以数一数红色的花有多少朵,白色的花有多少朵,然后算出红色花朵占总花朵数的比例,这也是一种概率的体现呀。
复习的时候可不要害怕犯错,就像我们学走路的时候也会摔倒一样。
概率统计练习题
第一章 随机事件及其概率习题一 、填空题:1.设A ,B ,C 为三个事件,用A 、B 、C 的运算关系表示(1)A 和B 都发生,而C 不发生为 ,(2)A 、B 、C 至少有两个发生的事件为 。
2.设A ,B 为两个互不相容的事件,P(A)=0.2, P(B)=0.4, P(A+B)= 。
3.设A ,B ,C 为三个相互独立的事件,已知P(A)=a, P(B)=b, P(C)=c,则A ,B ,C 至少有一个发生的概率为 。
4.把一枚硬币抛四次,则无反面的概率为 ,有反面的概率为 。
5.电话号码由0,1,……9中的8数字排列而成,则电话号码后四位数字全都不相同的概率表示为 。
6.设公寓中的每一个房间都有4名学生,任意挑选一个房间,则这4人生日无重复的概率表示为 (一年以365天计算)。
7. 设A ,B 为两个事件,P(A)=0.4, ,P(B)=0.8,P(B A )=0.5,则P(B|A)= 。
8.设A ,B ,C 构成一个随机试验的样本空间的一个划分,且7.0)(,5.0)(==B P A P ,则P(C)= ,P(AB)= 。
9.设A ,B 为两个相互独立的事件,P(A)=0.4,P(A+B)=0.7,则P(B)= 。
10.3个人独立地猜一谜语,他们能够猜出的概率都是31,则此谜语被猜出的概率为 。
二 、选择题 :1. 设A 与B 是两随机事件,则AB 表示( )(A )A 与B 都不发生 (B )A 与B 同时发生(C )A 与B 中至少有一个发生 (D )A 与B 中至少有一个不发生 2.设c B A P b B P a A P =⋃==)(,)(,)(,则)(B A P 为 (A )b a -(B )b c -(C ))1(b a -(D ))1(c a -3.若A ,B 是两个互不相容的事件,P (A )>0,P (B )>0,则一定有( ) (A )P (A )=1—P (B ) (B ) P (A|B )=0 (C ) P (A|B )=1 (D )P (A |B )=04. 每次试验失败的概率为p (0<p<1),则在3次重复试验中至少成功一次的概率为( )(A ))1(3p - (B)3)1(p -(C) 31p - (D)13C 3)1(p p -三、计算:1.掷两颗质地均匀的骰子,求出现的两个点数之和等于5的概率。
概率统计与初步(复习题8)
在一次试验中,不可能同时发
生的两个事件称为互斥事件.
A.运动员射击一次,事件A={命中环数大于8}与事件B={命中环数小于6}
B.某班统计数学考试成绩,事件A={成绩不低于90分}与事件B={成绩不高于90分}
C.抛掷一颗质地均匀的骰子,事件A={向上的一面出现奇数点}与事件B={向上的一面出现5点}
解:事件基本总数有36种
向上的点数之和是7的有(1,6);(2,5);(3,4);(4,3);(5,2);(6,1)
共6种情况
∴向上的点数之和是7的概率为 .
2.甲乙两人做猜拳游戏(锤子、剪刀、布),求:
(1)两人平局的概率;
(2)甲获胜的概率;
(3)乙获胜的概率.
解:所有的基本事件有 × = 种
7.已知事件A与事件B是互斥事件,P(AUB)=1,P(A)=0.3,则P(B)= 0.7 .
8从甲、乙、丙三名学生中任选两名参加比赛,丙被选中的概率是
.
9.某学校要了解实习学生的情况,从500名实习学生中用系统抽样的方法抽取50名学
生,则分段的间隔为
ቤተ መጻሕፍቲ ባይዱ
10 .
10.将样本容量为100的数据分成8组,见表8-16:
2.下列实验中是古典概型的是( C )
A.测量某校任意学生的身高
如果一个随机试验具有如下性质:
(1) 有限性 (2) 等可能性
称这样的随机试验为古典概型.
B.了解某个学生每天观看微信的次数
C.抛掷一颗质地均匀的骰子,观察向上的点数
D.评估灯泡的使用寿命
3.下列选项中两个事件为互斥事件的是( A )
− ) +( − ) + ⋯ ( − ) ]中
2010届北京高考数学模拟题汇编之概率统计(理)
17. (本小题共13分)在一次考试中共有8道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.某考生有4道题已选对正确答案,其余题中有两道只能分别判断2个选项是错误的,还有两道题因不理解题意只好乱猜. (Ⅰ) 求该考生8道题全答对的概率;(Ⅱ)若评分标准规定:“每题只选一个选项,选对得5分,不选或选错得0分”,求该考生所得分数的分布列.解:(Ⅰ)说明另四道题也全答对,相互独立事件同时发生,即:64141412121=⨯⨯⨯ (Ⅱ)答对题的个数为4,5,6,7,8,其概率分别为:()649434321214=⨯⨯⨯==ξP ()64242434121212434321215=⨯⨯⨯⨯+⨯⨯⨯⨯==ξP()64226==ξP ()6487==ξP ()==ξ8P 64141412121=⨯⨯⨯分布列为:16.(本小题共13分)甲、乙两位同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随Ⅰ.现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;Ⅱ.若将频率视为概率,对乙同学在今后的3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为X ,求X 的分布列及数学期望EX . 解:Ⅰ.本小题的结论唯一但理由不唯一,只要考生从统计学的角度给出其合理解答即可得分。
由茎叶图知甲乙两同学的成绩分别为: 甲:82 81 79 88 80 乙:85 77 83 80 85(1)派乙参赛比较合适,理由如下:_______2分甲的平均分82x =甲,乙的平均分82x =乙, 甲乙平均分相同;又甲的标准差的平方(即方差)210S =甲,乙的标准差的平方(即方差)29.6S =乙,22S S >乙甲_______5分 甲乙平均分相同,但乙的成绩比甲稳定,∴派乙去比较合适;_______6分 (2)(参照理由1给分)派乙去比较合适,理由如下:_______2分从统计学的角度看,甲获得85分以上(含85分)的概率115P = 乙获得85分以上(含85分)的概率225P =,_______5分 甲的平均分82x =甲,乙的平均分82x =乙,平均分相同;∴派乙去比较合适. _______6分若学生或从得82分以上(含82分)去分析:甲获得82分以上(含82分)的概率125P =乙获得82分以上(含82分)的概率235P =,甲的平均分82x =甲,乙的平均分82x =乙,平均分相同; ∴派乙去比较合适.(同样给此问的分)Ⅱ.记乙同学在一次数学竞赛中成绩高于80分为事件A ,∴3()5P A =∴5EX =(或X 服从二项分布3(3,)5B ,EX np =95=同样给分)17.(13分)在某次抽奖活动中,一个口袋里装有5个白球和5个黑球,所有球除颜色外无任何不同,每次从中摸出2个球,观察颜色后放回,若为同色,则中奖。
《概率统计》第二章习题解答
解 ,可认为进行5次独立试验,设Y为寿命大于1500小时的只数,Y~b(5,2/3), 至少有2只寿命大于1500小时的概率是
23.设顾客在某银行的窗口等待服务的时间X(以小时计算)服从指数分布,其概率密度为
某顾客在窗口等待服务,若超过10分钟,他就离开,他一个月要到银行5次,以Y表示一个月内他未等到服务而离开窗口的次数,写出Y的分布律,并求概率。
解 离开的概率为
=0.5167
24.设k在(0,5)上服从均匀分布,求方程
有实根的概率。
解 当 时,方程有实根,即或时,有实根,则有实根的概率为
当x[-1,1]时;
当x时,F(x)=1, 即
F(x)=
(2)利用分段积分可求F(x)
21.(1)由统计物理学知,分子运动速度的绝对值X服从马克思韦尔分布,其概率密度为
f(x)=
其中为常数,T为绝对温度,m是分子的质量,试确定常数A。
3/10
6/10
2. 一颗骰子抛掷两次,以X表示两次得到的点数之和,以X表示两次中得到的小的点数,
试分别求X的分布律。
解:两颗骰子相互独立,利用古典概型的算法可求出结果如下
(1)
2
3
4
5
6
7
8
9
10
111
解 (1)可视为古典概型问题,总挑法种数为,则成功一次的概率为
(2)设成功次数为X,则X~b(10,1/70)
因为能成功次的概率特别小所以可认为他确有区分的能力。
10.有一繁忙的汽车站,每天有大量汽车通过,设每辆汽车在一天的某时段内出事
p
(3) 参数为,=0.918
概统练习答案
一、填空题1.某学生做一选择题,他(她)会做的概率是0.7,若不会做就乱猜,而猜对答案的概率是0.25。
现在已知他(她)答对了,那么他(她)是猜对答案的概率是_____0.0967_______。
2.设随机变量X 服从正态分布N (0,1),Y =2X -1,E (Y)= -1 ; 3 设X 服从N (2,4)的分布,Y 服从参数为1/2的指数分布,且X 与Y 相互独立,则D(2X+Y)= 20 ;4.设X,Y 为两个随机变量,且E(X)=-2,E(Y)=2,D(X)=1,D(Y)=4,5.0),(-=Y X ρ,则P(|X+Y|≥6)≤5.统计量的定义是_________样本的函数且不含任何未知参数______________________。
6.设∧θ是θ的一个估计量,且∧θE =1-n n θ,则θ的一个无偏估计量是____-n 1ˆnθ____________。
7.设n X X ,,1 是总体X 的一个样本,D(X )=σ2的无偏估计量是 *2S。
8 设n X X ,,1 是总体X 的一个样本,则∑=--ni iX Xn 12)(11是D(X )=σ2的 无偏 估计量。
9.设X 1,X 2是取自分布为N (μ,1)的总体X 的样本,则两个无偏估计量,4341ˆ211X X +=μ2122121ˆXX +=μ中有效的是 2ˆμ; 10.如果随机变量X ~)1,0(N ,Y ~)1,0(N ,且X 与Y 独立。
则随机变量Z =YX 22服从参数为___(1,1)_____的_____F ___分布。
11.若总体),(~2σμN X 从中抽取样本为n X X ,,1 ,则μ的矩估计量是X;12.设X~P(λ),λ为未知参数,X 1, X 2,…, X n 是来自X 的样本,则P(X=0)的极大似然估计量为X e -13.设X~N(μ,σ2), μ,σ2为未知参数,X 1, X 2,…, X n 是来自X 的样本,则P(X>2)的极大似然估计量为2X 1()S--Φ14.假设总体X 服从正态分布N(μ,9), X 1, X 2,…, X n 是X 的一个样本,要使样本均值X 满足概率不等式90.0)11(≥+<<-X X P μ,则样本容量n 最小应取2515.设X~N(μ,σ2), σ2已知,则总体均值μ的置信区间长度L 与置信度1-α的关系是:当1-α缩小时,L 变 短16.设X~N(μ,σ2), σ2为未知参数,X 1, X 2,…, X n 是来自X 的样本,则对于假设H 0: μ=μ0; H 1: μ>μ0-≥1u α(显著性水平为α).17.在单因素方差分析中,试验因素A 的r 个水平的样本总容量为n ,则当原假设H 0成立时2σSSA服从 2χ(r-1) 分布;18.在单因素方差分析中,试验因素A 的r 个水平的样本总容量为n ,则当原假设H 0成立时MSA/MSE 服从 F(r-1,n-r) 分布; 19.在一元线性回归分析中,r =lll yyxxxy称为Y x 与的观测值的相关系数,它可反映Y 与X 的__线性______关系的密切程度。
15道选择题蒙对4道及以上的概率
15道选择题蒙对4道及以上的概率
摘要:
1.题目介绍
2.概率计算方法
3.结论
正文:
一道选择题,有四个选项,其中只有一个是正确的。
如果我们对此一无所知,随机选择一个答案,那么我们答对的概率是1/4,即25%。
这就是概率最基本的计算方式:某个事件发生的次数除以总的可能性次数。
现在,我们考虑15 道这样的选择题。
如果我们随机猜测,那么平均来说,我们可能会答对多少题目呢?
我们可以用一种叫做“二项分布”的数学工具来计算。
二项分布是描述在n 次独立的、相同概率的伯努利试验中成功的次数的概率分布。
在这个问题中,每一次选择题都是一个伯努利试验,我们答对题目的概率是1/4,答错的概率是3/4。
如果我们随机猜测,答对一道题目的概率是1/4,答错一道题目的概率是3/4。
那么,答对4 道及以上题目的概率是多少呢?
根据二项分布的计算公式,我们可以得到:
P(X=4) = C(15,4) * (1/4)^4 * (3/4)^11
其中,C(15,4) 表示从15 道题目中选择4 道题目的组合数。
计算后,我们得到的结果是0.203,也就是20.3%。
所以,如果我们随机猜测,那么答对15 道选择题中的4 道及以上的概
率是20.3%。
然而,这只是一个平均值。
实际上,随机猜测并不能提高我们的答题正确率。
彩票中的概率统计问题
彩票中的概率统计问题随着福利彩票和体育彩票在全国各地普遍发行,一股购买彩票、谈论彩票中奖的热潮,正在各个城市兴起.各家大、小报纸,不时刊登摸彩、中奖的消息和评论.这些文字中有时也谈到摸彩与数学的关系.但是,说也不详,论而不确.因此有从数学的角度加以澄清的必要.何况,彩票与概率统计知识十分密切,这正是中学数学联系社会实际的好材料.本文就用概率统计的方法,来谈谈彩票的中奖率、数学期望和大奖的随机性.当然,这首先要了解彩票的玩法和设奖方式.目前政府允许发行的两种彩票──福利彩票和体育彩票,其玩法和设奖方式是不同的.即使同一种彩票,各省市也略有不同.现以安徽电脑型体育彩票和“安徽风采”电脑福利彩票为例,分别予以说明.1 电脑型体育彩票1.1玩法和设奖方式彩票玩法比较简单,2元买一注,每一注填写一张彩票.每张彩票由一个6位数字和一个特别号码组成.每位数字均可填写0、1、…、9这10个数字中的一个;特别号码为0、1、2、3、4中的一个.每期设六个奖项,投注者随机开出一个奖号──一个6位数号码,另加一个特别号码即0~4中的某个数字.中奖号码规定如下:彩票上填写的6位数与开出的6位数完全相同,而且特别号码也相同──特等奖;6位数完全相同──一等奖;有5个连续数字相同──二等奖;有4个连续数字相同──三等奖;有3个连续数字相同──四等奖;有2个连续数字相同──五等奖.每一期彩票以收入的50%作为奖金.三、四、五等奖的奖金固定,特、一、二等奖的奖金浮动.例如,如果一等奖号码是123456,特别号为0,那么各等奖项的中奖号码和每注奖金,如下表所列:1.2中奖概率以一注为单位,计算每一注彩票的中奖概率.特等奖──前6位数有106种可能,特别号码有5种可能,共有106×5=5000000种选择,而特等奖号码只有一个,因此,一注中特等奖的概率为:P0=1/5000000=2×10-7=0.0000002;一等奖──前6位数相同的,只有一种可能,故中一等奖的概率为:P1=1/1000000=10-6=0.000001;二等奖──有20个号码可以选择,故中二等奖的概率为:P2=20/1000000=0.00002;三等奖──有300个号码可以选择,故中三等奖的概率为:P3=300/1000000=0.0003;四等奖──有4000个号码可以选择,故中四等奖的概率为:P4=4000/1000000=0.004;五等奖──有50000个号码可以选择,故中五等奖的概率为:P5=50000/1000000=0.05.合起来,每一注总的中奖率为:P=P0+P1+P2+P3+P4+P5=0.0543212≈5.4%,这就是说,每1000注彩票,约有54注中奖(包括五等奖到特等奖).1.3彩票中奖的期望值因为体育彩票和福利彩票一样,奖金的返还率为50%,所以,从总体上来说,每一注彩票的期望值应该是1元.现在,我们来实际计算一下,看是否如此.彩票的期望值依赖两个因素,一是各个奖级的中奖概率,一是各个奖级的奖金数额.中奖概率已经计算出,体彩的三、四、五等奖,已经知道;但前三个奖级的奖金是浮动的,需要进行估计.根据规定,这三种奖级的奖金与三个因素有关,一是当期奖金总额,即销售的彩票总注数;二是上期“奖池”中的累积奖金;三是滞留下期“奖池”的奖金.综合这几种因素,再结合对2001年2—4月发行的20期获奖情况统计的平均值,可以作如下假定:第一,每一期售出100万注,奖金总额为100万;第二,每期前三个奖级奖金取平均值;第三,奖池的累积奖金以平均值计算.结果如下:从而,算得期望值E=0.0000002×2000000+0.000001×50000+0.00002×5000+0.0003×300+0.004×20+0.05×5=0.4+0.05+0.1+0.09+0.08+0.25=0.97(元),即每一注体育彩票的中奖的期望值约为0.97元.这与理论值(1元)非常接近.2 “安徽风采”电脑福利彩票2.1玩法和设奖方式“安徽风采”电脑福利彩票,采取国际上通行的33选7的玩法,2元一注,每一注填写一张彩票,从01、02、…、33这33个号码中,选取7个号码.每一期开出7个号码,以及一个特别号码.中奖号码如下表所示:2.2中奖概率也是以一注为单位,计算一注中奖的概率.为简单起见,我们建立一个摸球模型:假设袋子里有33个球,其中有7个红球,1个黄球和25个白球.红球为中奖号码,黄球为特别号码,白球为其他号码.于是,每一注彩票,就相当于一次从袋子中摸出7个球来,如果摸出7个红球,即为一等奖;摸出6个红球、一个黄球,即为二等奖;摸出6个红球、一个白球,即为三等奖;摸出5个红球、一个黄球、一个白球,即为四等奖;摸出5个红球、两个白球,即为五等奖;摸出四个红球、一个黄球、两个白球,为六等奖;摸出4个红球、3个白球,或者3个红球、一个黄球、三个白球,为七等奖.因此,各个奖级选中的概率为:合起来,每一注中奖的概率为:P=0.0417848=4.17848%≈4.18%,即每10000注彩票中,约为418注中奖(包括各个奖级).2.3福利彩票中奖的期望值福利彩票各奖级的概率、奖金数额列表如下:其中一、二、三等奖的奖金数额,是根据2001年2—4月发行的22期的实际情况统计的平均值,进行估计的.期望值E=0.000000234×1970000+0.000005638×35910+0.000040964×2458+0.00012289×500+0.00147475×50+0.00245783×10+0.03768687×5=0.394+0.201096+0.1005322+0.0614+0.0733735+0.0245783+0.188434=0.8426793≈0.84(元),即每一注福利彩票的期望值约为0.84元.这与彩票规定的50%的返奖率和理论期望值──1元,也相差不大.之所以存在误差,主要是由于对前三个奖级奖金的估计,以及“奖池”中累计奖金估计的误差而造成的.3 中奖号码的随机性随着彩票市场的发展,“彩民”们越来越关注每一期的中奖号码,各地晚报上也不时发表谈论彩票的文章.有的说中奖号码没有规律,有的则振振有词地说有“规律”.那么中奖号码到底有没有“规律”可循?3.1就每一期的中奖号码来说,是没有规律的我们知道,每一期开奖,都是用号码机公开摇奖.这样摇出来的中奖号码,应该相信是随机的,即0、1、……、9这10个数字,出现在中奖号码的每一个数位上的可能性,都是相等的.因此,就每一个中奖号码来说,它的出现是毫无规律可言的,因此是事先猜不到的.现在甚至有所谓“预测”彩票中奖号码的电脑软件,不过是假借此偶然性来推测偶然性的游戏,是不足为信的.3.2从总体上来说,中奖号码又服从某些统计规律从概率统计的观点来说,对于多次开奖开出的中奖号码,又具有某些统计规律.例如,体育彩票是由6个中奖号码和一个特别号码组成的,每一个中奖号码上出现0、1、…、9的可能性相等,即其出现的概率都是0.1,因此它的数学期望是:(0+1+…+9)×0.1=4.5.所以6个基本号码的和的数学期望是4.5×6=27.这就是说,尽管每一个中奖号码是随机的,但是,它的6个数字之和,其平均值为27.又可以算得其均方差为17.由概率论的中心极限定理知,中奖号码各个数字之和X,服从正态分布:由此可知,|X-27|≤17即10≤X≤44的概率为68.26%.即中奖号码各个数字之和,在27附近的可能性较大.同样,“安徽风采”中每个基本号码(二位数)值的数学期望是(01+02+…+33)×1/33=17,7个基本号码──7个二位数的的期望值为119.亦即,中奖号码的7个二位数之和为119的可能性也较大.再一个统计规律是:中奖号码中数字的重复率不会很高.例如,体育彩票中奖号码6个数字中有3个相同的概率,只有0.01.。
二十五个选择题都懵错的概率
二十五个选择题都懵错的概率
按照一般情况下,选择题的答案选项是四个,其中只有一个是正确的。
也就是说,如果真的是依靠蒙的话,错误率是75%。
如果按照概率统计的角度考虑,二十五道选择题题同样的做法,完全错误率就是75%的25次方(具体数字就不算了,手机上没有这个功能),其实应该是很低的。
但是,凡事不可太绝对,很多时候概率只是理论上的判断,实际上,如果真的是全部靠蒙的哦,全部错误的机会还是挺大的,所以学习还需要认真,书到用时方恨少,平时多下点功夫,考试的时候就不慌了。
选择题怎么选正确率高拓展资料:每道选择题只有一个立意,即一个中心思想。
因而,看到试题后应认真阅读,并很快归纳出中心思想,最后用一句话的形式提出立意。
然后再看设问,就能很快找出答案。
题目几乎都有明显的暗示信息。
一般情况下,每道选择题的关键词大多在题干的最后一句话中,如“范围关键词”:经济学道理……、哲学道理……等;“内容关键词”:措施是……、制度是……等;“形容词关键词”:根本……、主要……等;“动词关键词”:表明……、说明……、体现……等。
立意和关键词相结合的方法对做难度稍大的题目有较大的帮助。
选择题非常容易猜测。
特别是难题,如果这些题大多数人都不会,每一个人都有猜测得分的机遇。
先用排除法排除能确认的干扰项,一般比较容易排除两个,其余两项肯定有一个是正确答案,而我们只要看哪个选项和题目表述的内容更加契合,就有非常高的概率选对。
对于选择题,基础再不好的同学也有四分之一中标的概率,而对于大题来说,只要你第一感觉不会做这道题,如果没有思路的话,别说四分之一,四百分之一中标的概率都不可能。
多选题选对三个的概率
多选题选对三个的概率
1、多选题,不确定的情况下,选三个的概率比只选两个或者四个的概率要高得多。
2、任何考试,用词绝对化就有极大的可能有鬼,而法考作为比较严谨的考试,所有、一定、唯一、凡是、全部、任何这些用词就是高风险词,否定的方法很简单,找个反例就可以用排除法。
3、既然上面第二点说了法考是比较严谨的考试,那么与绝对化的词相反,严谨的用词,大部分情况下都是对的,有些、一定程度上、可能,这个时候你要是挑不出什么大毛病,那就方向大胆的选。
4、混淆概念,什么意味着什么,什么等于什么,什么即什么前后真的对等吗?多问问自己。
实际上,很多时候这种坑就是在偷换和混淆概念。
5、有的选项之间,只要A对,那么B一定对,那么你不能只选一个。
或者只要A对,B一定不对,你也不能两个都选。
选项之间也是可以相互提示的,有的题目可以联系起来看,不要割裂的看。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多选题猜不猜的概率统计
战略决定成败,多选题到底猜不猜?
对于多选题,我们假设有把握选对1个,且讨论过程中不讨论猜错的后续情况,因为一旦猜错,后面再讨论已经没有意义。
(一)如果本题有4个正确答案:
猜第2个答案的时候,猜对的概率是3/4,猜对后增加分数0.5分,即理论增加0.5x3/4=3/8分。
猜错的概率为1/4,猜错损失0.5分,即理论减少0.5x1/4=1/8分。
猜第3个答案的时候,猜对的概率为2/3,猜对后增加分数0.5分,即理论增加0.5x2/3=1/3分。
猜错的概率为1/3,猜错后损失1分,即理论减少1x1/3=1/3分。
猜第4个答案的时候,猜对的概率为1/2,猜对后增加分数0.5分,即理论增加0.5x1/2=1/4分。
猜错的概率为1/2,猜错后损失1.5分,即理论减少1.5x1/2=3/4分。
(二)如果本题有3个正确答案:
猜第2个答案的时候,猜对的概率是2/4,猜对后增加分数0.5分,即理论增加0.5x2/4=1/4分。
猜错的概率为2/4,猜错损失0.5分,即理论减少0.5x2/4=1/4分。
猜第3个答案的时候,猜对的概率为1/3,猜对后增加分数1分,即理论增加1x1/3=1/3分。
猜错的概率为2/3,猜错后损失1分,即理论减少1x2/3=2/3分。
(三)如果本题有2个正确答案:
猜第2个答案的时候,猜对的概率是1/4,猜对后增加分数1.5分,即理论增加1.5x1/4=3/8分。
猜错的概率为3/4,猜错损失0.5分,即理论减少0.5x3/4=3/8分。
结论:
第2个答案要猜,因为3种情况中有一种收益大于损失,两种收支平衡。
第3个答案不要猜。
因为2种情况中一种收支平衡,一种收益小于支出。
第4个答案不要猜。
因为只有1种情况,就是收益小于支出。