20力学量算符和量子力学公式的矩阵表示
量子力学 第7章-2(第20讲)
H
p' p"
p2 2m
p
'
p "
V
i
p
'
p
'
p
"
2. 力学量的表象变换
力学量 Fˆ 在表象A中的表示矩阵:
Fmn
m
(
x)Fˆ
n
(
x)d
x
在表象B中的表示矩阵:
F (x)Fˆ (x)d x
F Fmn
F F
Sm
m
(
x)
Fˆ
n
(
x)d
x Sn
mn
Sm FmnSn
问题?
坐标算符、动量算符、动能算符、任意力 学量算符在坐标表象、动量表象、 Q表象 (任一力学量表象)中分别如何表示?
力学量算符从一个表象如何变换到另一个 表象?
幺正变换有何主要性质和特点?
力学量算符在坐标表象与动量表象中的表示
坐标表象
xˆ x
Pˆx i
x
Tˆ
2
2m
2 x2
动量表象
xˆ i p x
a1(t)
(q, t)
an
(t
)
任一态矢 (x, t) an (t)un (x)
n 1
(r, t)
an (t)
un*
(r)
(r ,
t
)
d
3
r
(q, t)是粒子状态波函数 (r , t) 在Q 表象中的表示,
称为Q 表象波函数
量子力学表象与几何空间坐标系的比较
量子力学表象
Ai Aei
矢量:
A1
A
A2
算符的矩阵表示_
2 2 ˆ L ψ = l ( l + 1 ) h ψ 32 m 解: 32 m = 2(2 + 1)h 2ψ 32 m 2 = 6h ψ 32 m ˆ ψ = mhψ L z 32 m 32 m
p47 (3.1-8)式
∫
=
{∫ u
* nm
* n
ˆ u ( x ) dx (x)F m
}
*
=F
厄密算符的矩阵 厄密算符的矩阵 是厄密矩阵
* ˆ Fnm = ∫ un F ( x ,− ih ∂ )um ( x ) dx ∂x
7 算符的矩阵表示
对角矩阵与单位矩阵: 对角矩阵与单位矩阵:
对角矩阵
An ( m = n ) Anm = Anδ nm = 0 ( m ≠ n ) 除对角元外其余为零
§4-2-2 厄密算符的矩阵
* * A A A13 * 11 12 A = 复共轭 A* A* A23 21 22
* A13 * A23
m列n行 n 列m 行 转置矩阵: 转置矩阵:把矩阵A * * A A A A 的行和列互相调换, 的行和列互相调换, 11 21 11 21 * ~ + * 所得新矩阵称为A的 A = A A 共轭矩阵 A = A12 A22 12 22 转置矩阵 A* A* A A
+
~ * * A → ( A ) mn = ( Amn ) = Anm + * 定义矩阵A 的共轭矩阵 Amn = Anm
量子力学的表象变换与矩阵形式
基矢变换的一个重要应用是求解量子力学中的本征值 问题。通过选择合适的基矢,可以将一个复杂的二次 型哈密顿量变为简单的形式,从而方便求解。
坐标表象与动量表象
01
坐标表象和动量表象是量子力学中最常用的两种表象。在 坐标表象中,波函数是坐标的函数,而在动量表象中,波 函数是动量的函数。
02 03
在坐标表象中,哈密顿量是一个关于坐标的二次型,而在 动量表象中,哈密顿量是一个关于动量的二次型。因此, 这两种表象适用于不同类型的问题。在求解一些与位置和 动量有关的物理问题时,选择合适的表象可以大大简化计 算过程。
表象变换
基矢变换
基矢变换的基本思想是通过线性组合的方式,将一组 旧的基矢变换为新的基矢。在量子力学中,这种变换 通常是通过一个可逆矩阵来实现的。
基矢变换是指在不同表象之间进行转换时,基矢的选 择会发生改变。在量子力学中,一个量子态由一个波 函数来描述,而波函数在不同的表象下会有不同的形 式。基矢变换就是用来描子计算
01
量子纠缠是量子力学中的一种现象,指两个或多个量子系统之 间存在一种特殊的关联,使得它们的状态无法单独描述。
02
量子纠缠在量子计算中具有重要作用,是量子并行性和量子算
法复杂性的基础。
利用量子纠缠,可以实现更高效的量子算法和量子通信协议。
03
量子通信与量子密码学
量子通信利用量子力学原理实现 信息的传输和保护,具有无条件
描述了密度矩阵的演化,其矩阵形式为密度矩阵与时间导数的乘积。
矩阵形式的测量与观测
量子测量
通过测量操作,将量子态投影到测量 算子的本征态上,其结果以概率的形 式给出。
观测结果
观测结果以概率分布的形式给出,反 映了量子态的测量结果与测量算子的 本征值的关联。
量子力学的矩阵形式与表象变换
练习,求证U是么正矩阵。
么正变换小结
基矢变换: (e 1 ,e 2 ) (e 1 ,e 2 )U ()
基矢变换:Ψ´=ΨS-1,<- Ψ a = Ψ ´ a´ = Ψ ´ Sa
Δ 有关矩阵知识 (参考周世勋书P250-255)
1.对角矩阵 Anm=amδnm. 2. 转置矩阵 (A ~)nmAmn
3.厄米共轭矩阵 (或称共轭矩阵) (A )nm (A ~ ) nm A m 运算规则:(AB) BA (A) A
A 1 A A2
A 3
A1 A A2
A3
以二维坐标系间变换为例。
设新坐标系 (e1,e2)相对原坐标系 (e1,e2) 顺时针 转过θ角。则
e1 c1e1c2e2,
e2 d1e1d2e2,
r (r )(r r )
动量表象
i
p x
px,
, i p
p
Fˆ(ip, p)
r (p )(12)3/2e ip r
p (r )(12)3/2e ip r
p (p )(p p )
(列矩阵的本征矢正交定义: XiXj 0 .)
C. 厄米矩阵的本征矢的正交归一完备。XiXj ij
(若简并情况下k个本征矢不正交,可以通过线性 组合,变为正交的k个本征矢).
Δ.本征矢的归一化: XiXi 1
1
Δ.未归一的归一化系数C:
C
X
i
X
i
Δ.任意列矩阵X可用厄米矩阵的本征矢展开
量子力学的矩阵表述
2
当平面波按 δ 函数归一化时
p ~ p + dp 之间的概率密度幅
[对分立谱
设 ϕ n 是某力学量 A 的与本征值 α n 对应的本征态
ψ ( x ) = ∑ c nϕ n
n
7.3 ]
c n 是在ψ ( x) 态中测量力学量 A 得到值 α n 的概率
一 态的矩阵表述
2
矩阵表示的实质是选取态空间的一套基底后 以分立谱为例 态空间的基底
A 表象和 B 表象
ˆϕ = α ϕ A n n n
A 表象以 { ϕ n } 为基底
ˆψ = β ψ B i i i
B 表象以 { ψ i }为基底
7.27 设这两套基底都是正交归一基底
ij
(ϕ n , ϕ m ) = δ nm
任意态 Ψ 可以用 { ϕ n } 展开
(ψ ,ψ ) = δ
i j
7.28
* * ˆ ˆ ϕn ,∑ S* Fij′ = ∑ S in jm Fϕ n = ∑ S in S jm ϕ n , Fϕ m m n n,m + = ∑ S in Fnm S * jm = ∑ S in Fnm S mj
(
)
7.40
( )
n ,m
h ,m
矩阵形式为
F ′ = SFS +
7.46 7.47
An B m
2 3 算符对态的作用
exp( A)
[ A, B] 等
7.48
Φ = FΨ ⇔ Φ ′ = F ′Ψ ′
本征方程和本征值
′ = λkφ k ′ Fφ k = λ k φ k ⇔ F ′φ k
7.49
可见
4.3量子力学公式的矩阵表示
2 = 1, b1 = 2
同样步骤得
再由波函数归一化条件
1 1 ψ −1 = 2 − 2i −1
典型例题
例1、用坐标轮换的方法,写出 l 、用坐标轮换的方法, 函数, 表达。 函数,用球函数 Ylm 表达。 解:我们知道 L = 2h (即l 的全部本征函数为: 的全部本征函数为:
F1n F2n M
L L L =0
(4.3 − 6)
L Fnn − λ L M M L
方程( 久期方程。 方程(4.3-6)称为久期方程。求解久期方程 可得到一组 值 )称为久期方程 求解久期方程 可得到一组λ 它们就是F的本征值 把求得的λ 的本征值。 λ1 , λ 2 , L λ n L ; 它们就是 的本征值。把求得的 i 分别代入 (4.3-5)式中就可以求得与这 i 对应的本征矢 )式中就可以求得与这λ
( ai1 (t ), ai 2 (t ),
L ain (t ) L), 其中 其中i=1,2, …n, …。 。
(3). 薛定谔方程
∂ψ ( x, t) ˆ ih = Hψ (x,t) ∂t
( Q表象: ψ x, t) ∑ an (t )un ( x) =
n
dan (t ) ˆ ih ∑ un ( x) = ∑ an (t ) Hun ( x) dt n n
3 y − iz = −h = −hφ1−1 8π r
ˆ 的本征函数, ˆ 即 φ 1−1 的确是 Lx 的本征函数,本征值是 L x
= − h。
并积分: 左边乘以u m ( x ) 并积分
*
dam ( x) ih = ∑ an (t ) H mn = ∑ H mn an (t ) dt n n
量子力学中的量子力学力学量的表示
量子力学中的量子力学力学量的表示量子力学是描述微观世界的物理学理论,它提供了一种描述粒子性质的数学框架。
在量子力学中,力学量是描述系统状态的物理量。
本文将探讨在量子力学中,如何表示力学量以及不同力学量的物理意义。
一、力学量的表示在经典物理学中,力学量通常可以用数值来表示,例如质量、速度、位移等。
然而,量子力学中的力学量不能简单地用数值表示,而是需要用算符表示。
力学量的算符通常用大写字母表示,比如位置算符X,动量算符P等。
对于某个具体的力学量,它的算符作用在波函数上,得到的结果是该力学量对应的本征值乘以波函数。
这可以用数学表达式表示为:AΨ = aΨ其中A是力学量的算符,Ψ是波函数,a是力学量的本征值。
这个方程称为力学量的本征值方程。
二、不同力学量的表示1. 位置算符在量子力学中,粒子的位置可以用位置算符X来表示。
位置算符的本征态是位置本征态,它表示粒子在某个确定的位置。
对于一维情况,位置本征态的波函数可以写为:Ψ(x) = δ(x - x0)其中x0是位置本征态对应的位置。
2. 动量算符动量算符P描述粒子的运动状态。
动量算符的本征态是动量本征态,它表示粒子具有某个确定的动量。
对于一维情况,动量本征态的波函数可以写为:Ψ(p) = e^(ipx/ħ)其中p为动量本征态对应的动量,ħ为普朗克常数除以2π。
3. 能量算符能量是量子力学中的另一个重要的力学量。
能量算符H描述粒子的能量状态。
能量算符的本征态是能量本征态,它表示粒子具有某个确定的能量。
能量本征态的波函数可以写为:Ψ(E) = e^(-iEt/ħ)其中E为能量本征态对应的能量,t为时间。
三、力学量的测量和物理意义在量子力学中,力学量的测量是通过对算符的作用得到的本征值来实现的。
当对某个力学量进行测量时,系统将处于该力学量的某个本征态上,从而得到相应的本征值。
力学量的本征值对应着可能的测量结果。
例如,对位置算符进行测量,可以得到粒子的位置值;对动量算符进行测量,可以得到粒子的动量值。
「量子力学的矩阵形式和表象变换」
§4.5 量子力学的矩阵形式和表象变换态和力学量算符的不同表示形式称为表象。
态有时称为态矢量。
力学量算符对态的作用实际上是对矢量量进行变换,因此可与代数中线性变换进行类比。
1、量子态的不同表象 幺正变换 (1)直角坐标系中的类比取平面直角坐标系21X OX 其基矢(我们过去称之为单位矢)可表示为21,e e,见图其标积可写成下面的形式)2,1,(),(==j i e e ijj i δ我们将其称之为基矢的正交归一关系。
平面上的任一矢量A可以写为2211e A e A A +=其中),(11A e A =,),(22A e A=称为投影分量。
而),(21A A A = 称为A在坐标系21X OX 中的表示。
现在将坐标系21X OX 沿垂直于自身面的轴顺时针转θ角度,则单位基矢变为','21e e,且同样有)2,1,()','(==j i e e ijj i δ而平面上的任一矢量A此时可以写为 ''''2211e A e A A +=其中投影分量是),'('11A e A =,),'('22A e A=。
而)','(21A A A = 称为A在坐标系'X 'OX 21中的表示。
现在的问题是:这两个表示有何关系?显然,22112211''''e A e A e A e A A+=+=。
用'1e 、'2e分别与上式中的后一等式点积(即作标积),有),'(),'('2121111e e A e e A A+= ),'(),'('2221212e e A e e A A+=表成矩阵的形式为⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛212212211121),'(),'(),'(),'(''A A e e e e e e e e A A由于'1e 、1e 及'2e 、2e的夹角为θ,显然有⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛21212212211121cos sin sin cos ),'(),'(),'(),'(''A A A A e e e e e e e e A A θθθθ或记为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛2121)(''A A R A A θ 其中⎪⎪⎭⎫⎝⎛-=θθθθθcos sin sin cos )(R 是把A在两坐标中的表示⎪⎪⎭⎫ ⎝⎛''21A A 和⎪⎪⎭⎫⎝⎛21A A 联系起来的变换矩阵。
量子力学考试试题(附答案)
量子力学考试试题(附答案)1.束缚于某一维势阱中的粒子,其波函数由下列诸式所描述:()()()023cos 222ikx L x x x L L x Ae x L L x x ψπψψ=<-=-<<=>(a )、求归一化常数A,(b )、在x=0及x=L/4之间找到粒子的概率为何? 解:(a )由波函数的归一化条件()222222222331coscos 33cos cos 3cos 6cos 126sin 262ikx ikx ikx ikx LLx x x dx Ae Ae dx L Lx x A e e dxL L x A dx L A x dx L A L x x L A L ππψππππππ∞∞-∞-∞∞--∞∞-∞∞-∞-====⎛⎫=+ ⎪⎝⎭⎛⎫=+ ⎪⎝⎭=⎰⎰⎰⎰⎰于是:A =(b)()224406sin 0.196926LL A L x x dx x L πψπ⎛⎫=+= ⎪⎝⎭⎰2、证明在定态中,概率流密度与时间无关。
证:对于定态,可令)]()()()([2 ])()()()([2 )(2 )( )()()(******r r r r mi e r e r e r e r m i mi J e r t f r t r Et i Et i Et iEt i Etiψψψψψψψψψψ∇-∇=∇-∇=ψ∇ψ-ψ∇ψ===ψ-----)()(, 可见t J 与无关。
4、波长为1.0*10-12m 的X 射线投射到一个静止电子上,问在与入射光成60o 角的方向上,探测到散射光的波光为多少?解:由公式 22sin 2c θλλλ'-=其中:120 2.43102ch m m cλ-==⨯可得:1212212601.0102 2.4310sin 1.215102λλλ---''-=-⨯=⨯⨯⨯=⨯ 01212212601.0102 2.4310sin 1.215102λλ---'-=-⨯=⨯⨯⨯=⨯122.21510m λ-=⨯。
量子力学中的矩阵表示方法
量子力学中的矩阵表示方法量子力学是一门探索微观世界的科学,而矩阵表示方法是量子力学中非常重要的一部分。
通过矩阵表示方法,我们能够描述和计算微观粒子的性质和相互作用。
本文将介绍矩阵表示方法在量子力学中的应用,以及其背后的数学原理。
首先,我们来了解一下量子力学中的态。
在量子力学中,粒子的态可以通过波函数来描述。
波函数是一个复数函数,在给定的时刻和空间点上,它代表了粒子的状态。
对于多粒子系统,其波函数包含多个变量,比如位置和自旋等。
然而,波函数并不是常用的物理量,我们更关注的是物理量的平均值和概率分布。
而在量子力学中,物理量是由算符来表示的。
算符是一种对波函数作用的数学对象,它可以描述某个物理量的性质。
量子力学中最常用的算符就是哈密顿算符,它表示了系统的总能量。
接下来,我们讨论如何将算符用矩阵表示。
矩阵表示方法是量子力学中一种非常常用的计算工具。
它的基本思想是将量子力学中的算符映射为矩阵,从而可以方便地对波函数进行计算和分析。
对于一个算符A,我们可以将其对应的矩阵表示为A。
矩阵A的元素A(i,j)表示了算符A在波函数基矢量|i⟩和|j⟩之间的矩阵元。
矩阵元代表了算符A在不同态之间的跃迁概率。
通过矩阵表示方法,我们可以方便地进行算符之间的运算。
例如,两个算符A和B的乘积AB可以通过将它们对应的矩阵相乘来得到。
这样,我们就能够方便地计算复杂的量子力学表达式。
除了表示算符,矩阵表示方法还可以用于描述量子态之间的变换。
量子力学中的变换由幺正算符来表示,而幺正算符可以看作是保持态空间长度不变的线性变换。
幺正算符对应的矩阵是正交矩阵,它满足矩阵的厄米共轭等于其逆矩阵。
通过矩阵表示方法,我们可以方便地描述和求解量子系统的本征态和本征值。
对于一个算符A,如果满足A|i⟩=a(i)|i⟩,其中|i⟩是A的本征态,a(i)是对应的本征值,那么算符A对应的矩阵A的特征方程就是AΨ=aΨ。
通过求解特征方程,我们可以得到算符A的本征值和本征态。
13-量子力学的矩阵形式
a1 S11 S12 . a1
a Sa a2 S21 S22 . a2
. . .
15
一、表象及其变换(5)
任一量子态在F表象中的表示a
a1 a2
可以通过矩
1
!!
2
( r)l e 2r2 / 2 F (nr , l 3 / 2, 2r 2 )
2
d
0
sin d
0
a
0
* nr
l
m
(r
,
,
)
nr
lm
(
r
,
,
)
r
2
dr
nrnr ll mm
N 2nr l, m l, l 1,, l 1, l
系:a Sa,幺正矩阵S (Sk ), Sk ( , k )
17
表象及其变换的理解
量子力学中态和力学量的具体表示方式称为表象。波函数的 表示方式在量子力学中并不是唯一的,波函数也可以选用其 他变量的函数。量子力学中表象的选取决定于所讨论的问题。 表象选取得适当可以使问题的讨论大为简化。 对于表象和表象变换,通俗的理解,即坐标和坐标变换,表 象就是经典物理中的坐标,就如直角坐标系和极坐标系。
nxnynz (x, y, z) nx (x)ny ( y)nz (z), nx , ny , nz 0,1, 2,
H H x H y H z , H nxnynz (x, y, z) Enxnynz (x, y, z) 其解为(H x , H y , H z )的共同本征态,设此本征态为: nxnynz (x, y, z) nx (x)ny ( y)nz (z), nx , ny , nz 0,1, 2, 则H nxnynz (x, y, z) (H x H y H z )nx (x)ny ( y)nz (z) (Ex Ey Ez )nx (x)ny ( y)nz (z) Enxnynz (x, y, z)
力学量的矩阵形式与表象变换
表象变换的应用
要点一
总结词
表象变换在量子力学中有着广泛的应用,它可以用于解决 各种实际问题。
要点二
详细描述
表象变换可以用于计算量子态的演化、求解薛定谔方程、 理解量子纠缠等现象。通过选择适当的表象,我们可以将 复杂的问题简化为更易于处理的形式,从而更好地理解和 应用量子力学的基本原理。此外,表象变换在量子计算和 量子信息处理等领域也有着重要的应用,它可以用于实现 量子算法和量子通信等任务。
02
表象变换
表象变换的概念
总结词
表象变换是量子力学中一个重要的概念,它涉及到对物理系统的描述方式的改变。
详细描述
在量子力学中,一个物理系统可以用不同的方式进行描述,这些描述方式被称为表象。表象变换就是从一个表象 变换到另一个表象的过程。通过表象变换,我们可以选择最适合问题解决的方式进行描述,从而简化计算和问题 解决过程。
应用于量子模拟
通过表象变换,可以更好地模拟和分析一些复杂的量子系 统,例如凝聚态物质中的强关联效应等。
感谢观看
THANKS
简化计算
通过选择合适的表象,可以简化 某些物理过程的计算过程,提高 计算效率。
表象变换在量子力学中的具体应用
角动量表象
在角动量表象中,角动量算符可以表示为矩阵形式,方便进行计 算和表示。
位置和动量表象
在位置和动量表象中,位置和动量算符可以表示为简单的算术运 算,有助于理解量子力学的非经典性质。
哈密顿表象
力学量的矩阵形式 与表象变换
目 录
• 力学量的矩阵表示 • 表象变换 • 力学量的本征值与本征态 • 力学量算符的变换规则 • 表象变换在量子力学中的应用
01
力学量的矩阵表示
量子力学第四章-表象理论(3部分)
∑a
n
n
*(t )an (t ) + ∫ aq *(t )aq (t )dq = 1
|aq(t)|2dq 是在 是在Ψ(x,t) 态中 测量力学量 Q 所得结果在 q → q + d q之间的几率。 之间的几率。 之间的几率
在这样的表象中, 在这样的表象中,Ψ 仍可以用一个列矩阵 表示: 表示:
a1(t) a 2(t) M Ψ = a n (t) M aq (t)
将Ψ(x,t) 按 Q 的 本征函数展开: 本征函数展开:
Ψ( x, t ) = ∑ an (t )un ( x)
n
证:
1 = ∫ Ψ * ( x, t )Ψ( x.t )dx
=
an (t ) = ∫ un * ( x)Ψ( x.t )dx
a1(t), a2(t), ..., an(t), ... ...,
∫
ψ p * ( x )ψ p ′ ( x ) e
− iE p′ t / h
dx
所以,在动量表象中, 所以,在动量表象中, 具有确定动量p 的粒 具有确定动量p’的粒 子的波函数是以动量 函数。 p为变量的δ- 函数。 换言之, 换言之,动量本征函 数在自身表象中是一 函数。 个δ函数。
=e
− iE p′ t / h
假设只有分立本征值将q表象的表达方式代入一力学量算符的矩阵表示22211211nm是其矩阵元写成矩阵形式q表象的表达方式11101011计算中使用了公式由此得l在自身表象中具有最简单形式是一个对角矩阵对角元素就是1力学量算符用厄密矩阵表示dx所以厄密算符的矩阵表示是一厄密矩阵
第四章 态和力学量表象
§1 态的表象 §2 算符的矩阵表示 §3 量子力学公式的矩阵表述 §4 Dirac 符号 §5 Hellmann – Feynman 定理及应用 §6 占有数表象 §7 么正变换矩阵
量子力学中的量子力学算符
量子力学中的量子力学算符量子力学中的量子力学算符是描述量子系统性质的重要工具。
它们代表了物理量的数学运算符,用于计算和预测系统的态矢量的演化和测量结果。
本文将介绍量子力学算符的基本概念、性质和应用。
1. 算符的定义在量子力学中,算符是表示物理量的数学运算符。
它们作用于态矢量,用于计算物理量的测量结果或表示系统的演化。
量子力学算符通常用大写字母表示,例如位置算符X、动量算符P和能量算符H等。
2. 算符的性质量子力学算符具有多个重要性质,包括线性性、厄米性和厄米算符的本征值问题。
2.1 线性性:量子力学算符是线性的,即对于任意常数a和b,有F(aψ + bφ) = aF(ψ) + bF(φ),其中F表示任意量子力学算符。
2.2 厄米性:厄米性是量子力学算符的重要性质。
一个算符F的厄米共轭算符F†定义为满足内积关系⟨ψ|F†φ⟩ = ⟨Fψ|φ⟩的算符。
对于厄米算符F,其本征值都是实数。
2.3 厄米算符的本征值问题:对于厄米算符F,存在一组完备正交本征态{φn},其对应的本征值{fn}都是实数。
即Fφn = fnφn。
这个本征值问题是量子力学中重要的数学工具,可以用于计算物理量的测量结果和态矢量的演化。
3. 常见的量子力学算符量子力学中存在着许多常见的算符,这些算符用于描述各种物理量和系统性质。
3.1 位置算符X:位置算符X表示粒子在空间中的位置。
对于一维情况,位置算符的本征态是位置空间的波函数;对于三维情况,位置算符的本征态是位置空间的波函数。
3.2 动量算符P:动量算符P表示粒子的动量。
对于一维情况,动量算符的本征态是动量空间的波函数;对于三维情况,动量算符的本征态是动量空间的波函数。
3.3 能量算符H:能量算符H表示粒子的能量。
它是量子体系的哈密顿算符,其本征态是能量空间的波函数。
4. 算符的应用量子力学算符在物理学中有广泛的应用。
它们可以用于计算各种物理量的期望值、计算系统的演化和描述量子力学中的各种现象。
量子力学之狄拉克符号系统与表象
Dirac符号系统与表象一、Dirac符号1.引言我们知道任一力学量在不同表象中有不同形式,它们都是取定了某一具体的力学量空间,即某一具体的力学量表象。
量子描述除了使用具体表象外,也可以不取定表象,正如几何学和经典力学中也可用矢量形式A来表示一个矢量,而不用具体坐标系中的分量(Ax ,Ay,Az)表示一样。
量子力学可以不涉及具体表象来讨论粒子的状态和运动规律。
这种抽象的描述方法是由Dirac首先引用的,本质是一个线性泛函空间,所以该方法所使用的符号称为Dirac 符号。
2.(1).(或基组)(2(3<ψ|按定义有:ψψa)在同一确定表象中,各分量互为复共轭;b)由于二者属于不同空间所以它们不能相加,只有同一空间的矢量才能相加;c)右矢空间任一右矢可以和左矢空间中任一左矢进行标积运算,其结果为一复数。
(4).本征函数的封闭性a)分立谱展开式:可得:因为|ψ>是任意态矢量,所以:b)连续谱对于连续谱|q>,q取连续值,任一状态|ψ>展开式为:因为|ψ>是任意态矢量,所以:这就是连续本征值的本征矢的封闭性。
c )投影算符|Q n ><Q n |或|q><q|的作用相当一个算符,它作用在任一态矢|ψ>上,相当于把|ψ>投影到左基矢|Q n >或|q>上,即作用的结果只是留下了该态矢在|Q n >上的分量<Q n |ψ>或<q|ψ>。
故称|Q n ><Q n |和|q><q|为投影算符。
因为|ψ>在X 表象的表示是ψ(x,t),所以显然有:在分立谱下:所以*(')()(')n n nu x u x x x δ=-∑。
在连续谱下:所以*(')()(')u ⎰。
3.(1X 即Q (2即有:4.到目前为止,体系的状态都用坐标(x,y,z)的函数表示,也就是说描写状态的波函数是坐标的函数。
量子力学知识点小结
量子力学知识总结认真、努力、坚持、反思、总结…物理111 杨涛量子力学知识点小结一、绪论1.光的粒子性是由黑体辐射、光电效应和康普顿效应(散射)三个实验最终确定的。
2.德布罗意假设是任何物质都具有波粒二象性,其德布罗意关系为E h ν=和h p n κλ==3.波尔的三个基本假设是定态条件假设、n mE E h ν-=频率条件假设、化条件)(索末菲等推广的量子21或量子化条件假设⎰⎰+==h n pdq nh pdq )(4.自由粒子的波函数()ip r Et Aeψ⋅-=5.戴维孙革末的电子在晶体上衍射实验证明了电子具有波动性。
二、波函数及薛定谔方程(一)波函数的统计解释(物理意义)A.波函数(,)r t ψ的统计解释2(,)r t d t r ψτ表示时刻在点位置处单位体积内找2sin d r drd d τθϕθ=到粒子的几率(注:)。
B. 波函数(,,,)x y z t ψ的统计解释2(,,,),,x y z t dxdydz t x y z ψ表示时刻在点()位置处单位体积没找到粒子的几率。
例:已知体系处于波函数(,,)x y z ψ所描写的状态,则在区间[,]x x dx +内找到粒子的概率是2(,,)x y z dydz dx ψ+∞+∞-∞-∞⎡⎤⎢⎥⎣⎦⎰⎰. 已知体系处于波函数(,,)r ψθϕ所描写的状态,则在球壳r r dr →+内找到粒子的概率是22200(,,)sin r d d r dr ππψθϕθϕθ⎡⎤⎢⎥⎣⎦⎰⎰,在立体角d Ω内找到粒子的概率是220(,,)r r dr d ψθϕ∞⎡⎤Ω⎢⎥⎣⎦⎰.(注:sin d d d θϕθΩ=) (二)态叠加原理:如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加1122c c ψψψ=+(12c c 、为复数)也是这个体系可能的状态。
含义:当体系处于1ψ和2ψ的线性叠加态1122c c ψψψ=+(12c c 、为复数) 时,体系既处于1ψ态又处于态2ψ,对应的概率为21c 和22c .(三)概率密度(分布)函数2()()x x x ψωψ=若波函数为,则其概率密度函数为()(四)薛定谔方程:22()2i U r t m∂ψ=-∇ψ+ψ∂ 22222222222222222()21cos 1 ()sin sin x y zr r r r r θθθθθϕ∂∂∂∇=+∂∂∂⎛⎫∂∂∂∂∂∇=+++ ⎪∂∂∂∂∂⎝⎭拉普拉斯算符直角坐标球坐标问题:1.描写粒子(如电子)运动状态的波函数对粒子(如电子)的描述是统计性的.2. 薛定谔方程是量子力学的一个基本假设,不是通过严格的数学推导而来的(五)连续性方程:()**0( )2J tiJ mω∂+∇⋅=∂≡ψ∇ψ-ψ∇ψ注:问题:波函数的标准条件单值、连续、有界。
7.2 力学量(算符)的矩阵表示
量子力学教程(第二版)
三、力学量的表象变换
ˆ L kj (y k , Ly j ) F表象(基矢yk)中,力学量L表示为矩阵(Lkj),矩阵 元 ˆ F′表象(基矢y)中,力学量L表示为矩阵(L'b),矩阵元 L b (y , Ly b )
y
y k (y k , y )
a
k
k
ˆ Ly
k
7.2 力学量(算符)的矩阵表示
量子力学教程(第二版)
两边左乘 y
bj
j
,取标积,得
ˆ (y j , Ly k )a k
k
L
k
jk
ak
(6 )
其中
ˆ L jk (y j , Ly k )
(7 )
式(6)表示成矩阵形式则为
b1 b2 L1 1 L21 L1 2 L22 ... a 1 ... a 2
sin q A1 co s q A 2
7.2 力学量(算符)的矩阵表示
量子力学教程(第二版)
把矢量逆时针方向旋转q角的操作可用R(q )刻画
co s q R (q ) sin q
sin q
co s q
(4)
它的矩阵元是描述基矢在旋转下如何变化的. 例如第一列元素
xy
n
1
n 2
y
n 1
n 1
y n 1 2
(9 )
d dx
y
n
n 2
y
n 1
n 1
y n 1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
* m
x
n
dx
1
n
2
m,n1
n
2
1
dx
n dx
ih
n
2
m,n1
n
2
1
m,n1
Hmn
* m
Hˆ
n
dx
Enm,n
n
1 2
h
m,n
所以,它们的矩阵表示分别是
0 1 0 0
1 0 2 0
x
1
2
0 0
20
3
0 3 0
0
1 0 0
(x,t) Fˆ (x,t)
把波函数 (、x,t) 分别(x,向t) 展开{g (x)}
(x,t) ag (t)g (x)dg
(x,t) bg (t)g (x)dg
代入到算符方程中,得
bg (t)g (x)dg ag (t)Fˆg (x)dg
上式两端做运算 g*, L得dx
bg (t)
bk (t) Fk1
F12 F22
Fk 2
F1k a1 (t)
F2k a2 (t)
Fkk ak (t)
或简写为 2.本征方程
bm (t) Fmnan (t)
n
Fˆ (x,t) (x,t)
F11 F12 F1k a1 (t) a1 (t)
(2)不论在任何具体表象中,任何厄米算符 的Fˆ矩阵元 一F定mn 是 一个数值,故其可以在公式中随意移动位置;
(3)在不同的表象中,算符的矩阵元可能会不同,但是该算符 的本征值不会改变;
(4)如果的本征值为连续谱,则
Gˆg (x) gg (x)
{g (x构)}成正交归一完备基矢组。
算符 满Fˆ足
i
d dt
a2 (t)
H 21
H 22
H 2k
a2 (t)
ak (t) H k1 H k 2 H kk ak (t)
式中
H mn
* m
(
x)Hˆ
n
(
x)dx
4.平均值公式
F(t)
*(x,t)Fˆ (x,t)dx
am* (t)an (t)
n
n
bn (t)n (x) an (t)Fˆn (x)
n
n
上式两端做运算 m*,L得dx
bn (t) m*ndx an (t) m* Fˆndx
n
n
bn (t)mn an (t) m* Fˆndx
n
n
bm(t) an (t) m* Fˆndx
n
令 Fmn m* (x)Fˆn (x)dx
m*
(
x)
Fˆn
(
x)dx
mn
am* (t)Fmnan (t)
mn
a1*(t) a2*(t) L
F11 F12 L
F21
F22
L
ak* (t)
L L Fk1
L Fk 2
L L
L L L
F1k L a1(t)
F2k
L
a2
(t
)
L L L
Fkk
L
ak (t)
L L L
例5.已知力学量 在Sˆx某表象中的矩阵表示为 征值和归一化波函数,并将 对角化S。x
Sx 0/,2 求0/它2的本
解: 首先,求解本征值方程
0 / 2
/ 0
2
a1 a2
a1 a2
/ 2
0
/ 2
/ 2
/ 2
a1 a2
0
/ 2
下面求本征函数。
1
h 2
/ 2 / 2
/
2 /2
a1 a2
则
Fm称n 为算符 在Fˆ 表G象中的矩阵元。
算符 在Fˆ 表G象中的矩阵形式为
bm (t) Fmnan (t)
n
F11 F12 L
F21
F22
L
F(G) L L L
Fk1
Fk 2
L
L L L
F1k L
F2k
L
L L
Fkk
L
L L
因为 是Fˆ厄米算符,所以它的矩阵元的复共轭为
1 0
2
p
i
2
0 0
2 0 0 3
0
3
0
1/ 2 0 0 0
0 3/2 0 0
H 0
0
5/2
0
0 0 0 7/2
二、量子力学公式的矩阵表示
以下内容都是在 表G象下的表示。
1.算符方程
(x,t) Fˆ (x,t)
b1 (t) F11
b2 (t) F21
gn
m*
(
x)n
(
x)dx
gnmn
g1 0 0 0
0 g2 0 0
Gˆ
0
0
0 0 0 gn 0
算符在自身表象下是一个对称矩阵,并且本征值就是对角元
素。它的阵迹就是全部本征值之和。
说明:
(1)欲求力学量 在Fˆ 表G象下的矩阵表示,必须知道力学量 Gˆ 的本征解,才能计算 Fˆ的矩阵元;
0
a1 a2
把波函数归一化
/2
a1 a1
/ 2 / 2
a1*
a2*
a1 a1
2 a1
2
1
/ 2 11//
2 2
1 2
11
同理
/ 2
1 2
11
最后,把矩阵对角化。
a1 1/ 2
Sx
/ 2 0
0 /
2
Fm*n m (x)[Fˆn (x)]*dx n*(x)Fˆm (x)dx Fnm
即矩阵中关于对角线对称的元素一定互为复共轭。或者
Fmn Fn*m Fmn
它表明矩阵是厄米矩阵。一般说来,实的对称矩阵都是厄米矩阵。
特例:力学量算符在自身表象中的矩阵。
Gmn
m*
(
x)Gˆn
(
x)dx
n
(Fmn mn )an 0
n
方程有非零解的充分必要条件是系数行列式为零。
因为任意力学量在自身表象中的矩阵都是对角的,所以,通常把 求解本征方程的过程称为矩阵对角化的过程。
3.薛定格方程
ih (x,t) Hˆ (x,t)
t
a1 (t) H11 H12 H1k a1 (t)
(
x
x)Fˆ
x,
ih
x
(
x
x)dx
Fˆ
x,
ih
x
(
x
x)
其中,x为变数,x、 为x本征值。
例2.动量表象中 的xˆ矩阵元为
xpp
* p
(
x)
x
p (x)dx
1
2 h
eipx / h x p (x)dx
1
2 h
ih
p
eipx
/
h
p
(
x)dx
ih
p
1
2
h
eipx / h
F21 F22 F2k a2 (t) a2 (t)
Fk1 Fk 2 Fkk ak (t)
ak (t)
F11
F21
Fk1
F12
F22
Fk 2
F1k F2k
Fkk
a1(t)
a2 (t)
0
ak (t)
或简写为
Fmnan am
p (x)dx
ih
p
* p
(
x)
p
(
x)dx
ih ( p p)
p
或
xpp
* p
(
p)
ih
p
p
(
p)dp
(
p
p)
ih
p
(
p
p)dp
ih ( p p)
p
例3.动量表象中 的Fˆ 矩阵元为
Fpp
* p
(
p)Fˆ
p, ih
p
p (
p)dp
(
p
p)Fˆ
对同一个物理问题可以在不同的表象下处理,尽管在不同的表象
下,波函数及算符的矩阵元是不同的,但最后所得到的物理结果
(力学量的可能取值、取值几率和平均值)却都是一样的。因为我
们所关心的只是有物理意义的结果,所以,允许对表象作选择。如
果选取了一个合适的表象,将使问题得到简化。这也就是表象理论
的价值所在。
一、力学量算符的矩阵表示
力学量 满Gˆ足的本征方程
Gˆn (x) gnn (x)
算符 满Fˆ足
(x,t) Fˆ (x,t)
把波函数 (、x,t) 分别(x,向t) 展开{n (x)}
(x,t) an (t)n (x)
n
(x,t) bn (t)n (x)
n
代入到算符方程中,得 bn (t)n (x) an (t)Fˆn (x)
*
g
g
dx
dg
ag (t)
* g
Fˆ
g
dx
dg
bg (t) (g g)dg ag (t)Fgg dg
bg (t) ag (t)Fgg dg
其中,算符 Fˆ的矩阵元
Fgg
* g
(
x)
Fˆg
(
x)dx
例1.坐标表象中 的Fˆ 矩阵元为
Fxx
* x
( x) Fˆ
x,
ih
x
x
(x)dx
§4-2 力学量算符和量子力学公式的矩阵表示