外文翻译---微生物中多聚磷酸盐细菌加强生物废水中清除磷的能力

合集下载

如何去除合成废水中的磷

如何去除合成废水中的磷

如何去除合成废水中的磷1 引言目前,水体富营养化问题日益严峻,而磷是导致水体富营养化的重要元素,因此,将磷从废水中去除意义重大.与化学除磷和物理除磷相比,强化生物除磷(Enhanced Biological Phosphorus Removal,EBPR)因具有除磷效果好、投资少、污泥产量少等优点而在世界各地的污水处理厂中得到广泛应用.EBPR中起主要作用的微生物为聚磷菌(Phosphate Accumulating Organisms,PAOs),PAOs能够在厌氧的环境中利用细胞内多聚磷酸盐(Polyphosphate,Poly-P)的水解产生腺嘌呤核苷三磷酸(Adenosine Triphosphat,ATP)吸收水体中的挥发性脂肪酸(Volatile Fatty Acids,VFAs),并利用糖酵解(Embden-Meyerhof-Parnas Pathway,EMP)途径或者乙酰辅酶A(acetyl-CoA)通过三羧酸循环(Tricarboxylic acid cycle,TCA)来提供烟酰胺腺嘌呤二核苷酸(Nicotinamide Adenine Dinucleotide,NADH)在胞内合成聚羟基脂肪酸酯(Poly-β-polyhydroxyalkanoates,PHA).聚磷水解后产生的磷酸盐被释放到水体中,在随后的好氧或者缺氧环境中,PAOs利用水体中的氧气或者硝酸盐(亚硝酸盐)等为电子受体氧化PHA,PHA氧化产生的能量用于超量吸收水体中的磷酸盐并贮存在体内生成聚磷等,最后通过排放富磷污泥来达到减少水体磷含量的目的.在实际的污水处理中,亚硝酸盐作为硝化和反硝化的中间产物广泛存在于污水的脱氮除磷系统中,且在一定条件下能够积累,如DO、温度、pH的变化,以及高浓度的氨氮、硝态氮等.Zeng等(研究发现,亚硝酸盐在传统的A/O工艺中积累量可高达20 mg · L-1.亚硝酸盐积累浓度过高会导致EBPR崩溃.Saito等报道2 mg · L-1 NO-2-N已对PAOs的好氧吸磷造成严重的抑制,而Zeng等报道10 mg · L-1 NO-2-N未对磷的吸收和释放产生抑制.以往研究中对微生物起抑制作用的亚硝酸盐浓度不尽相同,甚至差别很大,这可能与污泥种类、进水成分及反应器的运行条件有关.亚硝酸盐对污水处理厂中微生物的代谢具有严重的抑制作用,包括EBPR中起主要作用的PAOs.亚硝酸盐能够抑制PAOs的好氧吸磷、底物氧化磷酸化、物质主动运输等作用,从而对EBPR造成严重影响的研究表明,PAOs的同化作用(微生物的生长、磷的吸收、糖原质的补给)和异化作用(PHA的氧化)均不同程度地受到亚硝酸盐的影响,且异化作用受抑制程度相对同化作用要小.近期研究发现,在亚硝酸盐的水溶液中真正对微生物代谢起抑制作用的为游离亚硝酸(Free Nitrous Acid,FNA),FNA为亚硝酸盐的的质子化形态,它能够自由地穿过细胞膜.通过严格控制pH等外界条件证实,好氧吸磷的真正抑制成分是亚硝酸盐的质子化形态(即FNA).FNA的浓度与溶液中亚硝酸盐的浓度、温度和pH密切相关,其关系可通过以下公式表示:,其中,T为溶液的温度(℃),Ka为亚硝酸在T温度下的电离平衡常数.本课题组前期研究发现,序批式反应器进水后未经严格厌氧段而适当延长闲置时间在处理合成废水和实际生活污时均能保持良好的除磷性能.将其定义为A/EI(Aerobic/Extended Idle)工艺,A/EI工艺较传统厌氧/好氧(Anaerobic/Oxic,A/O)工艺具有对碳源依赖程度低、操作简单及对pH耐受范围广等优点.不同EBPR工艺中聚磷菌对亚硝酸盐的耐受能力不同,且A/EI工艺特有的运行模式将会导致PAOs代谢机理较传统A/O工艺不同.当进水中含有FNA 时是否会对A/EI工艺除磷性能产生影响,至今尚未明确,这严重阻碍着工艺的进一步完善和推广应用.本文旨在考察FNA对A/EI序批式反应器除磷性能的影响,并通过比较微生物体内储能物质的变化,探究FNA对A/EI反应器除磷性能的影响机制,最后通过恢复试验研究FNA对A/EI反应器抑制作用的可逆性.2 实验材料与方法(Materials and methods) 2.1 实验装置及运行方法活性污泥取自长沙第一污水处理厂回流池,经驯化15 d后平均分配到4个序批式反应器(R1、R2、R3、R4)中.序批式反应器有效容积为1.8 L,各反应器中初始污泥浓度(SS)为4000 mg · L-1左右.污泥沉降性能良好,反应器除磷率均稳定在90%以上.整个实验包含3个时期:驯化期(0~15 d)、试验期(16~105 d)和恢复期(106~130 d).反应器每天运行3个周期,每个周期包含4 h好氧曝气、0.5 h静置沉淀、3.5 h闲置.静置沉淀完成后排出上清液1 L,水力停留时间(HRT)为14.4 h,好氧曝气结束后期排泥水混合物60 mL,污泥停留时间(SRT)为10 d.反应器采用空气压缩机进行鼓风曝气,曝气强度为2 L · min-1.2.2 合成废水本研究进水采用人工合成废水,以磷酸二氢钾作为磷源,浓度为20 mg · L-1(以PO3-4-P 计),以乙酸钠作为单一外加碳源,进水COD值为500 mg · L-1,C/P比(质量比)为25 ∶1,进水氨氮浓度为20 mg · L-1.合成废水其他营养成分包括(以每升计)5 mg CaCl2、5 mg MgSO4、1 mL微量元素,每升微量元素中含有1.5 g FeCl3 · 6H2O、0.15 g H3BO3、0.03 g CuSO4 · 5H2O、0.18 g KI、0.12 g MnCl2 · 4H2O、0.06 g Na2MoO4 · 2H2O、0.12 g ZnSO4 · 7H2O、0.15 g CoCl2 · 6H2O和10 g EDTA.鉴于亚硝酸盐浓度低于2 mg · L-1时对PAOs的好氧吸磷抑制不明显,而当积累量高达20 mg · L-1时会导致EBPR崩溃,本研究选取2 mg · L-1(R1)和20 mg · L-1(R3)及中间浓度10 mg · L-1(R2)3个亚硝酸盐浓度值考察FNA对A/EI工艺除磷性能的影响,R1~R3各反应器FNA浓度分别为5.13×10-5、2.57×10-4和5.13×10-4 mg · L-1,R4作为空白对照.同时,在各反应器进水中添加少量的烯丙基硫脲(ATU)以抑制硝化作用和少量的NaClO3以抑制NO-2-N的氧化.2.3 分析方法SOP(Soluble Orthophosphate)、COD、SS、VSS、氨氮的测定可根据标准检测方法;PHA 测定采用气相色谱法,色谱仪型号为安捷伦6890N;糖原质测定采用苯酚-硫酸法;溶解氧(DO)采用便携式溶解氧仪测定;pH测定采用玻璃电极法3 结果与讨论3.1 FNA对污泥沉降性能的影响各反应器长期运行过程中的污泥体积指数(Sludge Volume Index,SVI)变化情况如图 1所示.由图 1可知,在污泥驯化时期,污泥的SVI值基本维持在103~126 mL · g-1之间,污泥沉降性能良好.在添加亚硝酸盐后,R1、R2和R3中的SVI值均有不同程度的上升,而R4中SVI值始终维持在初始水平,这表明R4中污泥的沉降性能未受到影响.R1中SVI值最高达120 mL · g-1,仍处于正常的沉降范围(50~150 mL · g-1);而R2、R3中最大SVI值分别为211 mL · g-1和310 mL · g-1,表明R2和R3中污泥物沉降性能变差,出现不同程度的污泥膨胀.这些研究结果表明FNA浓度大于2.57×10-4 mg · L-1时会导致污泥沉降性能变差,甚至引发污泥膨胀,而FNA小于5.13×10-5 mg · L-1时对A/EI工艺的污泥沉降性能无明显影响.往的研究也表明,在FNA浓度较低时对系统污泥沉降性影响不明显,而浓度较高时会产生严重的污泥膨胀.图 1 长期运行过程中各反应器内SVI值变化情况3.2 FNA对A/EI反应器除磷性能的影响经15 d驯化完成后,4个反应器中磷的去除率均在90%以上,在130 d的长期运行过程中出水磷浓度如图 2所示,各反应器平均出水磷浓度分别为2.3、7.4、11.9和2.0 mg · L-1.各反应器长期运行过程中VSS及SS的平均值见表 1,则各反应器中单位VSS磷的去除量分别为6.0、4.3、3.5和6.3 mg · g-1.可见R1、R4反应器的除磷性能明显强于R2、R3,即FNA抑制了反应器内微生物的除磷能力,并且FNA浓度越高,抑制作用越大.且当FNA浓度为2.57×10-4 mg · L-1时反应器除磷受到严重影响,单位VSS除磷量抑制达到38%.然而,当FNA浓度为5.13×10-5 mg · L-1时反应器仍表现出良好的除磷性能,磷的平均去除率高达89%,单位VSS去磷量的抑制仅为4.75%.可见当FNA的浓度大于2.57×10-4 mg · L-1.时会严重抑制A/EI工艺的除磷效率,而FNA浓度低于5.13×10-5 mg · L-1时对A/EI工艺除磷性能的影响并不明显.表1 各反应器平均VSS、SS及出水氮浓度3.3 典型周期内SOP、DO、COD、PHA及糖原质的变化典型周期内SOP、DO、COD、PHA及糖原质的变化情况如图 3所示.好氧期内,R3和R4的吸磷量分别为3.5和6.3 mg · g-1(以单位VSS的吸P量计),R3的吸磷量远小于R4,这表明FNA能抑制反应器中PAOs的好氧吸磷.即FNA浓度为5.13×10-4 mg · L-1时,反应器中PAOs好氧吸磷受抑制程度达44%.以往研究也曾报道FNA对PAOs的好氧吸磷具有抑制作用,如Pijuan等的研究表明,FNA浓度为5.0×10-4 mg · L-1(相当于2.0 mg · L-1 NO-2-N,pH=7.0)时对A/O工艺好氧吸磷可造成50%的抑制.Saito等研究表明,拥有较高缺氧活动能力的PAOs能够减缓FNA的抑制作用.而本研究系统所特有的延长闲置时期恰好为PAOs提供了缺氧环境,这或许是本研究系统较传统系统拥有较高FNA耐受能力的原因.图 3 典型周期内SOP、DO、COD、PHA及糖原质的变化(实验数据是稳定试验期第40、55、70、85和100 d数据的平均值)除磷的能力取决于聚磷在微生物代谢过程中所起到的作用,当聚磷作为能源物质在代谢过程中提供能量时,就能诱导聚磷微生物过量摄取污水中的磷酸盐.Wang等研究表明,A/EI 工艺在延长闲置期释磷能诱导下一周期好氧吸磷,且闲置期释磷的多少与整个周期磷的去除有极大的关系,闲置期释磷量越大,整个周期磷的去除量就越大.本研究中4个反应器在延长闲置时期均有释磷,而R1和R4闲置期磷的释放量分别为2.28和2.43 mg · g-1,相比之下,R2和R3闲置期释磷量仅为1.21和1.09 mg · g-1.各反应器中聚磷对微生物在延长闲置期前期维持自身的代谢都起到了重要作用,因而释磷量的不同说明聚磷水解在各反应器中提供的能量不尽相同.由于R1、R4闲置期释磷量大于R2、R3,因而R1和R4中磷的去除量明显大于R2和R3.R1仍表现出良好的摄磷和释磷性能,表明FNA小于5.13×10-5mg · L-1时对A/EI反应器好氧吸磷和闲置释磷影响不明显;而FNA大于2.57×10-4mg · L-1时对A/EI反应器中微生物的好氧吸磷和闲置时期的释磷有严重的影响.生物除磷性能的高低同时还与周期内PHA及糖原质的转化密切相关.以乙酸钠为单一碳源时,微生物在体内通过TCA循环将乙酸钠主要转化成聚-β-羟丁酸(Poly-β-hydroxybutyrate,PHB)和少量糖原质.由图 3可知,R4中好氧段前60 min内COD已基本消耗完全,同时PHA合成量达2.7 mmol · g-1(以每g VSS合成的C量计),反应器中出现少量释磷.随后PHA被迅速氧化,且混合液中磷酸盐迅速减少,反应器内出现超量吸磷,吸磷量达6.12 mg · g-1.此外,整个周期中糖原质变化不明显.R1典型周期的变化趋势基本与R4类似,而R2、R3中各物质变化规律与R4相比有显著不同.在好氧段,R2和R3中COD 的去除较慢,曝气结束时R2和R3中COD的去除率分别为82%和90%,PHA最大合成量分别为1.65和1.38 mmol · g-1,糖原质积累量分别为3.61和3.65 mmol · g-1(以每g VSS 积累的C量计).R2、R3中PHA合成量小于R1和R4,而糖原质合成明显比R1、R4多.PHA氧化产生的能量用于好氧吸磷、糖原质的补给及微生物自身的生长,R1和R4在60 min后表现出超量吸磷的原因正是胞内PHA的迅速氧化,而R2和R3没有表现出明显的超量吸磷也正是好氧初期没有合成充足的PHA,以至于整个好氧时期的吸磷量仅为3.87和2.54 mg · g-1.4个反应器进水均采用乙酸钠为单一碳源,乙酸钠进入细胞内经过TCA循环产生的能量及微生物的生长代谢消耗量应一致,理论上生成PHA的量也应一致,而R2、R3中PHA 合成明显少于R1、R4.底物合成PHA的过程也就是合成ATP的过程,而FNA作为一种解偶联剂,对ADP+Pi合成ATP的磷酸化过程具有抑制作用,使生成的能量不能用于ADP的磷酸化,且FNA能提高质子通透膜的通透性,从而导致质子驱动力被破坏,氧化磷酸化的作用随即也被破坏.因此,FNA对A/EI好氧吸磷的抑制可能是由于抑制了PHA的合成,PHA氧化产生的能量不足,进而用于吸磷的能量受到限制.此外,研究发现,FNA浓度越高,PHA合成量就越小,好氧吸磷量也越小.4个反应器好氧段末PHA的含量均降低到初始水平,表明PAOs前期合成的PHA均被充分地利用.PHA的合成量、好氧吸磷及闲置释磷量均与FNA有密切关系.FNA抑制PHA合成,进而导致后续氧化产能不足影响好氧吸磷.由于好氧末期各反应器碳源消耗殆尽且PHA的含量均已降至初始水平(图 3),因此,聚磷水解对闲置期微生物维持自身生命活动意义重大,研究系统闲置时期聚磷的水解是了解除磷性能的关键因素.本研究中FNA抑制闲置时期聚磷的水解,进而下个好氧初期释磷量不明显.生物除磷中普遍存在运行不稳定的现象,聚糖菌(Glycogen accumulating organisms,GAOs)与PAOs的竞争往往是引起不稳定运行的一个因素,GAOs会与PAOs竞争有限的碳源,而对除磷无任何贡献,因而会导致系统除磷性能下降.Mino等和Wang等研究表明,EBPR系统中较高的糖原质转化表明系统中GAOs活性较强,因为糖原质是GAOs主要形式的胞内聚合物.本研究中R2和R3中糖原质合成量明显高于R1和R4,说明R2和R3中GAOs活性相比R1、R4更强.GAOs活性增强会加速其与PAOs之间的竞争,从而导致系统除磷性能下降.可见,FNA 能加速GAOs与PAOs的竞争,为GAOs在竞争中占据优势提供有利条件,同时也说明PAOs相比GAOs对FNA更敏感.3.4 恢复试验恢复试验期停止添加亚硝酸盐,并用去离子水反复清洗污泥以去除污泥表面残留的亚硝酸盐.由图 1可知,R2和R3中SVI值逐渐下降,污泥沉降性能有所提升,然而其SVI值始终未能恢复至初始水平.相比而言,R1中SVI值迅速下降并恢复至初始水平.由图 2可知,经恢复稳定后,R1出水磷浓度为1.99 mg · L-1,和R4中的1.97 mg · L-1相差不大,而R2和R3经恢复稳定后出水磷浓度分别为5.4 mg · L-1和8.46 mg · L-1,磷的平均去除率分别为73%和58%,除磷性能相比R1及空白组R4较弱.结果表明,FNA浓度高于2.57×10-4 mg · L-1时对A/EI工艺除磷性能的影响较严重,撤销影响后系统的除磷能力和沉降性能虽有明显回升,但无法恢复至初始水平.具体参见污水宝商城资料或更多相关技术文档。

UASB毕设外文翻译译文

UASB毕设外文翻译译文

炎热的气候里使用大型内置活性污泥的UASB反应器对高浓度啤酒厂工业废水厌氧处理的研究W. Parawira a, I. Kudita b, M.G. Nyandoroh b, R. Zvauya a,∗生物化学系,津巴布韦大学,邮政信箱167,双喜山,哈拉雷,津巴布韦b Chibuku啤酒厂摘要被研究了两年的上流式厌氧污泥床(UASB)处理传统的高浓度啤酒厂废水最近安装在一个高浓度的啤酒工厂。

反应器的总容量500立方米,其水力停留时间约为24小时。

本次研究的目的是评估UASB反应器在厌氧消化高浓度的啤酒厂废水处理效率方面的性能。

未经处理的高浓度的啤酒废水含有高固体和高有机物质,排入市政污水处理厂之前它需要预处理。

UASB反应器可以使啤酒厂的废水达到哈拉雷市政排水系统的排入要求。

化学需氧量(COD)的平均收缩率是57%。

总固体颗粒和可沉淀固体颗粒分别减少了50%和90%。

UASB 反应器的流出物中含有比流入物更高含量的磷和氮,从而导致这些营养物质在系统中的聚集。

这些结果表明,UASB反应器在室温环境中能够有效地处理高浓度啤酒厂污水使其达到可排入公共水厂的质量标准。

关键词:厌氧消化;UASB;高浓度啤酒厂废水;化学需氧量1.引言在整个一年内,啤酒酿造行业使用大量的水和排放大量的污水,这属于高污染行业。

在津巴布韦,有20家这样的啤酒酿造厂,它们每年生产420万公升的啤酒。

啤酒酿造主要经过高粱、麦芽和玉米粉的混合和之后的发酵等工序。

基本的过程包括乳酸发酵和酒精发酵。

啤酒在销售和消费的同时仍然存在激烈地发酵。

酿酒用的是一些间歇式反应器对啤酒原料加工生产。

在这个过程中大量的水被用于生产啤酒本身以及每一批次生产完成后一般的地板清洗,车间、地窖清洗,消毒、包装、清洁等环节。

由于啤酒厂的废水呈现显著地高酸性和有机性质,它可能造成严重的环境问题〔1〕.这些工业废水可能会降低城市污水处理厂的处理效果〔2〕.啤酒厂废水可能影响水质的多个方面,包括有机质增加,由此增加了生物需氧量(BOD5)及COD。

聚磷菌

聚磷菌

科技名词定义中文名称:聚磷菌英文名称:poly-P bacteria定义:一类可对磷超量吸收的细菌,磷以聚磷酸盐颗粒(异染粒)的形式存在于细胞内。

应用学科:生态学(一级学科);污染生态学(二级学科)以上内容由全国科学技术名词审定委员会审定公布聚磷菌也叫做摄磷菌,是传统活性污泥工艺中一类特殊的兼性细菌,在好氧或缺氧状态下能超量地将污水中的磷吸入体内,使体内的含磷量超过一般细菌体内的含磷量的数倍,这类细菌被广泛地用于生物除磷。

当活性污泥中的聚磷菌生活在营养丰富的环境中,在将进入对数生长期时,为大量分裂作准备,细胞能从废水中大量摄取溶解态的正磷酸盐,在细胞内合成多聚磷酸盐,如具有环状结构的三偏磷酸盐和四偏磷酸盐;具有线状结构的焦磷酸盐和不溶结晶聚磷酸盐;具有横联结构的过磷酸盐等,并加以积累,供下阶段对数生长时期合成核酸耗用磷素之需。

另外,细菌经过对数生长期而进入静止期时,大部分细胞已停止繁殖,核酸的合成虽已停止,对磷的需要量也已很低,但若环境中的磷源仍有剩余,细胞又有一定的能量时,仍能从外界吸收磷元素,这种对磷的积累作用大大超过微生物正常生长所需的磷量,可达细胞重量的6%-8%,有报道甚至可达10%。

以多聚磷酸盐的形式积累于细胞内作为贮存物质。

但当细菌细胞处于极为不利的生活条件时,例如使好氧细菌处于厌氧条件下,即所谓细菌“压抑”状态时,聚磷菌能吸收污水中的乙酸、甲酸、丙酸及乙醇等极易生物降解的有机物质,贮存在体内作为营养源,同时将体内存贮的聚磷酸盐分解,以P043—P的形式释放到环境中来,以便获得能量,供细菌在不利环境中维持其生存所需,此时菌体内多聚磷酸盐就逐渐消失,而以可溶性单磷酸盐的形式排到体外环境中,如果该类细菌再次进入营养丰富的好氧环境时,它将重复上述的体内积磷。

Enzymatic Activity of Soil Contaminated...译文

Enzymatic Activity of Soil Contaminated...译文

三氮杂苯除草剂污染土壤中酶的活性摘要根据一项 5 年研究 (1996-2000) 的这篇文章尝试回答下列的疑问: 在一个被延长(20 年) 的申请被在个苹果树的果园观察的酶活方面的改变三氮杂苯除草剂在土壤中降解的程序? 有除草剂的土壤引起了休耕地土地, 在仔细研讨下面的酶活受制的一个重要的禁止. 在酶之中分析, 磷酸盐的活性是土壤污染的最敏感的指示器三氮杂苯除草剂. 鉴于被获得的结果, 在果园中的三氮杂苯除草剂的申请批评-相关的教化被证明. 它被推荐他们与杂草的其他方法一起代替控制. 因为土壤的其他类型用,然而,那需要深入对酶活进一步的研究密集地对于果园讲的目的.关键字: 苹果果园,三氮杂苯除草剂,酶活, 土壤的污染说明在苹果园传统的土壤栽培苹果中,基于三氮杂苯除草剂的通常使用,在生产上的有益效果和经济上地被证明,虽然它可能增加不利的变化残留在土壤环境.不像大部分来说农业的植物,由于缺乏在果园中收割交替,土壤管理的相同方法被申请数年或数十年。

应用农业技术的措施对那土壤的效果的财产可能在随着时间的过去而增高. 延长除草剂的维护引起休耕地土地在树排造成除草剂的继续积聚而且在土壤的中分解产品, 如此有特性的生态学因素的合式在土壤上产生.在土壤发生的营养物的所有变形被以他们的覆盖为条件的酶活性刺激转变进入植物能得到的形式和微生物。

酶活性被时常称为土壤环境的纯净度作记号的人. 基于使用的 pedosphere 的监听以方法为基, 酶活性测试使一能够复杂的在评估方面的改变土壤环境在人为因素的影响力.在这篇文章中, 根据一项 5 年研究 (1996-2000), 一种尝试被做回答下列的疑问:做在酶活性活动方面的改变观察在一在被延长 (20 年) 的申请苹果- 树的果园三氮杂苯除草剂指出降解程序进入土壤.材料和方法这项研究被实行在1996-2000这几年之间苹果树的果园 (乔纳森多样性)中那林布边缘东南部, 波兰 (51 ° 14'N;22 ° 34' E). 果园在非规定建立从在泥灰上的淤泥发展的土壤 (Haplic Luvisol). 那供食用之甜菜在 1979 年春天被种植和由除草剂引起休耕的土地已经在那里被维护, 在长条中大约 1.5 m 宽, 一起在被割过的青草之间. 除草剂被应用依下列各项: 在 1996-98 年在四月 - Azoprim(阿特拉津)3 公斤, 在五月驱集过度的(Glyfosat)4 m-3 加 Chwastox 额外之物 (MC PA)2 dm-3; 在 1999-2000 年在四月 - Azotop(simazine)4 公斤·嘿 -1, 在五月 - 驱集 3 dm-3 ·嘿 -1, 加上氨盐基大约硫酸盐化 12 公斤·嘿 -1, 和双重的 720 EC(metolachlorine)dm-3 ·嘿-1.自从 1980 个果园之后已经作为施肥实验藉着园艺的全体教员在农业人Lublin 的大学。

Biological Treatment System中英对照

Biological Treatment System中英对照

Biological Treatment SystemBiological processing is the most efficient way of removing organic matter from municipal waste waters. 生物处理法是去除城市废水中有机物的最有效途径。

These living systems rely on mixed microbial cultures to decompose, and to remove colloidal and dissolved organic substances from solutions.这些生物系统依赖混合微生物培养物质进行分解,并从溶液中去除胶体和溶解有机物质。

The treatment chamber holding the microorganisms provides a controlled environment; for example, activated s ludge is supplied with sufficient oxygen to maintain an aerobic condition. 接受微生物的处理室可提供一可控环境;例如,给活性污泥提供充足的氧气以维持好氧状态。

Waste water contains the biological food, growth nutrients, and inoculum of microorganisms. 废水包含生物食料,生长营养物质和微生物的培菌液。

Persons who are not familiar with waste-water operations often ask where the “special” biolog ical cultures are obtained.不熟悉废水处理的人经常问这些“专门的”生物培养物质来自何处? The answer is that the wide variety of bacteria and protozoa present in domestic wastes seed the treatment units. 其答案是,用生活污水中各种各样的细菌和原生动物向各处理单元接种。

环境工程翻译译文

环境工程翻译译文

可回收的胺化超交联聚合物有效去除焦化废水的有机物关键词:废水有机物生物处理焦化废水高分子吸附剂出水有机物分馏荧光光谱学摘要出水有机物(EFOM)是一种复杂的有机物质主要来自生物处理污水,被认为是约束进一步深度处理主要因素。

在这里,可回收的胺化的超高交联吸附树脂(nda-802)具有胺基官能团,比表面积大,和足够的合成微孔区有效去除焦化废水生化出水(btcw)有机物,影响了其去除特性。

发现疏水部分是EfOM的主要成分,而且还发现疏水性 - 中性级分具有最高的SUVA水平(7.06毫克每毫升),这一点明显不同于国内废水. 柱吸附实验表明,对于EFOM nda-802来说它比其他聚合物吸附剂例如 d-301,XAD-4树脂,具有更高的吸附效率,而且效率可以按连续28批实验周期那样很稳定地持续下去。

此外,溶解有机物(DOM)分离和三维荧光光谱(EEM)的研究表明,nda-802表现出有吸引力的选择性吸附特性以及具有疏水性和芳香族化合物的去除效率高。

这可能归因于功能性胺基基团的存在,相对大的比表面积和独特的聚合物微孔的区域,nda-802对EFOM的去除具有效率高和可持续,并提供了一个潜在的替代的先进的处理方法。

1 概述随着城市化和工业化的进程,出水有机物(EFOM)从生物处理后的污水(BTSE)已经成为一个受纳水体有机污染物的主要来源。

EFOM在本质上是高度异质性(Quaranta等人。

,2012),天然有机物(NOM)主要是由来自地表水,可溶性微生物产物(SMP)的生物处理,有机化合物(SOC)的生产和使用有机化合物(Shon等人。

,2006b)。

一般来说,废水中COD大多数是由于EfOM,因此,有效去除EfOM成为主要的任务,但提高回收废水的质量或满足越来越严格的标准是有挑战性的任务。

大多数EfOM存在可溶性成分,而且以及构成了80%的COD (Shon等人。

,2006b),其有效去除仍然是一个具有挑战性的任务。

传统的和倒置A2O工艺的比较外文翻译

传统的和倒置A2O工艺的比较外文翻译

Comparison of conventional and inverted A²/O processes: Phosphorus release and uptake behaviorsAbstractTwo full-scale systems operated in parallel, a conventional A2/O system consisting of anaerobic, anoxic and oxic compartments in succession and an inverted system consisting of anoxic, anaerobic and anoxic compartments without internal recycle, were compared in terms of their phosphorus removal performance, with an emphasis on phosphate (P) release behaviors, using both operational data and simulation results. The inverted system exhibited better long-term phosphorus removal performance (0.2 ± 0.3 vs. 0.7 ± 0.7 mg/L), which should be attributed to the higher P release rate (0.79 vs. 0.60 kg P/(kg MLSS·day)) in the non-aerated compartments. The P release occurred in both the anoxic and anaerobic compartments of the inverted system, resulting in more efficient P release. Although the abundances of the ‘Candidatus Accumulib acter phosphatis’ population in the two systems were quite similar ((19.1 ± 3.27)% and (18.4 ± 4.15)% of the total microbe (DAPI stained particles) population in the inverted and conventional systems, respectively, by fluorescence in situ hybridization (FISH)), the high-concentration DAPI staining results show that the abundances of the whole polyphosphate accumulating organisms (PAOs) in the aerobic ends were quite different (the average ratios of the poly-P granules to total microbes (DAPI stained particles) were (45 ±4.18)% and (35 ±5.39)%. Both the operational data and simulation results showed that the inverted system retained more abundant PAO populations due to its special configuration, which permitted efficient P release in the non-aerated compartment and better P removal.1 Materials and methods1.1 Targeted systems and water sampling he sewage treatment plant studied consists of a conventional and inverted A2/O system, respectively, each of which has a treatment capacity of 200,000 m3/day. The influent distribution ratio of the inverted A2/O was stable (30% to the anoxic tank and 70% to the anaerobic one).The sludge return ratio was approximately 100% for both systems during the sampling period. The detailed descriptions of the two systems are shown in Fig. 1 and Table 1.Asshown in Table 1, the conventional system was a little larger than the inverted one. From February to July 2009,mixed liquor samples were taken weekly from the two ends and the middle of each unit for water quality monitoring, and activated sludge was characterized monthly by taking samples from the ends of the aerobic and anaerobic units.After sampling, samples were immediately transported to the laboratory for analysis. The determination of COD,biological oxygen demand (BOD), mixed liquor suspended solids (MLSS) and phosphate species followed standard procedures (APHA, 1998). Routine data during 20072009 were kindly provided by the plant. The operating conditions, such as sludge retention time (SRT) and influent distribution were also monitored.1.2 FISH analysis and high-concentration DAPI staining.The FISH analysis was conducted according to Amannetal. (1995). riefly, activated sludge samples w ater fixed for 3 hr with 4% paraformaldehyde at 4°C and stored in a 1:1 (V/ V) mixture of phosphate-buffered saline(PBS, pH 7.4) and ethanol at –20°C. Following son-(PBS, pH 7.4) and ethanol at –20°C. Following sonication on ice for about 3 min, a 3-μL sample was ication on ice for about 3 min, a 3-μL sample was placed in the wells of a slide and immobilized for 3 hr. The slides were then dehydrated for 5 min using50%, 80% and 98% ethanol, respectively.1.3 Activated sludge modelThe full-scale plant mathematic model was constructed by AQUASIM software (EAWAG, license number: 251based on ASM2d (Henzeetal.,2000). Whole biological tanks were considered as CSTR, while the settling compartment was set as an ideal location for solid-liquid separation without biochemical reaction. ASM2d without chemical precipitation of phosphate was employed to mod el the biochemical reactions in both systems. Sensitivity the biochemical reactions in both systems. Sensitivity analysis was used for parameters estimation.The effluent from the aerated grit chamber was analyzed according to the standard Dutch STOWA guidelines for wastewater characterization(Roeleveld and van Loos drecht, 2002). The soluble COD fraction was measured after flocculation with Zn(OH)2and filtration with a 0.45μm filter membrane (Millipore, USA) as recommended in the STOWA protocol. The weekly measured total CODwas fractionated into model components as shown in Table22. P release and uptake behavioursVariations of P concentrations along the reactor lengths were determined from February to July, 2009, and the results are shown in Fig. 2. Because the two systems are different in sizes, the length percentage (the ratio of the distance between the inlet and the sampling point to the total length of the system) was used to represent the reactor length.As shown in Fig. 2, the P release occurred in the anoxic compartment (average, (21.9 ± 8.2) P mg/L), and continued in the anaerobic one (average, (20.2 ± 9.1) P mg/L)of the inverted A2/O system taking into consideration the dilution ratios in the two reactors (dilution ratio: 1.3 in the anoxic compartment and 2.0 in the anaerobic one). Then the P uptake occurred along the aerobic compartment. On the other hand, the P release occurred mainly in the anaerobic compartment in the conventional system, with a P concentration of (19.02 ± 0.96) P mg/L. The Pconcen tration in the anoxic unit was almost constant at (4.61 ±0.96) P mg/L, which was lower than that in the anaerobic compartment taking into consideration the dilution factor of 2.5. Thus the P release stopped in this reactor.3 ConclusionsThe phosphorus removal performance of a full-scale in verted and a conventional A2/O system receiving the same municipal wastewater was compared using both operational data and simulated results, and the inverted system exhibited better phosphorus removal performance. By can celling the internal recycle and reversing the positions of the anaerobic and anoxic compartments, the inverted system retained more abundant PAO populations, which permitted efficient P release.传统的和倒置A2/O工艺的比较:磷的释放和摄取行为摘要两个全面系统并行运作,包括厌氧的传统A2/ O系统,在继承和由缺氧,厌氧和缺氧车厢而不内循环倒置系统缺氧和好氧车厢,是在他们的除磷性能方面相比,重点是磷酸(P)的释放行为,同时使用运营数据和仿真结果。

工程菌E. coli(EC20-irrE)生物强化去除高盐废水中Cd(Ⅱ)的研究

工程菌E. coli(EC20-irrE)生物强化去除高盐废水中Cd(Ⅱ)的研究

工程菌E. coli(EC20-irrE)生物强化去除高盐废水中Cd(Ⅱ)的研究工程菌E. coli(EC20/irrE)生物强化去除高盐废水中Cd(Ⅱ)的研究摘要:高盐废水中重金属污染物的去除一直是环境保护的重要课题之一。

本研究以工程菌 E. coli(EC20/irrE)为材料,旨在探究其在高盐废水中去除Cd(Ⅱ)的生物强化效果。

研究结果表明,通过添加工程菌EC20/irrE,高盐废水中的Cd(Ⅱ)能够显著降解。

该研究为解决高盐废水中重金属污染问题提供了新思路和参考。

关键词:工程菌E. coli(EC20/irrE);高盐废水;Cd(Ⅱ);生物强化;去除效果1. 引言随着工业化进程的加快,高盐废水中的重金属污染逐渐成为环境保护面临的严重问题之一。

重金属污染物对水质和生态环境造成了严重的破坏,且由于其具有持久性和生物蓄积性等特点,使得其去除变得异常困难。

因此,开发高效、环保且经济的去除重金属污染物的方法显得尤为重要。

2. 材料与方法2.1 材料实验所用材料主要包括高盐废水、工程菌 E. coli(EC20/irrE)菌株、培养基等。

2.2 方法首先,从高盐废水中采集样品,并测定其初始Cd(Ⅱ)浓度。

然后,培养工程菌E. coli(EC20/irrE)到对数生长期,并对其进行适宜条件下的预处理。

接下来,将预处理后的工程菌 E.coli(EC20/irrE)添加到高盐废水中,并根据一定时间间隔取样测定Cd(Ⅱ)浓度的变化。

最后,通过分析实验数据得出结论。

3. 结果与讨论在实验中,观察到添加工程菌E. coli(EC20/irrE)后,高盐废水中的Cd(Ⅱ)浓度明显下降。

随着处理时间的延长,Cd(Ⅱ)浓度逐渐降低,并在一定时间后趋于平稳。

通过进一步分析实验数据,发现工程菌E. coli(EC20/irrE)的添加对高盐废水中Cd(Ⅱ)的去除效果具有明显的生物强化作用。

本研究的结果与已有的相关研究成果相吻合,说明工程菌E. coli(EC20/irrE)可以作为一种有效的生物强化剂,用于处理高盐废水中的重金属污染物。

生物碳吸附有机污染物外文翻译

生物碳吸附有机污染物外文翻译
5mM的铅原液的配制,采用在0.01M NaNO3吸附背景液下溶解Pb(N03)2制得。莠去津(纯度>99%)可从AccuStandards购买。莠去津呈中性(pH6.2-6.8),水溶度为34mgL-1。20mgL-1的莠去津原液储存在0.01M NaNO3和0.2%甲醇混合溶液中。
铅的吸附。实验使用60mL的聚丙烯试管来混合0.25g的生物碳(或是活性炭)和50mL 0.01M的NaNO3(其中含有0-5mM Pb)。通过往复式振荡机将混合物于60rph下振荡4h。初步实验表明,在最初的0.5h后,Pb的吸附作用达到平衡状态。
铅化学形态模型。将50mL0.01M NaNO3溶液(其中含有1mM Pb)和0.25g生物碳(或是活性炭)混合。振荡4h后,固液分离,取滤液进行Pb的吸附试验。我们收集一半滤液,用有机碳分析仪进行水溶性有机碳(DOC)测量,用离子色谱法进行阴离子分析(PO4,SO4,Cl,NO3,CO3)。剩余的滤液用pH<2的HNO3酸化,通过原子吸收光谱法分析Pb,Cu,Zn,Ca,Mg,Fe,Al,Mn,Na,K。分析结果(包括pH,DOC,阴离子,阳离子)将通过Visual MINTEQ的化学形态模型计算分析出Pb在固相中的化学形态。
实验部分:
生物碳和吸附物的准备。简单来讲,我们将牛粪风干,在限氧、低于350℃条件下对牛粪裂解处理4小时,然后制备得生物碳。在200℃和350℃裂解得到的生物碳我们分别编号为BC200和BC350。另外,我们取没有经过加热处理、在25℃风干的牛粪样本(编号BC25)和活性炭(AC)作为实验控制。实验所用活性炭(<150μm)采用木本植物制取(JT Baker Chemical Co)。更多生物碳的准备工作和描述可以参考Cao and Harris的资料。我们选定生物碳和活性炭的部分物化特性在下文列出。

外文翻译---去除废水中磷的技术

外文翻译---去除废水中磷的技术

附录2 外文资料原件附录3 外文资料译文去除废水中磷的技术Peter F. Strom罗格斯大学.环境科学教授2008年8月这篇简短的文献用以探讨有价值的废水除磷技术,尽管并不详尽或者完整,但包含一些最新的关于除磷技术的报告。

目前的除磷技术包括物理微粒过滤磷膜技术化学降解其他(主要是物理化学吸附)生物同化强化生物除磷(生物除磷)生物除磷已经引起了很大的兴趣并获得了最新的进展,这有可能用相对较低的成本水平除磷。

膜技术也日益受到重视,虽然迄今为止膜技术的使用一直较为有限。

而污泥处理和除磷等问题也正在解决中。

A.物理处理可吸入颗粒过滤磷假设有2%-3%的有机固体是磷,然而污水的总悬浮固体是20毫克/升,出水磷为0.4-0.6毫克/升(斯特罗姆,2006b)。

在植物中磷含量甚至更高。

因此,砂滤或者其他方法的去除率(例如,化学沉淀,膜技术)对于废水低磷的必要的。

(Reardon,2006)膜技术膜废水处理技术已经普遍上引起人们越来越大的兴趣,以及最近,特别是去除磷这一方面。

最近三天的全国水环境研究基金会低营养污水探讨会全部致力于这个话题(4篇)都是以此为主题的(WERF,2006).除了去除TSS中的磷意外,膜还可以去除溶解磷。

膜生物反应器(MBR 的膜技术,其中包括对悬浮物的二级处理工艺),三级膜过滤(二级处理后),和反渗透(RO)系统已经全部用于大规模的工厂,有良好的结果。

在Reardon(2006)的报道中可以实现含磷排出物<0.1毫克/升,并建议目前的技术三级膜过滤可靠的限制是0.04毫克/升,反渗透是0.008毫克/升。

B.化学处理1.沉淀化学沉淀法一直被用于除磷,大多数化学药剂是含有钙、铝、铁的化合物(tchobanoglous等人2003)。

化学应用的部分包括初级处理,二级处理中,或者作为三级处理的一部分(Neethling 和Gu 2006)。

Song等人(2006),利用热力学,仿照磷和钙的浓度,pH值,温度和离子强度对其的影响对磷理论迁移,研究人员(例如,Hermanowicz2006)普遍认同。

翻译Effectofrecyclingfluxonperformanceandcharacteristics

翻译Effectofrecyclingfluxonperformanceandcharacteristics

2、4二氯苯酚降解循环过程中循环流量对活性污泥在好氧水解时性能和特点的影响王海涛李青彪王远鹏何宁孙道华化学与生物工程系,化学化工学院,化学生物学重点实验室,福建省,厦门大学,厦门361005,福建,中国摘要:对于退化的分子模型,2 , 4 -二氯苯酚(2 , 4 - DCP),我们研究活性污泥水解–好氧循环过程(HARP)。

2 , 4 - DCP和化学需氧量(COD)总去除效率为98%和96%时,在回收过程中的循环流量以15毫升/分钟后24小时降解。

与、同时回收通量增加,峰值的浓度挥发性脂肪酸酸(VFA)下降。

水解–好氧循环过程中多糖和蛋白质含量在胞外聚合物中急剧增加的回收量的增加从5到15毫升/分钟。

显然有适合的线性关系来描述聚氯乙烯/聚苯乙烯比和循环流量过程。

ζ电位的下降,循环流量增加。

循环流量增加到一定程度,水解–好氧循环过程中增加了多糖和蛋白质含量的胞外聚合物可能会更加趋于稳定。

1、前言在许多行业包括石油化工废水排放,炼油厂,农药,纸浆和造纸,塑料,杀菌剂,木材防腐和保温材料中经常发现异污染物存在氯酚是–[ 1 4 ]。

由于其高毒性,排放刺激性的气味和持久的可致癌性与病毒活生物体,因此,氯酚造成严重的生态环境污染问题[ 3 ]。

一些氯酚已被列为优先污染物。

因此,去除氯酚废水是一个非常必要的任务,以用于节约水资源质量。

一个降解氯酚的比较具体方法[5-7 ],因为微生物可以通过矿化好氧或厌氧条件[ 8 ]。

关键的一步是降解氯酚要求去除卤素,取代从芳香核的氧化,还原或水解酵素,或环卵裂其次是自发的损失的卤化物水解–[ 9 11 ]。

虽然大多数可以使氯酚降解的微生物有必要用酶降解其芳香环,他们才有能力去除部分的卤素[ 10 ]。

因此,这些难以去除的毒性氯酚降解效率主要取决于微生物的能力和卤素的去除效率[ 12 , 13 ]。

我们对氯酚降解进行了大量的研究,特别是对有关悬浮培养使用不同的细菌和真菌等物种,例如假单胞菌,固氮菌,产和不动杆菌[ 14–18 , 20–27 ]。

环境工程专业毕业设计外文翻译

环境工程专业毕业设计外文翻译

目录介绍: (1)1实验性 (2)1.1污水和活性污泥 (2)1.2实验性设定和过程 (3)1.3测试和监视抽样采取从混杂的醇中过滤 (4)2.结果 (5)2.1泥浆化颗粒化 (5)2.2 EGSB操作流出物的稳定酸碱度 (6)3 .TPD污水的理论演算和讨论 (7)3.1酸平衡和中间转换能力酸碱度 (7)3..2VFA在厌氧过程用二种主要方式的二个主要小组细菌介入降低有机基体 (8)3..3VFA和强碱性平衡强碱性的典型的变异 (8)4.结论 (9)命名原则 (10)参考文献 (10)Introduction (12)1Experimental (14)2 Results (16)3 Theoretical calculation and discussions (19)4 Conclusions (22)recomference: (23)稳定性的膨胀的颗粒状污泥床对涤纶人造丝印染废水的处理摘要涤纶人造丝印染污水(TPD污水),包含平均7.0mg/L对苯二甲酸(技术援助)作为主要碳来源和特性污染物,从属于膨胀的颗粒状污泥床(EGSB)过程。

EGSB过程的稳定由实验室实验首先研究了。

TA电离是影响系统的酸基度平衡的优势的因素。

废水的 TA 的高集中造成充份的缓冲能力使中立脂肪酸 (VFA) 从培养基降格产生而且提供了没有空气而能生活强的系统挥发性基础抵抗 pH 减少到低于6.5 。

挥发性脂肪和不饱和脂肪酸除每小时次于6.35和挥发性脂肪积极从事它的极大值以外几乎没有抑制上去沼气生产。

与颗粒化被激活的污泥一起,有机撤除效率和沼气的生产率逐渐增加了和变得更加稳定。

在启动后,COD撤除效率增加到57%-64%,酸碱度被稳定在范围的7.99~6.04,和沼气的生产率是相对高。

酸碱度污泥颗粒化的,适当的流入物和装载使EGSB过程稳定。

EGSB反应器是稳定的为TPD废水处理。

关键词:膨胀的颗粒状泥床;稳定;绝氧处理;印染污水介绍:为了获得柔韧的和优雅的如丝一样涤纶结构、涤纶本色布总是同碱分解过程被预先处理, NaOH以某一温度和压力涤纶纤维被水解在某种程度上。

总磷和氨氮去除工艺流程

总磷和氨氮去除工艺流程

总磷和氨氮去除工艺流程英文回答:To remove total phosphorus and ammonia nitrogen from wastewater, various treatment processes can be employed. One common method is the biological treatment process,which includes both aerobic and anaerobic processes.In the aerobic process, microorganisms are used to convert organic matter and ammonia nitrogen into nitrates and nitrites through nitrification. This is typically achieved through the use of activated sludge systems or trickling filters. The nitrates and nitrites can then be further converted into nitrogen gas through denitrification, which occurs in anoxic conditions. This process helps to remove both organic matter and ammonia nitrogen from the wastewater.In the anaerobic process, microorganisms are used to break down organic matter in the absence of oxygen. Thisprocess, known as anaerobic digestion, produces biogas (mainly methane) as a byproduct. While anaerobic digestion is primarily used for organic matter removal, it can also contribute to the removal of phosphorus through the release of phosphorus-rich solids, known as struvite, during the digestion process.Another method for phosphorus removal is chemical precipitation. This involves the addition of chemicals, such as aluminum or iron salts, to the wastewater to form insoluble precipitates with phosphorus. These precipitates can then be removed through sedimentation or filtration processes. Chemical precipitation is often used in combination with biological treatment processes to achieve efficient phosphorus removal.In addition to these treatment processes, advanced technologies such as membrane bioreactors and constructed wetlands can also be used for total phosphorus and ammonia nitrogen removal. These technologies provide additional treatment and filtration capabilities to ensure effective removal of these contaminants.Overall, the choice of treatment process for total phosphorus and ammonia nitrogen removal depends on various factors, including the characteristics of the wastewater, the required effluent quality, and the available resources. It is important to consider these factors and select the most appropriate treatment process to achieve efficient and sustainable removal of these contaminants from wastewater.中文回答:要去除废水中的总磷和氨氮,可以采用多种处理工艺。

BNuR

BNuR

反硝化作用反应条件: 反硝化作用反应条件:
温度:20~40℃ pH:6.5~7.5 DO<0.5mg/L,一般为0.2~-0.3mg/L(缺氧) 产生一定碱度,补偿硝化过程消耗碱度一半左右 BOD5/TN≥3~5
硝化、 硝化、反硝化反应中氮的转化
–Ⅲ –Ⅱ 氮 的 氧 化 还 原 态 –Ⅰ 0 +Ⅰ +Ⅱ +Ⅲ +Ⅳ +Ⅴ 硝酸根NO3亚硝酸根NO2硝酰基NOH 羟胺NH2OH 氮 的 氧 化 还 原 态 氨离子NH4+ –Ⅲ –Ⅱ –Ⅰ 0 +Ⅰ +Ⅱ +Ⅲ +Ⅳ +Ⅴ 硝酸根NO3亚硝酸根NO2硝酰基NOH 羟胺NH2OH N2 氨离子NH4+
据报道,在生物除磷系统中污泥含磷量的典型值在 左右 左右, 据报道,在生物除磷系统中污泥含磷量的典型值在6%左右, 有些能达到 8%~12%,而普通活性污泥含磷量只有 ,而普通活性污泥含磷量只有2%。 。
生物除磷反应条件: 生物除磷反应条件:
温度及pH DO,区别对待 污泥龄 BOD负荷及有机物性质
RCHNH 2 COOH + H 2 O → RCOHCOOH + NH 3 RCHNH 2 COOH + O 2 → RCOCOOH + CO 2 + NH 3
硝化作用: 硝化作用:
硝化反应是指好氧条件下,亚硝酸菌将 硝化反应是指好氧条件下,亚硝酸菌将NH4+转 化为NO2-和硝酸菌将 和硝酸菌将NO2-转化成 转化成NO3-的过程。 的过程。 化为 电子受体
氧控自养硝化-反硝化(OLAND)
基于亚硝酸盐的全自养脱氮(CANON)
三、生物除磷原理
在厌氧区内, 在厌氧区内,聚磷菌在既没有溶解氧也没有原子态氧的厌 氧条件下,吸收乙酸等低分子脂肪酸,合成聚β-羟 氧条件下,吸收乙酸等低分子脂肪酸,合成聚 羟基丁酸盐 (PHB)贮于细胞内,所需的能量来源于菌体内聚磷的分解, 贮于细胞内, 贮于细胞内 所需的能量来源于菌体内聚磷的分解, 并导致磷酸盐的释放。在好氧区内, 并导致磷酸盐的释放。在好氧区内,聚磷菌以游离氧为电子 受体,将积贮在胞内的PHB好氧分解,并利用该反应产生的 好氧分解, 受体,将积贮在胞内的 好氧分解 能量,过量摄取水体中的磷玻盐,在胞内转化为聚磷, 能量,过量摄取水体中的磷玻盐,在胞内转化为聚磷,这就 是好氧吸磷,好氧吸磷量大于厌氧放磷量, 是好氧吸磷,好氧吸磷量大于厌氧放磷量,通过剩余污泥排 放可实现生物除磷的目的。 放可实现生物除磷的目的。

bacto nutrient broth 成分

bacto nutrient broth 成分

Bacto Nutrient Broth(细菌营养琼脂基地)是一种常用的培养基,用于培养微生物。

它的成分通常包括以下物质:
1. 蛋白胨(Peptone)或消化酪蛋白(Digest of casein):提供微生物所需的氮源和碳源。

2. 蛋白胨消化物(Peptone Digest):提供氮源、碳源和维生素。

3. 干酵母提取物(Yeast extract):提供氮源、碳源和维生素。

4. 水解酱油提取物(Hydrolyzed soybean meal):提供氮源、碳源和维生素。

5. 葡萄糖(Glucose):提供碳源。

6. 二氧化碳生成剂(Carbon dioxide generator):在培养过程中产生二氧化碳供微生物利用,促进生长。

7. 氯化钠(Sodium chloride):提供必需的离子平衡。

8. 磷酸二氢钾(Potassium dihydrogen phosphate):提供磷酸根离子。

9. 氯化镁(Magnesium chloride):提供镁离子。

10. 酒石酸二钾(Potassium bitartrate):在调节pH值时使用。

11. 氯化钾(Potassium chloride):提供钾离子。

12. 色谱纯水(Deionized water):用于配制培养基。

这些成分的比例和配方可以根据实际需要稍加调整,以满足特定微生物的生长要求。

请注意,具体的制备步骤和成分比例可能会根据不同的制造商和实验室的特定要求而有所不同。

因此,在具体使用之前,建议参考相关文献或制造商的说明书。

利用微生物提高酸性矿山废水中除磷的能力

利用微生物提高酸性矿山废水中除磷的能力
2 . 4微 生 物 脱 磷
微 生 物 浸 矿 是 微 生 物 直 接 或 间接 地 参 与 金 属 硫 化 物 或 氧 化 物
氧化和溶解 的过程 。对脱磷微生物而言 , 一方 面微生物需 吸收磷
1酸 性 矿 山废 水 治 理
1 . 1中 和 法
来构成细胞组分 ; 另 一方面微生物通过吸收磷来 合成 三磷酸腺苷 ( A T P ) , 进行能量代谢 , 用微生物法处理含磷废水 , 去除其 中的磷 已
A MF提 高废 水 中植物 的除磷 能力 属离子在细胞 中的位置 , 一般 可分为细胞外 吸附 、 细胞 内吸 附和 3
A M F提高植物 的除磷能力 主要是通过促 进植 物的迅速生 长 , 目前 , S R B法处理 酸性 矿山废 水在 国内研 究较少 , I v a n N a l l — 生物量增加 , 对磷 的吸 收加 快 , 使废 水 中磷 含量 降低 . 与此 同时 , O 与土壤中的钙离子 及废水 中的磷 反应沉淀 c u c h e o 等用嗜酸菌去除酸 眭矿山废水中的重金属 , T s u k a mo t o T K等 植物 呼吸释放的 C 将S R B经过驯化适应后在酸性条件下还原 S O , 收到了很好效果。【 大 J 而使磷得到去除。肖敏等对菲芘复合污染土壤中的 3 种酶 的活性
利用微 生物提 高酸性矿 山废水 中除磷 的能力
张 智 钧 ( 广东省环境科学研究院 广 东广州
5 1 0 0 4 5 )
度, 提 高酸浸效果 。 超声波可清洗矿物表面形 成的 C a S O 、 C a C 1 2 等 难溶膜 , 消除它们对 磷浸出过程 的阻碍 , 提高脱磷 率 . 使铁精矿含 磷量 明显降低。
用 产 生 的 光 合 产 物 ,丛 枝 菌 根 真 菌 则 从 土 壤 中 为 植 物 吸 收 更

外文翻译--由 Fe–Mn 的二进制氧化物吸附水中磷酸盐的去除方法

外文翻译--由 Fe–Mn 的二进制氧化物吸附水中磷酸盐的去除方法

Removal of phosphate from water by a Fe–Mn binary oxide adsorbent(由 Fe–Mn 的二进制氧化物吸附水中磷酸盐的去除方法)AbstractPhosphate removal is important in the control of eutrophication of water bodies and adsorption is one of the promising approaches for this purpose.A Fe–Mn binary oxide adsorbent with a Fe/Mn molar ratio of 6:1 for phosphate removal was synthesized by a simultaneous oxidation and coprecipitation process. Laboratory experiments were carried out to investigate adsorption kinetics and equilibrium, in batch mode. The effects of different experimental parameters, namely contact time, initial phosphate concentration, solution pH, and ionic strength on the phosphate adsorption were investigated. The adsorption data were analyzed by both Freundlich and Langmuir isotherm models and the data were well fit by the Freundlich isotherm model. Kinetic data correlated well with the pseudo-second-order kinetic model, suggesting that the adsorption process might be chemical sorption. The maximal adsorption capacity was 36 mg/g at pH 5.6. The phosphate adsorption was highly pH dependent. The effects of anions such as Cl ; SO₄²ˉ, and CO₃²﹣on phosphate removal were also investigated. The results suggest that the presence of these ions had no significant effect on phosphate removal. The phosphate removal was mainly achieved by the replacement of surface hydroxyl groups by the phosphate species and formation of inner-sphere surface complexes at the water/oxide interface. In addition, the adsorbed phosphate ions can be effectively desorbed by dilute NaOH solutions. This adsorbent, with large adsorption capacity and high selectivity, is therefore a very promising adsorbent for the removal of phosphate ions from aqueous solutions.摘要除磷是重要的水体富营养化的控制和吸附是有前途的方法之一为此目的。

废水中磷的除去

废水中磷的除去

废水中磷的除去
佚名
【期刊名称】《云南化工》
【年(卷),期】1990(000)003
【摘要】据荷兰 Smit Transformatoren 公司报导,用它所开发的高梯度磁力分离法(HGMS 法)处理废水中的磷,可将废水中的磷酸盐降到1mg/l(以磷计)以下。

这正符合1995年开始生效的丹麦、瑞士、荷兰、西德等的废水排放标
【总页数】1页(P63-63)
【正文语种】中文
【中图分类】TQ
【相关文献】
1.利用废氨水除去冷却水钙硬度的实验研究 [J], 潘小军;袁进
2.改性粉煤灰除去废水中的磷 [J], 肖文香
3.铜蚀刻废泥生产硫酸铜工艺中氯的除去 [J], 蒋福宾;陈彤
4.在流化床反应器中用结晶法除去废水中的磷 [J],
5.用电解技术除去排水中的氮和磷 [J], 乐志强
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附录毕业设计(论文)外文资料翻译学院(系):资源与环境工程学院专业:环境工程姓名:学号:外文出处:http://protein.bio.msu.ru/biokhimiya/ontents/v65/full/65030405.html附件: 1.外文资料翻译译文;2.外文原文。

微生物中多聚磷酸盐细菌加强生物废水中清除磷的能力摘要活性污泥处理工艺在厌氧和有氧(厌氧—好氧法)环境交替进行方法可以提高的废水中磷的去除效果(EBPR)。

据了解,聚磷菌(PAB)在厌氧—好氧法中发挥重要作用。

本文对微生物的新陈代谢和群落结构描述有限,主要突出在EBPR过程中的选择作用。

微生物在厌氧—好氧法中,碳源丰富的厌氧环境和碳源缺乏的好氧环境交替进行,促进了聚磷菌重要的新陈代谢特征。

其中包括有机质的吸收,以及把它们转化为细胞内聚磷菌自身储存的PHA和水解产物,并在厌氧条件下释放能量。

假设细胞内神经的功能是作为调节器,调节细胞的氧化还原平衡。

能另储存有助与聚磷菌在厌氧环境中维持氧化还原平衡,吸收各种类型的有机质,增强微生物的选择功能。

聚磷菌不能由其他物质组成,各种各样的细菌除外。

要确定EBPR工艺中微生物群落的结构,需要通过分子技术细心观察在各种EBPR中,每一种聚磷菌的活动情况,因为许多聚磷菌都是不可用的培养基。

关键词:活性污泥厌氧—好氧法生态学生物加强清除磷酸盐微生物群落聚磷菌废水处理工艺当过量的含磷废水排入不外流的水体,湖泊或内陆海水时会造成水体富营养化。

(海藻过量生长繁殖)要在污水排入水体之前去处水中的磷。

厌氧、好氧条件交替控制活性污泥法已经成功的用于提高水体中磷的去处效果。

这种厌氧好氧交替运行的工艺已经得到普遍运用,在厌氧段、好氧段池体的空间布局以及利用设备的污泥回流系统等方面有显著效果。

例如这种被称为EBPR的厌氧—好氧或厌氧—缺氧过程。

据研究显示,聚磷菌在EBPR厌氧好氧法中具有重要作用。

EBPR要实现高而稳定的性能,必须保持聚磷菌在系统中的活性。

基本的厌氧—好氧法的图表可以说明其中的问题。

这一过程的特点是结构上存在一种厌氧阶段,保持绝对厌氧条件,没有氧气,也没有no2-/no3-为活性污泥细菌提供电子受体。

有机质的供应一部分来自进入厌氧段的污水,一部分是反应器中回流污泥补充碳源。

在EBPR过程中,加快厌氧段有机质的吸收率是细菌得到微生物的关键。

这种PAB繁殖机制可以如下表述。

通常,在厌氧阶段活性污泥向污水中释磷,同时吸收有机质。

在后期的好氧段,吸收的磷,远大于在厌氧段前期释放的磷。

污水中的磷被去处了,它作为一种物质积累到细胞里。

多聚磷酸盐是一种高能化合物,它水解能为细胞多种生化反应提供足够的能量。

在厌氧阶段,多聚磷化物的水解使PAB获得足够的能量以满足它们吸收有机质。

没有电子受体(氧,NO2-/NO3-)好氧细菌和反硝化细菌没有足够的能量利用有机质,也不能完成PAB的利用。

因此采用厌氧段使PAB具有优势,更好的处理污泥中的磷。

处理系统中的过量污泥并收集含高浓度磷的污泥,这样可以提高除磷效率。

数量极少的纯培养基在EBPR中扮演重要角色。

EBPR 中新陈代谢方面的研究主要是基于对浓集的混合培养基的研究而不是纯培养基。

这方面的不足就是缺乏准确的有关EBPR的微生物学和生物化学方面的资料。

因此,EBPR中PAB的微生物学变的不容易理解。

EBPR工艺中聚磷菌的碳代谢虽然厌氧—好氧法对于EBPR从工程角度来说已经是成熟的工艺方法,但它还不能清楚的解释一些微生物方面的定义在微生物的新陈代谢过程中,厌氧段通过废水中细菌的酶化作用完成了碳化合物的吸收。

由于污泥在厌氧条件下完成了和碳化合物的充分接触,生物体能更有效的利用碳质,在厌氧环境中占据优势。

因此,在厌氧条件下,PAB能实现对碳质的高速吸收的原因是我们一直关注的重要课题。

据了解,短链脂肪酸醋酸有利于EBPR中碳的来源,并且在EBPR中新陈代谢已经作为碳质的模型正在进行研究。

在这项研究上有一个决定性问题,就是事实上没有一个细菌可以从EBPR工艺中孤立起来,来显示EBPR污泥的主要特征。

任何孤立的纯文化每一个细菌在掩样杨。

这就是EBPR中的微生物被研究原因。

这种高浓度PAB培养基通常从模拟实验获得,模拟厌氧—好氧法处理废水。

在一组醋酸作为碳源的厌氧实验中,含高浓度PAB的活性污泥利用短链迅速吸收醋酸,在细胞内累计PHAs释放磷。

吸收的醋酸作为PHs转化和积累。

据发现在高浓度PAB中PHAs的积累由4部分组成3HB, 3HV, 3H2MB,和3H2MV。

分析这些PHAs的化学成分并证明是由上述四个单位组成。

至于碳水化合物,有人证明了它存在于厌氧—好氧活性污泥中,当醋酸作为碳源被吸收时,高浓度PHAs在厌氧段形成。

醋酸转化为PHAs需要减少电能,因为PHAs比醋酸不易合成。

为了解释在没有电子受体情况下减少电能这个过程,Mino 和Arun提出一个假设模型。

该模型中,在假设降低PHAs能量情况下,厌氧环境中存储的乙酰部分氧化为二氧化碳。

这种模式现在被称为Mino模型,其相关的一些研究者已证实,理论化学计量学根据模型依照显示能定量地解释通过PAB 污泥将醋酸盐和糖朊转换成PHA ,成功地采用了类似的概念来解释在EBPR中厌氧吸收率问题。

EBPR中厌氧碳新陈代谢模型另一个假说是由Matsuo、Comeau和 Wentze提出来的。

根据这种假说,TCA循环假设在厌氧条件下进行,把一部分醋酸氧化成二氧化碳并减少能量。

这种模式通常只在厌氧或好氧环境下进行循环。

对于这一矛盾的热力学理论,人们已经在厌氧或好氧环境中发现完整的TCA循环。

这些微生物利用硫元素和电子受体通过氧化醋酸完全转化二氧化碳。

据认为,这种情况的产生主要是要求减少能量生成代谢,就像Mino模型;而不是TCA循环那种预言。

原因如下:(1)这种理论能很好地解释实验观察到醋酸厌氧吸收率的现象,通过高浓度PAO,PHA的形成、乙二醇的应用、二氧化碳的生成。

(2)13C示踪实验器材的使用指出:醋酸通过厌氧污泥吸收的不是二氧化碳,因此不会通过循环进行代谢。

(3)实验用13C-器材,显示乙二醇转化为厌氧代谢的淤泥。

另一方面,有证据表明有可能介入的局部TCA循环发电,减少电能是在EBPR 厌氧阶段。

即13C的碳被转化高浓度PAB,醋酸-污泥浓缩被认为是绝对厌氧条件下释放二氧化碳。

迄今为止,这是唯一可能的实验结果显示了运行周期迈进的阶段厌氧Ebpr的过程. 循环的功能迈进的碳排放源的厌氧吸收率以及对微生物的筛选过程Ebpr有待进一步调查.EBPR的过程中,受到其他微生物碳厌氧环境和丰富的碳有氧环境恶劣. 这一交替的、综合和退化三种形式临时医院引起循环和新陈代谢,是通过这些微生物完成的。

这种微生物循环是能量的消耗,而不是微生物的能源利用效率。

然而,这种微生物循环使PAB在厌氧—好氧环境中进行选择。

如何解释这一规定在细胞循环代谢是由Pramanik发现的。

这一模式包含了一整套涉及细胞代谢途径和能源需求及高分子合成代谢物如何运输并跨越细胞膜.模型不仅支持假设,还提供了生物代谢途径,以及能源供应,而且还表明,在代谢途径中规则成立。

强化社会结构生物学微生物磷清除过程不动杆菌首次作为PAB被提出来,很少有研究人员质疑不动杆菌是否仅仅是EBPR中的一种细菌。

它有可能被认为高磷EBPR淤泥清除能力是一组由微生物,试图找出几个不动杆菌以外生物体。

现在,新的强有力的工具的运用,对微生物体结构的分析,了开发和利用EBPR淤泥。

其中化学分析方法与分子分析与方法,如荧光在原地交错(渔)、图书馆克隆方法、热梯度电泳(DGGE)、终端限制碎片长度白细胞(T生物)等。

高EBPR浓度污泥的微生物多样性已成功利用这种新技术。

分子分析适用于活性污泥结构的特点分析,醌生物样品的种类数量可确定,应当明确反映研究样本形态组成。

有人建议由几个不同EBPR污泥组织,醌最丰富、Q-8,仅占总数约PAB污泥的31%(磷含量1.94、60mG悬浮固体);第二个最丰富的人,Q-10,占8.5%; 第三、MK-8(H4)、6.5%。

换句话说,有几个不同污泥微生物群体,已确认的其他研究人员也用它,T-样品的分离,PCR-16S更直接表明不同的人口,数量约19至24年各主要见于高度PAB污泥浓缩。

(磷含量、悬浮固体12%)。

Dgge 的技巧也显示分离,扩大碎片rDNA和EBPR淤泥中的一些主要的DNA序列不同的碎片,暗示研究Ebpr结构多样性。

这些成果有力地表明,没有一个是PAB或基因型数量有限,但也会涉及各类细菌。

Bond应用PCR克隆启动两种活性污泥,高磷清除绩效果以及典型的新陈代谢,PAB等。

他们发现这个组织数量相当惊人,高磷污泥比低磷污泥大幅度提高了。

这一结果显示,有特定集团作用. 然而,只有14%的被占领,基因总数在少数的高磷污泥。

现在还不能确定这能否为观察到高磷清除绩效。

讨论之前,有报道EBPR结构中有一种压倒优势(细菌总数81%)。

就目前而言,这是唯一的一个案例,主要是细菌的主要表现是EBPR负责。

用DAPI进行双重染色与rRNA的探针,针对不同对象确定细菌组繁殖在原地。

因此,在检验污泥时这两个群体被认为在累积磷。

报告说,阳性菌G+C高含量DNA扮演重要角色,因为较高EBPR发生这种细菌组发现了一个克隆EBPR的过程。

大多数基因阳性菌具有很强的DNAG+C 含量,依据实验样品的rDNA碎片从高浓度-污泥浓缩(磷含量,12%的悬浮固体)、污泥很低磷酸盐含量(2%悬浮固体)。

认为阳性菌具有很强的DNAG+C的结构不只是PAB的重要组成部分。

醌分析使用方法,该市污水处理厂污泥运作模式相类似,不论对方采取何种过程污泥。

从淤泥中EBPR程序和常规程序分子形态十分相似。

比较不同启动模式醌淤泥建议采用的厌氧阶段进入,全面启动常规污泥过程不会导致大量细胞变化。

上述这些结果又会导致下述结论:细胞拥有独特的新陈代谢特点,把生物和微生物群体分开。

最可能的阿尔法-、试用、伽玛射线的类别和阳性菌具有很强的DNAG+C的内特性。

展望未来这次审查显示,PAB不是由少数受限制物质组成,但也会转化成各类细菌。

在EBPR中细菌的种类不同,负责功能不同。

在EBPR过程中,明确界定微生物Ebpr社会结构和过程的机制来描述PAB生态选择,在研究加强和行为发生个别种类对EBPR的需要。

因为许多PAB似乎是不可能的结构,只有分子方法能实现这些目的。

这可能意味着,新陈代谢的关键基因的EBPR常见细菌不同。

最有趣最重要的是确定这种基因并且找出它是怎样的规则。

Microbial Selection of Polyphosphate-Accumulating Bacteria in Activated Sludge Wastewater Treatment Processes for EnhancedBiological Phosphate RemovalAbstract:Activated sludge processes with alternating anaerobic and aerobic conditions (the anaerobic-aerobic process) have been successfully used for enhanced biological phosphate removal (EBPR) from wastewater. It is known that polyphosphate-accumulating bacteria (PAB) play an essential role for EBPR in the anaerobic-aerobic process. The present paper reviews limited information available on the metabolism and the microbial community structure of EBPR, highlighting the microbial ecological selection of PAB in EBPR processes. Exposure of microorganisms to alternate carbon-rich anaerobic environments and carbon-poor aerobic environments in the anaerobic-aerobic process induces the key metabolic characteristics of PAB, which include organic substrate uptake followed by its conversion to stored polyhydroxyalkanoate (PHA) and hydrolysis of intracellular polyphosphate accompanied by subsequent Pi release under anaerobic conditions. Intracellular glycogen is assumed to function as a regulator of the redox balance in the cell. Storage of glycogen is a key strategy for PAB to maintain the redox balance in the anaerobic uptake of various organic substrates, and hence to win in the microbial selection. Acinetobacter spp., Microlunatus phosphovorus, Lampropedia spp., and the Rhodocyclus group have been reported as candidates of PAB. PAB may not be composed of a few limited genospecies, involve phylogenetically and taxonomically diverse groups of bacteria. To define microbial community structure of EBPR processes, it is needed to look more closely into the occurrence and behavior of each species of PAB in various EBPR processes mainly by molecular methods because many of PAB seem to be impossible to culture.KEY WORDS:activated sludge, anaerobic-aerobic process, ecological selection, enhanced biological phosphate removal (EBPR), Lampropedia, microbial community, (PHAs), polyphosphate-accumulating bacteria, wastewater treatment Phosphate can cause eutrophication (extraordinary growth of algae) when it is excessively discharged into closed natural water bodies like lakes and inland seas. To control eutrophication, phosphate removal from wastewater is often required before wastewater is discharged to the receiving water bodies. Activated sludge processes with alternating anaerobic and aerobic conditions have been successfully used for enhanced biological phosphate removal (EBPR) from wastewater. This anaerobic-aerobic alternation can be achieved either by spatial configuration of anaerobic and aerobic zones in series in continuous flow systems with sludge recycle or by temporal arrangement of anaerobic and aerobic periods in sequence batch reactors. Such EBPR processes are referred to as the anaerobic-aerobic oranaerobic-oxic process. It has been shown in previous studies that polyphosphate-accumulating bacteria (PAB) play an essential role for EBPR in the anaerobic-aerobic process. To achieve high and stable EBPR performance, it is essential to maintain PAB in the system.A basic configuration of the anaerobic-aerobic process is schematically shown in Fig. a. This process is structurally characterized by the presence of an anaerobic stage in which absolute anaerobic conditions are kept with neither oxygen nor NO2-/NO3- available as electron acceptor for activated sludge bacteria. Organic substrates are supplied from influent wastewater into the anaerobic stage and the return sludge comes into contact with the carbon source only in the anaerobic stage. Faster uptake of organic substrates in the anaerobic stage is the key for bacteria to win in the microbial selection in the EBPR process. The mechanism of proliferation of PAB can be described as follows. It is typically observed in the anaerobic stage that the activated sludge releases Pi to the bulk solution with concomitant uptake of organic substrates. In the subsequent aerobic stage, it takes up more Pi than has been released in the previous anaerobic stage. The Pi removed from the wastewater is accumulated in the cell as polyP. Polyphosphate is a high-energy compound and its hydrolysis can supply energy to various biochemical reactions in the cell. In the anaerobic stage, the hydrolysis of intracellular polyP enables PAB to obtain the energy they need to take up organic substrates. Without electron acceptors (oxygen, NO2-/NO3-), aerobic bacteria and denitrifying bacteria are unable to obtain the energy required for the utilization of organic substrates, and they are thus unable to compete with PAB. Therefore, the introduction of the anaerobic stage leads to the precedence of PAB and to a rise in phosphorus content of the sludge. By withdrawing the phosphorus-rich sludge from the system as excess sludge, high phosphate removal efficiency can be achieved.Fig. 1. a) Basic concept of anaerobic-aerobic process for EBPR. b) Behavior of PO4-P, orthophosphate present in the bulk solution; glycogen, glycogen stored in the cells; PHA, polyhydroxyalkanoates stored in the cells.Although the anaerobic-aerobic process for EBPR is an established process from an engineering point of view, it has not been clearly defined in microbiological terms. For example, the phylogenetic or taxonomic groups responsible for EBPR have not been identified, and general structures of the EBPR microbial community have not been successfully described yet. Very few pure cultures have been isolated as candidates of PAB playing a key role in EBPR processes. Studies on metabolic aspects of EBPR have been mainly done based on enriched mixed cultures but not on pure cultures. This has resulted in lack of definitive and conclusive informationabout the microbiology and biochemistry of EBPR. Thus, the mechanism of microbial ecological selection of PAB in EBPR processes has been understood very poorly. The present paper reviews limited information available on the metabolism and the microbial community structure of EBPR, highlighting the selection of PAB in EBPR processes.CARBON METABOLISM ADOPTED BY POLYPHOSPHATE- ACCUMULATING BACTERIA IN EBPR PROCESSES In terms of microbial metabolism, the anaerobic stage involves the uptake of organic substrates from wastewater by bacteria. Since the sludge comes into contact with organic substrates under anaerobic conditions, organisms that can utilize organic substrates more rapidly in an anaerobic environment gain precedence. Therefore, the reason why PAB can achieve a very high rate of organic substrate uptake under anaerobic conditions has been a major subject of concern. It has been well known that short chain fatty acids like acetate are favorable carbon sources for EBPR, and acetate metabolism has been intensively studied as a model carbon metabolism substrate in EBPR. A critical problem in such studies lays in the fact that none of the bacteria isolated from EBPR processes have exhibited all the key characteristics of the EBPR sludge and that any isolated pure cultures had never been verified to be primarily responsible for EBPR in an anaerobic-aerobic system until recently . This is the reason that metabolic aspects of EBPR have been studied using mixed cultures enriched with PAB. Such PAB-enriched cultures have usually been obtained from lab-scale activated sludge reactors simulating the anaerobic-aerobic process fed with synthetic wastewater.In anaerobic batch experiments with acetate as the carbon source, the activated sludge enriched with PAB typically take up acetate rapidly, accumulate PHAs in the cell, consume previously stored intracellular carbohydrate, and release Pi as a result of utilization of stored polyP. These typical behaviors of key substances involved in EBPR are graphically shown in Fig.. The acetate taken up is converted to and accumulated as PHAs. Satoh et al. [found that the PHAs accumulated in the PAB-enriched sludge are composed of four monomeric units: 3HB, 3HV, 3H2MB, and 3H2MV. Inoue et al. analyzed the chemical structure of these PHAs by NMR and verified that they are co-polymers composed of the above four monomeric units. As for carbohydrate, Liu et al. proved enzymologically that the carbohydrate stored in the anaerobic-aerobic sludge is a polymer of glycosyl units with the alpha-1,4- and the alpha-1,6-linkages, or glycogen. When acetate is fed as the carbon source, 3HB-rich PHAs are formed in the anaerobic stag. The conversion of acetate to PHA requires reducing power, because PHA is a more reduced compound than acetate. To explain the source of the reducing power under the conditions without electronacceptors, a hypothetical model was proposed by Mino et al. and Arun et al.. In that model, anaerobic degradation of stored glycogen to acetyl-CoA as well as its partial oxidation to CO2 is assumed to account for the generation of the reducing power for PHA synthesis. This model is now called the Mino model, and its relevance has been confirmed by several researchers. The outlines of the model are shown in Fig. The theoretical stoichiometry based on the model could quantitatively explain the observed conversions of acetate and glycogen to PHA by PAB-enriched sludges, as shown in the table. Satoh et al. [successfully applied a similar concept to explain the anaerobic uptake of propionate in EBPR processes (see the table).Fig. 3. A conceptual model for anaerobic carbon metabolism in an EBPR process (after references).Another hypothesis was postulated by Matsuo et al., Comeau et al. [, and Wentzel et al. [to account for the source of the reducing power in anaerobic acetate metabolism. According to this hypothsis, the TCA cycle is assumed to operate under anaerobic conditions in order to oxidize a part of acetate to CO2 and to generate reducing power in the form of NADH. This model is referred to as the Comeau-Wentzel model. Usually the TCA cycle operates only under aerobic or anoxic conditions. The oxidation of succinate to fumarate in the TCA cycle requires a terminal electron acceptor with a redox potential (E0´) more positive than that of fumarate/succinate couple (+32 mV). Only O2 (O2/H2O, E0´= +818 mV), NO3- (NO3-/NO2-, E0´ = + 433 mV), and NO2- (NO2-/N2-, E0´ = +970 mV) appear to meet these conditions. Contradictory to this thermodynamic theory, a complete TCA cycle has been found to operate in some anaerobic eubacteria or archae. These microorganisms can oxidize acetate completely to CO2 via the TCA cycle by utilizing elemental sulfur, thiosulfate, or sulfate as electron acceptor. It is believed, however, that major part of the required reducing power should be generated through the glycogen metabolism as described in the Mino model rather than through the TCA cycle as predicted by the Comeau-Wentzel model. The reasons are as follows: 1) the theoretical stoichiometry for the glycogen metabolism can explain very well the experimentally observed anaerobic acetate uptake, PHA formation, glycogen utilization, and CO2 production by PAO-enriched sludges ; 2) a 13C tracer experiment using NMR indicated that the acetate taken up by the sludge anaerobically was not oxidized to CO2 and thus not metabolized through the TCA cycle, and 3) experiments using 13C-NMR [demonstrated that glycogen is involved in the anaerobic metabolism of EBPR sludges.On the other hand, there is evidence that indicates the possibility of partial involvement of the TCA cycle in the generation of reducing power by PAB in the anaerobic stage of the EBPR process. Namely, 13C-labeled carbon in the acetate fedto a PAB-enriched sludge was found to be released as CO2 under absolute anaerobic conditions. So far, this is the only experimental result indicating the possible functioning of the TCA cycle in the anaerobic phase of the EBPR process. The function of the TCA cycle in the anaerobic uptake of carbon sources by PAB as well as its contribution to the microbial selection in the EBPR process remains to be further investigated.In the EBPR process, microorganisms are exposed to alternate carbon-rich anaerobic environments and carbon-poor aerobic environments. By this alternation, synthesis and degradation of three kinds of biopolymers (polyP, PHA, and glycogen) are induced and metabolic cycling through these biopolymers is established in microorganisms. Such metabolic cycling is energy consuming and not favorable for microorganisms in terms of energy utilization efficiency. Ecologically, however, this metabolic cycling enables PAB to win in the microbial selection in the anaerobic-aerobic process. To explain how this metabolic cycling is regulated in the cell, a metabolic flux model was developed by Pramanik et al.. This model contains a complete set of metabolic pathways involved in biosynthesis and energy production and accounts for energy requirements for macromolecule synthesis and metabolite transport across the cell membrane. The model not only supports the hypothesis that the biopolymer metabolism provides a means for PAB to balance intracellular energy supplies, but also suggest pathways at which metabolic regulation should occur.MICROBIAL COMMUNITY STRUCTURE OF ENHANCED BIOLOGICALPHOSPHATE REMOV AL PROCESSWhen Acinetobacter was first proposed as PAB, there were very few researchers who raised the question of whether Acinetobacter is the only bacterium responsible for EBPR. It may have been somehow assumed that EBPR sludges with high phosphate removal capability were dominated by a single group of microorganisms, and few attempts were made to find candidates of PAB other than Acinetobacter. Now, new and powerful tools for the analysis of microbial community structures have been developed and used to analyze EBPR sludges. They include chemotaxonomic methods like quinone profiling and molecular methods like the fluorescent in situ hybridization (FISH), the clone library approach, denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphisms (T-RFLP), etc.High microbial diversity of the EBPR sludge has been demonstrated by using these new techniques. Quinone profiling was applied to characterize activated sludge community structures. The type of quinone in biological samples can be quantitatively determined, and the quinone patterns should explicitly reflect thechemotaxonomic composition of the examined samples. It was suggested that EBPR sludges consist of several different chemotaxonomic groups. The most abundant quinone, Q-8, accounts for only about 31% of total quinone in a PAB-enriched sludge (phosphorus content, 1.94 mmoles or 60 mg/g of suspended solids); the second most abundant one, Q-10, accounts for 8.5%; the third, MK-8(H4), 6.5% (calculated from Hiraishi et al.). The FISH technique with group-specific oligonucleotide probes targeting rRNA showed that an EBPR sludge contained the alpha-, beta-, and gamma-subclasses of proteobacteria, the cytophage group, and Gram-positive bacteria with high G+C DNA contents (13, 25-33, 10-12, 1, and 17-27% of the total cell count, respectively). In other words, the EBPR sludge phylogenetically consisted of several different microbial groups, which has been confirmed using FISH by other researchers as well. The T-RFLP of PCR-amplified 16S rDNA more directly showed the high population diversity; about 19-24 different numerically dominant ribotypes were observed in a highly PAB-enriched sludge (phosphorus content, 12% of suspended solids). The DGGE technique also showed that PCR-amplified 16S rDNA fragments of EBPR sludges contained a number of dominant DNA fragments with different sequences, implying that the examined EBPR communities had high genotypical diversity. All these results strongly suggest that PAB are not a single genotype or a few limited genospecies, but involve phylogenetically and taxonomically diverse groups of bacteria.Bond et al. applied PCR cloning to two activated sludges, one with high phosphate removal performance as well as the typical metabolism of PAB and the other without. They found that the Rhodocyclus group belonging to the beta-subclass of proteobacteria was present in significantly higher numbers in the high-phosphate sludge than in the low-phosphate sludge. This result suggests that the Rhodocyclus group may have a specific role in EBPR. However, the Rhodocyclus group occupied only 14% of the total isolated clones in the high-phosphate sludge. It is not certain that this can account for the observed high phosphate removal performance. As discussed before, an EBPR community was reported in which a type of Rhodocyclus was overwhelmingly dominating (81% of total bacteria) bacterium was shown to be essentially responsible for EBPR. Kawaharasaki et al. used dual staining with DAPI for polyP and rRNA-targeted oligonucleotide probes specific to different bacterial groups to identify PAB in situ. Many of the Gram-positive bacteria with high G+C DNA content and the alpha-subclass of proteobacteria gave the fluorescent DAPI signal of polyP. Therefore, these two groups were considered to accumulate polyP in the EBPR sludge examined. Christensson et al. reported that the Gram-positive bacteria with high G+C DNA content was suspected to play an important role in EBPR becauserelatively high occurrence of this bacterial group was observed in a clone library from an EBPR process. A significant portion of the clones of Gram-positive bacteria with high G+C DNA content was phylogenetically close to Terrabacter tumescens. Based on comparison of the electrophoregrams of T-RFLP of 16S rDNA fragments from a highly PAB-enriched sludge (phosphorus content, 12% of suspended solids) and a sludge with very low phosphate content (2% of suspended solids), Liu et al. concluded that the Gram-positive bacteria with high G+C DNA contents are not the only major component of PAB. Hiraishi et al. showed using the quinone profiling approach that the quinone patterns of activated sludges treating municipal sewage were similar to each other irrespective of the type of activated sludge process; sludges from EBPR processes and conventional processes had very similar quinone patterns. The comparison of quinone patterns from different activated sludges suggested that introduction of the anaerobic stage into the fully aerobic conventional activated sludge process does not result in significant population shift. These findings described above may again lead to the conclusion that PAB, which physiologically possess unique metabolic characteristics, should include different phylogenetic and taxonomic bacterial groups: most probably the alpha-, beta-, and gamma-subclasses of proteobacteria and the Gram-positive bacteria with high G+C DNA contents are the candidates.FUTURE PERSPECTIVESThe present review shows that PAB are not composed of a few limited genospecies, but involve phylogenetically and taxonomically diverse groups of bacteria. The type of bacteria responsible for EBPR may vary among different situations. To clearly define the microbial community structure of EBPR processes and to describe mechanism of ecological selection for PAB in EBPR processes, a closer look into occurrence and behavior of individual species of PAB in various EBPR processes will be needed. Since many of PAB seem to be impossible to culture, molecular methods are surely powerful tools for this purpose. A common EBPR metabolism seems to exist in phylogenetically diverse microbial populations of PAB. This suggests the possibility that the key genes of the EBPR metabolism are common among different bacteria. It is important and interesting to determine such key genes and to find how they are regulated genetically or enzymologically.REFERENCES1. Barnard, J. L. (1975) Water Res., 9, 485-490.2. Fuhs, G. W., and Chen, M. (1975) Microb. Ecol., 2, 119-138.3. Buchan, L. (1983) Wat. Sci. Tech., 15, 87-103.4. Lotter, L. H. (1985) Wat. Sci. Tech., 17, 127-138.5. Mino, T., Kawakami, T., and Matsuo, T. (1984) Wat. Sci. Tech., 17, 93-106.6. Mino, T., Kawakami, T., and Matsuo, T. (1985) Wat. Sci. Tech., 17, 11-21.7. Arun, V., Mino, T., and Matsuo, T. (1988) Water Res., 22, 565-570.8. Marais, G. v. R., Lowenthal, R. E., and Siebritz, I. (1982) Proc. Post Conf. Seminar on Phosphate Removal in Biological Treatment Processes, V ol. 2,pp. 5-6. 9. Mino, T., Tsuzuki, Y., and Matsuo, T. (1987) Proc. IAWPRC Int. Conf. on “Biological Phosphate Removal from Wastewaters”, Adv. Wat. Pollut. Cont. (Ramadori, R., ed.) Pergamon Press, Rome,pp. 27-38.10. Jenkins, D., and Tandoi, V. (1991) Water Res., 25, 1471-1478.11. Mino, T., van Loosdrecht, M. C. M., and Heijnen, J. J. (1998) Water Res., 32, 3193-3207.12. Rabinowitz, B., Koch, F. A., Vassos, T. D., and Oldham, W. K. (1987) Proc. IAWPRC Int. Conf. on “Biological Phosphate Removal from Wastewaters”, Adv. Wat. Pollut. Cont. (Ramadori, R., ed.) Pergamon Press, Rome, pp. 349-352.13. Wentzel, M. C., Ekama, G. A., Loewenthal, R. E., Dold, P. L., and Marais, G. v. R. (1989) Water SA, 15, 89-102.14. Smolders, G. J. F., van Loosdrecht, M. C. M., and Heijnen, J. J. (1996) Water Res., 30, 2748-2760.15. Satoh, H., Mino, T., and Matsuo, T. (1992) Wat. Sci. Tech., 26, 933-942.16. Inoue, Y., Sano, F., Nakamura, K., Yosie, N., Saito, Y., Satoh, H., Mino, T., Matsuo, T., and Doi, Y. (1996) Polymer Int.,39, 183-189.17. Liu, W. T., Mino, T., Nakamura, K., and Matsuo, T. (1994) J. Ferment. Bioeng., 77, 535-540.18. Mino, T., and Matsuo, T. (1984) Japan. J. Water Pollut. Res., 7, 605-609 (in Japanese).19. Maurer, M., Gujer, W., Hany, R., and Bachmann, S. (1997) Water Res., 31, 907-917.20. Pereira, H., Lemos, P. C., Reis, M. A., Crespo, J. P. S. G., Carrondo, M. J. T., and Santos, H. (1996) Water Res., 30, 2128-2138.21. Smolders, G. J. F., van der Meij, J., van Loosdrecht, M. C. M., and Heijnen, J. J. (1995) Biotech. Bioeng., 47, 277-287.22. Gottschalk, G. (1986) Bacterial Metabolism,2nd ed.,Springer-Verlag, N. Y.23. Mino, T., Satoh, H., and Matsuo, T. (1994) Wat. Sci. Tech., 29, 67-70.24. Mino, T., Liu, W. T., Satoh, H., and Matsuo, T. (1996) Proc. 10th Forum for Applied Biotechnology, Brugge, V ol. 1, pp. 1769-1776.。

相关文档
最新文档