巧解椭圆离心率的取值范围

合集下载

椭圆离心率取值范围解题策略

椭圆离心率取值范围解题策略

椭圆离心率取值范围解题策略离心率是高中“圆锥曲线”的一个重要几何性质,是三种圆锥曲线统一定义的桥梁和纽带,是研究圆锥曲线其他性质的基础,它是一个比值椭圆的离心率是刻画椭圆“扁圆”程度的基本量之一.在我们的教材中直接给出了离心率的定义,并没有明确解释为什么把这个比值作为椭圆的离心率.如果教师在教学中只是告诉学生这是“人为规定”,学生没有经历概念的产生和发展过程,就很难理解概念的本质,因此在运用概念解题时无从下手.本节课就是希望通过数学文化背景深入认识椭圆的离心率,从而更好地解决和椭圆离心率有关的问题.一、离心率定义的内涵在教材中焦距与长轴长的比值定义为椭圆的离心率.在教学中,许多学生会有这样的疑问:也可以刻画椭圆的扁圆程度,为什么不用它们定义椭圆的离心率?”其实作为椭圆的离心率更有优势,我们知道椭圆是平面上到两个定点F1,F2距离的和为常数2a的动点的轨迹(其中|F1F2|=2c,且2a>2c),此定义中涉及的参数是a和c,为了和椭圆的定义保持一致,所以用表示椭圆的离心率;另外,椭圆的第二定义是“到定点的距离与到定直线的距离的比值为常数的动点的轨迹”,而这个常数恰好是即椭圆的离心率.其实说椭圆的离心率是“人为规定”也未尝不可,因为在天文学中把天体运行轨道的离心率也叫作偏心率,描述的是某一天体椭圆轨道与理想圆形的偏离程度.天文学家发现太阳系中,行星是围绕着以太阳为焦点的椭圆形轨道运行的,所以行星和太阳之间的距离不是恒定的,其中离太阳最近的距离为a-c,离太阳最远的距离为a+c,也就是说偏心率就是衡量行星偏离太阳的程度,所以用表示椭圆的偏心率更符合客观实际.二、椭圆离心率取值范围的几种求法求椭圆离心率的取值范围是高考经常考查的热点问题之一,这类题涉及解析几何、平面几何、代数等多个知识点,综合性强、方法灵活,解题关键是构造关于a,c或e的不等式,下面用几个实例通过构造不等式求椭圆离心率的取值范围.1.利用椭圆的范围构造不等式例1 设椭圆的左、右焦点分别为F1,F2,若椭圆上存在点P,使得∠F1PF2=90°,求椭圆离心率e的取值范围.解:设点P的坐标为(x,y),点F1的坐标为(-c,0),点F2的坐标为(c,0),则有因为∠F1PF2=90°,得则即(x+c)(x-c)+y2=0,整理得x2+y2=c2,将其与椭圆方程联立,消去y,可得由椭圆上点的坐标的范围可知,0≤x2<a2,解得c2≥b2,即所以2.利用二次方程判别式构造不等式以上题为例.解:由椭圆的定义可知|PF1|+|PF2|=2a,所以有+2|PF1|·|PF2|=4a2,又因为∠F1PF2=90°,所以=4c2,由此可得|PF1|·|PF2|=2(a2-c2),所以|PF1|,|PF2|可以看作二次方程x2-2ax+2(a2-c2)=0的两实根.所以Δ=4a2-8(a2-c2)≥0,整理得所以3.利用焦半径的取值范围构造不等式例2 已知椭圆的左、右焦点分别为F1,F2,椭圆上存在一点P,使得线段PF1的中垂线经过焦点F2,则椭圆离心率e的取值范围是______.图1解:如图1,因为线段PF1的中垂线经过焦点F2,所以|PF2|=|F1F2|=2c,即椭圆上存在一点P,使得|PF2|=2c.所以|PF2|=2c≥a-c,所以a≤3c,所以即4.利用均值不等式构造不等式例3 设F1,F2是椭圆的两个焦点,若椭圆上任意一点M都满足∠F1MF2为锐角,则椭圆离心率的取值范围是( ).解:因为又因为∠F1MF2为锐角,所以又因为-4c2=(|MF1|+|MF2|)2-2|MF1||MF2|-4c2>0,所以|MF1||MF2|<2a2-2c2,由均值不等式得所以a2<2a2-2c2,解得所以图25.利用椭圆中重要结论构造不等式以上题为例.解:如图2,当M移动到椭圆的短轴的端点B时,∠F1MF2最大.由已知可知,∠F1BF2为锐角,即∠F1BO<45°,在Rt△F1BO中,所以6.利用题设中的已知条件构造不等式例4 已知椭圆的右焦点为F,短轴的一个端点为M,直线l:5x-12y=0交椭圆于A,B两点,若|AF|+|BF|=6,点M到直线l的距离不小于则该椭圆E的离心率的取值范围是( ).图3解:如图3所示,设F1为椭圆的左焦点,连接AF1,BF1,则四边形AFBF1为平行四边形,所以6=|AF|+|BF|=|AF1|+|AF|=2a,所以a=3.取M(0,b),因为点M到直线l的距离不小于所以解得b≥1,所以又因为0<e<1,所以椭圆E的离心率的取值范围是故选A.在新一轮课改的实施过程中,作为数学教师,需要在平时的教学中,适时地引导学生探究出问题的本源,只有这样深入才能使学生更容易掌握解决问题的方法.而椭圆离心率取值范围的解法灵活多样,综合性强,需要我们认真分析题意,探究问题本源,才能找到最佳突破口,从而准确、快速地解决问题.参考文献:[1]王侠.椭圆离心率的深入认知及基本求法[J].中小学数学,2013(4).[2]黄贻淦.如何建立不等式求离心率的范围[J].数理化解题研究,2012(2).[3]林风,林善柱.数学概念教学要重视其生成过程——“椭圆离心率及其应用”的教学思考[J].中学数学教学参考(上),2017(12).*基金项目:本文系2018年度甘肃省教育科学“十三五”规划重点课题“基于核心素养下的数学史融入高中数学教学的实践”(课题编号:GS[2018]GHB3863)的阶段性成果之一.。

求离心率取值范围的八种方法-求离心率的方法总结

求离心率取值范围的八种方法-求离心率的方法总结
例 1 在 给 定 椭 圆 中 , 焦 点 且 垂 直 于 长 轴 的 弦 长 : 过
为 , 焦点 到相 应 准 线 的 距 离 不 小 于 1 则 该 椭 圆 的 离 .
心 率 的 取值 范 围是 (
A.( , ) 1

B ( ) . 0,
解 析 : z一 2 C
解 析 :设 F一目 由 I — l :2 l , PF1 l PF2 1 a, PF】 一 l

5 ・ 4
数 学教 育研 究
21 0 1年第 4 期
4j PF
得I 警 l 警. 目 :F= ' l ' 一 P P 一 . F 2 一s
1 7 9
焦 点 F作 双 曲线 在 第 一 , 象 限 的渐 近 线 的垂 线 z若 z 三 . 与 曲 线 C的 两 支 各 有 一 个 交 点 . 双 曲 线 离 心 率 的 取 求 值范围.
2 1 年 第 4期 01
数 学 教 育 研 究
・ 3 5 ・
求 离 心率 取值 范 围的八 种方 法
方 海 兵 ( 安徽省太和县第八中学 260) 360
离 , 是 圆 锥 曲 线 的 一 个 重 要 性 质 , 近 几 年 高 l f 率 在
. ・ .
考 中频 繁 出现 , 求 离 心 率 的 取 值 范 围 又 是 较 为 复 杂 而 的 一种 , 面 介 绍 八 种 求 离 心 率 的 方 法 , 大 家 参 考 . 下 供
<2


’ . .
2 e< 5 . √ 。 P . < 。 ‘ <√ . l < ‘ 选 B .故 .

又 ・ . ・
一 1 .a - C ≥ ・ 2 ・ ≥ 2 2 .b ≥ .

妙解离心率问题(解析版)

妙解离心率问题(解析版)

妙解离心率问题【目录】考点一:顶角为直角的焦点三角形求解离心率的取值范围问题考点二:焦点三角形顶角范围与离心率考点三:共焦点的椭圆与双曲线问题考点四:椭圆与双曲线的4a 通径体考点五:椭圆与双曲线的4a 直角体考点六:椭圆与双曲线的等腰三角形问题考点七:双曲线的4a 底边等腰三角形考点八:焦点到渐近线距离为b考点九:焦点到渐近线垂线构造的直角三角形考点十:以两焦点为直径的圆与渐近线相交问题考点十一:渐近线平行线与面积问题考点十二:数形结合转化长度角度求椭圆或双曲线的离心率、与双曲线的渐近线有关的问题,多以选择、填空题的形式考查,难度中等.考点要求考题统计考情分析离心率2023年新高考I 卷第5、16题,10分2023年甲卷第9题,5分2022年甲卷第10题,5分2022年浙江卷第16题,4分2021年甲卷第5题,5分2021年天津卷第8题,5分离心率问题一直是高考每年必考,对圆锥曲线概念和几何性质的考查为主,一般不会出太难,二轮复习我们需要掌握一些基本的性质和常规的处理方法,挖掘椭圆双曲线的几何性质下手.求离心率范围的方法一、建立不等式法:1.利用曲线的范围建立不等关系.2.利用线段长度的大小建立不等关系.F 1,F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,PF 1 ∈a -c ,a +c ;F 1,F 2为双曲线x2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,PF 1 ≥c -a .3.利用角度长度的大小建立不等关系.F 1,F 2为椭圆x 2a 2+y 2b2=1的左、右焦点,P 为椭圆上的动点,若∠F 1PF 2=θ,则椭圆离心率e 的取值范围为sin θ2≤e <1.4.利用题目不等关系建立不等关系.5.利用判别式建立不等关系.6.利用与双曲线渐近线的斜率比较建立不等关系.7.利用基本不等式,建立不等关系.1(2023•新高考Ⅰ)设椭圆C 1:x 2a2+y 2=1(a >1),C 2:x 24+y 2=1的离心率分别为e 1,e 2.若e 2=3e 1,则a =()A.233B.2C.3D.6【答案】A【解析】由椭圆C 2:x 24+y 2=1可得a 2=2,b 2=1,∴c 2=4-1=3,∴椭圆C 2的离心率为e 2=32,∵e 2=3e 1,∴e 1=12,∴c 1a 1=12,∴a 21=4c 21=4(a 21-b 21)=4(a 21-1),∴a =233或a =-233(舍去).故选:A .2(2023•甲卷)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为5,C 的一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,则|AB |=()A.55B.255C.355D.455【答案】D【解析】双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为5,可得c =5a ,所以b =2a ,所以双曲线的渐近线方程为:y =±2x ,一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,圆的圆心(2,3),半径为1,圆的圆心到直线y =2x 的距离为:|4-3|1+4=15,所以|AB |=21-15=455.故选:D .3(2022•甲卷)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP ,AQ 的斜率之积为14,则C 的离心率为()A.32B.22C.12D.13【答案】A【解析】已知A (-a ,0),设P (x 0,y 0),则Q (-x 0,y 0),k AP =y 0x 0+a ,k AQ =y 0a -x 0,故k AP ⋅k AQ =y 0x 0+a ⋅y 0a -x 0=y 20a 2-x 20=14①,∵x 20a 2+y 20b 2=1,即y 20=b 2(a 2-x 20)a 2②,②代入①整理得:b 2a2=14,e =c a =1-b 2a 2=32.故选:A .4(2021•甲卷)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为()A.7B.13C.72D.132【答案】C【解析】设|PF 1|=m ,|PF 2|=n ,则根据题意及余弦定理可得:m =3n12=m 2+n 2-4c22mn,解得m =67cn =27c ,∴所求离心率为2c 2a =2c m -n =2c 47c=72.故选:C .5(2021•天津)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点与抛物线y 2=2px (p >0)的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C ,D 两点,若|CD |=2|AB |,则双曲线的离心率为()A.2B.3C.2D.3【答案】A【解析】解由题意可得抛物线的准线方程为x =-p2,由题意可得:p 2=c ,渐近线的方程为:y =±ba x ,可得A -c ,b 2a ,B -c ,-b2a ,C -c ,bc a ,D -c ,-bca,所以|AB |=2b 2a ,|CD |=2bca,由|CD |=2|AB |,解得:c =2b ,即a =b ,所以双曲线的离心率e =ca=2.故选:A .6(2022•甲卷)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1 ⋅BA 2=-1,则C 的方程为()A.x 218+y 216=1B.x 29+y 28=1C.x 23+y 22=1D.x 22+y 2=1【答案】B【解析】由椭圆的离心率可设椭圆方程为x 29m 2+y 28m 2=1(m >0),则A 1(-3m ,0),A 2(3m ,0),B (0,22m ),由平面向量数量积的运算法则可得:BA 1 ⋅BA 2=(-3m ,-22m )⋅(3m ,-22m )=-9m 2+8m 2=-1,∴m 2=1,则椭圆方程为x 29+y 28=1.故选:B .7(2022•全国)若双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与直线y =2x +1垂直,则C 的离心率为()A.5 B.5C.54D.52【答案】D【解析】由双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的方程可得渐近线方程为y =±b a x ,由题意可得b a =12,所以双曲线的离心率e =c a =1+b 2a 2=1+14=52,故选:D .8(多选题)(2022•乙卷)双曲线C 的两个焦点为F 1,F 2,以C 的实轴为直径的圆记为D ,过F 1作D 的切线与C 交于M ,N 两点,且cos ∠F 1NF 2=35,则C 的离心率为()A.52B.32C.132D.172【答案】AC【解析】当直线与双曲线交于两支时,设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),设过F 1的切线与圆D :x 2+y 2=a 2相切于点P ,则|OP |=a ,OP ⊥PF 1,又|OF 1|=c ,所以PF 1=OF 12-OP 2=c 2-a 2=b ,过点F 2作F 2Q ⊥MN 于点Q ,所以OP ⎳F 2Q ,又O 为F 1F 2的中点,所以|F 1Q |=2|PF 1|=2b ,|QF 2|=2|OP |=2a ,因为cos ∠F 1NF 2=35,∠F 1NF 2<π2,所以sin ∠F 1NF 2=45,所以|NF 2|=QF 2sin ∠F 1NF 2=5a 2,则|NQ |=|NF 2|⋅cos ∠F 1NF 2=3a2,所以|NF 1|=|NQ |+|F 1Q |=3a2+2b ,由双曲线的定义可知|NF 1|-|NF 2|=2a ,所以3a 2+2b -5a 2=2a ,可得2b =3a ,即b a =32,所以C 的离心率e =c a =1+b 2a 2=1+94=132.情况二:当直线与双曲线交于一支时,如图,记切点为A ,连接OA ,则|OA |=a ,|F 1A |=b ,过F 2作F 2B ⊥MN 于B ,则|F 2B |=2a ,因为cos ∠F 1NF 2=35,所以|NF 2|=5a 2,|NB |=3a2,|NF 2|-|NF 1|=5a 2-3a2-2b =a +2b =2a ,即a =2b ,所以e =c a =1+b 2a2=1+14=52,A 正确.故选:AC .9(2023•新高考Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2.点A 在C 上,点B 在y 轴上,F 1A ⊥F 1B ,F 2A =-23F 2B,则C 的离心率为.【答案】355【解析】(法一)如图,设F 1(-c ,0),F 2(c ,0),B (0,n ),设A (x ,y ),则F 2A =(x -c ,y ),F 2B=(-c ,n ),又F 2A =-23F 2B ,则x -c =23c y =-23n,可得A 53c ,-23n ,又F 1A ⊥F 1B ,且F 1A =83c ,-23n ,F 1B =(c ,n ),则F 1A ⋅F 1B =83c 2-23n 2=0,化简得n 2=4c 2.又点A 在C 上,则259c 2a 2-49n 2b 2=1,整理可得25c 29a 2-4n 29b2=1,代n 2=4c 2,可得25c 2a 2-16c 2b 2=9,即25e 2-16e 2e 2-1=9,解得e 2=95或15(舍去),故e =355.(法二)由F 2A =-23F 2B ,得|F 2A||F 2B |=23,设|F 2A |=2t ,|F 2B |=3t ,由对称性可得|F 1B |=3t ,则|AF 1 |=2t +2a ,|AB|=5t ,设∠F 1AF 2=θ,则sin θ=3t 5t =35,所以cos θ=45=2t +2a5t,解得t =a ,所以|AF 1 |=2t +2a =4a ,|AF 2|=2a ,在△AF 1F 2中,由余弦定理可得cos θ=16a 2+4a 2-4c 216a2=45,即5c 2=9a 2,则e =355.故答案为:355.10(2022•浙江)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,过F 且斜率为b4a 的直线交双曲线于点A (x 1,y 1),交双曲线的渐近线于点B (x 2,y 2)且x 1<0<x 2.若|FB |=3|FA |,则双曲线的离心率是.【答案】364.【解析】(法一)如图,过点A 作AA ′⊥x 轴于点A ′,过点B 作BB ′⊥x 轴于点B ′,由于B (x 2,y 2)且x 2>0,则点B 在渐近线y =b a x 上,不妨设B m ,bam ,m >0,设直线AB 的倾斜角为θ,则tan θ=b 4a ,则|BB ||FB |=b 4a ,即b am |FB|=b 4a ,则|FB ′|=4m ,∴|OF |=c =4m -m =3m ,又|AA ||BB |=|AF ||BF |=13,则|AA |=13|BB |=bm 3a =bc 9a ,又|FA ||FB|=|AF ||BF |=13,则|FA |=13|FB |=4m 3,则|x 1|=3m -4m 3=5m 3=5c 9,∴点A 的坐标为-5c 9,bc9a ,∴25c 281a 2-b 2c 281a 2b 2=1,即c 2a2=8124=278,∴e =c a =364.(法二)由y =b 4a (x +c )y =b a x,解得B c 3,bc 3a,又|FB |=3|FA |,所以点A 的纵坐标为y 1=bc9a,代入方程y =b 4a (x +c )中,解得x 1=-5c 9,所以A -5c 9,bc 9a ,代入双曲线方程中,可得c 2a 2=278,所以e =c a =364.故答案为:364.考点一:顶角为直角的焦点三角形求解离心率的取值范围问题顶角为直角的焦点三角形求解离心率的取值范围问题,如图所示:椭圆:e =1sin α+cos α=12sin α+π4,根据α范围求解值域.双曲线:e =1cos α−sin α=12cos α+π4,根据α范围求解值域.1(2024·重庆沙坪坝·高三重庆八中校考阶段练习)已知椭圆x 2a 2+y 2b2=1a >b >0 上一点A ,它关于原点的对称点为B ,点F 为椭圆右焦点,且满足AF ⊥BF ,设∠ABF =α,且α∈π12,π3,则该椭圆的离心率e 的取值范围是()A.22,3-1B.22,63C.3-1,63D.63,62【答案】B【解析】如图所示,设椭圆得左焦点为F ,连接AF ,BF ,则四边形AFBF 为矩形,则AB =FF =2c ,AF =BF ,所以BF +BF =BF +AF =2a ,在Rt △ABF 中,由∠ABF =α,得AF =AB sin α=2c sin α,BF =AB cos α=2c cos α,所以2c sin α+2c cos α=2a ,所以c a =1sin α+cos α=12sin α+π4,因为α∈π12,π3,所以α+π4∈π3,7π12,所以2sin α+π4∈62,2 ,所以e =c a ∈22,63.故选:B .1(2024·高三单元测试)已知椭圆x 2a 2+y 2b2=1(a >b >0)上有一点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且AF ⊥BF ,设∠ABF =α,且α∈π12,π6,则该椭圆的离心率e 的取值范围为()A.3-1,63 B.3-1,32C.64,63D.0,63【答案】A【解析】如图所示,设椭圆的左焦点为F ′,连接AF ′,BF ′.则四边形AFBF ′为矩形.因此|AB =|FF ′|=2c .|AF |+|BF |=2a .所以|AF |=2c sin α,|BF |=2c cos α.∴2c sin α+2c cos α=2a .∴e =1sin α+cos α=12sin α+π4,∵α∈π12,π6,∴α+π4∈π3,5π12,∴sin α+π4 ∈32,2+64,其中sin 5π12=sin π6+π4 =sin π6cos π4+cos π6sin π4=12×22+32×22=2+64,∴2sin α+π4 ∈62,1+32.∴e ∈3-1,63.故选:A .2(2024·宁夏银川·高三银川二中校考阶段练习)已知椭圆x 2a 2+y 2b2=1(a >b >0)上有一点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且满足AF ⊥BF ,设∠ABF =α,且α∈π12,π4,则该椭圆的离心率e 的取值范围为()A.22,63 B.3-12,32C.3-1,63D.22,32【答案】A【解析】设椭圆的左焦点为F ′,连接AF ,BF ,可知四边形AFBF 为矩形,从而可知AB =FF =2c ,且AF +BF =2a ,由∠ABF =α,可得AF =2c sin α,BF =2c cos α,结合2c sin α+2c cos α=2a ,可得ca=1sin α+cos α,根据α∈π12,π4 ,求出范围即可.如图所示,设椭圆的左焦点为F ′,连接AF ,BF,则四边形AFBF 为矩形,所以AB =FF =2c ,AF +BF =AF +AF=2a ,由∠ABF =α,可得AF =AB ⋅sin α=2c sin α,BF =AB ⋅cos α=2c cos α,∴2c sin α+2c cos α=2a ,即c a =1sin α+cos α=12sin α+π4,∵α∈π12,π4,∴α+π4 ∈π3,π2 ,∴sin α+π4 ∈32,1 ,∴2sin α+π4 ∈62,2 ,∴e =c a ∈22,63.故选:A .3(2024·河南驻马店·高三统考期末)已知双曲线C :x 2a 2-y 2b2(a >b >0)右支上非顶点的一点A 关于原点O 的对称点为B ,F 为其右焦点,若AF ⋅BF =0,设∠BAF =θ且θ∈π4,5π12,则双曲线C 离心率的取值范围是()A.(2,2] B.[2,+∞) C.(2,+∞) D.(2,+∞)【答案】C【解析】如图所示,设双曲线的左焦点为F ,连接AF ,BF ,因为AF ⋅BF=0,所以四边形AFBF 为矩形,所以AB =FF =2c ,因为AF =2c cos θ,BF =2c sin θ,AF -AF =2a ,所以2c sin θ-2c cos θ=2a ,所以e =1sin θ-cos θ=12sin θ-π4,∵θ∈π4,5π12 ,∴θ-π4∈0,π6 ,2sin θ-π4 ∈0,22 ,∴e ∈2,+∞ ,故选:C考点二:焦点三角形顶角范围与离心率F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的焦点,点P 在椭圆上,∠F 1PF 2=θ,则cos θ≥1−2e 2(当且仅当动点为短轴端点时取等号).1(2024·辽宁葫芦岛·高三统考期末)已知点F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,点P 是椭圆上的一个动点,若使得满足ΔPF 1F 2是直角三角形的动点P 恰好有6个,则该椭圆的离心率为()A.12B.32C.22D.33【答案】C【解析】由题意知,椭圆的最大张角为900,所以b =c ,所以a =2c ,所以e =c a =22=22,故选:C .1(2024·江西抚州·高三统考期末)设F 1,F 2是椭圆的两个焦点,若椭圆上存在点p ,使∠F 1PF 2=120°,则椭圆离心率的取值范围是()A.0,32B.0,32C.32,1D.32,1【答案】D【解析】F 1(-c ,0),F 2(c ,0),c >0,设P x 1,y 1 ,则|PF 1|=a +ex 1,|PF 2|=a -ex 1.在△PF 1F 2中,由余弦定理得cos120°=-12=a +ex 1 2+a -ex 1 2-4c 22a +ex 1 a -ex 1,解得x 21=4c 2-3a 2e 2.∵x 21∈0,a 2,∴0≤4c 2-3a 2e 2<a 2,即4c 2-3a 2≥0.且e 2<1∴e =c a ≥32.故椭圆离心率的取范围是e ∈32,1 2(2024·宁夏·高三校联考阶段练习)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,若椭圆C 上存在点P ,使得PF 1⊥PF 2,则椭圆的离心率的取值范围为()A.12,22B.22,1 C.0,22D.12,22【答案】B【解析】若椭圆C 上存在点P ,使得PF 1⊥PF 2,即以F 1F 2为直径的圆与椭圆C :x 2a 2+y 2b2=1(a >b >0)有交点,设F 1(-c ,0),F 2(c ,0),x 2+y 2=c 2x 2a 2+y 2b 2=1,解得x 2=(2c 2-a 2)⋅a 2c 2≥0,即2c 2-a 2≥0,e ≥22,又0<e <1,故e ∈22,1.故选:B .3(2024·高三课时练习)已知椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1、F 2,若椭圆上存在点P 使得∠F 1PF 2是钝角,则椭圆离心率的取值范围是()A.0,22B.22,1C.0,12D.12,1【答案】B【解析】当动点P 从椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角∠F 1PF 2渐渐增大,当且仅当P 点位于短轴端点P 0处时,张角∠F 1PF 2达到最大值.∵椭圆上存在点P 使得∠F 1PF 2是钝角,∴△F 1P 0F 2中,∠F 1P 0F 2>90°,∴Rt △OP 0F 2中,∠OP 0F 2>45°,∴b <c ,∴a 2-c 2<c 2,∴a 2<2c 2,∴e >22,∵0<e <1,∴22<e <1.椭圆离心率的取值范围是22,1,故选B .考点三:共焦点的椭圆与双曲线问题sin 2α2e 椭2+cos 2α2e 双2=1,与基本不等式联姻求解离心率的取值范围1(2024·全国·高三专题练习)已知椭圆和双曲线有共同的焦点F 1,F 2,P 是它们的一个交点,且∠F 1PF 2=π3,记椭圆和双曲线的离心率分别为e 1,e 2,则当1e 1e 2取最大值时,e 1,e 2的值分别是()A.22,62B.12,52C.33,6 D.24,3【答案】A【解析】不妨设椭圆与双曲线的标准方程分别为:x 2a 2+y 2b 2=1a >b >0 ,c =a 2-b 2,x 2a 21-y 2b 21=1,c =a 21+b 21.设PF 1 =m ,PF 2 =n .m >n .则m +n =2a ,m -n =2a 1,∴m =a +a 1,n =a -a 1.因为∠F 1PF 2=π3,所以cos π3=m 2+n 2-2c 22mn =12,即a +a 1 2+a -a 1 2-4c 2=a +a 1 a -a 1 .∴a 2+3a 21-4c 2=0,∴1e 21+3e 22=4,∴4≥21e 21×3e 22,则1e 1e 2≤23,当且仅当e 1=22,e 2=62时取等号.故选:A .1(2024·湖南·高三校联考期末)已知椭圆和双曲线有共同的焦点F 1,F 2,P ,Q 分别是它们在第一象限和第三象限的交点,且QF 2⊥F 2P ,记椭圆和双曲线的离心率分别为e 1,e 2,则4e 21+e 22最小值等于.【答案】92【解析】设椭圆长半轴为a 1,双曲线实半轴为a 2,F 1-c ,0 ,F 2c ,0 ,P 为两曲线在第一象限的交点,Q 为两曲线在第三象限的交点,如图,由椭圆和双曲线定义与对称性知PF 1 +PF 2 =2a 1,PF 1 -PF 2 =2a 2,四边形PF 1QF 2为平行四边形,QF 2 =PF 1 =a 1+a 2,PF 2 =a 1-a 2,而QF 2⊥F 2P ,则PF 1⊥F 2P ,因此F 1F 2 2=PF 1 2+PF 2 2,即4c 2=a 1+a 2 2+a 1-a 2 2=2a 21+2a 22,于是有2c 2=a 21+a 22,则2=a 21c 2+a 22c 2,1e 21+1e 22=2,所以4e 21+e 22=12(4e 21+e 22)1e 21+1e 22=125+e 22e 21+4e 21e 22≥125+2e 22e 21⋅4e 21e 22=92,当且仅当e 21=34,e 22=32时取等号.故答案为:922(2024·湖北咸宁·校考模拟预测)已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F 1,F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形,若PF 1 =24,椭圆与双曲线的离心率分别为e 1,e 2,则3e 1e 2的取值范围是()A.19,+∞B.1,+∞C.13,+∞D.12,+∞【答案】B 【解析】设椭圆与双曲线的半焦距为c ,椭圆长半轴为a 1,双曲线实半轴为a 2,PF 1 =r 1,PF 2 =r 2,∵△PF 1F 2是以PF 1为底边的等腰三角形,点P 在第一象限内,∴PF 2 =F 1F 2 ,PF 1 >PF 2 ,PF 2 +F 1F 2 >PF 1 ,即r 1=24,r 2=2c ,且r 1>r 2,2r 2>r 1,2c <24,4c >24,解得:6<c <12.在双曲线中,PF 1 -PF 2 =2a 2,∴e 2=c a 2=2c 2a 2=2c r 1-r 2=2c 24-2c =c12-c ;在椭圆中,PF 1 +PF 2 =2a 1,∴e 1=c a 1=2c 2a 1=2c r 1+r 2=2c 24+2c =c12+c;∴e 1e 2=c 12+c ⋅c 12-c =1144c2-1;∵6<c <12,∴36<c 2<144,则1<144c 2<4,∴0<144c 2-1<3,可得:1144c2-1>13,∴3e 1e 2的取值范围为1,+∞ .故选:B .考点四:椭圆与双曲线的4a 通径体椭圆与双曲线的4a 通径体如图,若AF 2⊥F 1F 2,易知AF 2 =b 2a ,若AF 1 =λF 1B (λ>1),则一定有AF 1 =λ+12⋅b 2a,根据AF 1 +AF 2 =2a 可得λ+32⋅b 2a =2a ,即λ+34⋅(1-e 2)=1⇒e =λ-1λ+31(2024·河南新乡·高三统考期末)设双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别是F 1、F 2,过F 1的直线交双曲线C 的左支于M 、N 两点,若MF 2 =F 1F 2 ,且2MF 1 =NF 1 ,则双曲线C 的离心率是()A.43B.53C.52D.32【答案】B【解析】如下图所示:MF 2 =F 1F 2 =2c ,由双曲线的定义可得MF 1 =MF 2 -2a =2c -2a ,所以,NF 1 =2MF 1 =4c -4a ,则NF 2 =NF 1 +2a =4c -2a ,由余弦定理可得cos ∠MF 1F 2=MF 12+F 1F 2 2-MF 2 22MF 1 ⋅F 1F 2=c -a2c ,cos ∠NF 1F 2=NF 12+F 1F 2 2-NF 2 22NF 1 ⋅F 1F 2=c -3a4c ,因为cos ∠NF 1F 2=cos π-∠MF 1F 2 =-cos ∠MF 1F 2,故c -3a 4c =-c -a 2c ,整理可得3c =5a ,故该双曲线的离心率为e =c a =53.故选:B .1(2024·甘肃庆阳·高三校联考阶段练习)已知F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点,过点F 1的直线交椭圆C 于M ,N 两点.若MN +NF 2 =2MF 2 ,且MF 2⊥NF 2,则椭圆C 的离心率为()A.33B.55C.22D.66【答案】B【解析】因为MN +NF 2 =2MF 2 ,所以可设NF 2 =m -d ,MF 2 =m ,MN =m +d m >0,d >0 ,因为MF 2⊥NF 2,所以m -d 2+m 2=m +d 2,解得m =4d ,因为NF 2 +MF 2 +MN =4a =3m ,所以NF 2 =a ,MF 2 =43a ,MN =53a ,所以cos ∠F 2MN =MF 2 MN=45,在△MF 1F 2中,F 1F 2 =2c ,MF 1 =2-MF 2 =23a ,由cos ∠F 2MF 1=23a 2+43a 2-(2c )22×23a ×43a =45,可得a 2=5c 2,即椭圆C 的离心率为55.故选:B .2(2024·湖南衡阳·校联考模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,过F 1作直线l 与椭圆相交于M 、N 两点,∠MF 2N =90°,且4F 2N =3F 2M ,则椭圆的离心率为()A.13B.12C.33D.55【答案】D【解析】如图所示,设F 1F 2 =2c ,∵4F 2N =3F 2M ,设F 2N =3t ,则F 2M =4t ,在Rt △F 2MN 中,MN =NF 22+MF 2 2=5t ,由椭圆定义可知F 1N =2a -3t ,F 1M =2a -4t ,F 1N +F 1M =MN =4a -7t =5t ,解得a =3t ,所以F 1N =2a -3t =3t =F 2N ,F 1M =2a -4t =2t ,在△F 1NF 2中,可得cos ∠NF 1F 2=c3t,在△F 1MF 2中,由余弦定理可得cos ∠MF 1F 2=c 2-3t 22ct,∵∠NF 1F 2+∠MF 1F 2=π,∴cos ∠NF 1F 2+cos ∠MF 1F 2=0,即c 3t +c 2-3t 22ct=0,解得c =35t 5,所以椭圆离心率e =c a =55.故选:D .考点五:椭圆与双曲线的4a 直角体如左图,若AF 2⊥AB ,AB 过原点,且AF 1=λF 1B ,∠AF 1F 2=α,则e cos α=λ−1 λ+1可得离心率.如右图,若BF 2⊥AC ,AB 过原点,且AF 2=λF 2C(0<λ<1),通过补全矩形,可得AF 1⊥AC ,AF 2 =λ+12⋅b 2a ,借助公式e cos α=λ−1 λ+1可得离心率.1(2024·山东济南·校联考)设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于A ,B 两点,且AF 1 ⋅AF 2 =0,AF 2 =2F 2B,则椭圆E 的离心率为()A.23B.34C.53D.74【答案】C【解析】因为AF 2 =2F 2B ,不妨令AF 2 =2F 2B =2m m >0 ,过F 2的直线交椭圆于A ,B 两点,由椭圆的定义可得,AF 1 +AF 2 =2a ,BF 1 +BF 2 =2a ,则BF 1 =2a -m ,AF 1 =2a -2m ,又AF 1 ⋅AF 2=0,所以AF 1⊥AF 2,则△AF 1F 2和△AF 1B 都是直角三角形,则AF 1 2+AB 2=BF 1 2,即2a -2m 2+9m 2=2a -m 2,解得m =a3,所以AF 1 =43a ,AF 2 =23a ,又F 1F 2 =2c ,AF 1 2+AF 2 2=F 1F 2 2,所以169a 2+49a 2=4c 2,因此c 2a2=59,所以椭圆E 的离心率为c a =53.故选:C .1(2024·安徽池州·高三统考期末)设F 1、F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过点F 1-c ,0 的直线交椭圆E 于A ,B 两点,若AF 1=3 F 1B ,且AB ⊥AF 2,则椭圆E 的离心率是()A.12B.52C.32D.22【答案】D【解析】设FB 1=k (k 0 ⇒ AF 1=3k ,AB =4k ⇒ AF 2=2a -3k , BF 2|=2a -k ,再由BF 2|2= AF 2|2+|AB |2⇒AF 2 =3k ⇒ΔAF 1F 2是等腰直角三角形⇒c =22a ⇒e =22,故选D ,2(2024·湖北黄冈·高三统考期末)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于A ,B 两点,AF 2 =λF 2B ,且AF 1 ⋅AF 2 =0,椭圆C 的离心率为22,则实数λ=()A.23B.2C.13D.3【答案】D【解析】因为AF 2 =λF 2B ,设AF 2 =λF 2B =t (t >0),由椭圆的定义可得:AF 1 +AF 2 =2a ,则AF 1 =2a -t ,因为AF 1 ⋅AF 2=0,所以AF 1⊥AF 2,所以AF 1 2+AF 2 2=F 1F 2 2,即(2a -t )2+t 2=4c 2,又因为椭圆C 的离心率为22,所以a =2c ,则有(2a -t )2+t 2=4c 2=2a 2,所以t =a ,则λF 2B =a ,则F 2B =aλ,由BF 1 +BF 2 =2a ,所以BF 1 =2a -aλ,因为AF 1 ⋅AF 2 =0,所以AF 1⊥AF 2,所以AF 1 2+AB 2=BF 1 2,即a 2+a 21+1λ 2=2a -a λ2,解得:λ=3,故选:D .考点六:椭圆与双曲线的等腰三角形问题同角余弦定理使用两次1已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若│AF 2 =2F 2B ,AB │=BF 1 ,则C 的方程为()A.x 22+y 2=1B.x 23+y 22=1C.x 24+y 23=1D.x 25+y 24=1【答案】B【解析】法一:如图,由已知可设F 2B =n ,则AF 2 =2n ,BF 1 =AB =3n ,由椭圆的定义有2a =BF 1 +BF 2 =4n ,∴AF 1 =2a -AF 2 =2n .在△AF 1B 中,由余弦定理推论得cos ∠F 1AB =4n 2+9n 2-9n 22⋅2n ⋅3n =13.在△AF 1F 2中,由余弦定理得4n 2+4n 2-2⋅2n ⋅2n ⋅13=4,解得n =32.∴2a =4n =23,∴a =3,∴b 2=a 2-c 2=3-1=2,∴所求椭圆方程为x 23+y 22=1,故选B .法二:由已知可设F 2B =n ,则AF 2 =2n ,BF 1 =AB =3n ,由椭圆的定义有2a =BF 1 +BF 2 =4n ,∴AF 1 =2a -AF 2 =2n .在△AF 1F 2和△BF 1F 2中,由余弦定理得4n 2+4-2⋅2n ⋅2⋅cos ∠AF 2F 1=4n 2,n 2+4-2⋅n ⋅2⋅cos ∠BF 2F 1=9n 2 ,又∠AF 2F 1,∠BF 2F 1互补,∴cos ∠AF 2F 1+cos ∠BF 2F 1=0,两式消去cos ∠AF 2F 1,cos ∠BF 2F 1,得3n 2+6=11n 2,解得n =32.∴2a =4n =23,∴a =3,∴b 2=a 2-c 2=3-1=2,∴所求椭圆方程为x 23+y 22=1,故选B .1(2024·江西九江·高三九江一中校考期末)已知双曲线x 2a 2-y 2b2=1a >0,b >0 左右焦点为F 1,F 2,过F 2的直线与双曲线的右支交于P ,Q 两点,且PF 2=2F 2Q,若△PQF 1为以Q 为顶角的等腰三角形,则双曲线的离心率为()A.7B.2C.213D.3【答案】C【解析】由题意QF 1 -QF 2 =PQ -QF 2 =PF 2 =2a ,又PF 2=2F 2Q ,所以QF 2 =a ,从而QF 1 =3a ,PF 1 =4a ,PQ =3a ,△PF 1F 2中,cos ∠F 1PF 2=(4a )2+(2a )2-(2c )22×4a ×2a =5a 2-c 24a 2,△PF 1Q 中.cos ∠F 1PF 2=12PF 1PQ =2a 3a =23,所以5a 2-c 24a 2=23,7a 2=3c 2,所以e =c a =213,故选:C .2(2024·辽宁沈阳·高三沈阳二中校考阶段练习)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)左右焦点为F 1,F 2,过F 2的直线与双曲线的右支交于P ,Q 两点,且PF 2=3F 2Q,若△PQF 1为以Q 为顶角的等腰三角形,则双曲线的离心率为()A.3 B.2C.2D.3【答案】C【解析】由题意QF 1 -QF 2 =PQ -QF 2 =PF 2 =2a ,又PF 2=3F 2Q ,所以QF 2 =23a ,从而QF 1 =83a ,PF 1 =4a ,PQ =83a ,△PF 1F 2中,cos ∠F 1PF 2=(4a )2+(2a )2-(2c )22×4a ×2a =5a 2-c 24a2,△PF 1Q 中.cos ∠F 1PF 2=12PF 1PQ =2a 83a =34,所以5a 2-c 24a 2=34,2a 2=c 2,所以e =c a =2,故选:C .考点七:双曲线的4a 底边等腰三角形当F 2A =F 2B 或者AB =4a 时,令∠AF 1F 2=α,则一定存在①F 1M =F 2B ,②e =1cos2α1(2024·河南·高三校联考阶段练习)设F 2为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,直线l :x -3y +c =0(其中c 为双曲线C 的半焦距)与双曲线C 的左、右两支分别交于M ,N 两点,若MN⋅F 2M +F 2N=0,则双曲线C 的离心率是()A.153B.53C.13D.52【答案】D【解析】设双曲线C 的左焦点为F 1,如图,取线段MN 的中点H ,连接HF 2,则F 2M +F 2N =2F 2H.因为MN ⋅F 2M +F 2N =0,所以MN ⋅F 2H =0,即MN ⊥F 2H ,则MF 2 =NF 2 .设MF 2 =NF 2 =m .因为MF 2 -MF 1 =NF 1 -NF 2 =2a ,所以NF 1 -NF 2 +MF 2 -MF 1 =NF 1 -MF 1 =MN =4a ,则MH =NH =2a ,从而HF 1 =m ,故HF 2 =4c 2-m 2=m 2-4a 2,解得m 2=2a 2+2c 2.因为直线l 的斜率为13,所以tan ∠HF 1F 2=HF 2 HF 1=2c 2-2a 22a 2+2c2=13,整理得c 2-a 2a 2+c 2=19,即5a 2=4c 2⇒e =52,故选:D .1(2024·贵州·校联考模拟预测)设F 2为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,直线l :x -2y +c =0(其中c 为双曲线C 的半焦距)与双曲线C 的左、右两支分别交于M ,N 两点,若MN ⋅F 2M +F 2N=0,则双曲线C 的离心率是()A.53B.43C.153D.233【答案】C【解析】设双曲线C 的左焦点为F 1,如图,取线段MN 的中点H ,连接HF 2,则F 2M +F 2N =2F 2H .因为MN ⋅F 2M +F 2 N =0,所以MN ⋅F 2H =0,即MN ⊥F 2H ,则MF 2 =NF 2 .设MF 2 =NF 2 =m .因为MF 2 -MF 1 =NF 1 -NF 2 =2a ,所以|NF 1|-|NF 2|+|MF 2|-|MF 1|=NF 1∣-MF 1 = MN |=4a ,则|MH |=|NH |=2a ,从而|HF 1|=m ,故HF 2 =4c 2-m 2=m 2-4a 2,解得m 2=2a 2+2c 2.因为直线l 的斜率为12,所以tan ∠HF 1F 2=HF 2 HF 1 =2c 2-2a 22a 2+2c 2=12,整理得c 2-a 2a 2+c 2=14,即3c 2=5a 2,则c 2a 2=53,故e =c 2a 2=153.故选:C2(2024·全国·高三长垣市第一中学校联考开学考试)设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1作斜率为33的直线l 与双曲线C 的左、右两支分别交于M ,N 两点,且F 2M +F 2N ⋅MN =0,则双曲线C 的离心率为()A.2B.3C.5D.2【答案】A【解析】如图,设D 为MN 的中点,连接F 2D .易知F 2M +F 2N =2F 2D ,所以F 2M +F 2N ⋅MN =2F 2D ⋅MN =0,所以F 2D ⊥MN .因为D 为MN 的中点,所以F 2M =F 2N .设F 2M =F 2N =t ,因为MF 2 -MF 1 =2a ,所以MF 1 =t -2a .因为NF 1 -NF 2 =2a ,所以NF 1 =t +2a .所以MN =NF 1 -MF 1 =4a .因为D 是MN 的中点,F 1D =F 1M +MD ,所以MD =ND =2a ,F 1D =t .在Rt △F 1F 2D 中,F 2D =4c 2-t 2;在Rt △MF 2D 中,F 2D =t 2-4a 2.所以4c 2-t 2=t 2-4a 2,解得t 2=2a 2+2c 2.所以F 2D =2c 2-2a 2,F 1D =t =2a 2+2c 2.因为直线l 的斜率为33,所以tan ∠DF 1F 2=F 2D F 1D =2c 2-2a 22a 2+2c2=33,所以c 2-a 2a 2+c 2=13,c 2=2a 2,c =2a ,所以离心率为ca= 2.故选:A3(2024·全国·模拟预测)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,过F 1的直线与双曲线C 的左支交于A ,B 两点,连接AF 2,BF 2,在△ABF 2中,sin ∠ABF 22=14,AB =BF 2 ,则双曲线C 的离心率为()A.3 B.2C.3D.2【答案】D【解析】设BF 1 =m ,则由双曲线定义可得BF 2 =2a +m ,AF 1 =2a ,AF 2 =4a ,由sin ∠ABF 22=14可得m =6a ,再在△BF 1F 2中根据余弦定理即可列出式子求出离心率.设BF 1 =m ,则由双曲线定义可得BF 2=2a +m ,AF 1 =AB -BF 1 =BF 2 -m =2a ,则AF 2 =4a ,则sin∠ABF 22=2a 2a +m =14,解得m =6a ,从而BF 2 =8a .在△BF 1F 2中,F 1F 2 2=BF 1 2+BF 2 2-2BF 1 ⋅BF 2 cos ∠F 1BF 2,即4c 2=36a 2+64a 2-2×6a ×8a ×1-2sin 2∠ABF 22 ,解得e =ca =2.故选:D .考点八:焦点到渐近线距离为b双曲线的特征三角形,如图所示,设渐近线l1:y=bax,l2:y=-bax,过右焦点作FM⊥l1,FN⊥l2,由于渐近线方程为y=±bax,故MF2OM=NF2ON=ba,且斜边OF2=c,故MF2OF2=NF2OF2=bc,故OM=ON=a,MF2=NF2=b.1(2024·河南新乡·高三校联考阶段练习)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过F2作双曲线C的一条渐近线的垂线l,垂足为H,直线l与双曲线C的左支交于E点,且H恰为线段EF2的中点,则双曲线C的离心率为()A.2B.3C.2D.5【答案】D【解析】连结EF1,因为点O,H分别为F1F2和EF2的中点,所以OH⎳EF1,且EF1⊥EF2设点F2c,0到一条渐近线y=bax的距离d=bca2+b2=b,所以EF2=2b,又EF2-EF1=2a,所以EF1=2b-2a,Rt△EF1F2中,满足2b-2a2+4b2=4c2,整理为:b=2a,双曲线的离心率e=ca=a2+b2a2=5.故选:D1(2024·吉林白山·高三校联考阶段练习)已知双曲线x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,以OF1为直径的圆与双曲线的一条渐近线交于点M(异于坐标原点O),若线段MF1交双曲线于点P,且MF2⎳OP则该双曲线的离心率为()A.2B.3C.52D.6【答案】A【解析】不妨设渐近线的方程为y=-bax,因为MF2⎳OP,O为F1F2的中点,所以P为MF1的中点,将直线OM,MF1的方程联立y=-baxy=ab(x+c),可得M-a2c,abc,又F 1-c ,0 ,所以P -c +-a 2c 2,ab 2c 即P -a 2+c 22c ,ab 2c,又P 点在双曲线上,所以a 2+c 224a 2c 2-a 24c2=1,解得ca =2,所以该双曲线的离心率为2,故选:A .2(2024·山西运城·高三统考期末)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,以OF 1为直径的圆与双曲线的一条渐近线交于点M ,若线段MF 1交双曲线于点P ,且PF 2 =5PF 1 ,则双曲线的离心率为()A.264B.344C.2D.3【答案】C【解析】根据题意,不妨取点M 在第二象限,题中条件,得到k MF 1=ab,记∠MF 1F 2=∠PF 1F 2=θ,求出cos θ=b c ,根据双曲线定义,得到PF 2 =5a 2,PF 1 =a 2,在△PF 1F 2中,由余弦定理,即可得出结果.因为以OF 1为直径的圆与双曲线的一条渐近线交于点M ,不妨取点M 在第二象限,所以MF 1⊥OM ,则k MF 1⋅k OM =-1,因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±b a x ,则k OM =-b a ,所以k MF 1=a b ;记∠MF 1F 2=∠PF 1F 2=θ,则tan θ=a b ,由tan θ=a b sin 2θ+cos 2θ=1解得cos θ=b c ,因为PF 2 =5PF 1 ,由双曲线的定义可得PF 2 -PF 1 =2a ,所以PF 2 =5a 2,PF 1 =a2,由余弦定理可得:cos θ=bc =PF 1 2+F 1F 2 2-PF 2 22PF 1 ×F 1F 2=a 24+4c 2-25a242×a 2×2c,则2c 2-3a 2=ab ,所以2a 2+b 2 -3a 2=ab ,整理得2b 2-ab -a 2=0,解得b =a ,所以双曲线的离心率为e =c 2a 2=b 2+a 2a 2= 2.故选:C .3(2024·辽宁·统考模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点为F ,过F 作双曲线C 的一条渐近线的垂线,垂足为A .若△OFA (O 为坐标原点)的面积等于14c 2(c 为双曲线C 的半焦距),则双曲线C 的离心率为()A.2B.3 C.2 D.5【答案】A【解析】设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F (c ,0),双曲线C 的一条渐近线方程设为bx +ay =0,可得AF =bc a 2+b 2=b ,OA =c 2-b 2=a ,△OAF 的面积为14c 2,即有12ab =14c 2,化为4a 2(c 2-a 2)=c 4,e 4-4e 2+4=0,解得e = 2.故选:A .4(2024·广西南宁·统考)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F 1,过点F 1的直线与两条渐近线的交点分别为M 、N 两点(点F 1位于点M 与点N 之间),且MF 1 =2F 1N,又过点F 1作F 1P ⊥OM 于P (点O 为坐标原点),且|ON |=|OP |,则双曲线E 的离心率e =()A.5B.3C.233D.62【答案】C【解析】不妨设M 在第二象限,N 在第三象限,如下图所示:因为ON =OP ,∠F 1OP =∠F 1ON ,所以△F 1OP ≅△F 1ON ,所以∠F 1PO =∠F 1NO =90°,F 1P =F 1N ,又l OM :y =-bax ,F 1-c ,0 ,所以F 1P =F 1N =-bca1+b 2a 2=b ,所以ON =OP =c 2-b 2=a ,所以MF 1 =2F 1N =2b ,因为tan ∠F 1OP =b a ,tan ∠MON =tan2∠F 1OP =3b a ,所以2ba 1-b 2a 2=3b a ,所以b 2a 2=c 2-a 2a2=e 2-1=13,所以e =233.故选:C .考点九:焦点到渐近线垂线构造的直角三角形利用几何法转化1(2024·江西九江·高三九江一中校考阶段练习)F 是双曲线x 2a 2-y 2b2=1a >0,b >0 的左焦点,过点F 作双曲线的一条渐近线的垂线,垂足为A ,交另一条渐近线于点B .若3FA =FB,则此双曲线的离心率为()A.2 B.53C.233D.3【答案】D【解析】由题意得:F -c ,0 ,双曲线渐近线方程为:y =±b ax若A 为直线FA 与y =-b a x 交点,B 为直线FA 与y =bax 交点则k FA =a b ∴直线FA 方程为:y =a bx +c ,与y =-b a x 联立可得:x A =-a 2c 直线FA 方程与y =b a x 联立可得:x B =a 2cb 2-a2由3FA =FB 得:3-a 2c +c =a 2c b 2-a 2+c ,即-3a 2+2c 2=a 2c 2c 2-2a 2∴-3+2e 2=e 2e 2-2,即e 4-4e 2+3=0,解得:e 2=3或1(舍)∴e =3由双曲线对称性可知,当A 为直线FA 与y =b a x 交点,B 为直线FA 与y =-bax 交点时,结论一致故选:D 1(2024·广西玉林·校考模拟预测)过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 引一条渐近线的垂线,与另一条渐近线相交于第二象限,则双曲线C 的离心率的取值范围是()A.(2,+∞) B.(3,+∞)C.(2,+∞)D.(3,+∞)【答案】A【解析】由题意双曲线C :x 2a 2-y 2b2=1的渐近线y =±b a x ,右焦点F (c ,0),不妨设过右焦点F (c ,0)与双曲线的一条渐近线垂直的直线方程为y =-ab(x -c )与y =-b a x 联立得-b a x =-a b (x -c ),所以x =a 2c a 2-b 2,y =-abc a 2-b 2,所以交点坐标为a 2c a 2-b 2,-abca 2-b2,因为交点在第二象限,所以-abca 2-b 2>0a 2c a 2-b 2<0,因为a >0,b >0,c >0,所以a 2c >0,abc >0,所以a 2-b 2<0,即a<b ,因为c =a 2+b 2>a 2+a 2=2a ,所以e =ca>2aa=2,即e ∈2,+∞ 故选:A2(2024·江西新余·统考)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 ,过右焦点F 作C 的一条渐近线的垂线l ,垂足为点A ,l 与C 的另一条渐近线交于点B ,若AF =25AB,则C 的离心率为()A.305B.2C.233D.52【答案】A【解析】如下图所示:双曲线的渐近线方程为y =±b ax ,即bx ±ay =0,所以,AF =bc b 2+a 2=b ,则OA =OF 2-AF 2=c 2-b 2=a ,因为AF =25AB ,则AB =52b ,设∠AOF =α,则∠BOF =α,所以,∠AOB =2α,tan α=AF OA =b a ,tan2α=AB OA=5b2a ,由二倍角的正切公式可得tan2α=2tan α1-tan 2α,即2ba1-b a 2=5b 2a ,可得b 2a 2=15,因此,e =c a =1+b 2a2=1+15=305.故选:A .考点十:以两焦点为直径的圆与渐近线相交问题以F 1F 2为直径作圆,交一条渐近线y =bax 于点B ,BF 1交另一条渐近线于点A ,则令∠BOF 2=α,则∠BF 1F 2=α2,e =1+tan 2α1(2024·全国·校联考)过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 作x 轴的垂线,与双曲线C 及其一条渐近线在第一象限分别交于A ,B 两点,且OF =2OA -OB(O 为坐标原点),则该双曲线的离心率是()A.2. B.3 C.322D.233【答案】D【解析】设双曲线的半焦距为c ,由x =cx 2a 2-y 2b2=1得到A c ,b 2a ,由y =b a x x =c 得到B c ,bca ,而F (c ,0),OF =2OA -OB ⇔OA =OF +OB2,即点A 是线段FB 的中点,所以bc a =2b 2a ,c =2b ,所以e =c a =2b c 2-b 2=233.故选:D1(2024·山西晋城·统考)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,以线段F 1F 2为直径的圆与直线bx -ay =0在第一象限交于点A ,若tan ∠AF 2O =2,则双曲线C 的离心率为()A.53B.32C.3D.2【答案】A【解析】由题意可得|AO |=|OF 2|=c ,即有△AOF 2为等腰三角形,设∠OAF 2=∠AF 2O =α,则∠AOF 2=π-2α,所以tan ∠AOF 2=tan π-2α =-tan2α=2tan αtan 2α-1=2×222-1=43即为b a =43,所以e =c a =1+b 2a2=1+169=53,故选:A 2(2024·河北衡水·高三河北衡水中学校考阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,若以F 1F 2为直径的圆和曲线C 在第一象限交于点P ,且△POF 2恰好为正三角形,则双。

求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析解析解题关键:挖掘题中的隐含条件,构造关于离心率e的不等式。

一、利用曲线的范围,建立不等关系已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右顶点为A,点P在椭圆上,O为坐标原点,且OP垂直于PA,求椭圆的离心率e的取值范围。

小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,右顶点为A,点P在椭圆上,且OP垂直于PA,求椭圆的离心率e的取值范围。

二、利用曲线的平面几何性质,建立不等关系已知F1、F2是椭圆的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。

小改写:已知F1、F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。

三、利用点与椭圆的位置关系,建立不等关系已知$\triangle ABC$的顶点B为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$短轴的一个端点,另两个顶点也在椭圆上,若$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。

小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,短轴的一个端点为B,另两个顶点也在椭圆上,$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。

四、利用函数的值域,建立不等关系椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与直线$x+y-1=0$相交于A、B两点,且OA·OB=(O为原点),若椭圆长轴长的取值范围为$[5,6]$,求椭圆离心率的范围。

关于高中数学离心率题型解法的有效解决技巧

关于高中数学离心率题型解法的有效解决技巧

关于高中数学离心率题型解法的有效解决技巧【摘要】高中数学中,离心率题型是一个常见但也容易出错的题目。

本文将介绍关于高中数学离心率题型的解法技巧。

在我们将介绍离心率的定义和背景知识。

在我们将详细讲解离心率的性质、解题步骤,并举例说明常见的题型。

我们会提醒大家在解题时需要注意的事项,并进行实战演练。

在我们将总结本文的内容,并探讨离心率在实际生活中的拓展应用,以及如何进一步提升解题能力。

通过本文的学习,读者将能够更加熟练地解决高中数学中关于离心率的题目。

【关键词】高中数学、离心率、题型、解法、有效技巧、引言、定义与性质、解题步骤、常见题型举例、注意事项、实战演练、结论、总结、拓展应用、思考提升。

1. 引言1.1 介绍高中数学中的离心率题型是一种常见而重要的题型,涉及到椭圆、双曲线和抛物线等几何图形的特性和性质。

理解和掌握离心率的计算方法对于解题十分重要,而有效的解决技巧可以帮助学生提高解题效率,提升数学成绩。

在本文中,我们将介绍关于高中数学离心率题型的解题技巧,希望能够为学生们在学习和应试过程中提供指导和帮助。

在接下来的我们将详细介绍离心率的定义和性质,解题步骤以及常见题型举例,同时给出一些注意事项和实战演练,希望能够帮助学生们全面深入地理解和掌握离心率这一重要的数学知识。

通过不断的学习和练习,我们相信每位学生都能够在离心率题型上取得更好的成绩。

1.2 背景知识高中数学中,离心率是一个重要且常见的概念。

在几何学和代数学中,离心率通常用来描述椭圆、双曲线和抛物线等二次曲线的形状。

理解离心率的概念对于解决与二次曲线相关的数学问题非常重要。

离心率的定义是一个数值,用来衡量一个二次曲线的“扁平”程度。

在椭圆和双曲线中,离心率的取值范围是0到1,越接近1表示曲线越扁平;在抛物线中,离心率为1,表示曲线为对称。

在解决与离心率相关的数学题目时,首先要掌握离心率的定义及其性质。

需要了解解题的基本步骤,包括求解离心率、判断曲线类型、求解焦点、导线等。

专题椭圆的离心率及范围

专题椭圆的离心率及范围

一、利用定义求椭圆的离心率(a c e = 或 221÷øöçèæ-=a b e )1,已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率=e322,椭圆1422=+m y x 的离心率为21,则=m [解析]当焦点在x 轴上时,32124=Þ=-m m ; 当焦点在y 轴上时,316214=Þ=-m m m , 综上316=m 或3334,已知m,n,m+n 成等差数列,成等差数列,m m ,n ,mn [解析解析]]由Þïîïíì¹=+=02222mn n m n n m n îíì==42n m ,椭圆122=+n y m x 的离心率为22 5,已知)0.0(121>>=+n m n m 则当mn 取得最小值时,椭圆12222=+n y m x 的的离心率为23 6,设椭圆2222by a x +=1=1((a >b >0)的右焦点为F 1,右准线为l 1,若过F 1且垂直于x 轴的弦的长等于点F 1到l 1的距离,则椭圆的离心率是21 椭圆的离心率及范围(2013年椭圆专题复习) ,已知椭圆的焦距、短轴长、长轴长成,已知椭圆的焦距、短轴长、长轴长成等差数列等差数列,则椭圆的离心率是5成等比数列,则椭圆122=+n y m x 的离心率为1。

二,运用几何图形中线段的几何意义结合椭圆的定义求离心率e 7,在D Rt ABC 中,90=ÐA ,1==AC AB ,如果一个椭圆过A 、B 两点,它的一个焦点为C ,另一个焦点在AB 上,求这个椭圆的离心率上,求这个椭圆的离心率 ()36-=e8, 如图所示如图所示,,椭圆中心在原点椭圆中心在原点,F ,F 是左焦点是左焦点,,直线1AB 与BF 交于D,D,且且901=ÐBDB ,则椭圆的离心率为则椭圆的离心率为( ) ( )2 F 2M F 1O M P F 2F 1O [解析解析] ]=Þ=-Þ-=-×e ac c a cba b 221)(215-ìa 2 –c 2=m(2a-c) 2(a 2-c 2)=m(2a+c)两式相除:2a-c 2a+c =12 Þe=231111.设椭圆.设椭圆)(0b a 1by a x 2222>>=+的左、右焦点分别为21F F 、,如果椭圆上存在点P ,使°=Ð90PF F 21,求离心率e 的取值范围。

求离心率的范围问题

求离心率的范围问题

求离心率的范围问题求离心率范围的方法 一、建立不等式法:1.利用曲线的范围建立不等关系。

2.利用线段长度的大小建立不等关系。

F 1,F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,PF 1|∈[a -c ,a +c ];F 1,F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,|PF 1|≥c -a .3.利用角度长度的大小建立不等关系。

4.利用题目不等关系建立不等关系。

5. 利用判别式建立不等关系。

6.利用与双曲线渐近线的斜率比较建立不等关系。

7.利用基本不等式,建立不等关系。

二、函数法:1. 根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;2.通过确定函数的定义域;3.利用函数求值域的方法求解离心率的范围.练习利用曲线的范围建立不等关系1.F 1,F 2是椭圆x 2a 2+y2b 2=1(a>b>0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,求椭圆的离心率的取值范围.2.A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使∠OPA = , 则椭圆离心率的范围是_________.3.设12,F F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,且12||2F F c =,若椭圆上存在点P 使得212||||2PF PF c ⋅=,则椭圆的离心率的最小值为( )A .12B .13 C.2 D.32π4.5.设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,22 B.⎝⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫33,1 6.已知点()()000,P x y x a ≠±在椭圆()2222:10x y C a b a b+=>>上,若点M 为椭圆C 的右顶点,且PO PM ⊥(O为坐标原点),则椭圆C 的离心率e 的取值范围是( )A .⎛ ⎝⎭B .()0,1C .⎫⎪⎪⎝⎭D .⎛ ⎝⎭利用线段长度的大小建立不等关系7. 设点P 在双曲线)0b ,0a (1by a x 2222>>=-的右支上,双曲线两焦点21F F 、,|PF |4|PF |21=,求双曲线离心率的取值范围。

离心率确定 多思维破解——以2021年高考数学乙卷理科第11题为例

离心率确定 多思维破解——以2021年高考数学乙卷理科第11题为例

㊀㊀㊀离心率确定㊀多思维破解以2021年高考数学乙卷理科第11题为例◉广东省信宜市信宜中学㊀梁北永㊀㊀圆锥曲线(椭圆或双曲线)离心率取值范围的问题一直是高考的一个热点问题.此类问题创新新颖,形式各样,变化多端,难度较大.下面结合2021年高考数学乙卷理科试卷中的一道椭圆的离心率取值范围的确定加以剖析与总结.1真题呈现高考真题㊀(2021年高考数学乙卷理科第11题)设B 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的上顶点,若C 上的任意一点P 都满足|P B |ɤ2b ,则C 的离心率的取值范围是(㊀㊀).A.㊀22,1éëêê)㊀B .12,1éëêêöø÷㊀C .0,㊀22æèçùûúú㊀D.0,12æèçùûúú2真题剖析该题以椭圆为问题背景,借助椭圆上的动点所对应的线段长度的不等式恒成立来设置问题,简单易懂.其实,类似的问题最早出现在2021年5月份东北三省三校(哈师大附中㊁东北师大附中㊁辽宁省实验中学)高考数学三模数学试卷(理科)中:问题㊀已知P 是椭圆C :x 2a 2+y 2b2=1(a >b >0)上任意一点,B 是椭圆C 的上顶点,|P B |ɤ2b 总成立,则椭圆离心率的取值范围是(㊀㊀).A.0,㊀22æèçùûúú㊀B .㊀22,1éëêêöø÷㊀C .0,㊀32æèçùûúú㊀D.㊀32,1éëêêöø÷该问题与以上高考真题几乎一致,都以选择题的形式出现,题干基本一样,选项有些许不同,所选结果也是一样的.3真题破解方法1:二次函数的图象与性质法.解析:由题意可得B (0,b ).设P (x 0,y 0),则y 0ɪ[-b ,b ].由x 20a 2+y 20b 2=1,可得x 20=a 21-y 20b 2æèçöø÷.那么|P B |2=x 20+(y 0-b )2=a 21-y 20b 2æèçöø÷+y 20-2b y 0+b 2=-c 2b 2y 20-2b y 0+a 2+b 2=-c 2b2y 20+2b 3c2y 0æèçöø÷+a 2+b 2.根据题目条件|P B |ɤ2b 恒成立,则知当y 0=-b 时,|P B |2取得最大值(2b )2=4b 2.结合二次函数的图象与性质,可知对称轴y =-b3c2ɤ-b .整理得b 2ȡc 2,即a 2-c 2ȡc 2,解得a ȡ㊀2c ,故椭圆的离心率e =c a ɤ㊀22.结合椭圆的离心率满足0<e <1,则有0<e ɤ㊀22.故选择答案:C .点评:设出动点P 的坐标,根据其满足椭圆方程进行合理变换,利用两点间的距离公式,合理消参,转化为含有参数y 0的二次函数问题.根据题目条件中|P B |ɤ2b 恒成立,转化为二次函数的图象与性质问题,建立对应的关系式.再利用椭圆离心率的公式以及取值范围来分析与处理.合理转化,把问题转化为二次函数问题来处理,是破解此类问题最常用的基本方法之一.方法2:椭圆与圆的位置关系法.解析:由C 上的任意一点P 都满足|P B |ɤ2b ,则知以B (0,b )为圆心,2b 为半径的圆与椭圆至多有一个交点.联立x 2a 2+y 2b2=1,x 2+(y -b )2=4b 2,{消去参数x 并整理,得(a 2-b 2)y 2+2b 3y +3b 4-a 2b 2=0.所以判别式Δ=4b 6-4b 2(a 2-b 2)(3b 2-a 2)=0,化简整理可得(a 2-2b 2)2=0,解得a =㊀2b .则椭圆的离心率e =c a =㊀1-b 2a2=㊀22.342022年12月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀新颖试题命题考试Copyright ©博看网. All Rights Reserved.㊀㊀㊀结合椭圆离心率e的几何意义可知,当eң0时,此时椭圆越圆,满足条件.所以0<eɤ㊀22.故选择答案:C.点评:根据题目条件中|P B|ɤ2b恒成立,转化为对应的圆与椭圆的位置关系问题.通过联立圆与椭圆的方程,消参转化为含y的二次方程,利用判别式为0确定对应参数的关系,进而求解此时所对应的椭圆离心率.再利用椭圆离心率e的几何意义确定离心率的取值范围.等价转化,结合圆与椭圆的位置关系,借助方程的判别式法来处理,思维巧妙.方法3:三角参数法.解析:由题意可得B(0,b).根据点P是椭圆C:x2a2+y2b2=1(a>b>0)上的任意一点,可设P(a c o sα,b s i nα)(0ɤα<2π).由于|P B|ɤ2b恒成立,则有a2c o s2α+(b s i nα-b)2ɤ4b2.整理可得(a2-b2)s i n2α+2b2s i nα+3b2-a2ȡ0.即[(a2-b2)s i nα+3b2-a2](s i nα+1)ȡ0.又s i nα+1ȡ0恒成立,则(a2-b2)s i nα+3b2-a2ȡ0,整理得s i nαȡa2-3b2a2-b2.由于|s i nα|ɤ1,则有a2-3b2a2-b2ɤ-1恒成立.整理得2b2ȡa2,即2a2-2c2ȡa2,解得aȡ㊀2c.故椭圆的离心率e=caɤ㊀22.结合椭圆的离心率满足0<e<1,则有0<eɤ㊀22.故选择答案:C.点评:根据点P是椭圆C上任意一点进行三角参数换元处理,结合题目条件中|P B|ɤ2b恒成立建立对应的不等式.通过十字相乘法加以因式分解,利用三角函数的图象与性质,结合不等式恒成立加以转化,建立含参的不等式问题.再利用椭圆离心率的公式以及取值范围来分析与处理.通过三角参数进行换元处理,引入三角函数,借助三角函数的相关知识来分析与处理,也是一种非常不错的破解方法.图1方法4:数形结合法.解析:由题意可得B(0,b),作出以点B为圆心,以2b为半径的圆,如图1所示.设A为圆上任意一点,设øA B O=θ(0ɤθ<π),则知A(2b s i nθ,-2b c o sθ+b).由C上的任意一点P都满足|P B|ɤ2b,则知点A必在椭圆C外(包括椭圆上),即(2b s i nθ)2a2+(-2b c o sθ+b)2b2ȡ1.㊀㊀㊀①当s i nθ=0时,①式显然成立.当s i nθʂ0时,由①式可得b2a2ȡc o sθ-c o s2θs i n2θ=c o sθ-c o s2θ1-c o s2θ=c o sθ1+c o sθ=1-11+c o sθ恒成立.而c o sθ<1,则有1-11+c o sθ<12,从而b2a2ȡ12,即b2a2ȡ12.整理得2b2ȡa2,即2a2-2c2ȡa2,解得aȡ㊀2c.故椭圆的离心率e=caɤ㊀22.结合椭圆的离心率满足0<e<1,则有0<eɤ㊀22.故选择答案:C.点评:根据题目条件作出以点B为圆心,以2b为半径的圆,通过题目条件中|P B|ɤ2b恒成立,数形结合转化为圆上任意一点A必在椭圆C外(包括椭圆上).结合点A坐标的确定并代入椭圆方程,分离系数转化为三角函数关系式,结合不等式恒成立以及三角函数的取值范围建立不等式,再利用椭圆离心率的限制条件来分析与处理.数形结合处理,直观形象,合理转化,巧思妙想,也是一种不错的精彩解法.4教学启示破解圆锥曲线中离心率取值范围问题的常见策略技巧:(1)借助 题目条件 合理切入,直接利用题目条件中的不等信息建立对应的不等式(组),并利用圆锥曲线中离心率的取值限制条件加以综合与应用.(2)抓住 平面几何 数形直观,结合平面几何图形的基本性质,如三角形㊁圆等的基本性质,综合圆锥曲线的几何性质,数形结合,直观想象.(3)利用 三角参数 巧妙转化,合理利用题目条件引入三角函数,将目标问题转化为对应的三角函数问题,结合三角恒等变换以及三角函数的图象与性质等来确定对应的取值范围.(4)结合 端点效应 进行特殊处理,根据圆锥曲线中在极端位置时所对应的离心率,通过 动 与 静的结合来确定离心率的取值范围.对于具体的圆锥曲线离心率的取值范围问题,灵活应用,或一种策略独领风骚,或多种策略齐心协力,或另辟蹊径,合理转化,巧妙破解.Z44命题考试新颖试题㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2022年12月上半月Copyright©博看网. All Rights Reserved.。

求解离心率的范围问题

求解离心率的范围问题

求解离心率的范围问题离心率的范围问题是高考的热点问题,各种题型均有涉及,因联系的知识点较多,且处理的思路和方法比较灵活,关键在于如何找到不等关系式,从而得到关于离心率的不等式,进而求其范围.很多同学掌握起来比较困难,本文就解决本类问题常用的处理方法和技巧加以归纳.一、【知识储备】求离心率的方法离心率是刻画圆锥曲线几何特点的一个重要尺度.常用的方法:(1)直接求出a 、c ,求解e :已知标准方程或a 、c 易求时,可利用离心率公式ace =来求解; (2)变用公式,整体求出e :以椭圆为例,如利用e ===e == (3)构造a 、c 的齐次式,解出e :根据题设条件,借助a 、b 、c 之间的关系,构造出a 、c 的齐次式,进而得到关于e 的方程,通过解方程得出离心率e 的值. 二、求解离心率的范围的方法1 借助平面几何图形中的不等关系根据平面图形的关系,如三角形两边之和大于第三边、折线段大于或等于直线段、对称的性质中的最值 等得到不等关系,然后将这些量结合曲线的几何性质用,,a b c 进行表示,进而得到不等式,从而确定离心率 的范围.【例1】 已知椭圆的中心在O ,右焦点为F ,右准线为l ,若在l 上存在点M ,使线段OM 的垂直平分线经过点F ,则椭圆的离心率的取值范围是_____________.【答案】:⎪⎪⎭⎫⎢⎣⎡1,22 x【点评】离心率的范围实质为一个不等式关系,如何构建这种不等关系可以利用方程和垂直平分线性质构建.利用题设和平面几何知识的最值构建不等式往往使问题简单化.【牛刀小试】已知椭圆22122:1(0)x y C a b a b+=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是______________.【答案】2[,1)2【解析】椭圆上长轴端点向圆外两条切线PA,PB ,则两切线形成的角APB ∠最小,若椭圆1C 上存在点P 令切线互相垂直,则只需090APB ∠≤,即045APO α=∠≤, ∴02sin sin 452b a α=≤=,解得222a c ≤,∴212e ≥,即22e ≥,而01e <<, ∴212e ≤<,即2[2e ∈. 2借助题目中给出的不等信息根据试题本身给出的不等条件,如已知某些量的范围,存在点或直线使方程成立,∆的范围等,进一步得到离心率的不等关系式,从而求解.Bo F 1FAxy【例2】 已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点O 的对称点为,B F 为其右焦点,若,AF BF ⊥设,ABF α∠=且,,124ππα⎡⎤∈⎢⎥⎣⎦则椭圆离心率的取值范围是 . 【答案】26[,]23【点评】本题的关键是利用椭圆的定义建立等量关系式2sin 2cos 2c c a αα+=,然后借助已知条件,,124ππα⎡⎤∈⎢⎥⎣⎦利用三角函数的图象求解离心率的范围. 【牛刀小试】过椭圆C :)0(12222>>=+b a b y a x 的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B在x 轴上的射影恰好为右焦点F ,若31<k <21, 则椭圆的离心率的取值范围是.【答案】(32,21)【解析】如图所示:2AF a c =+|,222a c BF a-=,()2222222tan a c BF a c a k BAF AF a c a a c --=∠===++, 又∵31<k <21,∴()221132a c a a c -<<+,∴2111312e e -<<+,解得1223e <<.3 借助函数的值域求解范围根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式,通过确定函数的定义域后,利用函数求值域的方法求解离心率的范围.【例3】已知椭圆221:12x y C m n -=+与双曲线222:1x y C m n+=有相同的焦点,则椭圆1C 的离心率e 的取值范围为_________________. 【答案】2(,1)2【点评】本题根据题设“相同的焦点”建立等量关系,得到函数关系式21112e m =-+,进而根据m 的范围,借助反比例函数求解离心率的范围.【牛刀小试】已知两定点(2,0)A -和(2,0)B ,动点(,)P x y 在直线:3l y x =+上移动,椭圆C 以,A B 为焦点且经过点P ,则椭圆C 的离心率的最大值为______________.【答案】26【解析】由题意可知,2c =,由2c e a a==可知e 最大时需a 最小,由椭圆的定义||||2PA PB a +=,即使得||||PA PB +最小,如图,设(2,0)A -关于直线3y x =+的对称点(,)D x y ,由11202322y x y x -⎧⋅=-⎪⎪+⎨+-+⎪=+⎪⎩,可知(3,1)D -. 所以22||||||||||1526PA PB PD PB DB +=+≥=+=,即226a ≥,所以262a ≥,则2626c e a=≤=. 4 根据椭圆或双曲线自身的性质求范围在求离心率的范围时有时常用椭圆或双曲线自身的性质,如椭圆()2222100x y a b a b+=>>,中,a x a -≤≤,P 是椭圆上任意一点,则1a c PF a c -≤≤+等。

求解离心率范围的四种策略

求解离心率范围的四种策略

求解离心率范围的四种策略江苏省苏州高新区第一中学 朱亿华圆锥曲线离心率范围的求解问题是高考数学的热点和重点,它除拥有求参数取值范围的一般方法外,还有着其独特的一面,构造含a 、b 、c 的不等式是求离心率e 范围的关键,围绕构造含a 、b 、c 的不等式,寻求适当的求解策略正是本文要着力探讨的重点。

一. 变量分离策略圆锥曲线中变量的变化范围直接影响到离心率e 的大小,通过变量分离来构造关于e 的不等式,结合圆锥曲线中变量的有界性来求离心率e 的范围。

例1.已知椭圆C :12222=+by a x (a>b>0),F 1、F 2是左、右焦点,如果C 上存在一点Q ,使∠F 1QF 2=600,求离心率e 的范围。

解:由余弦定理得: ο60cos 2212221221QF QF QF QF F F -+= 即 2122344QF QF a c -= 设F 1、F 2分别是左、右焦点, Q(x 1,y 1) 则1QF =a+ex 1,2QF =a-ex 1代入上式得))((3441122ex a ex a a c -+-=(注意此等式中变量x 1的有界性,将变量x 1分离出来) 222134e a c x -= 2210a x <≤ 2222340a e a c <-≤∴ 即2222222240443c a a c a c a c⎧-≥⎪≤<⎨-<⎪⎩解之得 易得 121<≤e 二.根的判别式策略由题设构造关于a 、b 、c 的方程,根据该方程根的情况,利用根的判别式列出含a 、b 、c 的不等式,然后向“e ”转化例2.已知椭圆C :12222=+by a x (a>b>0),F 1、F 2是左、右焦点,如果C 上存在一点Q ,使∠F 1QF 2=900,求离心率e 的范围。

解:方法一:同例1 方法二:由椭圆定义得:1QF +2QF =2a 又∠F 1QF 2=900 则 222122214c F F QF QF ==+ 又()221222122142a QF QF QF QF QF QF =++=+ 故12QF QF ⋅=()222c a - 则 1QF 、2QF 是方程的两实根0)(22222=-+-c a at t (利用根的判别式不等式)则 ()()0242222≥-⨯--=∆c a a 即212≥e 又0<e<1 所以]1,22[∈e 三.韦达定理策略题设若涉及直线与曲线的交点位置问题,视情形可根据韦达定理来构造关于a 、b 、c 的不等式,然后向“e ”转化。

椭圆曲线的离心率和扁率

椭圆曲线的离心率和扁率

椭圆曲线的离心率和扁率
椭圆曲线是数学中重要的曲线之一,它具有很多有趣的性质,
其中包括离心率和扁率这两个概念。

本文将介绍椭圆曲线的离心率
和扁率的定义和特性。

离心率
离心率是椭圆曲线的一个重要参数,用来描述椭圆曲线的形状。

离心率的定义如下:
离心率 = (长轴长度 - 短轴长度)/ 长轴长度
离心率的取值范围在0到1之间,0表示一个完全圆形的椭圆,而1表示一个无限长的直线。

离心率越接近于1,椭圆曲线的形状
越扁平,离心率越接近于0,椭圆曲线的形状越圆。

扁率
扁率是另一个描述椭圆曲线形状的参数,它反映了椭圆曲线的扁平程度。

扁率的定义如下:
扁率 = (长轴长度 - 短轴长度)/ 长轴长度
扁率的取值范围在0到1之间,0表示一个无限长的直线,而1表示一个完全圆形的椭圆。

扁率越接近于1,椭圆曲线的形状越扁平,扁率越接近于0,椭圆曲线的形状越接近于直线。

通过离心率和扁率的定义,我们可以对椭圆曲线的形状进行准确的描述。

在密码学和数学等领域中,离心率和扁率是非常重要的参数,它们可以用来定义和分析椭圆曲线算法的安全性和效率。

总结:离心率和扁率是描述椭圆曲线形状的两个重要参数。

离心率用来描述椭圆曲线的扁平程度,扁率用来描述椭圆曲线的形状的扁平程度。

在密码学和数学等领域中,离心率和扁率被广泛应用于椭圆曲线算法的分析和设计。

求离心率范围的六种方法

求离心率范围的六种方法

求解离心率范围六法在圆锥曲线的诸多性质中,离心率经常渗透在各类题型中。

离心率是描述圆锥曲线“扁平程度”或“张口大小”的一个重要数据,在每年的高考中它常与“定义”、“焦点三角形”等联系在一起。

因此求离心率的取值范围,综合性强,是解析几何复习的一个难点。

笔者从事高中数学教学二十余载,积累了六种求解这类问题的通法,供同仁研讨。

一、利用椭圆上一点P (x ,y )坐标的取值范围,构造关于a ,b ,c 的不等式例1 若椭圆()012222 b a by a x =+上存在一点P ,使︒=∠900PA ,其中0为原点,A 为椭圆的右顶点,求椭圆离心率e 的取值范围。

解:设()00,y x P 为椭圆上一点,则122220=+b y a x . ① 因为︒=∠900PA ,所以以O A 为直径的圆经过点P ,所以020020=+-y ax x . ②联立①、②消去0y 并整理得当a x =0时,P 与A 重合,不合题意,舍去。

所以2220ba ab x -=又a x 00,所以a ba ab 2220-, 即 ()22222c a b a -=得2122 ac ,即223e又10 e ,故e 的取值范围是⎪⎪⎭⎫⎢⎣⎡1,22 二、利用圆锥曲线的焦点和曲线上一点构成的“焦三角形”三边大小关系,构造关于a ,b ,c 不等式例2 已知双曲线()0,01x 2222 b a by a =-左、右焦点分别为F 1、F 2,左准线为p ,ι是双曲线左支上一点,并且221PF PF d =,由双曲线第二定义得ed =1PF ,所以12PF PF e =. ① 由又曲线第一定义得a PF 2PF 12=- ②由①-②得在21PF F ∆中,所以 c e ea e a 21212≥-+- , 即e e e ≥-+11. 又1 e ,从而解得e 的取值范围是(]21,1+。

三、利用圆锥曲线的“焦三角形”+余弦定理+均值不等式例3 设椭圆()012222 b a by a x =+的两焦点为F 1、F 2,问当离心率E 在什么范围内取值时,椭圆上存在点P ,使21PF F ∆=120°.解:设椭圆的焦距为2c ,由椭圆的定义知a PF PF 221=+.在21PF F ∆中,由余弦定理得=212221PF PF PF PF ++ =(21221)PF PF PF PF -+所以22212122244a PF PF PF PF c a =⎪⎪⎭⎫⎝⎛+≤=- 所以23,4322≥≤a cc a 得. 又10 e ,故e 的取值范围是⎪⎪⎭⎫⎢⎣⎡1,23 四、利用圆锥曲线的定义,结合完全平方数(式)非负的属性构造关于a ,b ,c 的不等式例4 如图1,已知椭圆长轴长为4,以y 轴为准线,且左顶点在抛物线1y 2-=x 上,求椭圆离心率e 的取值范围。

离心率及范围总结

离心率及范围总结

. 离心率求解总结一.椭圆的离心率1.离心率e=a c=21)(a b -、e 2=1-2)(ab 2.焦半径︱P F 1︱=a+ex 0 ︱P F 2︱= a-ex 0 2,1cos ep b MF p e aθ==-3.∠F 1BF 2 , ∠A 1BA 2为最大张角4.P 是椭圆上一点,∠PF 1F 2=α ∠PF 2F 1=β, 则e=βαβαsin sin sin ++)(=cos2cos2e αβαβ+=- 5.AF FB λ=u u u r u u u r 2221cos 1e λθλ-⎛⎫= ⎪+⎝⎭6.e = 其中P 为椭圆上任意一点,A,B 为顶点12,k kx二.双曲线的离心率①e == ② e = 其中P 为双曲线上任意一点,A,B 为顶点12,k k 为斜率 ③sin2sin2e αβαβ+=- ∠PF 1F 2=α ∠PF 2F 1=β 一.含直角三角形及夹角的离心率例1在椭圆中有一点P 12PF PF ⊥求椭圆的离心率0,0a b a c >>>>OM b≥分析: b<OP<c例2.过椭圆右焦点1F 的直线交椭圆与P,Q 两点且满足1PF PQ ⊥ 若15sin 13FQP ∠=,求椭圆的离心率 分析:1PF =5x, 1F Q =13x PQ =12x, 11PQ PF FQ ++=4a 例3椭圆x 2 a 2 +y 2b 2 =1(a>b >0)的两焦点为F 1 (-c ,0)、F 2 (c,0),P是以|F 1F 2|为直径的圆与椭圆的一个交点,且∠PF 1F 2 =5∠PF 2F 1 ,求e?变形1:椭圆x 2 a 2 +y 2b 2 =1(a>b >0)的两焦点为F 1 (-c ,0)、F 2 (c,0),P 是椭圆上一点,且∠F 1PF 2 =60°,求e 的取值范围? 分析:上题公式直接应用。

巧求离心率的范围

巧求离心率的范围
即 3P

1 > 3 十 1

解 得
e 2 > .
2 借 助平 几关 系 .
例 2 已知 双 曲 线 X .2

分析 本题 建立 不 等关 系是 难 点 , 据 双 根 曲线 上任 一 点 到 其 对 应 焦 点 的距 离 J F l ∈ P F —a a c 建 立不等 关 系 , c ,+ ] 使问题 迎刃 而解. 题设 是双 曲线一 点 与 两焦 点之 间关 系 , 用双 曲 线第 一定义 求解 .
0≤ O。≤ 口 , S
解得
1 e 1 < < +√ ,
故双 曲线 的离心 率 e∈ ( ,2 1 . 1√ + )

迮≤ 2
g< 1 .
6 。
2 1 年 第 7期 01
数 学 中 的思 想 和 方 法
《 理 天 地 》 中 版 数 高
4 数 形 结 合 .
例 5 已知 双 曲线 2 y 一 A 6 。
( A)( , ] 1 2.
所 以
e ( ) (. ∈o , c , 选)

( B)( 2 . 1, )
6 运 用 判 别 式 建 立 不 等 关 系 .
例 8 设 双 曲 线 c: 一 Y 一 1 n> o 与 直 ( )
线 Zz+ Y一 1相 交 于 两 个 不 同 的 点 A 、 求 双 : B. 曲 线 C 的 离心 率 e的 取 值 范 围.
( C)『 , C ) 2+ x . 3
( D)( , c ) 2+ ) . o
( 0 6年 福 建 卷 ) 20

欲使过 点 F且倾 斜角 为 6 。 0 的直线 与
双 曲线 的右 支有且 只有一个 交 点 ,

离心率范围问题的求解策略

离心率范围问题的求解策略

离心率范围问题的求解策略1. 引言1.1 背景介绍离心率范围问题是指在某个特定的环境下,离心率的取值范围受到一定限制和影响,这可能会对系统的稳定性、性能和效率产生影响。

离心率本身是描述一个系统中某个物体或粒子远离轴线运动的程度的参数,通常用来描述液体或气体在旋转设备中的运动特性。

离心率的大小和范围直接关系着系统的工作状态和性能表现,因此对离心率范围问题进行深入研究和分析具有重要意义和实际价值。

在工程学、生物医学、地球科学等领域,离心技术被广泛应用于分离、浓缩、纯化等方面,而离心率范围问题则成为了工程师、科研人员以及相关领域专家关注的焦点。

了解和掌握离心率的定义、取值范围以及受到影响的因素,对于设计优化离心机、改进离心分离过程、提高实验效率等方面具有重要意义。

通过深入研究离心率范围问题的求解策略,可以为相关领域的科研工作和工程实践提供更加科学、有效的指导和支持。

1.2 问题提出离心率是描述轨道椭圆程度的一个重要参数,对于天体运动、环境工程等领域具有重要意义。

在实际应用中,我们常常面临离心率范围问题,即确定一个合适的离心率范围以满足特定的需求。

离心率范围问题在航天器设计、卫星轨道、地球环境保护等领域都具有重要意义。

在航天领域,离心率范围问题的解决直接影响着航天器的轨道设计和控制,对轨道稳定性、燃料消耗等方面都有着重要影响。

在卫星轨道设计中,确定合适的离心率范围可以提高卫星的使用寿命和性能,保证卫星能够稳定地运行和提供服务。

在地球环境保护中,离心率范围问题也是关键,例如在地球观测卫星设计中,需要合理选择离心率范围以确保卫星能够准确地观测地球的变化,为环境保护和资源管理提供支持。

研究离心率范围问题具有重要的理论意义和应用价值。

解决离心率范围问题,不仅可以提升航天器、卫星和环境保护设备的性能和稳定性,还能推动相关领域的发展和进步。

在本文中,我们将探讨离心率范围问题的定义、影响因素和求解策略,为解决实际问题提供参考和指导。

离心率的求值或取值范围问题

离心率的求值或取值范围问题

离心率的求值或取值范围问题【方法技巧】方法1 定义法解题模板:第一步 根据题目条件求出,a c 的值 第二步 代入公式ce a=,求出离心率e . 方法2 方程法解题模板:第一步 设出相关未知量;第二步 根据题目条件列出关于,,a b c 的方程; 第三步 化简,求解方程,得到离心率.方法3 借助平面几何图形中的不等关系解题模板:第一步 根据平面图形的关系,如三角形两边之和大于第三边、折线段大于或等于直线段、对称的性质中的最值等得到不等关系,第二步 将这些量结合曲线的几何性质用,,a b c 进行表示,进而得到不等式, 第三步 解不等式,确定离心率的范围.方法4 借助题目中给出的不等信息解题模板:第一步 找出试题本身给出的不等条件,如已知某些量的范围,存在点或直线使方程成立,∆的范围等;第二步 列出不等式,化简得到离心率的不等关系式,从而求解.方法5 借助函数的值域求解范围解题模板:第一步 根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;第二步 通过确定函数的定义域;第三步 利用函数求值域的方法求解离心率的范围.【应用举例】【例题1】若椭圆经过原点,且焦点分别为12(0,1),(0,3)F F ,则其离心率为( )A .34 B .23 C .12 D .14【答案】C 【解析】试题分析:根据椭圆定义,原点到两焦距之和为2a=1+2,焦距为2c=2,所以离心率为12. 考点:椭圆的定义. 【难度】较易【例题2】点P (-3,1,过点P 且方向为a =(2,-5)的光线经直线y=-2反射后通过椭圆的左焦点,则此椭圆离心率为( )【答案】A 【解析】试题分析:因为给定点P (-3,1根据光线的方向为a =(2,-5)y=-2与入射光线的斜率互为相反数可知焦点的坐标为(1,0),因此可知 A 考点:本试题考查了椭圆性质的知识点。

点评:解决该试题的关键是利用椭圆的反射原理得到直线斜率的特点,结合平面反射光线与入射光线的斜率互为相反数,得到c 的值,同时得到a,b,c 的关系式,进而得到结论,属于基础题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巧解椭圆离心率的取值范围
河北容城中学 牛文国 邮编071700
在椭圆问题中经常会遇到下面一类问题,就教学中的一些体会提供此类问题的常规解法,供大家参考。

设椭圆122
22=+b
y a x )0(>>b a 的两焦点为21,F F ,若在椭圆上存在一点p ,使21PF PF ⊥,求椭圆e 的取值范围。

解析1:设()y x P ,,由21PF PF ⊥得1-=-⋅+c
x y c x y ,即222x c y -=,代入122
22=+b
y a x 得()22222c b c a x -= ,2220b c x ≥∴≥ 即222c a c -≥,2
2≥=∴a c e 又1<e 12<≤∴e
解析2:令n PF m pF ==21,
则a n m 2=+ 由21PF PF ⊥ 2
224c n m =+∴ ()22222224a n m n m c =+≥+=∴ 即2122
≥=a c e 又12
210<≤∴<<e e 解析3:21PF PF ⊥ 为直径的圆上点在以21F F P ∴ 又P 在椭圆上,
2
22c y x P =+∴为圆 与 122
22=+b y a x 的公共点。

由图可知
222a c b a c b <≤⇒<≤ ∴2222a c c a <≤-12
2<≤∴
e 说明:椭圆上一点距中心距离最小值为短半轴长。

解析4:椭圆122
22=+b
y a x )0(>>b a 当P 与短轴端点重合时∠21PF F 最大 此题是否可以得到启示呢?
无妨设满足条件的点P 不存在 ,则∠21PF F <090
2
245sin sin 001=<∠=<∴OPF a c 又10<<e 所以若存在一点P 则
122<≤e 说明:在解此类问题时要充分利用椭圆的定义、均值不等式、椭圆的几何性质。

相关文档
最新文档